WO2012137541A1 - 液晶表示装置 - Google Patents

液晶表示装置 Download PDF

Info

Publication number
WO2012137541A1
WO2012137541A1 PCT/JP2012/053545 JP2012053545W WO2012137541A1 WO 2012137541 A1 WO2012137541 A1 WO 2012137541A1 JP 2012053545 W JP2012053545 W JP 2012053545W WO 2012137541 A1 WO2012137541 A1 WO 2012137541A1
Authority
WO
WIPO (PCT)
Prior art keywords
common electrode
liquid crystal
sub
main
electrode
Prior art date
Application number
PCT/JP2012/053545
Other languages
English (en)
French (fr)
Inventor
仁 廣澤
武田 有広
森本 浩和
Original Assignee
株式会社ジャパンディスプレイセントラル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ジャパンディスプレイセントラル filed Critical 株式会社ジャパンディスプレイセントラル
Priority to KR1020137026157A priority Critical patent/KR20130131466A/ko
Priority to JP2013508784A priority patent/JP5707488B2/ja
Priority to CN201280016433.5A priority patent/CN103460124B/zh
Priority to KR1020147030621A priority patent/KR20140133963A/ko
Priority to KR1020147030620A priority patent/KR20140133962A/ko
Publication of WO2012137541A1 publication Critical patent/WO2012137541A1/ja
Priority to US14/048,552 priority patent/US9424786B2/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134363Electrodes characterised by their geometrical arrangement for applying an electric field parallel to the substrate, i.e. in-plane switching [IPS]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133707Structures for producing distorted electric fields, e.g. bumps, protrusions, recesses, slits in pixel electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134336Matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136213Storage capacitors associated with the pixel electrode
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134318Electrodes characterised by their geometrical arrangement having a patterned common electrode

Definitions

  • Embodiments of the present invention relate to a liquid crystal display device.
  • an active matrix liquid crystal display device in which a switching element is incorporated in each pixel has a structure using a lateral electric field (including a fringe electric field) such as an IPS (In-Plane Switching) mode or an FFS (Fringe Field Switching) mode. Attention has been paid.
  • a horizontal electric field mode liquid crystal display device includes a pixel electrode and a counter electrode formed on an array substrate, and switches liquid crystal molecules with a horizontal electric field substantially parallel to the main surface of the array substrate.
  • JP 2009-192822 A Japanese Patent Laid-Open No. 9-160041 US6,657,693B1
  • An object of the present embodiment is to provide a liquid crystal display device with good display quality.
  • Gate lines and auxiliary capacitance lines extending along the first direction, first source lines and second source lines extending along the second direction intersecting the first direction, and the first source lines, respectively.
  • a strip-shaped main pixel electrode located between the first source line and the second source line, and extending in the second direction, and connected to the main pixel electrode and first toward the first source line and the second source line.
  • a first substrate comprising: a strip-like subpixel electrode extending along a direction; and a first alignment film formed of a material exhibiting horizontal alignment and covering the main pixel electrode and the subpixel electrode; Second main common electrodes extending along the second direction on both sides of the main pixel electrode, and extending along the first direction on both sides of the sub pixel electrode connected to the second main common electrode.
  • Second secondary common electrode and horizontal orientation A second substrate comprising a second alignment film formed of a material shown and covering the second main common electrode and the second sub-common electrode, and held between the first substrate and the second substrate.
  • a liquid crystal display device comprising a liquid crystal layer containing liquid crystal molecules.
  • Gate lines and auxiliary capacitance lines extending along the first direction, first source lines and second source lines extending along the second direction intersecting the first direction, and the first source lines, respectively.
  • a strip-shaped main pixel electrode located between the first source line and the second source line, and extending in the second direction, and connected to the main pixel electrode and first toward the first source line and the second source line.
  • a strip-like sub-pixel electrode extending along the direction, a first main common electrode facing the first source line and the second source line and extending along the second direction, and a horizontal orientation.
  • Gate lines and auxiliary capacitance lines extending along the first direction, first source lines and second source lines extending along the second direction intersecting the first direction, and the first source lines, respectively.
  • a strip-shaped main pixel electrode located between the first source line and the second source line, and extending in the second direction, and is connected to the main pixel electrode and first toward the first source line and the second source line.
  • the main pixel electrode formed of a strip-like subpixel electrode extending along each direction, a first subcommon electrode extending along the first direction facing the gate wiring, and a material exhibiting horizontal alignment
  • a first substrate including a first alignment film covering the sub-pixel electrode and the first sub-common electrode, and extending in a second direction on both sides of the main pixel electrode.
  • a second main common electrode having the same potential as the one sub-common electrode;
  • a second substrate comprising a second alignment film formed of a material exhibiting planar alignment and covering the second main common electrode; and liquid crystal molecules held between the first substrate and the second substrate.
  • a liquid crystal layer including the liquid crystal display device.
  • FIG. 1 is a diagram schematically showing a configuration of a liquid crystal display device according to the present embodiment.
  • FIG. 2 is a diagram schematically showing a configuration and an equivalent circuit of the liquid crystal display panel shown in FIG.
  • FIG. 3 is a plan view schematically showing a minimum unit structure in one pixel in the basic configuration of the present embodiment.
  • FIG. 4 is a cross-sectional view schematically showing a cross section of a liquid crystal display panel including switching elements.
  • FIG. 5 is a plan view schematically showing the structure of one pixel on the counter substrate of the liquid crystal display panel in the first configuration example of the present embodiment.
  • FIG. 1 is a diagram schematically showing a configuration of a liquid crystal display device according to the present embodiment.
  • FIG. 2 is a diagram schematically showing a configuration and an equivalent circuit of the liquid crystal display panel shown in FIG.
  • FIG. 3 is a plan view schematically showing a minimum unit structure in one pixel in the basic configuration of the present embodiment.
  • FIG. 4 is a cross-
  • FIG. 6 is a plan view schematically showing the structure of the array substrate when one pixel of the liquid crystal display panel in the first configuration example of the present embodiment is viewed from the counter substrate side.
  • FIG. 7 is a plan view schematically showing the structure of one pixel on the counter substrate of the liquid crystal display panel in the second configuration example of the present embodiment.
  • FIG. 8 is a plan view schematically showing the structure of the array substrate when one pixel of the liquid crystal display panel in the second configuration example of the present embodiment is viewed from the counter substrate side.
  • FIG. 9 is a plan view schematically showing the structure of one pixel on the counter substrate of the liquid crystal display panel in the third configuration example of the present embodiment.
  • FIG. 10 is a plan view schematically showing the structure of the array substrate when one pixel of the liquid crystal display panel in the third configuration example of the present embodiment is viewed from the counter substrate side.
  • FIG. 11 is a plan view schematically showing the structure of the array substrate when one pixel of the liquid crystal display panel in the fourth configuration example of the present embodiment is viewed from the counter substrate side.
  • FIG. 12 is a diagram summarizing the combinations of the array substrate described in the first to fourth configuration examples and the counter substrate described in the first to third configuration examples.
  • FIG. 13 is a plan view schematically showing one variation of the present embodiment.
  • FIG. 1 is a diagram schematically showing a configuration of a liquid crystal display device 1 in the present embodiment.
  • the liquid crystal display device 1 includes an active matrix type liquid crystal display panel LPN, a drive IC chip 2 and a flexible wiring board 3 connected to the liquid crystal display panel LPN, a backlight 4 that illuminates the liquid crystal display panel LPN, and the like. .
  • the liquid crystal display panel LPN is held between the array substrate AR, which is the first substrate, the counter substrate CT, which is the second substrate disposed to face the array substrate AR, and the array substrate AR and the counter substrate CT. And a liquid crystal layer (not shown).
  • Such a liquid crystal display panel LPN includes an active area ACT for displaying an image.
  • This active area ACT is composed of a plurality of pixels PX arranged in an m ⁇ n matrix (where m and n are positive integers).
  • the backlight 4 is disposed on the back side of the array substrate AR in the illustrated example.
  • various forms are applicable, and any of those using a light emitting diode (LED) as a light source or a cold cathode tube (CCFL) is applicable. Description of the detailed structure is omitted.
  • LED light emitting diode
  • CCFL cold cathode tube
  • FIG. 2 is a diagram schematically showing a configuration and an equivalent circuit of the liquid crystal display panel LPN shown in FIG.
  • the liquid crystal display panel LPN includes n gate lines G (G1 to Gn), n auxiliary capacitance lines C (C1 to Cn), m source lines S (S1 to Sm), and the like in the active area ACT. ing.
  • the gate line G and the auxiliary capacitance line C extend substantially linearly along the first direction X.
  • the gate lines G and the auxiliary capacitance lines C are adjacent to each other at intervals along the second direction Y intersecting the first direction X, and are alternately arranged in parallel.
  • the first direction X and the second direction Y are orthogonal to each other.
  • the source line S intersects with the gate line G and the auxiliary capacitance line C.
  • the source line S extends substantially linearly along the second direction Y. Note that the gate wiring G, the auxiliary capacitance line C, and the source wiring S do not necessarily extend linearly, and some of them may be bent.
  • Each gate line G is drawn outside the active area ACT and connected to the gate driver GD.
  • Each source line S is drawn outside the active area ACT and connected to the source driver SD.
  • At least a part of the gate driver GD and the source driver SD is formed on, for example, the array substrate AR, and is connected to the driving IC chip 2 with a built-in controller.
  • Each pixel PX includes a switching element SW, a pixel electrode PE, a common electrode CE, and the like.
  • the storage capacitor Cs is formed, for example, between the storage capacitor line C and the pixel electrode PE.
  • the auxiliary capacitance line C is electrically connected to a voltage application unit VCS to which an auxiliary capacitance voltage is applied.
  • the liquid crystal display panel LPN has a configuration in which the pixel electrode PE is formed on the array substrate AR while at least a part of the common electrode CE is formed on the counter substrate CT.
  • the liquid crystal molecules in the liquid crystal layer LQ are switched mainly using an electric field formed between the PE and the common electrode CE.
  • the electric field formed between the pixel electrode PE and the common electrode CE is the XY plane defined by the first direction X and the second direction Y, the substrate main surface of the array substrate AR, or the substrate main surface of the counter substrate CT. This is an oblique electric field slightly inclined with respect to the surface (or a transverse electric field substantially parallel to the main surface of the substrate).
  • the switching element SW is composed of, for example, an n-channel thin film transistor (TFT).
  • TFT thin film transistor
  • the switching element SW is electrically connected to the gate line G and the source line S.
  • ACT In the active area ACT, m ⁇ n switching elements SW are formed.
  • the pixel electrode PE is disposed in each pixel PX and is electrically connected to the switching element SW. In the active area ACT, m ⁇ n pixel electrodes PE are formed.
  • the common electrode CE is, for example, a common potential, and is disposed in common to the pixel electrodes PE of the plurality of pixels PX via the liquid crystal layer LQ.
  • the array substrate AR includes a power supply unit VS for applying a voltage to the common electrode CE.
  • the power supply unit VS is formed outside the active area ACT.
  • the common electrodes CE at least a part of the common electrode CE formed on the counter substrate CT is drawn to the outside of the active area ACT, and the power supply unit VS formed on the array substrate AR via a conductive member (not shown) Electrically connected.
  • a part of the common electrode CE is formed on the array substrate AR
  • a part of the common electrode CE formed on the array substrate AR is electrically connected to the power supply unit VS, for example, outside the active area ACT. ing.
  • FIG. 3 is a plan view schematically showing a minimum unit structure in one pixel PX.
  • the pixel electrode PE has a main pixel electrode PA and a sub-pixel electrode PB.
  • the main pixel electrode PA and subpixel electrode PB are electrically connected to each other.
  • both the main pixel electrode PA and the sub-pixel electrode PB are provided on the array substrate AR.
  • the main pixel electrode PA extends along the second direction Y.
  • the subpixel electrode PB extends along a first direction X different from the second direction Y.
  • the pixel electrode PE is formed in a substantially cross shape. More specifically, the main pixel electrode PA is formed in a strip shape extending linearly along the second direction Y at a substantially pixel central portion.
  • the sub-pixel electrode PB is formed in a strip shape linearly extending along the first direction X in the center of the pixel.
  • the sub-pixel electrode PB is coupled to a substantially central portion of the main pixel electrode PA (or near the middle point of the length along the second direction Y of the main pixel electrode PA), and from the main pixel electrode PA to both sides thereof, that is, the pixel PX. It extends toward the left side and the right side.
  • the main pixel electrode PA is coupled to a substantially central portion of the sub-pixel electrode PB (or near the middle point of the length along the first direction X of the sub-pixel electrode PB) and from the sub-pixel electrode PB to both sides thereof. That is, it extends toward the upper side and the lower side of the pixel PX.
  • the main pixel electrode PA and the sub-pixel electrode PB are substantially orthogonal to each other.
  • the pixel electrode PE is electrically connected to a switching element (not shown) in the sub-pixel electrode PB.
  • the common electrode CE has a main common electrode CA and a sub-common electrode CB.
  • the main common electrode CA and the sub-common electrode CB are electrically connected to each other.
  • Such a common electrode CE is electrically insulated from the pixel electrode PE.
  • in the common electrode CE at least a part of the main common electrode CA and the sub-common electrode CB is provided on the counter substrate CT.
  • the main common electrode CA extends along the second direction Y.
  • the main common electrode CA is disposed on both sides of the main pixel electrode PA.
  • none of the main common electrodes CA overlaps with the main pixel electrode PA in the XY plane, and a substantially equal interval is formed between each of the main common electrodes CA and the main pixel electrode PA. Yes. That is, the main pixel electrode PA is located approximately in the middle of the adjacent main common electrode CA.
  • the sub-common electrode CB extends along the first direction X.
  • the sub-common electrode CB is disposed on both sides of the sub-pixel electrode PB. At this time, none of the sub-common electrodes CB overlaps the sub-pixel electrode PB in the XY plane, and a substantially equal interval is formed between each of the sub-common electrodes CB and the sub-pixel electrode PB. Yes. That is, the sub-pixel electrode PB is located approximately in the middle of the adjacent sub-common electrode CB.
  • the main common electrode CA is formed in a strip shape extending linearly along the second direction Y.
  • the sub-common electrode CB is formed in a strip shape extending linearly along the first direction X.
  • the two main common electrodes CA are arranged in parallel at intervals along the first direction X.
  • the main common electrode on the left side in the drawing is referred to as CAL.
  • the right main common electrode is called CAR.
  • the two sub-common electrodes CB are arranged in parallel along the second direction Y at intervals, and in the following, in order to distinguish these, the upper main common electrode in the drawing is referred to as CBU.
  • the lower main common electrode is called CBB.
  • the main common electrode CAL and the main common electrode CAR are at the same potential as the sub-common electrode CBU and the sub-common electrode CBB.
  • the main common electrode CAL and the main common electrode CAR are connected to the sub-common electrode CBU and the sub-common electrode CBB, respectively.
  • the main common electrode CAL and the main common electrode CAR are respectively disposed between the pixel PX and the adjacent pixels on the left and right. That is, the main common electrode CAL is disposed across the boundary between the illustrated pixel PX and the left pixel (not shown), and the main common electrode CAR is the illustrated pixel PX and the right pixel (not shown). ).
  • the sub-common electrode CBU and the main common electrode CBB are respectively disposed between pixels adjacent to the pixel PX in the vertical direction. That is, the sub-common electrode CBU is disposed across the boundary between the illustrated pixel PX and the upper pixel (not illustrated), and the sub-common electrode CBB is illustrated with the illustrated pixel PX and the lower pixel (not illustrated). Z)).
  • One main pixel electrode PA is located between the adjacent main common electrode CAL and main common electrode CAR. For this reason, the main common electrode CAL, the main pixel electrode PA, and the main common electrode CAR are arranged in this order along the first direction X. That is, the main pixel electrode PA and the main common electrode CA are alternately arranged along the first direction X.
  • the main pixel electrode PA, the main common electrode CAL, and the main common electrode CAR are disposed substantially parallel to each other.
  • the distance along the first direction X between the main common electrode CAL and the main pixel electrode PA is substantially the same as the distance along the first direction X between the main common electrode CAR and the main pixel electrode PA.
  • one sub-pixel electrode PB is located between the adjacent sub-common electrode CBU and sub-common electrode CBB. Therefore, the sub-common electrode CBB, the sub-pixel electrode PB, and the sub-common electrode CBU are disposed in this order along the second direction Y. That is, the sub-pixel electrodes PB and the sub-common electrodes CB are alternately arranged along the second direction Y.
  • the sub-pixel electrode PB, the sub-common electrode CBB, and the sub-common electrode CBU are disposed substantially parallel to each other.
  • the distance along the second direction Y between the sub-common electrode CBB and the sub-pixel electrode PB is substantially the same as the distance along the second direction Y between the sub-common electrode CBU and the sub-pixel electrode PB.
  • four regions defined by the pixel electrode PE and the common electrode CE are mainly formed as openings or transmission portions that contribute to display.
  • the initial alignment direction of the liquid crystal molecules LM is, for example, a direction substantially parallel to the second direction Y.
  • At least one of the main common electrodes CA may be opposed to the source wiring S that extends substantially parallel to the main common electrode CA (or along the second direction Y).
  • any one of the sub-pixel electrode PB and the sub-common electrode CB may be opposed to the gate line G and the auxiliary capacitance line C that extend substantially parallel to these (or along the first direction X). Good.
  • the main common electrode CA includes at least one of the first main common electrode CA1 provided on the array substrate AR and the second main common electrode CA2 provided on the counter substrate CT. Also good.
  • the sub-common electrode CB may include at least one of the first sub-common electrode CB1 provided on the array substrate AR and the second sub-common electrode CB2 provided on the counter substrate CT.
  • the first main common electrode CA1, the second main common electrode CA2, the first sub-common electrode CB1, and the second sub-common electrode CB2 are all at the same potential.
  • FIG. 4 is a cross-sectional view schematically showing a cross section of the liquid crystal display panel LPN including the switching element SW.
  • the illustration of the common electrode is omitted, and only the portions necessary for the description are shown.
  • a backlight 4 is disposed on the back side of the array substrate AR constituting the liquid crystal display panel LPN.
  • the array substrate AR is formed using a first insulating substrate 10 having optical transparency such as a glass substrate or a plastic substrate.
  • the array substrate AR includes a switching element SW, a pixel electrode PE, a first alignment film AL1, and the like on the side of the first insulating substrate 10 facing the counter substrate CT.
  • the switching element SW is a top-gate thin film transistor, but may be a bottom-gate thin film transistor.
  • the semiconductor layer SC of the switching element SW is formed of, for example, polysilicon, but may be formed of amorphous silicon.
  • the semiconductor layer SC has a source region SCS and a drain region SCD on both sides of the channel region SCC.
  • An undercoat layer that is an insulating film may be interposed between the first insulating substrate 10 and the semiconductor layer SC.
  • the semiconductor layer SC is covered with the gate insulating film 11.
  • the gate insulating film 11 is also disposed on the first insulating substrate 10.
  • the gate electrode WG of the switching element SW is formed on the gate insulating film 11 and is located above the channel region SCC of the semiconductor layer SC. Further, the gate wiring G and the auxiliary capacitance line C are also formed on the gate insulating film 11. The gate electrode WG, the gate line G, and the auxiliary capacitance line C can be formed in the same process using the same material. The gate electrode WG is electrically connected to the gate wiring G.
  • the gate electrode WG, the gate wiring G, and the auxiliary capacitance line C are covered with the first interlayer insulating film 12.
  • the first interlayer insulating film 12 is also disposed on the gate insulating film 11.
  • the gate insulating film 11 and the first interlayer insulating film 12 are formed of an inorganic material such as silicon oxide and silicon nitride, for example.
  • the source electrode WS and the drain electrode WD of the switching element SW are formed on the first interlayer insulating film 12.
  • the source line S is also formed on the first interlayer insulating film 12.
  • the source electrode WS, the drain electrode WD, and the source wiring S can be formed in the same process using the same material.
  • the source electrode WS is electrically connected to the source line S.
  • the source electrode WS is in contact with the source region SCS of the semiconductor layer SC through a contact hole that penetrates the gate insulating film 11 and the first interlayer insulating film 12.
  • the drain electrode WD is in contact with the drain region SCD of the semiconductor layer SC through a contact hole that penetrates the gate insulating film 11 and the first interlayer insulating film 12.
  • the gate electrode WG, the gate wiring G, the auxiliary capacitance line C, the source electrode WS, the drain electrode WD, and the source wiring S are formed of a conductive material such as molybdenum, aluminum, tungsten, or titanium.
  • the switching element SW having such a configuration is covered with the second interlayer insulating film 13. That is, the source electrode WS, the drain electrode WD, and the source wiring S are covered with the second interlayer insulating film 13.
  • the second interlayer insulating film 13 is also disposed on the first interlayer insulating film 12.
  • the second interlayer insulating film 13 is formed of various organic materials such as an ultraviolet curable resin and a thermosetting resin.
  • the pixel electrode PE is formed on the second interlayer insulating film 13. Although not described in detail, the main pixel electrode PA and the sub-pixel electrode PB constituting the pixel electrode PE are formed on the second interlayer insulating film 13. The pixel electrode PE is connected to the drain electrode WD through a contact hole that penetrates the second interlayer insulating film 13.
  • the pixel electrode PE is formed of a light-transmitting conductive material such as indium tin oxide (ITO) or indium zinc oxide (IZO), but other metal materials such as aluminum. May be formed.
  • the first alignment film AL1 is disposed on the surface of the array substrate AR that faces the counter substrate CT, and extends over substantially the entire active area ACT.
  • the first alignment film AL1 covers the pixel electrode PE and is also disposed on the second interlayer insulating film 13.
  • Such a first alignment film AL1 is formed of a material exhibiting horizontal alignment.
  • the array substrate AR may further include a first main common electrode and a first sub-common electrode as part of the common electrode.
  • the counter substrate CT is formed using a second insulating substrate 20 having optical transparency such as a glass substrate or a plastic substrate.
  • This counter substrate CT is arranged on the side of the second insulating substrate 20 facing the array substrate AR, at least one of the second main common electrode and the second sub common electrode among the common electrodes not shown, and the second alignment film. AL2 etc. are provided.
  • this counter substrate CT is arranged so as to partition each pixel PX (or to face wiring portions such as the source wiring S, the gate wiring G, the auxiliary capacitance line C, and the switching element SW).
  • a black matrix, a color filter layer disposed corresponding to each pixel PX, an overcoat layer that alleviates the influence of unevenness on the surface of the black matrix and the color filter layer, and the like may be disposed.
  • the common electrode is made of a light-transmitting conductive material such as ITO or IZO.
  • the second alignment film AL2 is disposed on the surface of the counter substrate CT facing the array substrate AR, and extends over substantially the entire active area ACT.
  • the second alignment film AL2 covers the common electrode and the like.
  • Such a second alignment film AL2 is formed of a material exhibiting horizontal alignment.
  • first alignment film AL1 and second alignment film AL2 are subjected to an alignment process (for example, a rubbing process or a photo-alignment process) for initial alignment of the liquid crystal molecules LM.
  • the first alignment treatment direction PD1 in which the first alignment film AL1 initially aligns the liquid crystal molecules LM is parallel to the second alignment treatment direction PD2 in which the second alignment film AL2 initially aligns the liquid crystal molecules LM.
  • the first alignment treatment direction PD1 and the second alignment treatment direction PD2 are substantially parallel to each other and are in the same direction.
  • the first alignment treatment direction PD1 and the second alignment treatment direction PD2 are substantially parallel to each other and opposite to each other.
  • the array substrate AR and the counter substrate CT as described above are arranged so that the first alignment film AL1 and the second alignment film AL2 face each other.
  • a columnar spacer integrally formed on one substrate by a resin material is disposed between the first alignment film AL1 of the array substrate AR and the second alignment film AL2 of the counter substrate CT.
  • a predetermined cell gap for example, a cell gap of 2 to 7 ⁇ m is formed.
  • the array substrate AR and the counter substrate CT are bonded to each other with a sealing material outside the active area ACT in a state where a predetermined cell gap is formed.
  • the liquid crystal layer LQ is held in a cell gap formed between the array substrate AR and the counter substrate CT, and is disposed between the first alignment film AL1 and the second alignment film AL2.
  • the liquid crystal layer LQ includes liquid crystal molecules LM.
  • Such a liquid crystal layer LQ is made of, for example, a liquid crystal material having a positive dielectric anisotropy (positive type).
  • the first optical element OD1 is attached to the outer surface of the array substrate AR, that is, the outer surface of the first insulating substrate 10 constituting the array substrate AR with an adhesive or the like.
  • the first optical element OD1 is located on the side facing the backlight 4 of the liquid crystal display panel LPN, and controls the polarization state of incident light incident on the liquid crystal display panel LPN from the backlight 4.
  • the first optical element OD1 includes a first polarizing plate PL1 having a first polarization axis AX1. Note that another optical element such as a retardation plate may be disposed between the first polarizing plate PL1 and the first insulating substrate 10.
  • the second optical element OD2 is adhered to the outer surface of the counter substrate CT, that is, the outer surface of the second insulating substrate 20 constituting the counter substrate CT with an adhesive or the like.
  • the second optical element OD2 is located on the display surface side of the liquid crystal display panel LPN, and controls the polarization state of the outgoing light emitted from the liquid crystal display panel LPN.
  • the second optical element OD2 includes a second polarizing plate PL2 having a second polarization axis AX2. Note that another optical element such as a retardation plate may be disposed between the second polarizing plate PL2 and the second insulating substrate 20.
  • the first polarizing axis AX1 of the first polarizing plate PL1 and the second polarizing axis AX2 of the second polarizing plate PL2 are in a crossed Nicols positional relationship.
  • one polarizing plate is arranged so that the polarization axis thereof is parallel or orthogonal to the initial alignment direction of the liquid crystal molecules LM, that is, the first alignment processing direction PD1 or the second alignment processing direction PD2.
  • the initial alignment direction is parallel to the second direction Y
  • the polarization axis of one polarizing plate is parallel to the second direction Y or parallel to the first direction X.
  • the first polarizing plate PL1 is arranged so that the first polarization axis AX1 is orthogonal to the second direction Y, which is the initial alignment direction of the liquid crystal molecules LM, Further, the second polarizing plate PL2 is arranged so that the second polarization axis AX2 is parallel to the initial alignment direction of the liquid crystal molecules LM.
  • the second polarizing plate PL2 is arranged so that the second polarization axis AX2 is orthogonal to the second direction Y that is the initial alignment direction of the liquid crystal molecules LM.
  • the first polarizing plate PL1 is arranged so that the first polarization axis AX1 is parallel to the initial alignment direction of the liquid crystal molecules LM.
  • liquid crystal molecules LM of the liquid crystal layer LQ are aligned such that the major axis thereof faces the first alignment treatment direction PD1 of the first alignment film AL1 and the second alignment treatment direction PD2 of the second alignment film AL2.
  • Such OFF time corresponds to the initial alignment state
  • the alignment direction of the liquid crystal molecules LM at the OFF time corresponds to the initial alignment direction.
  • the liquid crystal molecules LM are not always aligned parallel to the XY plane, and are often pretilted. Therefore, the strict initial alignment direction of the liquid crystal molecules LM is a direction obtained by orthogonally projecting the alignment direction of the liquid crystal molecules LM at the OFF time on the XY plane. However, in order to simplify the description, in the following description, it is assumed that the liquid crystal molecules LM are aligned in parallel to the XY plane and rotate in a plane parallel to the XY plane.
  • both the first alignment treatment direction PD1 and the second alignment treatment direction PD2 are substantially parallel to the second direction Y.
  • the liquid crystal molecules LM are initially aligned so that their major axes are oriented in a direction substantially parallel to the second direction Y, as indicated by a broken line in FIG. That is, the initial alignment direction of the liquid crystal molecules LM is parallel to the second direction Y (or 0 ° with respect to the second direction Y).
  • the liquid crystal molecules LM are substantially near the middle portion of the liquid crystal layer LQ. Alignment is performed horizontally (pretilt angle is substantially zero), and is aligned with a pretilt angle that is symmetrical in the vicinity of the first alignment film AL1 and in the vicinity of the second alignment film AL2 (spray alignment).
  • the liquid crystal molecules LM in the vicinity of the first alignment film AL1 and the liquid crystal molecules LM in the vicinity of the second alignment film AL2 in the direction inclined from the normal direction of the substrate Is optically compensated. Therefore, when the first alignment processing direction PD1 and the second alignment processing direction PD2 are parallel to each other and in the same direction, light leakage is small in the case of black display, and a high contrast ratio can be realized. It becomes possible to improve the quality.
  • the liquid crystal molecules LM are in the vicinity of the first alignment film AL1, in the second alignment film AL2 in the cross section of the liquid crystal layer LQ. And in the middle part of the liquid crystal layer LQ with a substantially uniform pretilt angle (homogeneous alignment).
  • Part of the backlight light from the backlight 4 passes through the first polarizing plate PL1 and enters the liquid crystal display panel LPN.
  • the light incident on the liquid crystal display panel LPN is linearly polarized light orthogonal to the first polarization axis AX1 of the first polarizing plate PL1.
  • Such a polarization state of linearly polarized light hardly changes when it passes through the liquid crystal display panel LPN in the OFF state. Therefore, the linearly polarized light transmitted through the liquid crystal display panel LPN is absorbed by the second polarizing plate PL2 having a crossed Nicol positional relationship with the first polarizing plate PL1 (black display).
  • the substrate is interposed between the pixel electrode PE and the common electrode CE.
  • a horizontal electric field (or an oblique electric field) substantially parallel to the line is formed.
  • the liquid crystal molecules LM are affected by the electric field and rotate in a plane whose major axis is substantially parallel to the XY plane as indicated by the solid line in the figure.
  • the liquid crystal molecules LM in the lower half of the region between the pixel electrode PE and the main common electrode CAL rotate clockwise with respect to the second direction Y in the drawing.
  • the liquid crystal molecules LM in the upper half region rotate counterclockwise with respect to the second direction Y and are oriented so as to face the upper left in the figure.
  • the liquid crystal molecules LM in the lower half region rotate counterclockwise with respect to the second direction Y and face the lower right in the drawing.
  • the liquid crystal molecules LM in the upper half region are aligned so as to rotate clockwise with respect to the second direction Y and to face the upper right in the drawing.
  • each pixel PX in a state where an electric field is formed between the pixel electrode PE and the common electrode CE, the alignment direction of the liquid crystal molecules LM is divided into a plurality of directions with the position overlapping the pixel electrode PE as a boundary. , A domain is formed in each orientation direction. That is, a plurality of domains are formed in one pixel PX.
  • linearly polarized light orthogonal to the first polarization axis AX1 of the first polarizing plate PL1 is incident on the liquid crystal display panel LPN, and the polarization state is the alignment of the liquid crystal molecules LM when passing through the liquid crystal layer LQ. It changes according to the state.
  • the second polarizing plate PL2 (white display).
  • the viewing angles in the four directions can be optically compensated, and a wide viewing angle can be achieved. Become. Therefore, it is possible to provide a liquid crystal display device with high display quality, which can realize display with high transmittance without gradation inversion.
  • the transmittance of each region becomes substantially equal, The light transmitted through the part optically compensates for each other, and a uniform display can be realized over a wide viewing angle range.
  • the present embodiment has a wide viewing angle and bright brightness even in a halftone, as compared with a vertical alignment type liquid crystal display device in which the initial alignment state of liquid crystal molecules is perpendicular to the substrate.
  • the liquid crystal molecules LM When ON, a horizontal electric field is hardly formed in the vicinity of the main pixel electrode PA and the sub-pixel electrode PB of the pixel electrode PE, or in the vicinity of the main common electrode CA and the sub-common electrode CB of the common electrode CE (or liquid crystal Since an electric field sufficient to drive the molecules LM is not formed), the liquid crystal molecules LM hardly move from the initial alignment direction as in the OFF state. Therefore, as described above, even if the pixel electrode PE and the common electrode CE are formed of a light-transmitting conductive material, the backlight light hardly transmits in these regions, and hardly contributes to the display when the pixel is turned on. . Therefore, the pixel electrode PE and the common electrode CE are not necessarily formed of a transparent conductive material, and may be formed using a conductive material such as aluminum or silver.
  • the minimum unit structure in one pixel PX described above is not limited to a square, and is not limited to expansion and contraction in the second direction Y or the first direction X, and may be a rectangle. That is, a desired pixel size can be designed by combining the unit structure itself or the unit structure. Even if the dimensions of the unit structure are freely designed in this way, the liquid crystal molecules LM are horizontally aligned on the substrate due to the electric field generated between the electrodes, so that the influence on the normal direction retardation with respect to the substrate is small. Therefore, the change in pixel size has little influence on the luminance and viewing angle.
  • the liquid crystal molecules with respect to the substrate are different if the electric field strength generated between the electrodes is different within the pixel. Since the degree of inclination is different, the influence on the retardation in the normal direction relative to the substrate is large. Therefore, the influence of changing the pixel size on the luminance and the viewing angle is large. Therefore, if vertical alignment type liquid crystal molecules are applied to this unit structure, the unit structure needs to be square in order to make the electric field strength and electric field distribution in the pixel uniform.
  • FIG. 5 is a plan view schematically showing the structure of one pixel PX in the counter substrate CT1 of the liquid crystal display panel LPN in the first configuration example of the present embodiment.
  • the common electrode CE includes a second main common electrode CA2 provided on the counter substrate CT1 as a main common electrode, and a second sub common electrode CB2 provided on the counter substrate CT1 as a sub common electrode. Have. These second main common electrode CA2 and second sub-common electrode CB2 are covered with the second alignment film AL2.
  • the illustrated counter substrate CT1 includes a strip-shaped second main common electrode CA2 that linearly extends along the second direction Y, and a strip-shaped second sub electrode that extends linearly along the first direction X. And a common electrode CB2.
  • the second main common electrode CA2 and the second sub-common electrode CB2 are electrically connected.
  • the second main common electrode CA2 and the second sub-common electrode CB2 are formed integrally (or continuously). That is, in the counter substrate CT1, the common electrode CE is formed in a lattice shape.
  • the two second main common electrodes CA2 shown in the figure are arranged in parallel along the first direction X at intervals, and in the following, in order to distinguish them, the second main common electrode on the left side in the drawing is used. Is called CAL2, and the second main common electrode on the right side in the figure is called CAR2.
  • the illustrated second sub-common electrode CB2 is arranged in parallel in the second direction Y at an interval, and in the following, in order to distinguish them, the upper second sub-common electrode in the figure. Is called CBU2, and the lower second sub-common electrode in the figure is called CBB2.
  • the second main common electrode CAL2 and the second main common electrode CAR2 are connected to the second sub-common electrode CBU2 and the second sub-common electrode CBB2.
  • the common electrode CE having such a configuration is drawn out of the active area, electrically connected to a power feeding unit formed on the array substrate via a conductive member, and a common potential is fed. .
  • FIG. 6 is a plan view schematically showing the structure of the array substrate AR1 when one pixel PX of the liquid crystal display panel LPN in the first configuration example of the present embodiment is viewed from the counter substrate CT1 side.
  • the common electrode CE is illustrated by a broken line. Further, only the configuration necessary for the description of one pixel PX is illustrated, and the illustration of the switching element and the like is omitted.
  • the array substrate AR1 extends along the second direction Y, the storage capacitor line C1 extending along the first direction X, the gate wiring G1 and the gate wiring G2 extending along the first direction X, and the second direction Y.
  • Source wiring S1 and source wiring S2, and a pixel electrode PE are provided.
  • the auxiliary capacitance line C1, the gate line G1, and the gate line G2 are formed on the gate insulating film 11 and covered with the first interlayer insulating film 12.
  • the source wiring S 1 and the source wiring S 2 are formed on the first interlayer insulating film 12 and are covered with the second interlayer insulating film 13.
  • the pixel electrode PE is formed on the second interlayer insulating film 13.
  • the pixel PX corresponds to a region indicated by a broken line in the drawing, and has a rectangular shape whose length along the second direction Y is longer than the length along the first direction X.
  • the source line S1 is disposed at the left end, and the source line S2 is disposed at the right end. Strictly speaking, the source line S1 is disposed across the boundary between the pixel PX and the pixel adjacent to the left side, and the source line S2 is disposed over the boundary between the pixel PX and the pixel adjacent to the right side. Yes.
  • the gate line G1 is disposed at the upper end, the gate line G2 is disposed at the lower end, and the storage capacitor line C1 is disposed substantially at the center of the pixel. That is, the distance along the second direction Y between the gate line G1 and the auxiliary capacitance line C1 is substantially the same as the distance along the second direction Y between the gate line G2 and the auxiliary capacitance line C1.
  • the pixel electrode PE is disposed between the source line S1 and the source line S2, or between the gate line G1 and the gate line G2, and is electrically connected to a switching element (not shown).
  • a pixel electrode PE includes a strip-shaped main pixel electrode PA extending linearly along the second direction Y and a strip-shaped subpixel electrode PB extending linearly along the first direction X.
  • the main pixel electrode PA and the sub-pixel electrode PB are electrically connected.
  • the main pixel electrode PA and the subpixel electrode PB are formed integrally (or continuously). That is, in the array substrate AR1, the pixel electrode PE is formed in a cross shape.
  • the main pixel electrode PA and the subpixel electrode PB are both covered with the first alignment film AL1.
  • the main pixel electrode PA is located inside the pixel PX from the position immediately above each of the adjacent source line S1 and source line S2, and is disposed approximately in the middle between the source line S1 and the source line S2. Such a main pixel electrode PA extends from the vicinity of the upper end of the pixel PX to the vicinity of the lower end.
  • the subpixel electrode PB is disposed substantially in the center of the pixel and intersects with the main pixel electrode PA.
  • Such a sub-pixel electrode PB is formed from the substantially central portion of the main pixel electrode PA toward both sides thereof, that is, toward the source line S1 on the left side of the main pixel electrode PA and the source line S2 on the right side of the main pixel electrode PA. It extends linearly.
  • Such a sub-pixel electrode PB extends from the vicinity of the left end of the pixel PX to the vicinity of the right end.
  • the sub-pixel electrode PB is opposed to the storage capacitor line C1.
  • the subpixel electrode PB is disposed above the auxiliary capacitance line C1.
  • a first interlayer insulating film 12 and a second interlayer insulating film 13 are interposed as insulating films between the sub-pixel electrode PB and the auxiliary capacitance line C1.
  • the auxiliary capacitance line C1 located between the source wiring S1 and the source wiring S2 is used. Is equal to or longer than the length along the first direction X.
  • the width of the subpixel electrode PB along the second direction Y is set to be relatively wide in the configuration in which the subpixel electrode PB is electrically connected to a switching element (not shown) on the auxiliary capacitance line C1.
  • the width of the subpixel electrode PB is equal to or greater than the width of the auxiliary capacitance line C1.
  • the subpixel electrode PB is interposed between the source line S1 and the source line S2. It can be arranged so as to cover the auxiliary capacitance line C1 located.
  • the storage capacitor line C1 may be disposed at the upper end or the lower end of the pixel PX, and the gate line G1 may be disposed at the approximate pixel center.
  • the subpixel electrode PB may be opposed to the gate line G1 (or the subpixel electrode PB may be disposed above the gate line G1).
  • the second main common electrode CAL2 and the second main common electrode CAR2 are disposed on both sides of the position immediately above the main pixel electrode PA, and the second sub-common electrode CBU2 and the second sub-common electrode
  • the electrode CBB2 is disposed on both sides of the position immediately above the subpixel electrode PB.
  • the main pixel electrode PA is disposed between the second main common electrode CAL2 and the second main common electrode CAR2
  • the sub-pixel electrode PB is disposed between the second sub-common electrode CBU2 and the second sub-common electrode CBB2.
  • the second main common electrode CAL2 is disposed at the left end of the pixel PX and faces the source line S1 (or the second main common electrode CAL2 is disposed above the source line S1. )
  • the second main common electrode CAR2 is arranged at the right end of the pixel PX and faces the source line S2 (or the second main common electrode CAR2 is arranged above the source line S2).
  • the second sub-common electrode CBU2 is disposed at the upper end of the pixel PX and faces the gate line G1 (or the second sub-common electrode CBU2 is disposed above the gate line G1).
  • the second sub-common electrode CBB2 is disposed at the lower end of the pixel PX and faces the gate line G2 (or the second sub-common electrode CBB2 is disposed above the gate line G2). .
  • the second main common electrode CAL2 and the second main common electrode CAR2 are opposed to the source line S1 and the source line S2, respectively.
  • the second main common electrode CAL2 and the second main common electrode CAR2 are disposed above the source line S1 and the source line S2, respectively, the second main common electrode CAL2 and the second main common electrode CAR2 are the source.
  • the opening contributing to display can be enlarged, and the transmittance of the pixel PX can be improved.
  • the second main common electrode CAL2 and the second main common electrode CAR2 are disposed above the source line S1 and the source line S2, respectively, so that the main pixel electrode PA, the second main common electrode CAL2, and the second main common electrode CAR2 are disposed. It is possible to increase the distance between and a horizontal electric field closer to the horizontal. For this reason, it is possible to maintain the wide viewing angle, which is an advantage of the IPS mode, which is a conventional configuration.
  • the sub-pixel electrode PB of the pixel electrode PE is disposed so as to face the auxiliary capacitance line and the gate wiring, it is possible to shield an undesired electric field from the auxiliary capacitance line and the gate wiring. For this reason, it is possible to suppress an undesired bias from being applied to the liquid crystal layer LQ from the storage capacitor line or the gate wiring, and it is possible to suppress the occurrence of display defects such as burn-in. Therefore, a liquid crystal display device with better display quality can be provided.
  • FIG. 7 is a plan view schematically showing the structure of one pixel PX in the counter substrate CT2 of the liquid crystal display panel LPN in the second configuration example of the present embodiment.
  • the common electrode CE includes a first main common electrode CA1 provided on an array substrate to be described later as a main common electrode, and a second sub-common electrode CB2 provided on the counter substrate CT2 as a sub-common electrode. have.
  • the second sub-common electrode CB2 is covered with the second alignment film AL2.
  • the counter substrate CT2 shown in the figure includes a strip-shaped second sub-common electrode CB2 that extends linearly along the first direction X, and does not include a main common electrode. That is, in the counter substrate CT2, the common electrode CE is formed in a stripe shape extending in the first direction X.
  • the illustrated second sub-common electrode CB2 is arranged in parallel in the second direction Y at intervals, and in the following, in order to distinguish them, the upper second sub-common electrode in the figure. Is called CBU2, and the lower second sub-common electrode in the figure is called CBB2.
  • the second sub-common electrode CB2 of the common electrode CE is drawn out to the outside of the active area and is electrically connected to a power feeding unit formed on the array substrate through a conductive member. Potential is supplied.
  • FIG. 8 is a plan view schematically showing the structure of the array substrate AR2 when one pixel PX of the liquid crystal display panel LPN in the second configuration example of the present embodiment is viewed from the counter substrate CT2.
  • the common electrode CE is illustrated by a broken line. Further, only the configuration necessary for the description of one pixel PX is illustrated, and the illustration of the switching element and the like is omitted.
  • the array substrate AR2 includes the auxiliary capacitance line C1 extending along the first direction X, the gate wiring G1 and the gate wiring G2 extending along the first direction X, and the second direction.
  • a source line S1 and a source line S2 extending along Y, and a pixel electrode PE are provided.
  • the pixel electrode PE is covered with the first alignment film AL1.
  • the array substrate AR2 includes a strip-shaped first main common electrode CA1 extending linearly along the second direction Y as a part of the common electrode CE.
  • the first main common electrode CA1 has the same potential as the second sub-common electrode CB2.
  • the two first main common electrodes CA1 shown in the figure are arranged in parallel along the first direction X at intervals, and in the following, in order to distinguish them, the first main common electrode on the left side in the drawing is used. Is called CAL1, and the first main common electrode on the right side in the figure is called CAR1.
  • These first main common electrode CAL1 and first main common electrode CAR1 are formed on the second interlayer insulating film 13 and covered with the first alignment film AL1, for example, like the pixel electrode PE.
  • the first main common electrode CAL1 and the first main common electrode CAR1 can be formed in the same process using the same material (for example, ITO) as the pixel electrode PE.
  • the first main common electrode CAL1 is disposed at the left end portion of the pixel PX and faces the source line S1 (or the first main common electrode CAL1 is disposed above the source line S1. )
  • the first main common electrode CAR1 is arranged at the right end of the pixel PX and faces the source line S2 (or the first main common electrode CAR1 is arranged above the source line S2).
  • a second interlayer insulating film 13 is interposed as an insulating film between the first main common electrode CAL1 and the first main common electrode CAR1, and the source wiring S1 and the source wiring S2.
  • Each of the first main common electrode CAL1 and the first main common electrode CAR1 extends linearly within the active area, is drawn out of the active area, and is electrically connected to the power feeding unit formed on the array substrate AR2. Connected and supplied with common potential.
  • the first main common electrode CAL1 and the first main common electrode CAR1 covers the source wiring S1 and the source wiring S2 in the active area, the first main common electrode CAL1 and the first main common electrode CAR1
  • the width along the first direction X is equal to or greater than the width along the first direction X of the source wiring S1 and the source wiring S2.
  • the pixel electrode PE is disposed between the gate wiring G1 and the gate wiring G2, similarly to the first configuration example.
  • the pixel electrode PE is disposed between the source line S1 and the source line S2, that is, between the first main common electrode CAL1 and the first main common electrode CAR1.
  • the pixel electrode PE has a main pixel electrode PA and a sub-pixel electrode PB.
  • the main pixel electrode PA is disposed at a substantially middle position between the first main common electrode CAL1 and the first main common electrode CAR1.
  • the main pixel electrode PA extends toward the gate line G1 and the gate line G2.
  • the subpixel electrode PB is disposed at a substantially middle position between the gate wiring G1 and the gate wiring G2.
  • the sub-pixel electrode PB extends toward the first main common electrode CAL1 and the first main common electrode CAR1.
  • the sub-pixel electrode PB includes the first main common electrode CAL1 and the first main common electrode CAL1.
  • the first main common electrode CAR1 is disposed so as not to contact (or the sub-pixel electrode PB is disposed so as to be separated from the first main common electrode CAL1 and the first main common electrode CAR1).
  • the subpixel electrode PB faces the auxiliary capacitance line C1 (or the subpixel electrode PB is disposed above the auxiliary capacitance line C1).
  • the storage capacitor line C1 may be disposed at the upper end or the lower end of the pixel PX, and the gate line G1 may be disposed substantially at the center of the pixel.
  • the subpixel electrode PB may be opposed to the gate line G1 (or the subpixel electrode PB may be disposed above the gate line G1).
  • the second sub-common electrode CBU2 and the second sub-common electrode CBB2 are disposed on both sides of the position immediately above the sub-pixel electrode PB.
  • the main pixel electrode PA is disposed between the first main common electrode CAL1 and the first main common electrode CAR1
  • the sub-pixel electrode PB is disposed between the second sub-common electrode CBU2 and the second sub-common electrode CBB2.
  • the second sub-common electrode CBU2 is disposed at the upper end portion of the pixel PX and faces the gate line G1 (or the second sub-common electrode CBU2 is disposed above the gate line G1).
  • the second sub-common electrode CBB2 is disposed at the lower end of the pixel PX and faces the gate line G2 (or the second sub-common electrode CBB2 is disposed above the gate line G2). .
  • the first main common electrodes CA1 of the common electrode CE is disposed so as to face the source wiring, so that it is undesirable from the source wiring. It is possible to shield the electric field. For this reason, it is possible to suppress an undesired bias from being applied to the liquid crystal layer LQ from the source wiring, and crosstalk (for example, in a state where the pixel PX is set to a pixel potential for displaying black).
  • the common electrode CE includes a first main common electrode CA1 provided on the array substrate AR2 and a second main common electrode CA2 provided on the counter substrate CT1 as main common electrodes.
  • an undesired vertical electric field that is, an electric field along the normal direction of the substrate main surface
  • FIG. 9 is a plan view schematically showing the structure of one pixel PX in the counter substrate CT3 of the liquid crystal display panel LPN in the third configuration example of the present embodiment.
  • the common electrode CE includes a second main common electrode CA2 provided on the counter substrate CT3 as a main common electrode, and a first sub-common electrode CB1 provided on an array substrate described later as a sub-common electrode. have.
  • the second main common electrode CA2 is covered with the second alignment film AL2.
  • the counter substrate CT3 shown in the figure includes a strip-shaped second main common electrode CA2 extending linearly along the second direction Y, and does not include a sub-common electrode. That is, in the counter substrate CT3, the common electrode CE is formed in a stripe shape extending in the second direction Y.
  • the two second main common electrodes CA2 shown in the figure are arranged in parallel along the first direction X at intervals, and in the following, in order to distinguish them, the second main common electrode on the left side in the drawing is used. Is called CAL2, and the second main common electrode on the right side in the figure is called CAR2.
  • the second main common electrode CA2 of the common electrode CE is drawn to the outside of the active area, and is electrically connected to a power feeding unit formed on the array substrate via a conductive member. Potential is supplied.
  • FIG. 10 is a plan view schematically showing the structure of the array substrate AR3 when one pixel PX of the liquid crystal display panel LPN in the third configuration example of the present embodiment is viewed from the counter substrate CT3 side.
  • the common electrode CE is illustrated by a broken line. Further, only the configuration necessary for the description of one pixel PX is illustrated, and the illustration of the switching element and the like is omitted.
  • the array substrate AR3 includes an auxiliary capacitance line C1 extending along the first direction X, a gate wiring G1 and a gate wiring G2 extending along the first direction X, and a second direction.
  • a source line S1 and a source line S2 extending along Y, and a pixel electrode PE are provided.
  • the pixel electrode PE is covered with the first alignment film AL1.
  • the array substrate AR3 includes a strip-shaped first sub-common electrode CB1 extending linearly along the first direction X as a part of the common electrode CE.
  • the first sub-common electrode CB1 has the same potential as the second main common electrode CA2.
  • the illustrated first sub-common electrode CB1 is arranged in parallel along the second direction Y at intervals, and in the following, in order to distinguish these, the upper first sub-common electrode in the figure Is called CBU1, and the lower first sub-common electrode in the figure is called CBB1.
  • the first sub-common electrode CBU1 and the first sub-common electrode CBB1 are formed on the second interlayer insulating film 13 and covered with the first alignment film AL1, similarly to the pixel electrode PE.
  • the first sub-common electrode CBU1 and the first sub-common electrode CBB1 can be formed in the same process using the same material (for example, ITO) as the pixel electrode PE.
  • the first sub-common electrode CBU1 is disposed at the upper end portion of the pixel PX and faces the gate line G1 (or the first sub-common electrode CBU1 is disposed above the gate line G1).
  • the first sub-common electrode CBB1 is disposed at the lower end of the pixel PX and faces the gate line G2 (or the first sub-common electrode CBB1 is disposed above the gate line G2).
  • a first interlayer insulating film 12 and a second interlayer insulating film 13 are interposed as insulating films between the first sub-common electrode CBU1 and the first sub-common electrode CBB1, and the gate wiring G1 and the gate wiring G2. .
  • Each of the first sub-common electrode CBU1 and the first sub-common electrode CBB1 extends linearly within the active area, is drawn out of the active area, and is electrically connected to the power feeding unit formed on the array substrate AR3. Connected and supplied with common potential.
  • the first sub-common electrode CBU1 and the first sub-common electrode CBB1 covers the gate line G1 and the gate line G2 in the active area, the first sub-common electrode CBU1 and the first sub-common electrode CBB1
  • the width along the second direction Y is equal to or greater than the width along the second direction Y of the gate wiring G1 and the gate wiring G2.
  • the pixel electrode PE is disposed between the source line S1 and the source line S2 as in the first configuration example. Alternatively, the pixel electrode PE is disposed between the gate line G1 and the gate line G2, that is, between the first sub-common electrode CBU1 and the first sub-common electrode CBB1.
  • the pixel electrode PE has a main pixel electrode PA and a sub-pixel electrode PB.
  • the main pixel electrode PA is disposed at a substantially middle position between the source line S1 and the source line S2.
  • the main pixel electrode PA extends toward the first sub-common electrode CBU1 and the first sub-common electrode CBB1.
  • the main pixel electrode PA is connected to the first sub-common electrode CBU1 and the first sub-common electrode CBU1.
  • the first sub-common electrode CBB1 is disposed so as not to contact (or the main pixel electrode PA is disposed so as to be separated from the first sub-common electrode CBU1 and the first sub-common electrode CBB1).
  • the sub-pixel electrode PB is disposed at a substantially intermediate position between the first sub-common electrode CBU1 and the first sub-common electrode CBB1.
  • the subpixel electrode PB extends toward the source line S1 and the source line S2.
  • the subpixel electrode PB faces the auxiliary capacitance line C1 (or the subpixel electrode PB is disposed above the auxiliary capacitance line C1).
  • the storage capacitor line C1 may be disposed at the upper end or the lower end of the pixel PX, and the gate line G1 may be disposed substantially at the center of the pixel.
  • the subpixel electrode PB may be opposed to the gate line G1 (or the subpixel electrode PB may be disposed above the gate line G1), or the first subcommon electrode CBU1.
  • the first sub-common electrode CBB1 may face the auxiliary capacitance line C1 (or the first sub-common electrode CBU1 or the first sub-common electrode CBB1 may be disposed above the auxiliary capacitance line C1. ).
  • the second main common electrode CAL2 and the second main common electrode CAR2 are disposed on both sides of the position directly above the main pixel electrode PA.
  • the main pixel electrode PA is disposed between the second main common electrode CAL2 and the second main common electrode CAR2
  • the sub-pixel electrode PB is disposed between the first sub-common electrode CBU1 and the first sub-common electrode CBB1. Has been placed.
  • the second main common electrode CAL2 is disposed at the left end portion of the pixel PX and is opposed to the source line S1 (or the second main common electrode CAL2 is disposed above the source line S1. )
  • the second main common electrode CAR2 is disposed at the right end of the pixel PX and faces the source line S2 (or the second main common electrode CAR2 is disposed above the source line S2).
  • the first sub-common electrode CB1 of the common electrode CE is disposed so as to face the gate wiring, so that an undesired electric field from the gate wiring is shielded. It becomes possible. For this reason, it is possible to suppress an undesired bias from being applied to the liquid crystal layer LQ from the gate wiring, and it is possible to suppress the occurrence of display defects such as burn-in. Therefore, a liquid crystal display device with better display quality can be provided.
  • the common electrode CE includes a first sub-common electrode CB1 provided on the array substrate AR3 and a second sub-common electrode CB2 provided on the counter substrate CT1 as sub-common electrodes.
  • an undesired vertical electric field that is, an electric field along the normal direction of the substrate main surface
  • FIG. 11 is a plan view schematically showing the structure of the array substrate AR4 when one pixel PX of the liquid crystal display panel LPN in the fourth configuration example of the present embodiment is viewed from the counter substrate CT side. Note that only the configuration necessary for the description of one pixel PX is shown, and the illustration of the switching element and the like is omitted.
  • the common electrode CE includes a first main common electrode CA1 provided on the array substrate AR4 as a main common electrode, and a first sub-common electrode CB1 provided on the array substrate AR4 as a sub-common electrode.
  • the array substrate AR4 includes an auxiliary capacitance line C1 extending along the first direction X, a gate wiring G1 and a gate wiring G2 extending along the first direction X, and a second direction.
  • a source line S1 and a source line S2 extending along Y, and a pixel electrode PE are provided.
  • the pixel electrode PE is covered with the first alignment film AL1.
  • the array substrate AR4 includes a strip-shaped first main common electrode CA1 (CAL1 and CAR1) linearly extending along the second direction Y and a strip-shaped first linearly extending along the first direction X.
  • a common electrode CE having one sub-common electrode CB1 (CBU1 and CBB1) is provided.
  • the common electrode CE is formed in a lattice shape.
  • the configuration of the first main common electrode CA1 is as described for the array substrate AR2.
  • the configuration of the first sub-common electrode CB1 is as described for the array substrate AR3.
  • the first main common electrode CA1 and the first sub-common electrode CB1 of the common electrode CE are drawn to the outside of the active area and formed on the array substrate AR4 via the conductive member. And a common potential is supplied.
  • the array substrate AR4 described in the fourth configuration example is any of the counter substrate CT1 described in the first configuration example, the counter substrate CT2 described in the second configuration example, and the counter substrate CT3 described in the third configuration example. Can be combined.
  • the combinations with the counter substrate CT3 are summarized in FIG.
  • the hatched lines in the figure correspond to combinations that cannot realize the basic configuration of the present embodiment
  • the double circles ( ⁇ ) in the figure correspond to the combinations described in each configuration example
  • the white circles ( ⁇ ) in the figure indicate each configuration. It corresponds to a possible combination in the example.
  • FIG. 13 is a plan view schematically showing one variation of the present embodiment.
  • the pixel electrode PE includes two main pixel electrodes PA extending along the second direction Y and arranged in parallel along the first direction X at intervals, and two pixels extending along the first direction X. And a sub-pixel electrode PB disposed substantially in the center of the pixel and intersecting with the main pixel electrode PA. Such a pixel electrode PE is provided on the array substrate.
  • the common electrode CE has a main common electrode CA extending along the second direction Y and a sub-common electrode CB extending along the first direction X.
  • the main common electrode CA is disposed on both sides of each of the two main pixel electrodes PA. That is, three main common electrodes CA and two main pixel electrodes PA are alternately arranged.
  • the sub-common electrode CB is disposed on both sides of the sub-pixel electrode PB. That is, the sub-pixel electrodes PB and the two sub-common electrodes CB are alternately arranged.
  • at least a part of the main common electrode CA and the sub-common electrode CB is provided on the counter substrate.
  • the above-described embodiment is particularly suitable for a configuration that performs capacitive coupling driving (CC driving). That is, in the capacitive coupling drive (CC drive), the storage capacitor Cs and the pixel capacitor are made substantially equal in order to reach a predetermined voltage by superimposing the storage capacitor signal on the pixel electrode PE through the storage capacitor Cs of each pixel. In this case, the signal voltage amplitude can be substantially halved.
  • the above-described gate IC GD, source driver SD, drive IC chip 2 incorporating a controller, and the like function as a drive mechanism for performing such CC drive, and are provided in the array substrate AR.
  • a liquid crystal display device with good display quality can be provided.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Mathematical Physics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Geometry (AREA)
  • Power Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Liquid Crystal (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)

Abstract

 第1方向に沿ってそれぞれ延出したゲート配線及び補助容量線と、第1方向に交差する第2方向に沿ってそれぞれ延出した第1ソース配線及び第2ソース配線と、前記第1ソース配線と前記第2ソース配線との間に位置し第2方向に沿って延出した帯状の主画素電極と、前記主画素電極に繋がり前記第1ソース配線及び前記第2ソース配線に向かって第1方向に沿ってそれぞれ延出した帯状の副画素電極と、水平配向性を示す材料によって形成され前記主画素電極及び前記副画素電極を覆う第1配向膜と、を備えた第1基板と、前記主画素電極を挟んだ両側で第2方向に沿ってそれぞれ延出した第2主共通電極と、前記第2主共通電極に繋がり前記副画素電極を挟んだ両側で第1方向に沿ってそれぞれ延出した第2副共通電極と、水平配向性を示す材料によって形成され前記第2主共通電極及び前記第2副共通電極を覆う第2配向膜と、を備えた第2基板と、前記第1基板と前記第2基板との間に保持された液晶分子を含む液晶層と、を備えたことを特徴とする液晶表示装置。

Description

液晶表示装置
 本発明の実施形態は、液晶表示装置に関する。
 近年、平面表示装置が盛んに開発されており、中でも液晶表示装置は、軽量、薄型、低消費電力等の利点から特に注目を集めている。特に、各画素にスイッチング素子を組み込んだアクティブマトリクス型液晶表示装置においては、IPS(In-Plane Switching)モードやFFS(Fringe Field Switching)モードなどの横電界(フリンジ電界も含む)を利用した構造が注目されている。このような横電界モードの液晶表示装置は、アレイ基板に形成された画素電極と対向電極とを備え、アレイ基板の主面に対してほぼ平行な横電界で液晶分子をスイッチングする。
 一方で、アレイ基板に形成された画素電極と、対向基板に形成された対向電極との間に、横電界あるいは斜め電界を形成し、液晶分子をスイッチングする技術も提案されている。
特開2009-192822号公報 特開平9-160041号公報 US6,657,693B1
 本実施形態の目的は、表示品位の良好な液晶表示装置を提供することにある。
 本実施形態によれば、
 第1方向に沿ってそれぞれ延出したゲート配線及び補助容量線と、第1方向に交差する第2方向に沿ってそれぞれ延出した第1ソース配線及び第2ソース配線と、前記第1ソース配線と前記第2ソース配線との間に位置し第2方向に沿って延出した帯状の主画素電極と、前記主画素電極に繋がり前記第1ソース配線及び前記第2ソース配線に向かって第1方向に沿ってそれぞれ延出した帯状の副画素電極と、水平配向性を示す材料によって形成され前記主画素電極及び前記副画素電極を覆う第1配向膜と、を備えた第1基板と、前記主画素電極を挟んだ両側で第2方向に沿ってそれぞれ延出した第2主共通電極と、前記第2主共通電極に繋がり前記副画素電極を挟んだ両側で第1方向に沿ってそれぞれ延出した第2副共通電極と、水平配向性を示す材料によって形成され前記第2主共通電極及び前記第2副共通電極を覆う第2配向膜と、を備えた第2基板と、前記第1基板と前記第2基板との間に保持された液晶分子を含む液晶層と、を備えたことを特徴とする液晶表示装置が提供される。
 本実施形態によれば、
 第1方向に沿ってそれぞれ延出したゲート配線及び補助容量線と、第1方向に交差する第2方向に沿ってそれぞれ延出した第1ソース配線及び第2ソース配線と、前記第1ソース配線と前記第2ソース配線との間に位置し第2方向に沿って延出した帯状の主画素電極と、前記主画素電極に繋がり前記第1ソース配線及び前記第2ソース配線に向かって第1方向に沿ってそれぞれ延出した帯状の副画素電極と、前記第1ソース配線及び前記第2ソース配線とそれぞれ対向し第2方向に沿って延出した第1主共通電極と、水平配向性を示す材料によって形成され前記主画素電極、前記副画素電極、及び、前記第1主共通電極を覆う第1配向膜と、を備えた第1基板と、前記副画素電極を挟んだ両側で第1方向に沿ってそれぞれ延出し前記第1主共通電極と同電位の第2副共通電極と、水平配向性を示す材料によって形成され前記第2副共通電極を覆う第2配向膜と、を備えた第2基板と、前記第1基板と前記第2基板との間に保持された液晶分子を含む液晶層と、を備えたことを特徴とする液晶表示装置が提供される。
 本実施形態によれば、
 第1方向に沿ってそれぞれ延出したゲート配線及び補助容量線と、第1方向に交差する第2方向に沿ってそれぞれ延出した第1ソース配線及び第2ソース配線と、前記第1ソース配線と前記第2ソース配線との間に位置し第2方向に沿って延出した帯状の主画素電極と、前記主画素電極に繋がり前記第1ソース配線及び前記第2ソース配線に向かって第1方向に沿ってそれぞれ延出した帯状の副画素電極と、前記ゲート配線と対向し第1方向に沿って延出した第1副共通電極と、水平配向性を示す材料によって形成され前記主画素電極、前記副画素電極、及び、前記第1副共通電極を覆う第1配向膜と、を備えた第1基板と、前記主画素電極を挟んだ両側で第2方向に沿ってそれぞれ延出し前記第1副共通電極と同電位の第2主共通電極と、水平配向性を示す材料によって形成され前記第2主共通電極を覆う第2配向膜と、を備えた第2基板と、前記第1基板と前記第2基板との間に保持された液晶分子を含む液晶層と、を備えたことを特徴とする液晶表示装置が提供される。
図1は、本実施形態における液晶表示装置の構成を概略的に示す図である。 図2は、図1に示した液晶表示パネルの構成及び等価回路を概略的に示す図である。 図3は、本実施形態の基本構成について一画素における最小の単位構成体を概略的に示す平面図である。 図4は、スイッチング素子を含む液晶表示パネルの断面を概略的に示す断面図である。 図5は、本実施形態の第1構成例における液晶表示パネルの対向基板における一画素の構造を概略的に示す平面図である。 図6は、本実施形態の第1構成例における液晶表示パネルの一画素を対向基板側から見たときのアレイ基板の構造を概略的に示す平面図である。 図7は、本実施形態の第2構成例における液晶表示パネルの対向基板における一画素の構造を概略的に示す平面図である。 図8は、本実施形態の第2構成例における液晶表示パネルの一画素を対向基板側から見たときのアレイ基板の構造を概略的に示す平面図である。 図9は、本実施形態の第3構成例における液晶表示パネルの対向基板における一画素の構造を概略的に示す平面図である。 図10は、本実施形態の第3構成例における液晶表示パネルの一画素を対向基板側から見たときのアレイ基板の構造を概略的に示す平面図である。 図11は、本実施形態の第4構成例における液晶表示パネルの一画素を対向基板側から見たときのアレイ基板の構造を概略的に示す平面図である。 図12は、第1乃至第4構成例で説明したアレイ基板と、第1乃至第3構成例で説明した対向基板との組み合わせをまとめた図である。 図13は、本実施形態のバリエーションのひとつを概略的に示す平面図である。
 以下、本実施形態について、図面を参照しながら詳細に説明する。なお、各図において、同一又は類似した機能を発揮する構成要素には同一の参照符号を付し、重複する説明は省略する。
 図1は、本実施形態における液晶表示装置1の構成を概略的に示す図である。
 すなわち、液晶表示装置1は、アクティブマトリクスタイプの液晶表示パネルLPN、液晶表示パネルLPNに接続された駆動ICチップ2及びフレキシブル配線基板3、液晶表示パネルLPNを照明するバックライト4などを備えている。
 液晶表示パネルLPNは、第1基板であるアレイ基板ARと、アレイ基板ARに対向して配置された第2基板である対向基板CTと、これらのアレイ基板ARと対向基板CTとの間に保持された図示しない液晶層と、を備えて構成されている。このような液晶表示パネルLPNは、画像を表示するアクティブエリアACTを備えている。このアクティブエリアACTは、m×n個のマトリクス状に配置された複数の画素PXによって構成されている(但し、m及びnは正の整数である)。
 バックライト4は、図示した例では、アレイ基板ARの背面側に配置されている。このようなバックライト4としては、種々の形態が適用可能であり、また、光源として発光ダイオード(LED)を利用したものや冷陰極管(CCFL)を利用したものなどのいずれでも適用可能であり、詳細な構造については説明を省略する。
 図2は、図1に示した液晶表示パネルLPNの構成及び等価回路を概略的に示す図である。
 液晶表示パネルLPNは、アクティブエリアACTにおいて、n本のゲート配線G(G1~Gn)、n本の補助容量線C(C1~Cn)、m本のソース配線S(S1~Sm)などを備えている。ゲート配線G及び補助容量線Cは、例えば、第1方向Xに沿って略直線的に延出している。これらのゲート配線G及び補助容量線Cは、第1方向Xに交差する第2方向Yに沿って間隔をおいて隣接し、交互に並列配置されている。ここでは、第1方向Xと第2方向Yとは互いに直交している。ソース配線Sは、ゲート配線G及び補助容量線Cと交差している。ソース配線Sは、第2方向Yに沿って略直線的に延出している。なお、ゲート配線G、補助容量線C、及び、ソース配線Sは、必ずしも直線的に延出していなくても良く、それらの一部が屈曲していてもよい。
 各ゲート配線Gは、アクティブエリアACTの外側に引き出され、ゲートドライバGDに接続されている。各ソース配線Sは、アクティブエリアACTの外側に引き出され、ソースドライバSDに接続されている。これらのゲートドライバGD及びソースドライバSDの少なくとも一部は、例えば、アレイ基板ARに形成され、コントローラを内蔵した駆動ICチップ2と接続されている。
 各画素PXは、スイッチング素子SW、画素電極PE、共通電極CEなどを備えている。保持容量Csは、例えば補助容量線Cと画素電極PEとの間に形成される。補助容量線Cは、補助容量電圧が印加される電圧印加部VCSと電気的に接続されている。
 なお、本実施形態においては、液晶表示パネルLPNは、画素電極PEがアレイ基板ARに形成される一方で共通電極CEの少なくとも一部が対向基板CTに形成された構成であり、これらの画素電極PEと共通電極CEとの間に形成される電界を主に利用して液晶層LQの液晶分子をスイッチングする。画素電極PEと共通電極CEとの間に形成される電界は、第1方向Xと第2方向Yとで規定されるX-Y平面あるいはアレイ基板ARの基板主面あるいは対向基板CTの基板主面に対してわずかに傾いた斜め電界(あるいは、基板主面にほぼ平行な横電界)である。
 スイッチング素子SWは、例えば、nチャネル薄膜トランジスタ(TFT)によって構成されている。このスイッチング素子SWは、ゲート配線G及びソース配線Sと電気的に接続されている。アクティブエリアACTには、m×n個のスイッチング素子SWが形成されている。
 画素電極PEは、各画素PXに配置され、スイッチング素子SWに電気的に接続されている。アクティブエリアACTには、m×n個の画素電極PEが形成されている。共通電極CEは、例えばコモン電位であり、液晶層LQを介して複数の画素PXの画素電極PEに対して共通に配置されている。
 アレイ基板ARは、共通電極CEに電圧を印加するための給電部VSを備えている。この給電部VSは、例えば、アクティブエリアACTの外側に形成されている。共通電極CEのうち、対向基板CTに形成された共通電極CEの少なくとも一部は、アクティブエリアACTの外側に引き出され、図示しない導電部材を介して、アレイ基板ARに形成された給電部VSと電気的に接続されている。なお、共通電極CEの一部がアレイ基板ARに形成された場合には、アレイ基板ARに形成された共通電極CEの一部は例えばアクティブエリアACTの外側で給電部VSと電気的に接続されている。
 以下に、本実施形態の基本構成について説明する。
 図3は、一画素PXにおける最小の単位構成体を概略的に示す平面図である。
 画素電極PEは、主画素電極PA及び副画素電極PBを有している。これらの主画素電極PA及び副画素電極PBは、互いに電気的に接続されている。本実施形態においては、主画素電極PA及び副画素電極PBがともにアレイ基板ARに備えられている。主画素電極PAは、第2方向Yに沿って延出している。副画素電極PBは、第2方向Yとは異なる第1方向Xに沿って延出している。
 図示した例では、画素電極PEは、略十字状に形成されている。より具体的には、主画素電極PAは、略画素中央部において第2方向Yに沿って直線的に延出した帯状に形成されている。副画素電極PBは、画素中央部において第1方向Xに沿って直線的に延出した帯状に形成されている。
 副画素電極PBは、主画素電極PAの略中央部(あるいは主画素電極PAの第2方向Yに沿った長さの中間点付近)に結合し、主画素電極PAからその両側、つまり画素PXの左側及び右側に向かって延出している。換言すると、主画素電極PAは、副画素電極PBの略中央部(あるいは副画素電極PBの第1方向Xに沿った長さの中間点付近)に結合し、副画素電極PBからその両側、つまり画素PXの上側及び下側に向かって延出している。これらの主画素電極PA及び副画素電極PBは、互いに略直交している。画素電極PEは、例えば、副画素電極PBにおいて図示を省略したスイッチング素子と電気的に接続されている。
 共通電極CEは、主共通電極CA及び副共通電極CBを有している。これらの主共通電極CA及び副共通電極CBは、互いに電気的に接続されている。このような共通電極CEは、画素電極PEとは電気的に絶縁されている。本実施形態においては、共通電極CEにおいて、主共通電極CA及び副共通電極CBの少なくとも一部は、対向基板CTに備えられている。
 主共通電極CAは、第2方向Yに沿って延出している。この主共通電極CAは、主画素電極PAを挟んだ両側に配置されている。このとき、X-Y平面内において、主共通電極CAのいずれも主画素電極PAとは重ならず、主共通電極CAのそれぞれと主画素電極PAとの間には略等しい間隔が形成されている。つまり、主画素電極PAは、隣接する主共通電極CAの略中間に位置している。
 副共通電極CBは、第1方向Xに沿って延出している。副共通電極CBは、副画素電極PBを挟んだ両側に配置されている。このとき、X-Y平面内において、副共通電極CBのいずれも副画素電極PBとは重ならず、副共通電極CBのそれぞれと副画素電極PBとの間には略等しい間隔が形成されている。つまり、副画素電極PBは、隣接する副共通電極CBの略中間に位置している。
 図示した例では、主共通電極CAは、第2方向Yに沿って直線的に延出した帯状に形成されている。副共通電極CBは、第1方向Xに沿って直線的に延出した帯状に形成されている。なお、主共通電極CAは第1方向Xに沿って間隔をおいて2本平行に並んでおり、以下では、これらを区別するために、図中の左側の主共通電極をCALと称し、図中の右側の主共通電極をCARと称する。また、副共通電極CBは第2方向Yに沿って間隔をおいて2本平行に並んでおり、以下では、これらを区別するために、図中の上側の主共通電極をCBUと称し、図中の下側の主共通電極をCBBと称する。主共通電極CAL及び主共通電極CARは、副共通電極CBU及び副共通電極CBBと同電位である。図示した例では、主共通電極CAL及び主共通電極CARは、副共通電極CBU及び副共通電極CBBとそれぞれ繋がっている。
 主共通電極CAL及び主共通電極CARは、それぞれ当該画素PXと左右に隣接する画素間に配置されている。すなわち、主共通電極CALは図示した当該画素PXとその左側の画素(図示せず)との境界に跨って配置され、主共通電極CARは図示した当該画素PXとその右側の画素(図示せず)との境界に跨って配置されている。
 副共通電極CBU及び主共通電極CBBは、それぞれ当該画素PXと上下に隣接する画素間に配置されている。すなわち、副共通電極CBUは図示した当該画素PXとその上側の画素(図示せず)との境界に跨って配置され、副共通電極CBBは図示した当該画素PXとその下側の画素(図示せず)との境界に跨って配置されている。
 隣接する主共通電極CAL及び主共通電極CARの間には、1本の主画素電極PAが位置している。このため、主共通電極CAL、主画素電極PA、及び、主共通電極CARは、第1方向Xに沿ってこの順に配置されている。つまり、主画素電極PAと主共通電極CAとは第1方向Xに沿って交互に配置されている。これらの主画素電極PAと、主共通電極CAL及び主共通電極CARとは、互いに略平行に配置されている。また、主共通電極CALと主画素電極PAとの第1方向Xに沿った距離は、主共通電極CARと主画素電極PAとの第1方向Xに沿った距離と略同等である。
 隣接する副共通電極CBU及び副共通電極CBBの間には、1本の副画素電極PBが位置している。このため、副共通電極CBB、副画素電極PB、及び、副共通電極CBUは、第2方向Yに沿ってこの順に配置されている。つまり、副画素電極PBと副共通電極CBとは第2方向Yに沿って交互に配置されている。これらの副画素電極PBと、副共通電極CBB及び副共通電極CBUとは、互いに略平行に配置されている。また、副共通電極CBBと副画素電極PBとの第2方向Yに沿った距離は、副共通電極CBUと副画素電極PBとの第2方向Yに沿った距離と略同等である。
 つまり、図示した例では、一画素PXにおいて、画素電極PEと共通電極CEとで区画された4つの領域が主として表示に寄与する開口部あるいは透過部として形成される。
 ここに示した例では、液晶分子LMの初期配向方向は、例えば、第2方向Yと略平行な方向である。
 なお、ここでは詳述しないが、主共通電極CAの少なくとも1つは、主共通電極CAと略平行に(あるいは第2方向Yに沿って)延出するソース配線Sと対向していてもよい。また、副画素電極PB及び副共通電極CBのいずれか1つは、これらと略平行に(あるいは第1方向Xに沿って)延出するゲート配線Gや補助容量線Cと対向していてもよい。
 また、後に詳述するが、主共通電極CAは、アレイ基板ARに備えられた第1主共通電極CA1、及び、対向基板CTに備えられた第2主共通電極CA2の少なくとも一方を含んでいてもよい。また、副共通電極CBは、アレイ基板ARに備えられた第1副共通電極CB1、及び、対向基板CTに備えられた第2副共通電極CB2の少なくとも一方を含んでいてもよい。第1主共通電極CA1、第2主共通電極CA2、第1副共通電極CB1、及び、第2副共通電極CB2は、いずれも同電位である。
 図4は、スイッチング素子SWを含む液晶表示パネルLPNの断面を概略的に示す断面図である。なお、ここでは、共通電極の図示を省略し、説明に必要な箇所のみを図示している。
 液晶表示パネルLPNを構成するアレイ基板ARの背面側には、バックライト4が配置されている。
 アレイ基板ARは、例えば、ガラス基板やプラスチック基板などの光透過性を有する第1絶縁基板10を用いて形成されている。このアレイ基板ARは、第1絶縁基板10の対向基板CTに対向する側に、スイッチング素子SW、画素電極PE、第1配向膜AL1などを備えている。
 図示した例では、スイッチング素子SWは、トップゲート型の薄膜トランジスタであるが、ボトムゲート型の薄膜トランジスタであっても良い。また、スイッチング素子SWの半導体層SCは、例えば、ポリシリコンによって形成されているが、アモルファスシリコンによって形成されていても良い。
 半導体層SCは、チャネル領域SCCを挟んだ両側にそれぞれソース領域SCS及びドレイン領域SCDを有している。なお、第1絶縁基板10と半導体層SCとの間には、絶縁膜であるアンダーコート層が介在していても良い。半導体層SCは、ゲート絶縁膜11によって覆われている。また、ゲート絶縁膜11は、第1絶縁基板10の上にも配置されている。
 スイッチング素子SWのゲート電極WGは、ゲート絶縁膜11の上に形成され、半導体層SCのチャネル領域SCCの上方に位置している。また、ゲート配線G及び補助容量線Cも、ゲート絶縁膜11の上に形成されている。これらのゲート電極WG、ゲート配線G及び補助容量線Cは、同一材料を用いて同一工程で形成可能である。ゲート電極WGは、ゲート配線Gと電気的に接続されている。
 ゲート電極WG、ゲート配線G及び補助容量線Cは、第1層間絶縁膜12によって覆われている。また、この第1層間絶縁膜12は、ゲート絶縁膜11の上にも配置されている。これらのゲート絶縁膜11及び第1層間絶縁膜12は、例えば、酸化シリコン及び窒化シリコンなどの無機系材料によって形成されている。
 スイッチング素子SWのソース電極WS及びドレイン電極WDは、第1層間絶縁膜12の上に形成されている。また、ソース配線Sも、第1層間絶縁膜12の上に形成されている。これらのソース電極WS、ドレイン電極WD、及び、ソース配線Sは、同一材料を用いて同一工程で形成可能である。ソース電極WSは、ソース配線Sと電気的に接続されている。
 ソース電極WSは、ゲート絶縁膜11及び第1層間絶縁膜12を貫通するコンタクトホールを通して半導体層SCのソース領域SCSにコンタクトしている。ドレイン電極WDは、ゲート絶縁膜11及び第1層間絶縁膜12を貫通するコンタクトホールを通して半導体層SCのドレイン領域SCDにコンタクトしている。これらのゲート電極WG、ゲート配線G、補助容量線C、ソース電極WS、ドレイン電極WD、及び、ソース配線Sは、例えば、モリブデン、アルミニウム、タングステン、チタンなどの導電材料によって形成されている。
 このような構成のスイッチング素子SWは、第2層間絶縁膜13によって覆われている。つまり、ソース電極WS、ドレイン電極WD、及び、ソース配線Sは、第2層間絶縁膜13によって覆われている。また、この第2層間絶縁膜13は、第1層間絶縁膜12の上にも配置されている。この第2層間絶縁膜13は、例えば、紫外線硬化型樹脂や熱硬化型樹脂などの各種有機材料によって形成されている。
 画素電極PEは、第2層間絶縁膜13の上に形成さている。詳述しないが、画素電極PEを構成する主画素電極PA及び副画素電極PBは、第2層間絶縁膜13の上に形成されている。この画素電極PEは、第2層間絶縁膜13を貫通するコンタクトホールを介してドレイン電極WDに接続されている。このような画素電極PEは、例えば、インジウム・ティン・オキサイド(ITO)やインジウム・ジンク・オキサイド(IZO)などの光透過性を有する導電材料によって形成されているが、アルミニウムなどの他の金属材料によって形成されても良い。
 第1配向膜AL1は、アレイ基板ARの対向基板CTと対向する面に配置され、アクティブエリアACTの略全体に亘って延在している。この第1配向膜AL1は、画素電極PEを覆っており、第2層間絶縁膜13の上にも配置されている。このような第1配向膜AL1は、水平配向性を示す材料によって形成されている。
 なお、アレイ基板ARは、さらに、共通電極の一部として第1主共通電極及び第1副共通電極を備えている場合もある。
 一方、対向基板CTは、例えば、ガラス基板やプラスチック基板などの光透過性を有する第2絶縁基板20を用いて形成されている。この対向基板CTは、第2絶縁基板20のアレイ基板ARに対向する側に、図示を省略した共通電極のうちの第2主共通電極及び第2副共通電極の少なくとも一方や、第2配向膜AL2などを備えている。また、この対向基板CTは、図示を省略するが、各画素PXを区画する(あるいは、ソース配線S、ゲート配線G、補助容量線C、スイッチング素子SWなどの配線部に対向するように配置された)ブラックマトリクスや各画素PXに対応して配置されたカラーフィルタ層、ブラックマトリクス及びカラーフィルタ層の表面の凹凸の影響を緩和するオーバーコート層などが配置されても良い。
 共通電極は、例えば、ITOやIZOなどの光透過性を有する導電材料によって形成されている。
 第2配向膜AL2は、対向基板CTのアレイ基板ARと対向する面に配置され、アクティブエリアACTの略全体に亘って延在している。この第2配向膜AL2は、共通電極などを覆っている。このような第2配向膜AL2は、水平配向性を示す材料によって形成されている。
 これらの第1配向膜AL1及び第2配向膜AL2には、液晶分子LMを初期配向させるための配向処理(例えば、ラビング処理や光配向処理)がなされている。第1配向膜AL1が液晶分子LMを初期配向させる第1配向処理方向PD1は、第2配向膜AL2が液晶分子LMを初期配向させる第2配向処理方向PD2と平行である。図3の(A)で示した例では、第1配向処理方向PD1と第2配向処理方向PD2とが互いに略平行であって、ともに同じ向きである。図3の(B)で示した例では、第1配向処理方向PD1と第2配向処理方向PD2とが互いに略平行であって、互いに逆向きである。
 上述したようなアレイ基板ARと対向基板CTとは、それぞれの第1配向膜AL1及び第2配向膜AL2が対向するように配置されている。このとき、アレイ基板ARの第1配向膜AL1と対向基板CTの第2配向膜AL2との間には、例えば、樹脂材料によって一方の基板に一体的に形成された柱状スペーサが配置され、これにより、所定のセルギャップ、例えば2~7μmのセルギャップが形成される。アレイ基板ARと対向基板CTとは、所定のセルギャップが形成された状態で、アクティブエリアACTの外側のシール材によって貼り合わせられている。
 液晶層LQは、アレイ基板ARと対向基板CTとの間に形成されたセルギャップに保持され、第1配向膜AL1と第2配向膜AL2との間に配置されている。液晶層LQは、液晶分子LMを含んでいる。このような液晶層LQは、例えば、誘電率異方性が正(ポジ型)の液晶材料によって構成されている。
 アレイ基板ARの外面、つまり、アレイ基板ARを構成する第1絶縁基板10の外面には、第1光学素子OD1が接着剤などにより貼付されている。この第1光学素子OD1は、液晶表示パネルLPNのバックライト4と対向する側に位置しており、バックライト4から液晶表示パネルLPNに入射する入射光の偏光状態を制御する。この第1光学素子OD1は、第1偏光軸AX1を有する第1偏光板PL1を含んでいる。なお、第1偏光板PL1と第1絶縁基板10との間に位相差板などの他の光学素子が配置されても良い。
 対向基板CTの外面、つまり、対向基板CTを構成する第2絶縁基板20の外面には、第2光学素子OD2が接着剤などにより貼付されている。この第2光学素子OD2は、液晶表示パネルLPNの表示面側に位置しており、液晶表示パネルLPNから出射した出射光の偏光状態を制御する。この第2光学素子OD2は、第2偏光軸AX2を有する第2偏光板PL2を含んでいる。なお、第2偏光板PL2と第2絶縁基板20との間に位相差板などの他の光学素子が配置されていても良い。
 第1偏光板PL1の第1偏光軸AX1と、第2偏光板PL2の第2偏光軸AX2とは、クロスニコルの位置関係にある。このとき、一方の偏光板は、例えば、その偏光軸が液晶分子LMの初期配向方向つまり第1配向処理方向PD1あるいは第2配向処理方向PD2と平行または直交するように配置されている。初期配向方向が第2方向Yと平行である場合、一方の偏光板の偏光軸は、第2方向Yと平行、あるいは、第1方向Xと平行である。
 図3において、(a)で示した例では、第1偏光板PL1は、その第1偏光軸AX1が液晶分子LMの初期配向方向である第2方向Yに対して直交するように配置され、また、第2偏光板PL2は、その第2偏光軸AX2が液晶分子LMの初期配向方向に対して平行となるように配置されている。また、図3において、(b)で示した例では、第2偏光板PL2は、その第2偏光軸AX2が液晶分子LMの初期配向方向である第2方向Yに対して直交するように配置され、また、第1偏光板PL1は、その第1偏光軸AX1が液晶分子LMの初期配向方向に対して平行となるように配置されている。
 これにより、ノーマリーブラックモードを実現している。
 次に、上記構成の液晶表示パネルLPNの動作について説明する。
 すなわち、液晶層LQに電圧が印加されていない状態つまり画素電極PEと共通電極CEとの間に電界が形成されていない無電界時(OFF時)には、図3において破線で示したように、液晶層LQの液晶分子LMは、その長軸が第1配向膜AL1の第1配向処理方向PD1及び第2配向膜AL2の第2配向処理方向PD2を向くように配向している。このようなOFF時が初期配向状態に相当し、OFF時の液晶分子LMの配向方向が初期配向方向に相当する。
 なお、厳密には、液晶分子LMは、X-Y平面に平行に配向しているとは限らず、プレチルトしている場合が多い。このため、液晶分子LMの厳密な初期配向方向とは、OFF時の液晶分子LMの配向方向をX-Y平面に正射影した方向である。しかしながら、説明を簡略にするために、以下では、液晶分子LMは、X-Y平面に平行に配向しているものとし、X-Y平面と平行な面内で回転するものとして説明する。
 ここでは、第1配向処理方向PD1及び第2配向処理方向PD2は、ともに第2方向Yと略平行な方向である。OFF時においては、液晶分子LMは、図3に破線で示したように、その長軸が第2方向Yと略平行な方向を向くように初期配向する。つまり、液晶分子LMの初期配向方向は、第2方向Yと平行(あるいは、第2方向Yに対して0°)である。
 図示した例のように、第1配向処理方向PD1及び第2配向処理方向PD2が平行且つ同じ向きである場合、液晶層LQの断面において、液晶分子LMは、液晶層LQの中間部付近で略水平(プレチルト角が略ゼロ)に配向し、ここを境界として第1配向膜AL1の近傍及び第2配向膜AL2の近傍において対称となるようなプレチルト角を持って配向する(スプレイ配向)。このように液晶分子LMがスプレイ配向している状態では、基板の法線方向から傾いた方向においても第1配向膜AL1の近傍の液晶分子LMと第2配向膜AL2の近傍の液晶分子LMとにより光学的に補償される。したがって、第1配向処理方向PD1及び第2配向処理方向PD2が互いに平行、且つ、同じ向きである場合には、黒表示の場合に光漏れが少なく、高コントラスト比を実現することができ、表示品位を向上することが可能となる。
 なお、第1配向処理方向PD1及び第2配向処理方向PD2が互いに平行且つ逆向きである場合、液晶層LQの断面において、液晶分子LMは、第1配向膜AL1の近傍、第2配向膜AL2の近傍、及び、液晶層LQの中間部において略均一なプレチルト角を持って配向する(ホモジニアス配向)。
 バックライト4からのバックライト光の一部は、第1偏光板PL1を透過し、液晶表示パネルLPNに入射する。液晶表示パネルLPNに入射した光は、第1偏光板PL1の第1偏光軸AX1と直交する直線偏光である。このような直線偏光の偏光状態は、OFF時の液晶表示パネルLPNを通過した際にほとんど変化しない。このため、液晶表示パネルLPNを透過した直線偏光は、第1偏光板PL1に対してクロスニコルの位置関係にある第2偏光板PL2によって吸収される(黒表示)。
 一方、液晶層LQに電圧が印加された状態、つまり、画素電極PEと共通電極CEとの間に電位差が形成された状態(ON時)では、画素電極PEと共通電極CEとの間に基板と略平行な横電界(あるいは斜め電界)が形成される。液晶分子LMは、電界の影響を受け、その長軸が図中の実線で示したようにX-Y平面と略平行な平面内で回転する。
 図3に示した例では、画素電極PEと主共通電極CALとの間の領域のうち、下側半分の領域内の液晶分子LMは、第2方向Yに対して時計回りに回転し図中の左下を向くように配向し、また、上側半分の領域内の液晶分子LMは、第2方向Yに対して反時計回りに回転し図中の左上を向くように配向する。画素電極PEと主共通電極CARとの間の領域のうち、下側半分の領域内の液晶分子LMは、第2方向Yに対して反時計回りに回転し図中の右下を向くように配向し、上側半分の領域内の液晶分子LMは、第2方向Yに対して時計回りに回転し図中の右上を向くように配向する。
 このように、各画素PXにおいて、画素電極PEと共通電極CEとの間に電界が形成された状態では、液晶分子LMの配向方向は、画素電極PEと重なる位置を境界として複数の方向に分かれ、それぞれの配向方向でドメインを形成する。つまり、一画素PXには、複数のドメインが形成される。
 このようなON時には、第1偏光板PL1の第1偏光軸AX1と直交する直線偏光は、液晶表示パネルLPNに入射し、その偏光状態は、液晶層LQを通過する際に液晶分子LMの配向状態に応じて変化する。このようなON時においては、液晶層LQを通過した少なくとも一部の光は、第2偏光板PL2を透過する(白表示)。
 このような本実施形態によれば、一画素内に4つのドメインを形成することが可能となるため、4方向での視野角を光学的に補償することができ、広視野角化が可能となる。したがって、階調反転がなく、高い透過率の表示を実現することができ、表示品位の良好な液晶表示装置を提供することが可能となる。
 また、一画素内において、画素電極PEと共通電極CEとで区画される4つの領域それぞれについて開口部の面積を略同一に設定することにより、各領域の透過率が略同等となり、それぞれの開口部を透過した光が互いに光学的に補償し合い、広い視野角範囲に亘って均一な表示を実現することが可能となる。
 また、液晶分子の初期配向状態が基板に対して垂直である垂直配向型の液晶表示装置と比較して、本実施形態は中間調においても視野角が広く輝度が明るいことが確認されている。
 なお、ON時には、画素電極PEの主画素電極PA付近及び副画素電極PB付近、あるいは、共通電極CEの主共通電極CA付近及び副共通電極CB付近では、横電界がほとんど形成されない(あるいは、液晶分子LMを駆動するのに十分な電界が形成されない)ため、液晶分子LMは、OFF時と同様に初期配向方向からほとんど動かない。このため、上記のように、画素電極PE及び共通電極CEが光透過性の導電材料によって形成されていても、これらの領域ではバックライト光がほとんど透過せず、ON時において表示にほとんど寄与しない。したがって、画素電極PE及び共通電極CEは、必ずしも透明な導電材料によって形成される必要はなく、アルミニウムや銀などの導電材料を用いて形成しても良い。
 また、アレイ基板ARと対向基板CTとの合わせずれが生じた際に、画素電極PEを挟んだ両側の共通電極CEとの距離に差が生じることがある。しかしながら、このような合わせずれは、全ての画素PXに共通に生じるため、画素PX間での電界分布に相違はなく、画像の表示に及ぼす影響はきわめて小さい。
 また、上述の一画素PXにおける最小の単位構成体は、正方形に限らず第2方向Yあるいは第1方向Xへの伸縮に制限は無く矩形で良い。すなわち、単位構成体それ自体あるいは単位構成体を組み合わせることで所望とする画素サイズを設計することができる。このように単位構成体の寸法を自由に設計しても、液晶分子LMは電極間に生じる電界によって基板に水平に配向するため、基板に対する法線方向のリタデーションに及ぼす影響は小さい。したがって、画素サイズの変更が輝度及び視野角に及ぼす影響はほとんど無い。
 一方、初期配向状態が基板に対して垂直に配向し印加電圧によって水平に配向する垂直配向型の液晶表示装置の場合には、電極間に生じる電界強度が画素内で異なると、基板に対する液晶分子の傾きの程度も異なるため、基板に対する法線方向のリタデーションに及ぼす影響は大きい。したがって、画素サイズの変更が、輝度及び視野角に及ぼす影響は大きい。このことから仮にこの単位構成体に垂直配向型の液晶分子を適用する場合には、画素内の電界強度及び電界分布を均一にするために単位構成体は正方形にする必要がある。
 次に、本実施形態の一構成例について説明する。
 ≪第1構成例≫
 まず、本実施形態の第1構成例について説明する。
 図5は、本実施形態の第1構成例における液晶表示パネルLPNの対向基板CT1における一画素PXの構造を概略的に示す平面図である。
 この第1構成例では、共通電極CEは、主共通電極として対向基板CT1に備えられた第2主共通電極CA2、及び、副共通電極として対向基板CT1に備えられた第2副共通電極CB2を有している。これらの第2主共通電極CA2及び第2副共通電極CB2は、第2配向膜AL2によって覆われている。
 すなわち、図示した対向基板CT1は、第2方向Yに沿って直線的に延出した帯状の第2主共通電極CA2と、第1方向Xに沿って直線的に延出した帯状の第2副共通電極CB2と、を備えている。これらの第2主共通電極CA2及び第2副共通電極CB2は、電気的に接続されている。図示した例では、第2主共通電極CA2及び第2副共通電極CB2は、一体的(あるいは連続的)に形成されている。つまり、対向基板CT1において、共通電極CEは、格子状に形成されている。
 なお、図示した第2主共通電極CA2は第1方向Xに沿って間隔をおいて2本平行に並んでおり、以下では、これらを区別するために、図中の左側の第2主共通電極をCAL2と称し、図中の右側の第2主共通電極をCAR2と称する。また、図示した第2副共通電極CB2は第2方向Yに沿って間隔をおいて2本平行に並んでおり、以下では、これらを区別するために、図中の上側の第2副共通電極をCBU2と称し、図中の下側の第2副共通電極をCBB2と称する。これらの第2主共通電極CAL2及び第2主共通電極CAR2は、第2副共通電極CBU2及び第2副共通電極CBB2と繋がっている。
 このような構成の共通電極CEは、詳述しないが、アクティブエリアの外側に引き出され、導電部材を介して、アレイ基板に形成された給電部と電気的に接続され、コモン電位が給電される。
 次に、図5に示した対向基板CT1との組み合わせが好適なアレイ基板AR1について説明する。
 図6は、本実施形態の第1構成例における液晶表示パネルLPNの一画素PXを対向基板CT1側から見たときのアレイ基板AR1の構造を概略的に示す平面図である。なお、画素電極PEと共通電極CEとの位置関係を説明するために、共通電極CEを破線で図示している。また、一画素PXにおける説明に必要な構成のみを図示し、スイッチング素子などの図示を省略している。
 アレイ基板AR1は、第1方向Xに沿って延出した補助容量線C1と、第1方向Xに沿って延出したゲート配線G1及びゲート配線G2と、第2方向Yに沿って延出したソース配線S1及びソース配線S2と、画素電極PEと、を備えている。補助容量線C1、ゲート配線G1、及び、ゲート配線G2は、ゲート絶縁膜11の上に形成され、第1層間絶縁膜12によって覆われている。ソース配線S1及びソース配線S2は、第1層間絶縁膜12の上に形成され、第2層間絶縁膜13によって覆われている。画素電極PEは、第2層間絶縁膜13の上に形成されている。
 図示した例では、画素PXは、図中の破線で示した領域に相当し、第1方向Xに沿った長さよりも第2方向Yに沿った長さの方が長い長方形状である。また、図示した例では、画素PXにおいて、ソース配線S1は左側端部に配置され、ソース配線S2は右側端部に配置されている。厳密には、ソース配線S1は当該画素PXとその左側に隣接する画素との境界に跨って配置され、ソース配線S2は当該画素PXとその右側に隣接する画素との境界に跨って配置されている。また、画素PXにおいて、ゲート配線G1は上側端部に配置され、ゲート配線G2は下側端部に配置され、補助容量線C1は略画素中央部に配置されている。つまり、ゲート配線G1と補助容量線C1との第2方向Yに沿った間隔は、ゲート配線G2と補助容量線C1との第2方向Yに沿った間隔と略同等である。
 画素電極PEは、ソース配線S1とソース配線S2との間、あるいは、ゲート配線G1とゲート配線G2との間に配置され、図示を省略したスイッチング素子に電気的に接続されている。このような画素電極PEは、第2方向Yに沿って直線的に延出した帯状の主画素電極PA、及び、第1方向Xに沿って直線的に延出した帯状の副画素電極PBを有している。これらの主画素電極PA及び副画素電極PBは、電気的に接続されている。図示した例では、主画素電極PA及び副画素電極PBは、一体的(あるいは連続的)に形成されている。つまり、アレイ基板AR1において、画素電極PEは、十字状に形成されている。また、主画素電極PA及び副画素電極PBは、ともに第1配向膜AL1によって覆われている。
 主画素電極PAは、隣接するソース配線S1及びソース配線S2のそれぞれの直上の位置よりも画素PXの内側に位置し、ソース配線S1とソース配線S2との略中間に配置されている。このような主画素電極PAは、画素PXの上側端部付近から下側端部付近まで延出している。
 副画素電極PBは、略画素中央部に配置され、主画素電極PAと交差している。このような副画素電極PBは、主画素電極PAの略中央部からその両側、つまり、主画素電極PAの左側のソース配線S1、及び、主画素電極PAの右側のソース配線S2に向かってそれぞれ直線的に延出している。このような副画素電極PBは、画素PXの左側端部付近から右側端部付近まで延出している。
 この第1構成例においては、副画素電極PBは、補助容量線C1と対向している。図示した例では、副画素電極PBは、補助容量線C1の上方に配置されている。副画素電極PBと補助容量線C1との間には、絶縁膜として、第1層間絶縁膜12及び第2層間絶縁膜13が介在している。
 この副画素電極PBの第1方向Xに沿った長さについては、副画素電極PBが補助容量線C1を覆う場合には、ソース配線S1とソース配線S2との間に位置する補助容量線C1の第1方向Xに沿った長さと同等以上である。
 また、副画素電極PBの第2方向Yに沿った幅については、副画素電極PBが補助容量線C1上で図示しないスイッチング素子と電気的に接続される構成の場合、比較的幅広に設定される。副画素電極PBが補助容量線C1を覆う場合、副画素電極PBの幅は補助容量線C1の幅と同等以上である。
 上述したように、ゲート配線G1が画素の上側端部に配置され、補助容量線C1が略画素中央部に配置された構成では、副画素電極PBがソース配線S1とソース配線S2との間に位置する補助容量線C1を覆うように配置可能である。
 また、補助容量線C1が画素PXの上側端部または下側端部に配置され、ゲート配線G1が略画素中央部に配置されても良い。この場合には、副画素電極PBは、ゲート配線G1と対向していても良い(あるいは、副画素電極PBがゲート配線G1の上方に配置されていても良い)。
 一方、共通電極CEにおいて、第2主共通電極CAL2及び第2主共通電極CAR2は主画素電極PAの直上の位置を挟んだ両側に配置され、また、第2副共通電極CBU2及び第2副共通電極CBB2は副画素電極PBの直上の位置を挟んだ両側に配置されている。換言すると、主画素電極PAは第2主共通電極CAL2と第2主共通電極CAR2との間に配置され、副画素電極PBは第2副共通電極CBU2と第2副共通電極CBB2との間に配置されている。
 図示した例では、第2主共通電極CAL2は、画素PXの左側端部に配置され、ソース配線S1に対向している(あるいは、第2主共通電極CAL2がソース配線S1の上方に配置されている)。また、第2主共通電極CAR2は、画素PXの右側端部に配置され、ソース配線S2に対向している(あるいは、第2主共通電極CAR2がソース配線S2の上方に配置されている)。また、第2副共通電極CBU2は、画素PXの上側端部に配置され、ゲート配線G1に対向している(あるいは、第2副共通電極CBU2がゲート配線G1の上方に配置されている)。また、第2副共通電極CBB2は、画素PXの下側端部に配置され、ゲート配線G2に対向している(あるいは、第2副共通電極CBB2がゲート配線G2の上方に配置されている)。
 このような第1構成例によれば、上記の通り、一画素内に4つのドメインを形成することが可能となるため、4方向での視野角を光学的に補償することができ、広視野角化が可能となる。
 また、第2主共通電極CAL2及び第2主共通電極CAR2は、それぞれソース配線S1及びソース配線S2と対向している。特に、第2主共通電極CAL2及び第2主共通電極CAR2がそれぞれソース配線S1及びソース配線S2の上方に配置されている場合には、第2主共通電極CAL2及び第2主共通電極CAR2がソース配線S1及びソース配線S2よりも主画素電極PA側に配置された場合と比較して、表示に寄与する開口部を拡大することができ、画素PXの透過率を向上することが可能となる。
 また、第2主共通電極CAL2及び第2主共通電極CAR2をそれぞれソース配線S1及びソース配線S2の上方に配置することによって、主画素電極PAと第2主共通電極CAL2及び第2主共通電極CAR2との間の距離を拡大することが可能となり、より水平に近い横電界を形成することが可能となる。このため、従来の構成であるIPSモード等の利点である広視野角化も維持することが可能となる。
 さらに、画素電極PEの副画素電極PBは、補助容量線やゲート配線と対向するように配置されているため、補助容量線やゲート配線からの不所望な電界を遮蔽することが可能となる。このため、補助容量線やゲート配線から液晶層LQに対して不所望なバイアスが印加されることを抑制することができ、焼きツキなどの表示不良の発生を抑制することが可能となる。したがって、さらに表示品位の良好な液晶表示装置を提供することができる。
 ≪第2構成例≫
 次に、本実施形態の第2構成例について説明する。なお、第1構成例と同一構成については同一の参照符号を付して詳細な説明を省略する。
 図7は、本実施形態の第2構成例における液晶表示パネルLPNの対向基板CT2における一画素PXの構造を概略的に示す平面図である。
 この第2構成例では、共通電極CEは、主共通電極として後述するアレイ基板に備えられた第1主共通電極CA1、及び、副共通電極として対向基板CT2に備えられた第2副共通電極CB2を有している。この第2副共通電極CB2は、第2配向膜AL2によって覆われている。
 すなわち、図示した対向基板CT2は、第1方向Xに沿って直線的に延出した帯状の第2副共通電極CB2を備えており、主共通電極は備えていない。つまり、対向基板CT2において、共通電極CEは、第1方向Xに延出したストライプ状に形成されている。なお、図示した第2副共通電極CB2は第2方向Yに沿って間隔をおいて2本平行に並んでおり、以下では、これらを区別するために、図中の上側の第2副共通電極をCBU2と称し、図中の下側の第2副共通電極をCBB2と称する。
 このような共通電極CEの第2副共通電極CB2は、詳述しないが、アクティブエリアの外側に引き出され、導電部材を介して、アレイ基板に形成された給電部と電気的に接続され、コモン電位が給電される。
 次に、図7に示した対向基板CT2との組み合わせが好適なアレイ基板AR2について説明する。
 図8は、本実施形態の第2構成例における液晶表示パネルLPNの一画素PXを対向基板CT2側から見たときのアレイ基板AR2の構造を概略的に示す平面図である。なお、画素電極PEと共通電極CEとの位置関係を説明するために、共通電極CEを破線で図示している。また、一画素PXにおける説明に必要な構成のみを図示し、スイッチング素子などの図示を省略している。
 アレイ基板AR2は、アレイ基板AR1と同様に、第1方向Xに沿って延出した補助容量線C1と、第1方向Xに沿って延出したゲート配線G1及びゲート配線G2と、第2方向Yに沿って延出したソース配線S1及びソース配線S2と、画素電極PEと、を備えている。画素電極PEは、第1配向膜AL1によって覆われている。さらに、アレイ基板AR2は、共通電極CEの一部として、第2方向Yに沿って直線的に延出した帯状の第1主共通電極CA1を備えている。この第1主共通電極CA1は、第2副共通電極CB2と同電位である。
 なお、図示した第1主共通電極CA1は第1方向Xに沿って間隔をおいて2本平行に並んでおり、以下では、これらを区別するために、図中の左側の第1主共通電極をCAL1と称し、図中の右側の第1主共通電極をCAR1と称する。これらの第1主共通電極CAL1及び第1主共通電極CAR1は、例えば、画素電極PEと同様に、第2層間絶縁膜13の上に形成され、第1配向膜AL1によって覆われている。この場合、第1主共通電極CAL1及び第1主共通電極CAR1は、画素電極PEと同一材料(例えば、ITOなど)を用いて同一工程で形成可能である。
 図示した例では、第1主共通電極CAL1は、画素PXの左側端部に配置され、ソース配線S1と対向している(あるいは、第1主共通電極CAL1がソース配線S1の上方に配置されている)。また、第1主共通電極CAR1は、画素PXの右側端部に配置され、ソース配線S2と対向している(あるいは、第1主共通電極CAR1がソース配線S2の上方に配置されている)。第1主共通電極CAL1及び第1主共通電極CAR1と、ソース配線S1及びソース配線S2との間には、絶縁膜として、第2層間絶縁膜13が介在している。
 これらの第1主共通電極CAL1及び第1主共通電極CAR1は、それぞれアクティブエリア内においては直線的に延出し、アクティブエリアの外側に引き出され、アレイ基板AR2に形成された給電部と電気的に接続され、コモン電位が給電される。また、第1主共通電極CAL1及び第1主共通電極CAR1のそれぞれがアクティブエリア内においてソース配線S1及びソース配線S2を覆う場合には、第1主共通電極CAL1及び第1主共通電極CAR1の第1方向Xに沿った幅については、ソース配線S1及びソース配線S2の第1方向Xに沿った幅と同等以上である。
 画素電極PEは、第1構成例と同様に、ゲート配線G1とゲート配線G2との間に配置されている。あるいは、画素電極PEは、ソース配線S1とソース配線S2との間、つまり、第1主共通電極CAL1と第1主共通電極CAR1との間に配置されている。この画素電極PEは、主画素電極PA及び副画素電極PBを有している。
 主画素電極PAは、第1主共通電極CAL1と第1主共通電極CAR1との略中間の位置に配置されている。この主画素電極PAは、ゲート配線G1及びゲート配線G2に向かって延出している。
 副画素電極PBは、ゲート配線G1とゲート配線G2との略中間の位置に配置されている。この副画素電極PBは、第1主共通電極CAL1及び第1主共通電極CAR1に向かって延出している。但し、画素電極PEが第1主共通電極CAL1及び第1主共通電極CAR1とともに第2層間絶縁膜13の上に形成されている場合には、副画素電極PBは、第1主共通電極CAL1及び第1主共通電極CAR1には接触しないように配置されている(あるいは、副画素電極PBが第1主共通電極CAL1及び第1主共通電極CAR1から離間するように配置されている)。また、この副画素電極PBは、補助容量線C1と対向している(あるいは、副画素電極PBが補助容量線C1の上方に配置されている)。
 なお、補助容量線C1が画素PXの上側端部または下側端部に配置され、ゲート配線G1が略画素中央部に配置されても良い。この場合には、副画素電極PBは、ゲート配線G1と対向していても良い(あるいは、副画素電極PBがゲート配線G1の上方に配置されていても良い)。
 一方、共通電極CEにおいて、第2副共通電極CBU2及び第2副共通電極CBB2は、副画素電極PBの直上の位置を挟んだ両側に配置されている。換言すると、主画素電極PAは第1主共通電極CAL1と第1主共通電極CAR1との間に配置され、副画素電極PBは第2副共通電極CBU2と第2副共通電極CBB2との間に配置されている。
 図示した例では、第2副共通電極CBU2は、画素PXの上側端部に配置され、ゲート配線G1に対向している(あるいは、第2副共通電極CBU2がゲート配線G1の上方に配置されている)。また、第2副共通電極CBB2は、画素PXの下側端部に配置され、ゲート配線G2に対向している(あるいは、第2副共通電極CBB2がゲート配線G2の上方に配置されている)。
 このような第2構成例によれば、上記の通り、一画素内に4つのドメインを形成することが可能となるため、4方向での視野角を光学的に補償することができ、広視野角化が可能となる。また、第1構成例で説明した効果に加えて、共通電極CEの第1主共通電極CA1の少なくとも1つは、ソース配線と対向するように配置されているため、ソース配線からの不所望な電界を遮蔽することが可能となる。このため、ソース配線から液晶層LQに対して不所望なバイアスが印加されることを抑制することができ、クロストーク(例えば、当該画素PXが黒を表示する画素電位に設定されている状態で、当該画素PXに接続されたソース配線に白を表示する画素電位が供給されたときに、当該画素PXの一部から光漏れが生じて輝度の上昇を招く現象)などの表示不良の発生を抑制することが可能となる。したがって、さらに表示品位の良好な液晶表示装置を提供することができる。
 なお、この第2構成例で説明したアレイ基板AR2は、第1構成例で説明した対向基板CT1と組み合わせても良い。この場合、共通電極CEは、主共通電極として、アレイ基板AR2に備えられた第1主共通電極CA1及び対向基板CT1に備えられた第2主共通電極CA2を有する構成となる。このような第1主共通電極CA1と第2主共通電極CA2とが液晶層を挟んで対向する領域では、不所望な縦電界(すなわち、基板主面の法線方向に沿った電界)の発生を抑制することが可能となる。
 ≪第3構成例≫
 次に、本実施形態の第3構成例について説明する。なお、第1構成例と同一構成については同一の参照符号を付して詳細な説明を省略する。
 図9は、本実施形態の第3構成例における液晶表示パネルLPNの対向基板CT3における一画素PXの構造を概略的に示す平面図である。
 この第3構成例では、共通電極CEは、主共通電極として対向基板CT3に備えられた第2主共通電極CA2、及び、副共通電極として後述するアレイ基板に備えられた第1副共通電極CB1を有している。この第2主共通電極CA2は、第2配向膜AL2によって覆われている。
 すなわち、図示した対向基板CT3は、第2方向Yに沿って直線的に延出した帯状の第2主共通電極CA2を備えており、副共通電極は備えていない。つまり、対向基板CT3において、共通電極CEは、第2方向Yに延出したストライプ状に形成されている。なお、図示した第2主共通電極CA2は第1方向Xに沿って間隔をおいて2本平行に並んでおり、以下では、これらを区別するために、図中の左側の第2主共通電極をCAL2と称し、図中の右側の第2主共通電極をCAR2と称する。
 このような共通電極CEの第2主共通電極CA2は、詳述しないが、アクティブエリアの外側に引き出され、導電部材を介して、アレイ基板に形成された給電部と電気的に接続され、コモン電位が給電される。
 次に、図9に示した対向基板CT3との組み合わせが好適なアレイ基板AR3について説明する。
 図10は、本実施形態の第3構成例における液晶表示パネルLPNの一画素PXを対向基板CT3の側から見たときのアレイ基板AR3の構造を概略的に示す平面図である。なお、画素電極PEと共通電極CEとの位置関係を説明するために、共通電極CEを破線で図示している。また、一画素PXにおける説明に必要な構成のみを図示し、スイッチング素子などの図示を省略している。
 アレイ基板AR3は、アレイ基板AR1と同様に、第1方向Xに沿って延出した補助容量線C1と、第1方向Xに沿って延出したゲート配線G1及びゲート配線G2と、第2方向Yに沿って延出したソース配線S1及びソース配線S2と、画素電極PEと、を備えている。画素電極PEは、第1配向膜AL1によって覆われている。さらに、アレイ基板AR3は、共通電極CEの一部として、第1方向Xに沿って直線的に延出した帯状の第1副共通電極CB1を備えている。この第1副共通電極CB1は、第2主共通電極CA2と同電位である。
 なお、図示した第1副共通電極CB1は第2方向Yに沿って間隔をおいて2本平行に並んでおり、以下では、これらを区別するために、図中の上側の第1副共通電極をCBU1と称し、図中の下側の第1副共通電極をCBB1と称する。これらの第1副共通電極CBU1及び第1副共通電極CBB1は、例えば、画素電極PEと同様に、第2層間絶縁膜13の上に形成され、第1配向膜AL1によって覆われている。この場合、第1副共通電極CBU1及び第1副共通電極CBB1は、画素電極PEと同一材料(例えば、ITOなど)を用いて同一工程で形成可能である。
 図示した例では、第1副共通電極CBU1は、画素PXの上側端部に配置され、ゲート配線G1と対向している(あるいは、第1副共通電極CBU1がゲート配線G1の上方に配置されている)。また、第1副共通電極CBB1は、画素PXの下側端部に配置され、ゲート配線G2と対向している(あるいは、第1副共通電極CBB1がゲート配線G2の上方に配置されている)。第1副共通電極CBU1及び第1副共通電極CBB1と、ゲート配線G1及びゲート配線G2との間には、絶縁膜として、第1層間絶縁膜12及び第2層間絶縁膜13が介在している。
 これらの第1副共通電極CBU1及び第1副共通電極CBB1は、それぞれアクティブエリア内においては直線的に延出し、アクティブエリアの外側に引き出され、アレイ基板AR3に形成された給電部と電気的に接続され、コモン電位が給電される。また、第1副共通電極CBU1及び第1副共通電極CBB1のそれぞれがアクティブエリア内においてゲート配線G1及びゲート配線G2を覆う場合には、第1副共通電極CBU1及び第1副共通電極CBB1の第2方向Yに沿った幅については、ゲート配線G1及びゲート配線G2の第2方向Yに沿った幅と同等以上である。
 画素電極PEは、第1構成例と同様に、ソース配線S1とソース配線S2との間に配置されている。あるいは、画素電極PEは、ゲート配線G1とゲート配線G2との間、つまり、第1副共通電極CBU1と第1副共通電極CBB1との間に配置されている。この画素電極PEは、主画素電極PA及び副画素電極PBを有している。
 主画素電極PAは、ソース配線S1とソース配線S2との略中間の位置に配置されている。この主画素電極PAは、第1副共通電極CBU1及び第1副共通電極CBB1に向かって延出している。但し、画素電極PEが第1副共通電極CBU1及び第1副共通電極CBB1とともに第2層間絶縁膜13の上に形成されている場合には、主画素電極PAは、第1副共通電極CBU1及び第1副共通電極CBB1には接触しないように配置されている(あるいは、主画素電極PAが第1副共通電極CBU1及び第1副共通電極CBB1から離間するように配置されている)。
 副画素電極PBは、第1副共通電極CBU1と第1副共通電極CBB1と略中間の位置に配置されている。この副画素電極PBは、ソース配線S1及びソース配線S2に向かって延出している。また、この副画素電極PBは、補助容量線C1と対向している(あるいは、副画素電極PBが補助容量線C1の上方に配置されている)。
 なお、補助容量線C1が画素PXの上側端部または下側端部に配置され、ゲート配線G1が略画素中央部に配置されても良い。この場合には、副画素電極PBは、ゲート配線G1と対向していても良い(あるいは、副画素電極PBがゲート配線G1の上方に配置されていても良い)し、第1副共通電極CBU1または第1副共通電極CBB1は、補助容量線C1と対向していていも良い(あるいは、第1副共通電極CBU1または第1副共通電極CBB1が補助容量線C1の上方に配置されていても良い)。
 一方、共通電極CEにおいて、第2主共通電極CAL2及び第2主共通電極CAR2は、主画素電極PAの直上の位置を挟んだ両側に配置されている。換言すると、主画素電極PAは第2主共通電極CAL2と第2主共通電極CAR2との間に配置され、副画素電極PBは第1副共通電極CBU1と第1副共通電極CBB1との間に配置されている。
 図示した例では、第2主共通電極CAL2は、画素PXの左側端部に配置され、ソース配線S1と対向している(あるいは、第2主共通電極CAL2がソース配線S1の上方に配置されている)。また、第2主共通電極CAR2は、画素PXの右側端部に配置され、ソース配線S2と対向している(あるいは、第2主共通電極CAR2がソース配線S2の上方に配置されている)。
 このような第3構成例によれば、上記の通り、一画素内に4つのドメインを形成することが可能となるため、4方向での視野角を光学的に補償することができ、広視野角化が可能となる。また、第1構成例で説明した効果に加えて、共通電極CEの第1副共通電極CB1は、ゲート配線と対向するように配置されているため、ゲート配線からの不所望な電界を遮蔽することが可能となる。このため、ゲート配線から液晶層LQに対して不所望なバイアスが印加されることを抑制することができ、焼きツキなどの表示不良の発生を抑制することが可能となる。したがって、さらに表示品位の良好な液晶表示装置を提供することができる。
 なお、この第3構成例で説明したアレイ基板AR3は、第1構成例で説明した対向基板CT1と組み合わせても良い。この場合、共通電極CEは、副共通電極として、アレイ基板AR3に備えられた第1副共通電極CB1及び対向基板CT1に備えられた第2副共通電極CB2を有する構成となる。このような第1副共通電極CB1と第2副共通電極CB2とが液晶層を挟んで対向する領域では、不所望な縦電界(すなわち、基板主面の法線方向に沿った電界)の発生を抑制することが可能となる。
 ≪第4構成例≫
 次に、本実施形態の第4構成例について説明する。なお、第1構成例と同一構成については同一の参照符号を付して詳細な説明を省略する。
 図11は、本実施形態の第4構成例における液晶表示パネルLPNの一画素PXを対向基板CTの側から見たときのアレイ基板AR4の構造を概略的に示す平面図である。なお、一画素PXにおける説明に必要な構成のみを図示し、スイッチング素子などの図示を省略している。
 この第4構成例では、共通電極CEは、主共通電極としてアレイ基板AR4に備えられた第1主共通電極CA1、及び、副共通電極としてアレイ基板AR4に備えられた第1副共通電極CB1を有している。
 アレイ基板AR4は、アレイ基板AR1と同様に、第1方向Xに沿って延出した補助容量線C1と、第1方向Xに沿って延出したゲート配線G1及びゲート配線G2と、第2方向Yに沿って延出したソース配線S1及びソース配線S2と、画素電極PEと、を備えている。画素電極PEは、第1配向膜AL1によって覆われている。さらに、アレイ基板AR4は、第2方向Yに沿って直線的に延出した帯状の第1主共通電極CA1(CAL1及びCAR1)及び第1方向Xに沿って直線的に延出した帯状の第1副共通電極CB1(CBU1及びCBB1)を有する共通電極CEを備えている。つまり、アレイ基板AR4において、共通電極CEは、格子状に形成されている。第1主共通電極CA1の構成については、アレイ基板AR2で説明した通りである。第1副共通電極CB1の構成については、アレイ基板AR3で説明した通りである。
 このような共通電極CEの第1主共通電極CA1及び第1副共通電極CB1は、詳述しないが、アクティブエリアの外側に引き出され、導電部材を介して、アレイ基板AR4に形成された給電部と電気的に接続され、コモン電位が給電される。
 この第4構成例で説明したアレイ基板AR4は、第1構成例で説明した対向基板CT1、第2構成例で説明した対向基板CT2、及び、第3構成例で説明した対向基板CT3のいずれとも組み合わせ可能である。
 上記の第1乃至第4構成例で説明したアレイ基板AR1、アレイ基板AR2、アレイ基板AR3、及び、アレイ基板AR4と、上記の第1乃至第3構成例で説明した対向基板CT1、対向基板CT2、及び、対向基板CT3との組み合わせについては、図12にまとめた。図中の斜線は本実施形態の基本構成を実現できない組み合わせに相当し、図中の二重丸(◎)は各構成例で説明した組み合わせに相当し、図中の白丸(○)は各構成例において可能な組み合わせに相当する。
 次に、本実施形態の更なるバリエーションについて一画素PXの構成を簡単に説明する。
 図13は、本実施形態のバリエーションのひとつを概略的に示す平面図である。
 画素電極PEは、第2方向Yに沿って延出し且つ第1方向Xに沿って間隔をおいて平行に並んだ2本の主画素電極PA、第1方向Xに沿って延出し且つ2本の主画素電極PAと交差するとともに略画素中央部に配置された副画素電極PBを有している。このような画素電極PEは、アレイ基板に備えられている。
 共通電極CEは、第2方向Yに沿って延出した主共通電極CA及び第1方向Xに沿って延出した副共通電極CBを有している。主共通電極CAは、2本の主画素電極PAのそれぞれの両側に配置されている。つまり、3本の主共通電極CAと2本の主画素電極PAとが交互に配置されている。副共通電極CBは、副画素電極PBを挟んで両側に配置されている。つまり、副画素電極PBと2本の副共通電極CBとが交互に配置されている。このような共通電極CEについても、主共通電極CA及び副共通電極CBの少なくとも一部は、対向基板に備えられている。
 このような構成においては、一画素PX内に8つの領域が形成され、ON時には、図中の矢印で示した方向に液晶分子が配向する。このような構成においても上記の各構成例と同様の効果が得られる。
 上記の本実施形態は、特に、容量結合駆動(CC駆動)を行う構成に好適である。すなわち、容量結合駆動(CC駆動)では、各画素の保持容量Csを通して、補助容量信号を画素電極PEに重畳することで所定の電圧に到達させるため、保持容量Csと画素容量とを略等しくする場合には、信号電圧振幅を略半減できる。上述したゲートドライバGD、ソースドライバSD、コントローラを内蔵した駆動ICチップ2などは、このようなCC駆動を行うための駆動機構として機能し、アレイ基板ARに備えられている。
 このようなCC駆動を適用した構成によれば、消費電力を低減できるとともに表示品位の劣化を抑制することが可能となる。
 以上説明したように、本実施形態によれば、表示品位の良好な液晶表示装置を提供することが可能となる。
 なお、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これらの新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これらの実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。

Claims (20)

  1.  第1方向に沿ってそれぞれ延出したゲート配線及び補助容量線と、第1方向に交差する第2方向に沿ってそれぞれ延出した第1ソース配線及び第2ソース配線と、前記第1ソース配線と前記第2ソース配線との間に位置し第2方向に沿って延出した帯状の主画素電極と、前記主画素電極に繋がり前記第1ソース配線及び前記第2ソース配線に向かって第1方向に沿ってそれぞれ延出した帯状の副画素電極と、水平配向性を示す材料によって形成され前記主画素電極及び前記副画素電極を覆う第1配向膜と、を備えた第1基板と、
     前記主画素電極を挟んだ両側で第2方向に沿ってそれぞれ延出した第2主共通電極と、前記第2主共通電極に繋がり前記副画素電極を挟んだ両側で第1方向に沿ってそれぞれ延出した第2副共通電極と、水平配向性を示す材料によって形成され前記第2主共通電極及び前記第2副共通電極を覆う第2配向膜と、を備えた第2基板と、
     前記第1基板と前記第2基板との間に保持された液晶分子を含む液晶層と、
     を備えたことを特徴とする液晶表示装置。
  2.  前記主画素電極と前記第2主共通電極との間に電界が形成されていない状態で、前記液晶分子の初期配向方向は、第2方向に略平行であることを特徴とする請求項1に記載の液晶表示装置。
  3.  前記第1基板は、さらに、前記第1ソース配線及び前記第2ソース配線とそれぞれ対向し第2方向に沿って延出し前記第1配向膜によって覆われ前記第2主共通電極と同電位の第1主共通電極を備えたことを特徴とする請求項2に記載の液晶表示装置。
  4.  前記第1基板は、さらに、前記ゲート配線と対向し第1方向に沿って延出し前記第1配向膜によって覆われ前記第2主共通電極と同電位の第1副共通電極を備えたことを特徴とする請求項2に記載の液晶表示装置。
  5.  前記第1基板は、さらに、前記ゲート配線と対向し第1方向に沿って延出し前記第1配向膜によって覆われ前記第2主共通電極と同電位の第1副共通電極と、前記第1副共通電極と繋がり前記第1ソース配線及び前記第2ソース配線とそれぞれ対向し第2方向に沿って延出し前記第1配向膜によって覆われた第1主共通電極と、を備えたことを特徴とする請求項2に記載の液晶表示装置。
  6.  第1方向に沿ってそれぞれ延出したゲート配線及び補助容量線と、第1方向に交差する第2方向に沿ってそれぞれ延出した第1ソース配線及び第2ソース配線と、前記第1ソース配線と前記第2ソース配線との間に位置し第2方向に沿って延出した帯状の主画素電極と、前記主画素電極に繋がり前記第1ソース配線及び前記第2ソース配線に向かって第1方向に沿ってそれぞれ延出した帯状の副画素電極と、前記第1ソース配線及び前記第2ソース配線とそれぞれ対向し第2方向に沿って延出した第1主共通電極と、水平配向性を示す材料によって形成され前記主画素電極、前記副画素電極、及び、前記第1主共通電極を覆う第1配向膜と、を備えた第1基板と、
     前記副画素電極を挟んだ両側で第1方向に沿ってそれぞれ延出し前記第1主共通電極と同電位の第2副共通電極と、水平配向性を示す材料によって形成され前記第2副共通電極を覆う第2配向膜と、を備えた第2基板と、
     前記第1基板と前記第2基板との間に保持された液晶分子を含む液晶層と、
     を備えたことを特徴とする液晶表示装置。
  7.  前記主画素電極と前記第1主共通電極との間に電界が形成されていない状態で、前記液晶分子の初期配向方向は、第2方向に略平行であることを特徴とする請求項6に記載の液晶表示装置。
  8.  前記第1基板は、さらに、前記第1主共通電極と繋がり前記ゲート配線と対向し第1方向に沿って延出し前記第1配向膜によって覆われた第1副共通電極を備えたことを特徴とする請求項7に記載の液晶表示装置。
  9.  第1方向に沿ってそれぞれ延出したゲート配線及び補助容量線と、第1方向に交差する第2方向に沿ってそれぞれ延出した第1ソース配線及び第2ソース配線と、前記第1ソース配線と前記第2ソース配線との間に位置し第2方向に沿って延出した帯状の主画素電極と、前記主画素電極に繋がり前記第1ソース配線及び前記第2ソース配線に向かって第1方向に沿ってそれぞれ延出した帯状の副画素電極と、前記ゲート配線と対向し第1方向に沿って延出した第1副共通電極と、水平配向性を示す材料によって形成され前記主画素電極、前記副画素電極、及び、前記第1副共通電極を覆う第1配向膜と、を備えた第1基板と、
     前記主画素電極を挟んだ両側で第2方向に沿ってそれぞれ延出し前記第1副共通電極と同電位の第2主共通電極と、水平配向性を示す材料によって形成され前記第2主共通電極を覆う第2配向膜と、を備えた第2基板と、
     前記第1基板と前記第2基板との間に保持された液晶分子を含む液晶層と、
     を備えたことを特徴とする液晶表示装置。
  10.  前記主画素電極と前記第2主共通電極との間に電界が形成されていない状態で、前記液晶分子の初期配向方向は、第2方向に略平行であることを特徴とする請求項9に記載の液晶表示装置。
  11.  前記第1基板は、さらに、前記第1副共通電極と繋がり前記第1ソース配線及び前記第2ソース配線とそれぞれ対向し第2方向に沿って延出し前記第1配向膜によって覆われた第1主共通電極を備えたことを特徴とする請求項10に記載の液晶表示装置。
  12.  前記副画素電極は、前記補助容量線の上方に位置することを特徴とする請求項1乃至11のいずれか1項に記載の液晶表示装置。
  13.  前記副画素電極は、前記主画素電極の第2方向に沿った略中央部に結合したことを特徴とする請求項12に記載の液晶表示装置。
  14.  前記副画素電極は、前記主画素電極と略直交していることを特徴とする請求項13に記載の液晶表示装置。
  15.  前記主画素電極は、前記第1ソース配線と前記第2ソース配線との略中間に位置していることを特徴とする請求項14に記載の液晶表示装置。
  16.  前記第2主共通電極は、前記第1ソース配線及び前記第2ソース配線の上方にそれぞれ位置することを特徴とする請求項1乃至5、9乃至11のいずれか1項に記載の液晶表示装置。
  17.  前記第2副共通電極は、前記ゲート配線の上方に位置することを特徴とする請求項16に記載の液晶表示装置。
  18.  前記第1配向膜が前記液晶分子を初期配向させる第1配向処理方向及び前記第2配向膜が前記液晶分子を初期配向させる第2配向処理方向は互いに略平行であり、
     前記液晶分子は、前記第1基板と前記第2基板との間においてスプレイ配向またはホモジニアス配向していることを特徴とする請求項1乃至11のいずれか1項に記載の液晶表示装置。
  19.  さらに、前記第1基板の外面に配置され第1偏光軸を備えた第1偏光板と、第2基板の外面に配置され第1偏光軸とクロスニコルの位置関係にある第2偏光軸を備えた第2偏光板を備え、前記第1偏光板の第1偏光軸が前記液晶分子の初期配向方向と直交する或いは平行であることを特徴とする請求項18に記載の液晶表示装置。
  20.  前記第1基板は、容量結合駆動を行うための駆動機構を備えたことを特徴とする請求項1乃至11のいずれか1項に記載の液晶表示装置。
PCT/JP2012/053545 2011-04-08 2012-02-15 液晶表示装置 WO2012137541A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020137026157A KR20130131466A (ko) 2011-04-08 2012-02-15 액정 표시 장치
JP2013508784A JP5707488B2 (ja) 2011-04-08 2012-02-15 液晶表示装置
CN201280016433.5A CN103460124B (zh) 2011-04-08 2012-02-15 液晶显示装置
KR1020147030621A KR20140133963A (ko) 2011-04-08 2012-02-15 액정 표시 장치
KR1020147030620A KR20140133962A (ko) 2011-04-08 2012-02-15 액정 표시 장치
US14/048,552 US9424786B2 (en) 2011-04-08 2013-10-08 Liquid crystal display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-086561 2011-04-08
JP2011086561 2011-04-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/048,552 Continuation US9424786B2 (en) 2011-04-08 2013-10-08 Liquid crystal display device

Publications (1)

Publication Number Publication Date
WO2012137541A1 true WO2012137541A1 (ja) 2012-10-11

Family

ID=46968945

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/053545 WO2012137541A1 (ja) 2011-04-08 2012-02-15 液晶表示装置

Country Status (5)

Country Link
US (1) US9424786B2 (ja)
JP (1) JP5707488B2 (ja)
KR (3) KR20140133962A (ja)
CN (1) CN103460124B (ja)
WO (1) WO2012137541A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014137391A (ja) * 2013-01-15 2014-07-28 Japan Display Inc 液晶表示装置
JP2014137412A (ja) * 2013-01-15 2014-07-28 Japan Display Inc 液晶表示装置
CN104049423A (zh) * 2013-03-14 2014-09-17 株式会社日本显示器 液晶显示装置
US9709860B2 (en) 2015-01-22 2017-07-18 Japan Display Inc. Liquid crystal display device

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5953120B2 (ja) 2012-05-25 2016-07-20 株式会社ジャパンディスプレイ 液晶表示装置
CN104597665B (zh) * 2015-02-13 2017-12-26 厦门天马微电子有限公司 一种液晶显示面板及其制作方法
CN105549290B (zh) * 2016-02-01 2019-07-23 京东方科技集团股份有限公司 显示面板和显示装置
TWI584034B (zh) * 2016-09-14 2017-05-21 友達光電股份有限公司 顯示面板
CN106814506B (zh) * 2017-04-01 2018-09-04 深圳市华星光电技术有限公司 一种液晶显示面板及装置
CN107274851A (zh) * 2017-08-14 2017-10-20 京东方科技集团股份有限公司 显示面板及其驱动方法和显示装置
CN117518628A (zh) * 2023-01-31 2024-02-06 Tcl华星光电技术有限公司 像素结构

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0736058A (ja) * 1993-07-20 1995-02-07 Hitachi Ltd アクティブマトリックス型液晶表示装置
JP2001282205A (ja) * 2000-03-31 2001-10-12 Matsushita Electric Ind Co Ltd アクティブマトリクス型液晶表示装置およびその駆動方法
JP2002040457A (ja) * 2000-07-31 2002-02-06 Sanyo Electric Co Ltd 液晶表示装置
JP2006053592A (ja) * 2005-10-31 2006-02-23 Lg Philips Lcd Co Ltd 液晶表示装置
JP2009192822A (ja) * 2008-02-14 2009-08-27 Toshiba Mobile Display Co Ltd 液晶表示装置
JP2009244287A (ja) * 2008-03-28 2009-10-22 Toshiba Mobile Display Co Ltd 液晶表示装置および液晶表示装置の駆動方法

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06222397A (ja) * 1993-01-25 1994-08-12 Sony Corp 液晶表示装置
TW454101B (en) 1995-10-04 2001-09-11 Hitachi Ltd In-plane field type liquid crystal display device comprising liquid crystal molecules with more than two different kinds of reorientation directions and its manufacturing method
JPH09160061A (ja) 1995-12-08 1997-06-20 Toshiba Corp 液晶表示素子
JPH09160042A (ja) 1995-12-08 1997-06-20 Toshiba Corp 液晶表示素子
JPH09160041A (ja) 1995-12-08 1997-06-20 Toshiba Corp 液晶表示素子
JPH1026765A (ja) 1996-07-10 1998-01-27 Toshiba Corp 液晶表示素子、投影型液晶表示装置及び基板
JP3644653B2 (ja) 1996-08-07 2005-05-11 三菱電機株式会社 液晶表示装置
JPH1090708A (ja) 1996-09-17 1998-04-10 Toshiba Corp 液晶表示素子
JPH10186366A (ja) * 1996-12-26 1998-07-14 Fujitsu Ltd 液晶表示装置
TW451099B (en) 1998-01-23 2001-08-21 Hitachi Ltd Liquid crystal display device
JP4364332B2 (ja) 1998-06-23 2009-11-18 シャープ株式会社 液晶表示装置
JP3132483B2 (ja) * 1998-09-17 2001-02-05 日本電気株式会社 横電界方式の液晶表示装置
KR100303351B1 (ko) 1998-12-17 2002-06-20 박종섭 수직 배향 모드 액정 표시 장치
TWI298110B (en) * 2001-07-31 2008-06-21 Hitachi Ltd Liquid crystal display device
JP4107978B2 (ja) 2003-02-21 2008-06-25 スタンレー電気株式会社 液晶表示素子
KR100698047B1 (ko) * 2003-04-19 2007-03-23 엘지.필립스 엘시디 주식회사 횡전계형 액정 표시 장치 및 그 제조 방법
JP2005003802A (ja) 2003-06-10 2005-01-06 Toshiba Matsushita Display Technology Co Ltd 液晶表示装置
KR100959367B1 (ko) * 2003-10-13 2010-05-25 엘지디스플레이 주식회사 횡전계형 액정표시장치
JP4088619B2 (ja) 2004-01-28 2008-05-21 シャープ株式会社 アクティブマトリクス基板及び表示装置
KR100617040B1 (ko) 2004-03-16 2006-08-30 엘지.필립스 엘시디 주식회사 횡전계방식 액정표시소자 및 그 제조방법
JP2005292515A (ja) 2004-03-31 2005-10-20 Sharp Corp 液晶表示装置およびその駆動方法ならびに電子機器
KR100672216B1 (ko) 2004-11-03 2007-01-22 엘지.필립스 엘시디 주식회사 액정표시장치
KR101247113B1 (ko) 2005-11-22 2013-04-01 삼성디스플레이 주식회사 표시장치
TW200813535A (en) 2006-09-12 2008-03-16 Wintek Corp Liquid crystal panel and liquid crystal display
KR101413275B1 (ko) 2007-01-29 2014-06-30 삼성디스플레이 주식회사 액정 표시 패널 및 이의 제조 방법
KR20080071231A (ko) * 2007-01-30 2008-08-04 삼성전자주식회사 액정 표시 장치
KR101427708B1 (ko) 2007-02-01 2014-08-11 삼성디스플레이 주식회사 액정 표시 패널
JP5093724B2 (ja) * 2007-10-29 2012-12-12 Nltテクノロジー株式会社 液晶表示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0736058A (ja) * 1993-07-20 1995-02-07 Hitachi Ltd アクティブマトリックス型液晶表示装置
JP2001282205A (ja) * 2000-03-31 2001-10-12 Matsushita Electric Ind Co Ltd アクティブマトリクス型液晶表示装置およびその駆動方法
JP2002040457A (ja) * 2000-07-31 2002-02-06 Sanyo Electric Co Ltd 液晶表示装置
JP2006053592A (ja) * 2005-10-31 2006-02-23 Lg Philips Lcd Co Ltd 液晶表示装置
JP2009192822A (ja) * 2008-02-14 2009-08-27 Toshiba Mobile Display Co Ltd 液晶表示装置
JP2009244287A (ja) * 2008-03-28 2009-10-22 Toshiba Mobile Display Co Ltd 液晶表示装置および液晶表示装置の駆動方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014137391A (ja) * 2013-01-15 2014-07-28 Japan Display Inc 液晶表示装置
JP2014137412A (ja) * 2013-01-15 2014-07-28 Japan Display Inc 液晶表示装置
US9551911B2 (en) 2013-01-15 2017-01-24 Japan Display Inc. Liquid crystal display device
CN104049423A (zh) * 2013-03-14 2014-09-17 株式会社日本显示器 液晶显示装置
US9164333B2 (en) 2013-03-14 2015-10-20 Japan Display Inc. Liquid crystal display device
CN104049423B (zh) * 2013-03-14 2017-01-04 株式会社日本显示器 液晶显示装置
US9709860B2 (en) 2015-01-22 2017-07-18 Japan Display Inc. Liquid crystal display device
US10203568B2 (en) 2015-01-22 2019-02-12 Japan Display Inc. Liquid crystal display device
US10613395B2 (en) 2015-01-22 2020-04-07 Japan Display Inc. Liquid crystal display device

Also Published As

Publication number Publication date
KR20140133963A (ko) 2014-11-20
US9424786B2 (en) 2016-08-23
CN103460124B (zh) 2016-08-10
JP5707488B2 (ja) 2015-04-30
US20140055430A1 (en) 2014-02-27
CN103460124A (zh) 2013-12-18
KR20130131466A (ko) 2013-12-03
KR20140133962A (ko) 2014-11-20
JPWO2012137541A1 (ja) 2014-07-28

Similar Documents

Publication Publication Date Title
JP5707488B2 (ja) 液晶表示装置
JP5707487B2 (ja) 液晶表示装置
JP5552457B2 (ja) 液晶表示装置
JP5560247B2 (ja) 液晶表示装置
JP5845035B2 (ja) 液晶表示装置
JP5530971B2 (ja) 液晶表示装置
JP2013254052A (ja) 液晶表示装置
JP2013045021A (ja) 液晶表示装置
JP6063710B2 (ja) 液晶表示装置
JP5674587B2 (ja) 液晶表示装置
JP5978001B2 (ja) 液晶表示装置
JP6010330B2 (ja) 液晶表示装置
JP2013037103A (ja) 液晶表示装置
JP5699068B2 (ja) 液晶表示装置
JP5377567B2 (ja) 液晶表示装置
JP5785831B2 (ja) 液晶表示装置
JP5845042B2 (ja) 液晶表示装置
JP5824301B2 (ja) 液晶表示装置
JP5785834B2 (ja) 液晶表示装置
JP5816496B2 (ja) 液晶表示装置
JP5938181B2 (ja) 液晶表示装置
JP5851175B2 (ja) 液晶表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12768104

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013508784

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137026157

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12768104

Country of ref document: EP

Kind code of ref document: A1