WO2012137371A1 - 再生エネルギー型発電装置 - Google Patents

再生エネルギー型発電装置 Download PDF

Info

Publication number
WO2012137371A1
WO2012137371A1 PCT/JP2011/071674 JP2011071674W WO2012137371A1 WO 2012137371 A1 WO2012137371 A1 WO 2012137371A1 JP 2011071674 W JP2011071674 W JP 2011071674W WO 2012137371 A1 WO2012137371 A1 WO 2012137371A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipe
nacelle
hydraulic motor
generator
tower
Prior art date
Application number
PCT/JP2011/071674
Other languages
English (en)
French (fr)
Inventor
拓郎 亀田
悠 明石
松尾 毅
慎輔 佐藤
森井 喜之
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to EP11817195.8A priority Critical patent/EP2530310B1/en
Priority to KR1020127034038A priority patent/KR101296054B1/ko
Priority to JP2012507508A priority patent/JP5358020B2/ja
Priority to CN2011800220542A priority patent/CN102869881A/zh
Priority to JP2012507512A priority patent/JP5502190B2/ja
Priority to PCT/JP2011/006695 priority patent/WO2012073505A1/en
Priority to EP11799883.1A priority patent/EP2646685B1/en
Priority to CN2011800307298A priority patent/CN102959240A/zh
Priority to KR1020127034108A priority patent/KR20130053416A/ko
Priority to US13/390,362 priority patent/US20120285150A1/en
Priority to EP13160517.2A priority patent/EP2650533B1/en
Priority to US13/398,484 priority patent/US8601805B2/en
Priority to PCT/JP2012/070492 priority patent/WO2013042487A1/ja
Priority to JP2013534695A priority patent/JP5620009B2/ja
Priority to EP12833851.4A priority patent/EP2759701B1/en
Priority to PCT/JP2012/073589 priority patent/WO2013042621A1/ja
Publication of WO2012137371A1 publication Critical patent/WO2012137371A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/28Wind motors characterised by the driven apparatus the apparatus being a pump or a compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03CPOSITIVE-DISPLACEMENT ENGINES DRIVEN BY LIQUIDS
    • F03C1/00Reciprocating-piston liquid engines
    • F03C1/26Reciprocating-piston liquid engines adapted for special use or combined with apparatus driven thereby
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D15/00Transmission of mechanical power
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/70Bearing or lubricating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/80Arrangement of components within nacelles or towers
    • F03D80/88Arrangement of components within nacelles or towers of mechanical components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B17/00Pumps characterised by combination with, or adaptation to, specific driving engines or motors
    • F04B17/02Pumps characterised by combination with, or adaptation to, specific driving engines or motors driven by wind motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/40Transmission of power
    • F05B2260/406Transmission of power through hydraulic systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier

Definitions

  • the present invention relates to a regenerative energy type power generator that transmits the rotational energy of a rotor to a generator via a hydraulic transmission that combines a hydraulic pump and a hydraulic motor.
  • the renewable energy type power generation device is a power generation device using renewable energy such as wind, tidal current, ocean current, river flow, etc., and examples thereof include wind power generation device, tidal current power generation device, ocean current power generation device, river current power generation device and the like. be able to.
  • wind power generators using wind power and renewable energy power generators including power generators using tidal currents, ocean currents, or river currents are becoming popular.
  • the kinetic energy of wind, tidal current, ocean current or river current is converted into the rotational energy of the rotor, and the rotational energy of the rotor is converted into electric power by the generator.
  • Patent Document 1 describes an electric power production system in which rotational energy of a rotor is transmitted to a generator via a hydraulic transmission.
  • This system has a configuration in which a hydraulic motor and a generator are provided in a nacelle (see FIG. 7 of Patent Document 1).
  • Patent Document 2 describes a wind power generator in which a hydraulic motor provided at the bottom of a tower turns with a nacelle around a vertical axis. Further, in Patent Documents 3 and 4, a part of the hydraulic piping (high pressure oil passage and low pressure oil passage) that connects the hydraulic pump installed in the nacelle and the hydraulic motor provided at the bottom of the tower swivels together with the nacelle. A wind power generator is described.
  • the hydraulic piping on the nacelle turns together with the nacelle by a hydraulic swivel provided at the lower part of the nacelle.
  • the hydraulic swivel includes an outer member and an inner member, and both members are rotatable relative to each other. And the piping provided in the inner member is connected with the annular flow path provided in the inner peripheral surface of the outer member.
  • Patent Document 1 a hydraulic motor and a generator are provided between the hydraulic pump and the nacelle rear-end side wall surface, which increases the length of the nacelle in the main axis direction. There was a problem that the weight would increase.
  • Patent Document 2 does not disclose how to specifically configure the hydraulic piping connecting the hydraulic pump installed in the nacelle and the hydraulic motor provided at the bottom of the tower.
  • Patent Documents 3 and 4 describe a hydraulic swivel for enabling the nacelle-side hydraulic piping to pivot together with the nacelle, the piping provided on the inner member and the annular flow path provided on the outer member The detailed structure of the hydraulic swivel is not fully disclosed. Further, since the hydraulic motor and the generator are arranged at the bottom of the tower, the hydraulic piping becomes long.
  • the present invention provides a regenerative energy power generator that can shorten the piping connecting the hydraulic pump and the hydraulic motor, and that can reduce the size and weight of the nacelle. For the purpose.
  • a regenerative energy type power generating device is a regenerative energy type power generating device that generates electric power from regenerative energy, and includes a tower, a nacelle provided at a tip of the tower, the nacelle, and a rotor blade.
  • a main shaft that rotates together with, a hydraulic pump that is housed in the nacelle and attached to the main shaft, a hydraulic motor that is driven by hydraulic oil supplied from the hydraulic pump, a generator that is coupled to the hydraulic motor, and
  • At least one of the hydraulic motor and the generator is stored in at least one of the main shaft and the oil.
  • a pump characterized in that it is arranged in the space except the area between the rear end wall remote from the rotor blades out of the wall of the nacelle.
  • At least one of the hydraulic motor and the generator is housed in at least one of the nacelle and the upper part of the tower, so that compared to the case where these are installed at the tower base end.
  • the piping through which hydraulic oil circulates can be shortened.
  • at least one of the hydraulic motor and the generator is in a space excluding the area between the main shaft and the hydraulic pump and the rear end side wall surface of the nacelle wall far from the rotor blades. It is arranged.
  • the nacelle length (in the main shaft direction) can be shortened. It is possible to reduce the size and weight.
  • the regenerative energy type power generation device further includes a yaw drive device provided at a lower portion of the nacelle for rotating the nacelle by yaw, the hydraulic motor and the side above the yaw drive device and on the side of the hydraulic pump.
  • a yaw drive device provided at a lower portion of the nacelle for rotating the nacelle by yaw, the hydraulic motor and the side above the yaw drive device and on the side of the hydraulic pump.
  • at least one of the generators is arranged.
  • the space in the nacelle can be effectively used.
  • at least one of the hydraulic motor and the generator can be arranged without increasing the lateral width of the nacelle (direction perpendicular to the main axis in the horizontal plane), and the nacelle can be further reduced in size and weight.
  • the hydraulic motor and the generator are housed in the nacelle, the hydraulic motor and the generator are relatively horizontally disposed, and lateral to the hydraulic pump.
  • the hydraulic motor and the generator connected by the output shaft are arranged.
  • the hydraulic motor and the generator are both housed in the nacelle, so that the length of the piping for circulating the hydraulic oil can be shortened.
  • the hydraulic motor and the generator are arranged relatively horizontally, and at least a part of the hydraulic motor and the generator connected by the output shaft are arranged on the side of the hydraulic pump, so that the nacelle
  • the nacelle can be further reduced in size and weight.
  • the nacelle is provided to be rotatable in a yaw direction with respect to the tower, and the hydraulic motor and the generator are supported on the nacelle side by a support, and the hydraulic motor
  • the hydraulic motor and the generator are supported on the nacelle side by the support, and at least a part of the hydraulic motor and the generator connected by the output shaft are arranged at the top of the tower, so that the tower base Compared with the case where these are installed at the end, the length of the pipe for circulating the hydraulic oil can be shortened. Further, since at least a part of the hydraulic motor and the generator are arranged on the tower side, the nacelle can be further reduced in size and weight.
  • the hydraulic motor and the generator are respectively arranged so that the hydraulic motor is housed in the nacelle and the output shaft is in a vertical direction.
  • a hydraulic motor can be arrange
  • at least a part of the generator is arranged on the tower side. At this time, the hydraulic motor and the generator are arranged in the vertical direction, so that the hydraulic motor and the generator are not expanded without expanding the diameter of the tower. The machine can be easily installed.
  • the hydraulic motor is supported on the nacelle side by a support body and disposed in the tower upper space.
  • the nacelle can be further reduced in size and weight.
  • the hydraulic motor and the pipe connecting the hydraulic pump and the hydraulic motor can be rotated integrally with the hydraulic pump when the nacelle turns.
  • the regenerative energy type power generator further includes one or more supports supported by the tower, and at least one of the hydraulic motor and the generator is fixed to the support and connected to the hydraulic pump. It is preferable that the pipe and the pipe connected to the hydraulic motor are relatively rotatably connected in the yaw direction. As a result, at least one of the hydraulic motor and the generator can be stably fixed to the tower. Since the hydraulic motor and the generator are connected by an output shaft, when one of the hydraulic motor and the generator is fixed to the tower by the support body, the other is also supported on the tower side.
  • the nacelle makes a yaw rotation. Even in this case, the piping structure can be properly maintained.
  • the regenerative energy type power generation device includes a plurality of first pipes connected to the hydraulic pump supported on the nacelle side and the first pipe located on a side farther from the nacelle than the first pipe.
  • High pressure oil discharged from the hydraulic pump flows through the first flow path formed by communication between two pipes, and at least the second flow path formed by communication between at least one other set of first pipe and second pipe.
  • the low-pressure oil discharged from the hydraulic motor preferably flows.
  • the first pipe and the second pipe are rotatably connected, so that the flow of hydraulic oil from the hydraulic pump to the hydraulic motor and the flow of hydraulic oil from the hydraulic motor to the hydraulic pump are secured.
  • the nacelle-side piping and the tower-side piping can be turned relative to each other.
  • a cable extending from the nacelle to the tower is accommodated in at least one of the first flow path and the second flow path. It is preferable that the hydraulic oil is covered with a protective tube that prevents the hydraulic oil from entering.
  • the cable is connected to a power cable used for supplying power to a power utilization device arranged in the nacelle such as a hydraulic pump, a communication cable used for control, and various measuring devices attached to the nacelle side.
  • a signal cable, or a cable such as a lightning protection cable that escapes electricity in the event of a lightning strike to a rotor blade or nacelle is applied.
  • the renewable energy type power generation device has a first inner pipe and a first outer pipe connected to the hydraulic pump, is supported on the nacelle side, and passes through the tower, so that the tower A first double pipe extending toward the base end of the first pipe, a second inner pipe and a second outer pipe connected to the hydraulic motor, and located farther from the nacelle than the first double pipe.
  • a second double pipe fitted to the first double pipe, and the first inner pipe communicates with the second inner pipe and forms an inner flow path with the second inner pipe.
  • the first outer pipe communicates with the second outer pipe and forms an outer flow path together with the second outer pipe.
  • One of the inner flow path and the outer flow path is discharged from the hydraulic motor.
  • the low-pressure oil returned to the hydraulic pump flows, and the inner flow path And the high pressure oil discharged from the hydraulic pump and sent to the hydraulic motor flows through the other of the outer flow paths, and the first double pipe supported on the nacelle side is rotatable in the second second passage. It is preferable to be connected to a heavy pipe.
  • the first double pipe supported on the nacelle side and the second double pipe are rotatably connected, while ensuring the flow of hydraulic oil between the nacelle and the tower,
  • the relative turning of the nacelle side pipe and the tower side pipe is enabled.
  • an inner flow path is formed by the first inner pipe and the second inner pipe
  • an outer flow path is formed by the first outer pipe and the second outer pipe
  • one of the inner flow path and the outer flow path has a low pressure. Since the oil flows and the high pressure oil flows on the other side, it is possible to secure the flow of hydraulic oil from the hydraulic pump to the hydraulic motor and the flow of hydraulic oil from the hydraulic motor to the hydraulic pump.
  • it further includes an inner seal that seals between the wall surface of the first inner pipe and the wall surface of the second inner pipe, and the inner seal is between the inner channel and the outer channel.
  • the sealing function of the pair of outer seals that seal between the tube wall surface of the first outer pipe and the tube wall surface of the second outer pipe is impaired, the low-pressure oil leaking from the outer channel is not oil. It is led to the tank through the reservoir. That is, the low-pressure oil leaking from the outer flow path is collected in the tank after the pressure is sufficiently lowered. Therefore, leakage of the low pressure oil to the outside can be prevented.
  • first double pipe is rotatably supported by the second double pipe, and the thrust load along the longitudinal direction of the first double pipe and the second double pipe and the radial along the radial direction are supported.
  • a bearing that receives at least one of the loads may be further provided.
  • the first double pipe is rotatably supported by the second double pipe by the bearing, so that the turning of the first double pipe accompanying the nacelle is not hindered.
  • the bearing can reliably receive the weight of the first double pipe, a thrust load such as a hydraulic thrust generated by the high pressure oil and the low pressure oil flowing through the inner flow path and the outer flow path, or a radial load.
  • the first double pipe and the second double pipe may be configured such that the first inner pipe and the second inner pipe are relatively slidable in the longitudinal direction, and the first outer pipe and the second double pipe are Two outer pipes may be fitted so as to be relatively slidable in the longitudinal direction.
  • the first double pipe is slidable in the longitudinal direction relative to the second inner pipe and the first outer pipe relative to the second outer pipe. Is fitted to the second double pipe, the longitudinal movement of the first double pipe with respect to the second double pipe is allowed, and the oil temperature of the first double pipe and the second double pipe is increased. Can absorb thermal elongation.
  • a pulsation prevention accumulator provided between the hydraulic pump and the first double pipe in the nacelle for preventing pulsation of the hydraulic pump may be further provided.
  • the pulsation prevention accumulator in the nacelle, the distance between the pulsation prevention accumulator and the hydraulic pump is reduced, and the pulsation of the hydraulic pump can be effectively prevented.
  • capacitance of a pulsation prevention accumulator may be comparatively small, it can fully accommodate in a nacelle.
  • the hydraulic motor and the generator are housed in the tower, and the hydraulic motor and the generator are arranged in a substantially vertical direction.
  • the nacelle can be further reduced in size and weight.
  • the hydraulic motor and the generator in the vertical direction in the tower, they can be easily installed without expanding the diameter of the tower.
  • the renewable energy type power generator is a wind power generator
  • the tower extends vertically upward from the base end portion toward the tip end portion, and the main shaft rotates by receiving wind by the rotor blades. It may be.
  • the hydraulic motor is preferably connected to the generator via a flexible joint. In this way, by connecting the hydraulic motor and the generator using the flexible joint having flexibility, the degree of freedom of the relative positional relationship is improved, and the position can be easily adjusted. .
  • At least one of the hydraulic motor and the generator is housed in at least one of the nacelle and the upper part of the tower, so that they are installed at the base end of the tower.
  • the piping through which hydraulic oil circulates can be shortened.
  • at least one of the hydraulic motor and the generator is arranged in a space excluding the area between the main shaft and the hydraulic pump and the rear end side wall surface on the side farther from the rotor blade among the wall surfaces of the nacelle, Compared to the case where the hydraulic motor and generator are arranged between the main shaft and hydraulic pump in the nacelle and the side wall of the rear end wall of the nacelle, the nacelle length can be shortened and the nacelle can be reduced in size and weight. It becomes.
  • FIG. 4B It is a whole lineblock diagram showing the outline of the wind power generator concerning a 1st embodiment of the present invention. It is a perspective view which shows the specific structural example of the wind power generator shown in FIG. It is a top view which shows the specific structural example of the wind power generator shown in FIG. It is a side view which shows the specific structural example of the wind power generator shown in FIG. It is a whole block diagram which shows the outline of the wind power generator which concerns on 2nd Embodiment of this invention. It is a top view which shows the specific structural example of the wind power generator shown in FIG. It is a side view which shows the specific structural example of the wind power generator shown in FIG. It is an A direction arrow directional view of FIG. 4B.
  • FIG. 1 is an overall configuration diagram showing an outline of a wind turbine generator according to a first embodiment of the present invention
  • FIG. 2A is a perspective view showing a specific configuration example of the wind turbine generator shown in FIG. 1
  • FIG. 2C is a side view illustrating a specific configuration example of the wind power generator illustrated in FIG. 1.
  • the wind turbine generator 1 mainly includes a tower 2, a nacelle 4 provided at the tower tip 2B, a rotor 6 that rotates by receiving wind, and a hydraulic pump 8. And a hydraulic motor 10 and a generator 12 connected to the hydraulic motor 10.
  • the tower 2 is erected on the foundation 3 provided on the ground or the ocean, and extends from the base end 2A on the base 3 side to the tip 2B in the vertical direction.
  • a nacelle 4 is provided on the tip 2 ⁇ / b> B of the tower 2.
  • the nacelle 4 has a nacelle base plate 16, and the nacelle base plate 16 is supported by a nacelle bearing 18 in a freely rotatable manner at the tip end portion 2 ⁇ / b> B of the tower 2.
  • the nacelle base plate 16 is fixed to the inner ring 18 ⁇ / b> A of the nacelle bearing 18, and the tip 2 ⁇ / b> B of the tower 2 is fixed to the outer ring 18 ⁇ / b> B of the nacelle bearing 18.
  • a nacelle turning mechanism 19 is attached to the nacelle base plate 16, and a yaw drive mechanism 13 is disposed on the nacelle base plate. By the nacelle turning mechanism 19 and the yaw drive mechanism 13, the nacelle base plate 16 is turned with respect to the tip 2B of the tower 2.
  • the nacelle turning mechanism 19 may be configured by, for example, a gear 19 ⁇ / b> A that meshes with an internal gear 19 ⁇ / b> B provided on the inner peripheral surface of the tip 2 ⁇ / b> B of the tower 2.
  • the yaw drive mechanism 13 includes, for example, a speed reducer that is directly connected to the shaft of the gear 19A or is connected to the gear 19A via a pinion, a clutch, a yaw motor, an electromagnetic brake, and a housing that houses these. It may be comprised. Note that a plurality of yaw drive mechanisms 13 may be provided on a circumference centered on the axis of the tower 2.
  • the nacelle 4 houses a main shaft 14 and a hydraulic pump 8 attached to the main shaft 14.
  • the main shaft 14 is rotatably supported on the nacelle 4 by a main shaft bearing 15.
  • the rotor 6 includes a hub 6A and a plurality of rotary blades 6B extending radially from the hub 6A.
  • the hub 6 ⁇ / b> A of the rotor 6 is connected to the main shaft 14. For this reason, when the rotor 6 rotates by receiving wind, the main shaft 14 also rotates together with the hub 6A.
  • the rotation of the main shaft 14 is input to the hydraulic pump 8, whereby high-pressure hydraulic oil (high-pressure oil) is generated in the hydraulic pump 8.
  • the hydraulic motor 10 is accommodated in the nacelle 4.
  • the hydraulic motor 10 is disposed in a space excluding the area 5 between the main shaft 14 and the hydraulic pump 8 and the rear end side wall surface 4 ⁇ / b> A on the side of the nacelle 4 far from the rotor blades.
  • the hydraulic motor 10 may be installed on the nacelle base plate 16, or may be installed on a frame 41, a shelf 42 (see FIGS. 2A to 2C), etc., arranged in the nacelle 4.
  • the hydraulic motor 10 is driven by high-pressure oil supplied from the hydraulic pump 8 in the nacelle 4.
  • a hydraulic oil pipe 30 is connected between the hydraulic pump 8 and the hydraulic motor 10, and the hydraulic oil circulates through the hydraulic oil pipe 30.
  • the hydraulic oil pipe 30 supplies a high-pressure side pipe 31 that supplies high-pressure oil discharged from the hydraulic pump 8 to the hydraulic motor 10, and supplies low-pressure hydraulic oil (low-pressure oil) discharged from the hydraulic motor 10 to the hydraulic pump 8. And a low-pressure side pipe 33.
  • the generator 12 connected to the hydraulic motor 10 via the output shaft is also housed in the nacelle 4 as in the hydraulic motor 10. Furthermore, the generator 12 is arranged in a space excluding the area 5 between the main shaft 14 and the hydraulic pump 8 and the rear end side wall surface 4A of the nacelle 4. As shown in FIG. 1, the relative positional relationship between the hydraulic motor 10 and the generator 12 may be arranged so that they are positioned horizontally, or so that they are positioned vertically. You may arrange
  • the hydraulic motor 10 and the generator 12 are accommodated in the nacelle 4, they operate in comparison with the case where they are installed at the base end 2 ⁇ / b> A of the tower 2.
  • the piping through which oil circulates can be shortened.
  • at least one of the hydraulic motor 10 and the generator 12 is disposed in a space excluding the area 5 between the main shaft 14 and the hydraulic pump 8 and the rear end side wall surface 4 ⁇ / b> A of the nacelle 4.
  • a nacelle length (main axis direction) can be shortened, and the size and weight reduction of the nacelle 4 are attained. .
  • At least one of the hydraulic motor 10 and the generator 12 is arranged above the yaw driving device 13 as shown in FIG. 2C and on the side of the hydraulic pump 8 as shown in FIG. 2B. It is preferable that the space in the nacelle 4 can be used effectively. Further, at least one of the hydraulic motor 10 and the generator 12 can be arranged without increasing the lateral width of the nacelle 4 (the direction perpendicular to the main shaft 14 in the horizontal plane), and further downsizing and weight reduction of the nacelle 4 can be achieved. It becomes possible.
  • the hydraulic motor 10 and the generator 12 are accommodated in the nacelle 4, the hydraulic motor 10 and the generator 12 are disposed relatively horizontally, and the side of the hydraulic pump 8. Further, it is preferable that at least a part of the hydraulic motor 10 and the generator 12 connected by the output shaft 14 are arranged.
  • the hydraulic motor 10 and the generator 12 are both housed in the nacelle 4, the length of the piping for circulating the hydraulic oil can be shortened.
  • the hydraulic motor 10 and the generator 12 are arranged relatively horizontally, and at least a part of the hydraulic motor 10 and the generator 12 connected by the output shaft 11 are arranged on the side of the hydraulic pump 8.
  • the space in the nacelle 4 can be used effectively, and the nacelle 4 can be further reduced in size and weight.
  • FIG. 3 is an overall configuration diagram showing an outline of the wind turbine generator according to the second embodiment of the present invention
  • FIG. 4A is a plan view showing a specific configuration example of the wind turbine generator shown in FIG. 3
  • FIG. 4C is a side view showing a specific configuration example of the wind turbine generator shown in FIG. 3
  • FIG. 4C is a view in the direction of arrow A in FIG. 4B.
  • the wind power generator 1 according to the present embodiment has substantially the same configuration as the wind power generator 1 according to the first embodiment, except that the configurations of the hydraulic transmission and the hydraulic oil pipe 30 are different. Therefore, here, the description will focus on the differences from the first embodiment, and in FIGS. 3 and 4A to 4C, portions common to the wind turbine generator 1 are denoted by the same reference numerals, and description thereof is omitted. To do.
  • the hydraulic motor 10 and the generator 12 are both supported on the nacelle 4 side by the support body 44, the hydraulic motor 10 is disposed in the nacelle 4, and the generator 12 is arranged above the tower 2. It is set as the structure arranged in.
  • a support body 44 (see FIGS. 4A to 4C) is fixed to the frame 41 in the nacelle 4, and the hydraulic motor 10 and the generator 12 are supported on the support body 44.
  • the hydraulic motor 10 and the generator 12 may be supported by any fixing member in the nacelle 4.
  • the hydraulic motor 10 and the generator 12 may be directly supported by the frame 41, supported by the nacelle base plate 16, It can be supported by the shelf 42 arranged above. Note that any of the fixing members in the nacelle 4 can be used as a support.
  • the hydraulic motor 10 is connected to the hydraulic pump 8 through the hydraulic oil pipe 30 so as not to be relatively displaceable in the yaw direction. Since the hydraulic motor 10 and the generator 12 are connected by the output shaft 11, one of the hydraulic motor 10 and the generator 12 is fixed to the tower 2 by the support body 44, and the other is also supported by the tower 2. Will be. Moreover, although the case where the generator 12 is arrange
  • the hydraulic motor 10 and the generator 12 are supported on the nacelle 4 side by the support body 44, and at least a part of the hydraulic motor 10 and the generator 12 connected by the output shaft 11 is disposed at the upper portion of the tower 2.
  • the length of the piping through which the hydraulic oil is circulated can be shortened as compared with the case where these are installed at the base end of the tower 2.
  • the nacelle 4 can be further reduced in size and weight.
  • the hydraulic motor 10 and the generator 12 may be arranged so that the hydraulic motor 10 is housed in the nacelle 4 and the output shaft 11 is in the vertical direction.
  • the hydraulic motor 10 can be arrange
  • at least a part of the generator 12 is disposed on the top of the tower 2. At this time, the diameter of the tower 2 is expanded by arranging the hydraulic motor 10 and the generator 12 in the vertical direction. Therefore, the hydraulic motor 10 and the generator 12 can be easily installed.
  • the hydraulic motor 10 is preferably supported on the nacelle 4 side by the support body 44 and disposed in the upper space of the tower 2.
  • the nacelle 4 can be further reduced in size and weight by arranging the hydraulic motor 10 in the upper space of the tower 2.
  • the hydraulic motor 10 and the hydraulic pump 8 and the pipe 30 connecting the hydraulic motor 10 are integrated with the hydraulic pump 8 when the nacelle is turning. Can be rotated.
  • FIG. 5 is an overall configuration diagram illustrating an outline of a wind turbine generator according to a third embodiment of the present invention
  • FIG. 6A is a perspective view illustrating a specific configuration example of the wind turbine generator illustrated in FIG. 5
  • FIG. FIG. 6C is a plan view showing a specific configuration example of the wind turbine generator shown in FIG. 5
  • FIG. 6C is a side view showing a specific configuration example of the wind turbine generator shown in FIG.
  • the wind power generator 1 according to the present embodiment has substantially the same configuration as the wind power generator 1 according to the first embodiment, except that the configurations of the hydraulic transmission and the hydraulic oil pipe 30 are different. Therefore, here, the description will focus on the differences from the first embodiment, and in FIGS. 5 and 6, the same reference numerals are assigned to portions common to the wind power generator 1, and description thereof is omitted.
  • the wind turbine generator 1 has a configuration in which the hydraulic motor 10 and the generator 12 are supported on the tower 2 side and these are arranged on the top of the tower 2.
  • a plurality of floor portions 45 fixed to the side wall of the tower 2 are provided in the vertical direction.
  • the floor 45 is connected by a ladder 46 so that an operator can move up and down.
  • the hydraulic motor 10 and the generator 12 are respectively installed on the floor portion 45.
  • the relative positional relationship between the hydraulic motor 10 and the generator 12 may be arranged in the horizontal direction with respect to each other, as shown in the figure, may be arranged in the vertical direction with respect to each other, or may be inclined with respect to each other. May be arranged.
  • the fixing means to the tower 2 side of the hydraulic motor 10 and the generator 12 is limited to this. Instead, it may be supported by any fixing member in the tower 2, and may be supported by the side wall of the tower 2. Any of the fixing members in the tower 2 can be used as a support.
  • the hydraulic pump 8 and the hydraulic motor 10 are connected by a hydraulic oil pipe 30 through which hydraulic oil flows.
  • the hydraulic oil pipe 30 is a high pressure side pipe 31 (31 a, 31 b) that supplies the high pressure oil discharged from the hydraulic pump 8 to the hydraulic motor 10, and a low pressure that supplies the low pressure oil discharged from the hydraulic motor 10 to the hydraulic pump 8.
  • Side piping 33 (33a, 33b).
  • the high-pressure side pipe 31 includes a high-pressure side first pipe 31a supported on the nacelle 4 side and a high-pressure side second pipe 31b supported on the tower 2 side.
  • a connecting part 100 having a swivel structure is interposed between the high-pressure side first pipe 31a and the high-pressure side second pipe 31b, and the high-pressure side first pipe 31a and the high-pressure side second pipe 31b are interposed by the connecting part 100. And are relatively pivotably connected.
  • the low-pressure side pipe is composed of a low-pressure side first pipe 33a supported on the nacelle 4 side and a low-pressure side second pipe 33b supported on the tower 2 side. Between the low-pressure side first pipe 33a and the low-pressure side second pipe 33b, the connection part 100 described above is interposed, and the low-pressure side first pipe 33a and the low-pressure side second pipe 33b are connected by the connection part 100. It is connected relatively freely.
  • the connection part 100 having a swivel structure is arranged at the turning center of the nacelle 4. The configuration of the connection unit 100 will be described later.
  • the hydraulic pump 8 is driven by the main shaft 14 to generate high pressure oil.
  • This high-pressure oil is supplied to the hydraulic motor 10 through the high-pressure side pipe 31, and the hydraulic motor 10 is driven by the high-pressure oil.
  • the generator 12 connected to the hydraulic motor 10 is driven, and electric power is generated in the generator 12.
  • the low-pressure oil discharged from the hydraulic motor 10 is supplied to the hydraulic pump 8 via the low-pressure side pipe 33, and is again boosted by the hydraulic pump 8 and sent to the hydraulic motor 10.
  • the hydraulic motor 10 and the generator 12 can be stably fixed to the tower 2.
  • the pipes 31a and 33a connected to the hydraulic pump 8 supported on the nacelle 4 side and the pipes 31b and 33b connected to the hydraulic motor 10 supported on the tower 2 side are relatively rotatably connected. Therefore, the piping structure can be appropriately maintained even when the nacelle 4 is yaw-turned.
  • the hydraulic motor 10 and the generator 12 are arrange
  • the hydraulic motor 10 is preferably connected to the generator 12 via a flexible joint. Thereby, the freedom degree of the relative positional relationship of the hydraulic motor 10 and the generator 12 improves, and also it becomes possible to adjust a position easily.
  • FIG. 7 is a diagram illustrating a first configuration example of a swivel structure applied to the wind turbine generator according to the embodiment of the present invention.
  • the connection part 100 of the swivel structure in the first configuration example includes a double pipe 110 extending in the axial direction of the tower 2, a first jacket 114 and a second jacket 116 provided so as to surround the double pipe 110. Accordingly, the first flow path 121 through which the high pressure oil from the hydraulic pump 8 on the nacelle 4 side to the hydraulic motor 10 on the tower 2 side flows and the low pressure oil from the hydraulic motor 10 to the hydraulic pump 8 flows.
  • a second flow path 122 is formed.
  • the double tube 110 includes an inner tube 110A and an outer tube 110B.
  • An inner channel is formed inside the inner tube 110A, and an outer channel is formed by the inner tube 110A and the outer tube 110B.
  • the first jacket 114 is provided on the outer peripheral side of the inner tube 110A.
  • An annular flow path 114 a formed from the inner wall surface of the first jacket 114 and the outer wall surface of the inner tube 110 ⁇ / b> A communicates with the high-pressure side first pipe 31 a connected to the outer periphery of the first jacket 114.
  • the annular flow path 114a communicates with the inner flow path via the first communication port 111 provided in the inner tube 110A. Further, the inner flow path communicates with the high-pressure side second pipe 31b connected to the end of the inner pipe 110A.
  • the first flow path 121 is formed by the annular flow path 114a and the inner flow path.
  • the high-pressure oil supplied from the high-pressure side first pipe 31a to the first flow path 121 is sent to the high-pressure side second pipe 31b through the annular flow path 114a, the first communication port 111, and the inner flow path.
  • the second jacket 116 is provided on the outer peripheral side of the outer tube 110 ⁇ / b> B, and is disposed closer to the tower 2 than the first jacket 114.
  • the second jacket 116 is fastened to the first jacket 114 by a bolt 125.
  • the outer flow path communicates with the low-pressure side second pipe 33b connected to the outer periphery of the outer tube 110B, and an annular flow formed between the inner wall surface of the second jacket 116 and the outer wall surface of the inner tube 110A. It communicates with the path 116a.
  • the annular flow passage 116 a communicates with the low pressure side first pipe 33 a connected to the outer periphery of the second jacket 116.
  • the second flow path 122 is formed by the outer flow path and the annular flow path 116a.
  • the low pressure oil supplied from the low pressure side second pipe 33b to the second flow path 122 is sent to the low pressure side first pipe 33a through the outer flow path and the annular flow path 116a.
  • the first jacket 114 and the second jacket 116 are supported on the nacelle 4 side.
  • the double pipe 110 is supported on the tower 2 side.
  • An inner seal 126 is provided between the first jacket 114 and the inner tube 110A of the double tube 110 so as to ensure liquid tightness.
  • An outer seal 127 is provided between the second jacket 116 and the outer tube 110B so as to ensure liquid tightness.
  • the inner seal 126 and the outer seal 127 ensure liquid tightness, and the first jacket 114 and the second jacket 116 are attached to the double pipe 110 so as to be rotatable.
  • a bearing may be provided between the first jacket 114 or the second jacket 116 and the double pipe 110 for the purpose of improving the slidability.
  • the first pipe (high pressure side) is secured while ensuring the flow of high pressure oil from the hydraulic pump 8 on the nacelle 4 side to the hydraulic motor 10 on the tower 2 side and low pressure oil from the hydraulic pump 8 to the hydraulic motor 10.
  • the first pipe 31a, the low-pressure side first pipe 33a) and the second pipe (the high-pressure side second pipe 31b, the low-pressure side second pipe 33b) can be turned relative to each other. Therefore, even if the nacelle 4 turns, the exchange of the high-pressure oil and the low-pressure oil between the hydraulic pump 8 in the nacelle 4 and the hydraulic motor 10 in the tower 2 can be smoothly performed via the connection portion 100.
  • a cable extending from the nacelle 4 to the tower 2 may be accommodated in at least one of the first flow path and the second flow path.
  • the cable includes a power cable used for power supply to an electricity utilization device arranged in the nacelle 4 such as a hydraulic pump 8 or the like, a communication cable used for control, and various measuring devices attached to the nacelle 4 side.
  • a cable such as a signal cable connected to the light source or a lightning protection cable for releasing electricity when lightning strikes the rotor blade 6B or the nacelle 4 is applied.
  • FIG. 8 is a diagram illustrating a second configuration example of the swivel structure applied to the wind turbine generator according to the embodiment of the present invention.
  • the swivel structure connecting portion 100 ′ includes a hydraulic pump 8 housed in the nacelle 4 and a hydraulic motor 10 provided in the tower 2, a first double pipe 130 and a second double pipe. 140 is used for connection.
  • the first double pipe 130 is fixed to the nacelle 4, the second double pipe 140 is fixed to the tower 2, and the first double pipe 130 and the second double pipe 140 are configured to be relatively rotatable. .
  • the specific structure of the 1st double pipe 130 and the 2nd double pipe 140 is demonstrated.
  • the first double pipe 130 includes an upper member 131 and a lower member 133 that are fastened with bolts 135 at the flange portion.
  • a seal 136 is provided on the joint surface between the upper member 131 and the lower member 133 to maintain liquid tightness.
  • the upper member 131 has a high-pressure oil inlet connected to the discharge side of the hydraulic pump 8 at the upper portion thereof via the high-pressure side first pipe 31a.
  • the lower member 133 has an inner peripheral side cylindrical portion and an outer peripheral side cylindrical portion that hang downward from a flange portion joined to the upper member 131, and the side surface of the outer peripheral side cylindrical portion is connected to the suction side of the hydraulic pump 8.
  • a low-pressure oil outlet connected via the low-pressure side first pipe 33a is provided.
  • the first inner pipe 132 of the first double pipe 130 is formed by the upper member 131 and a part of the lower member 133 (inner cylindrical part). Further, a first outer pipe 134 of the first double pipe 130 is formed by a part of the lower member 133 (outer peripheral side cylindrical portion).
  • the second double pipe 140 has a second inner pipe 142 and a second outer pipe 144 provided on the outer periphery of the second inner pipe 142.
  • pressure side 2nd piping 31b is provided in the lower part of the 2nd double pipe 140.
  • a low-pressure oil inlet connected to the low-pressure side second pipe 33 b is provided on the side surface of the second double pipe 140.
  • the first double pipe 130 is rotatably fitted to the second double pipe 140.
  • the first double pipe 130 supported on the nacelle 4 side and the second double pipe 140 are rotatably connected, so that the flow of hydraulic oil between the nacelle 4 and the tower 2 is performed.
  • the nacelle side pipes 31a and 33a and the tower side pipes 31b and 33b can be turned relative to each other.
  • an inner flow path 151 is formed by the first inner pipe 132 and the second inner pipe 142
  • an outer flow path 152 is formed by the first outer pipe 134 and the second outer pipe 144. Since the low-pressure oil flows and the high-pressure oil flows in the inner flow path 151, the hydraulic oil from the hydraulic pump 8 to the hydraulic motor 10 and the hydraulic oil flow from the hydraulic motor 10 to the hydraulic pump 8 are secured. can do.
  • the high pressure oil may flow in the outer flow path 152 and the low pressure oil may flow in the inner flow path 151.
  • first double pipe 130 is rotatably supported by the second double pipe 140, and the thrust load along the longitudinal direction of the first double pipe 130 and the second double pipe 140 and the radial along the radial direction are supported.
  • a bearing that receives at least one of the loads may be further provided.
  • the inner bearing 181 may be provided between the inner wall surface of the first inner pipe 132 and the outer wall surface of the second inner pipe 142.
  • an outer bearing 182 may be provided between the inner wall surface of the first outer pipe 134 and the outer wall surface of the second outer pipe 144.
  • the first double pipe 130 is rotatably supported by the second double pipe 140 by the bearings 181 and 182 so that the turning of the first double pipe 130 accompanied by the nacelle 4 is not hindered.
  • the bearing can reliably receive the weight of the first double pipe 130, thrust load such as hydraulic thrust generated by the high pressure oil and low pressure oil flowing through the inner flow path 151 and the outer flow path 152, or radial load. .
  • the first double pipe 130 supported on the nacelle 4 side is rotatably connected to the second double pipe 140, even if the nacelle 4 turns, the hydraulic pump 8 in the nacelle 4 High-pressure oil and low-pressure oil can be exchanged with the hydraulic motor 10 in the tower 2 via the first double pipe 130 and the second double pipe 140.
  • the first double pipe 130 and the second double pipe 140 are configured such that the first inner pipe 132 and the second inner pipe 142 are relatively slidable in the longitudinal direction, and the first outer pipe 134 and the second double pipe 140 are slidable in the longitudinal direction.
  • the outer pipe 144 may be fitted so as to be relatively slidable in the longitudinal direction.
  • the first inner pipe 132 is slidable in the longitudinal direction relative to the second inner pipe 142, and further the first outer pipe 134 is relatively slidable in the longitudinal direction relative to the second outer pipe 144.
  • the first double pipe 130 and the second double pipe 140 are allowed to move in the longitudinal direction with respect to the second double pipe 140.
  • the thermal elongation due to the oil temperature rise of the double pipe 140 can be absorbed.
  • An inner seal 155 is preferably provided between the tube wall surface of the first inner pipe 132 and the tube wall surface of the second inner pipe 142.
  • the inner seal 155 is disposed so as to be sandwiched between the inner channel 151 and the outer channel 152.
  • the inner seal 155 that seals between the tube wall surface of the first inner pipe 132 and the tube wall surface of the second inner pipe 142 is disposed so as to be sandwiched between the inner channel 151 and the outer channel 152.
  • a pair of outer seals 156, an oil sump 158 communicating between the pair of outer seals 156, and an oil sump 158 are provided between the tube wall surface of the first outer pipe 134 and the pipe wall surface of the second outer pipe 144. It is preferable that an atmospheric pressure tank 170 that communicates is provided. Thereby, even if the sealing function of the pair of outer seals that seal between the tube wall surface of the first outer pipe 134 and the tube wall surface of the second outer pipe 144 is impaired, the low-pressure oil leaked from the outer channel Is led to the atmospheric pressure tank 170 through an oil sump 158. That is, the low pressure oil leaking from the outer flow path 152 is recovered in the atmospheric pressure tank 170 after the pressure is sufficiently lowered. Therefore, leakage of the low pressure oil to the outside can be prevented.
  • a pulsation preventing accumulator 160 between the hydraulic pump 8 and the first double pipe 130 in the nacelle 4.
  • the pulsation prevention accumulator 160 in the nacelle 4 the distance between the pulsation prevention accumulator 160 and the hydraulic pump 8 is reduced, and the pulsation of the hydraulic pump 8 can be effectively prevented.
  • capacitance of the pulsation prevention accumulator 160 may be comparatively small, it can fully accommodate in the nacelle 4.
  • the hydraulic motor 10 and the generator 12 are not installed in the nacelle 4 but on the tower 2 side, so that there is sufficient installation space for the pulsation preventing accumulator 160 in the nacelle 4. Can be secured.
  • a hydraulic pressure accumulator 161 may be provided between the second double pipe 140 and the hydraulic motor 10. This is provided with a branch channel 165 branched from the high-pressure side second pipe 31 b in the tower internal space, and a hydraulic pressure accumulator 161 is connected to the branch channel 165 via a relief valve 166.
  • the hydraulic pressure accumulator 161 has a sufficiently large capacity as compared with the pulsation prevention accumulator 160.
  • the hydraulic pressure accumulator 161 accumulates the hydraulic pressure of the high-pressure oil to absorb excessive rotational energy when a gust of wind blows, or the hydraulic pressure of the high-pressure oil to realize a ride-through function when the system voltage drops. It is used for the purpose of accumulating or accumulating the hydraulic pressure of high-pressure oil in order to absorb excessive rotational energy when the output of the wind turbine generator is excessive.
  • the wind power generator 1 has been described as a specific example of the renewable energy power generator, but the present invention can also be applied to a renewable energy power generator other than the wind power generator.
  • a power generation device using tidal currents, ocean currents or rivers where the tower extends vertically in the sea or underwater from the base end to the tip and receives the tidal currents, ocean currents or rivers by the rotor blades.
  • the present invention may be applied to a power generator that rotates.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Wind Motors (AREA)

Abstract

油圧ポンプと油圧モータとを接続する配管を短くすることができるとともに、ナセルの小型化および軽重量化を可能とした再生エネルギー型発電装置を提供することを目的とする。再生エネルギー型発電装置1は、タワー2と、タワー2の先端部2Bに設けられたナセル4と、ナセル4に収納され、回転翼6Bとともに回転する主軸14と、ナセル4に収納され、主軸14に取り付けられる油圧ポンプ8と、油圧ポンプ8から供給される作動油によって駆動される油圧モータ10と、油圧モータ10に連結された発電機12と、油圧ポンプ8及び油圧モータ10の間で作動油を循環させる配管とを備え、油圧モータ10は、ナセル4及びタワー2上部の少なくとも一方に収納され、発電機12は、ナセル4及びタワー2上部の少なくとも一方に収納されるとともに、油圧モータ10及び発電機12の少なくとも一方が、主軸14及び油圧ポンプ8と、ナセル4の壁面のうち回転翼から遠い側の後端側壁面4Aとの間のエリア5を除く空間に配置される。

Description

再生エネルギー型発電装置
 本発明は、油圧ポンプ及び油圧モータを組み合わせた油圧トランスミッションを介して、ロータの回転エネルギーを発電機に伝達する再生エネルギー型発電装置に関する。なお、再生エネルギー型発電装置は、風、潮流、海流、河流等の再生可能なエネルギーを利用した発電装置であり、例えば、風力発電装置、潮流発電装置、海流発電装置、河流発電装置等を挙げることができる。
 近年、地球環境の保全の観点から、風力を利用した風力発電装置や、潮流、海流又は河流を利用した発電装置を含む再生エネルギー型発電装置の普及が進んでいる。再生エネルギー型発電装置では、風、潮流、海流又は河流の運動エネルギーをロータの回転エネルギーに変換し、さらにロータの回転エネルギーを発電機によって電力に変換する。
 この種の再生エネルギー型発電装置では、従来、ロータの回転数が発電機の定格回転数に比べて小さいため、ロータと発電機との間に機械式(ギヤ式)の増速機を設けていた。これにより、ロータの回転数は増速機で発電機の定格回転数まで増速された後、発電機に入力されるようになっていた。
 ところが、発電効率の向上を目的として再生エネルギー型発電装置の大型化が進むにつれ、増速機の重量及びコストが増加する傾向にある。このため、機械式の増速機に替えて、油圧ポンプ及び油圧モータを組み合わせた油圧トランスミッションを採用した再生エネルギー型発電装置が注目を浴びている。
 例えば、特許文献1には、油圧トランスミッションを介してロータの回転エネルギーを発電機に伝達するようにした電力生産システムが記載されている。このシステムは、ナセル内に油圧モータと発電機とが設けられた構成となっている(特許文献1のFig.7参照)。
 また、特許文献2には、タワー底部に設けられた油圧モータが鉛直軸周りにナセルとともに旋回する風力発電装置が記載されている。
 さらに、特許文献3及び4には、ナセル内に設置された油圧ポンプとタワー底部に設けられた油圧モータとを繋ぐ油圧配管(高圧油流路及び低圧油流路)の一部がナセルとともに旋回する風力発電装置が記載されている。この風力発電装置では、ナセル下部に設けた油圧スイベルによって、ナセル側の油圧配管がナセルとともに旋回するようになっている。油圧スイベルは、外側部材および内側部材からなり、両部材は互いに相対的に回転可能である。そして、内側部材に設けられた配管は、外側部材の内周面に設けられた環状流路と連通している。
国際公開第2007/053036号 国際公開第2009/064192号 国際公開第2009/061209号 国際公開第2009/058022号
 しかしながら、特許文献1は、油圧ポンプとナセル後端側壁面との間に油圧モータと発電機を設けており、これによりナセルの主軸方向長さが長くなってしまい、これにともないナセルが大型化し、重量が大きくなってしまうという問題があった。
 また、特許文献2には、そもそも、ナセル内に設置された油圧ポンプとタワー底部に設けられた油圧モータとを繋ぐ油圧配管を具体的にどのように構成するか開示されていない。
 さらに、特許文献3及び4には、ナセル側の油圧配管をナセルとともに旋回可能にするための油圧スイベルが記載されているものの、内側部材に設けられた配管と外側部材に設けられた環状流路との接続部分に関して具体的な説明がなく、油圧スイベルの詳細構造が十分に開示されていない。また、油圧モータ及び発電機がタワー底部に配置されているため、油圧配管が長くなってしまう。
 したがって、本発明はかかる従来技術の問題に鑑み、油圧ポンプと油圧モータとを接続する配管を短くすることができるとともに、ナセルの小型化および軽重量化を可能とした再生エネルギー型発電装置を提供することを目的とする。
 本発明に係る再生エネルギー型発電装置は、再生エネルギーから電力を生成する再生エネルギー型発電装置であって、タワーと、前記タワーの先端部に設けられたナセルと、前記ナセルに収納され、回転翼とともに回転する主軸と、前記ナセルに収納され、前記主軸に取り付けられる油圧ポンプと、前記油圧ポンプから供給される作動油によって駆動される油圧モータと、前記油圧モータに連結された発電機と、前記油圧ポンプ及び前記油圧モータの間で前記作動油を循環させる配管とを備え、前記油圧モータは、前記ナセル及び前記タワー上部の少なくとも一方に収納され、前記発電機は、前記ナセル及び前記タワー上部の少なくとも一方に収納されるとともに、前記油圧モータ及び前記発電機の少なくとも一方が、前記主軸及び前記油圧ポンプと、前記ナセルの壁面のうち前記回転翼から遠い側の後端側壁面との間のエリアを除く空間に配置されることを特徴とする。
 この再生エネルギー型発電装置によれば、油圧モータ及び発電機の少なくとも一方が、ナセル及びタワー上部の少なくとも一方に収納されるようにしたので、これらがタワー基端部に設置される場合に比べて、作動油が循環する配管を短くすることができる。
 また、この再生エネルギー型発電装置では、油圧モータ及び発電機の少なくとも一方が、主軸及び油圧ポンプと、ナセルの壁面のうち回転翼から遠い側の後端側壁面との間のエリアを除く空間に配置されるようにしている。これにより、油圧モータ及び発電機を、ナセル内の主軸及び油圧ポンプとナセル後端側壁面との間に配置する場合に比べて、ナセル長さ(主軸方向)を短くすることができ、ナセルの小型化および軽重量化が可能となる。
 上記再生エネルギー型発電装置は、前記ナセルの下部に設けられ、前記ナセルをヨー旋回させるヨー駆動装置をさらに備え、前記ヨー駆動装置の上方で且つ前記油圧ポンプの側方に、前記油圧モータ及び前記発電機の少なくとも一方が配置されることが好ましい。
 このように、油圧モータ及び発電機の少なくとも一方がヨー駆動装置の上方で且つ油圧ポンプの側方に配置されることにより、ナセル内の空間を有効利用することができる。また、ナセルの横幅(水平面内で主軸に垂直な方向)を拡大することなく、油圧モータ及び発電機の少なくとも一方を配置することができ、ナセルのさらなる小型化および軽重量化が可能となる。
 上記再生エネルギー型発電装置において、前記油圧モータ及び前記発電機が前記ナセル内に収納され、前記油圧モータと前記発電機とが相対的に略水平に配置されるとともに、前記油圧ポンプの側方に、前記出力軸で連結される前記油圧モータ及び前記発電機の少なくとも一部が配置されることが好ましい。
 このように、油圧モータ及び発電機がともにナセル内に収納されることで、作動油を循環させる配管の長さを短くできる。また、油圧モータ及び発電機が相対的に略水平に配置されるとともに、出力軸で連結される油圧モータ及び発電機の少なくとも一部が、油圧ポンプの側方に配置されることで、ナセル内の空間を有効利用でき、ナセルのさらなる小型化および軽重量化が可能となる。
 上記再生エネルギー型発電装置において、前記ナセルは、前記タワーに対してヨー方向に回転自在に設けられており、前記油圧モータ及び前記発電機は、支持体によって前記ナセル側に支持され、前記油圧モータが、前記配管によって前記油圧ポンプとヨー方向に相対変位不能に接続され、出力軸によって連結される前記油圧モータ及び前記発電機の少なくとも一部が前記タワー上部に配置されることが好ましい。
 このように、油圧モータ及び前記発電機は、支持体によってナセル側に支持されるとともに、出力軸によって連結される油圧モータ及び発電機の少なくとも一部がタワー上部に配置されることで、タワー基端部にこれらを設置する場合に比べて、作動油を循環させる配管の長さを短くできる。また、油圧モータ及び発電機の少なくとも一部がタワー側に配置されるようにしたので、ナセルのさらなる小型化および軽重量化が可能となる。
 この場合、上記再生エネルギー型発電装置において、前記油圧モータが前記ナセル内に収納され、前記出力軸が鉛直方向となるように、前記油圧モータ及び前記発電機がそれぞれ配置されることが好ましい。
 このように、油圧モータがナセル内に収納されることで、油圧モータを油圧ポンプの近くに配置でき、作動油が流れる配管を短くすることができる。一方、発電機の少なくとも一部はタワー側に配置されることとなるが、このとき、油圧モータ及び発電機が鉛直方向に配置されることで、タワーの径を拡張することなく油圧モータ及び発電機を容易に設置することが可能となる。
 また、上述のヨー駆動装置を備える場合、上記再生エネルギー型発電装置において、前記油圧モータは、支持体によって前記ナセル側に支持されるとともに、前記タワー上部空間に配置されることが好ましい。
 このように、油圧モータをタワー上部空間に配置することで、ナセルのさらなる小型化及び軽重量化が可能となる。このとき、油圧モータは支持体によってナセル側に支持されているので、ナセル旋回時に、油圧モータと、油圧ポンプ及び油圧モータを接続する配管とを、油圧ポンプと一体に回転させることができる。
 上記再生エネルギー型発電装置は、前記タワーに支持された一または複数の支持体をさらに備え、前記油圧モータ及び前記発電機の少なくとも一方は、前記支持体に固定され、前記油圧ポンプに接続される前記配管と、前記油圧モータに接続される前記配管とが、相対的にヨー方向に回転自在に接続されていることが好ましい。
 これにより、油圧モータ及び発電機の少なくとも一方を安定してタワーに固定することが可能となる。なお、油圧モータと発電機とは出力軸で連結されているので、油圧モータ及び発電機の一方が支持体によってタワーに固定される場合、他方もタワー側に支持されることとなる。また、ナセル側に支持された油圧ポンプに接続される配管と、タワー側に支持された油圧モータに接続される配管とが、相対的に回転自在に接続されているので、ナセルがヨー旋回する場合にも配管構造を適切に保持できる。
 この場合、上記再生エネルギー型発電装置は、前記ナセル側に支持された前記油圧ポンプに接続される複数の第1配管と、前記第1配管よりも前記ナセルから遠い側に位置して該第1配管に嵌合される複数の第2配管とをさらに備え、前記ナセル側に支持された前記第1配管は回転自在に前記第2配管に接続され、少なくとも一組の前記第1配管及び前記第2配管が連通してなる第1流路には、前記油圧ポンプから排出される高圧油が流れ、少なくとも他の一組の第1配管及び第2配管が連通してなる第2流路には、前記油圧モータから排出される低圧油が流れることが好ましい。
 このように、第1配管と第2配管とが回転自在に接続されていることにより、油圧ポンプから油圧モータに向かう作動油、及び、油圧モータから油圧ポンプに向かう作動油の流れを確保しつつ、ナセル側配管とタワー側配管との相対的な旋回を可能としている。
 また、上述の場合、上記再生エネルギー型発電装置において、前記第1流路及び前記第2流路の少なくとも一方の内部に、前記ナセルから前記タワーまで延設されるケーブルが収納され、前記ケーブルは、前記作動油の侵入を防止する保護管で被覆されていることが好ましい。
 このように、第1流路及び前記第2流路の少なくとも一方にケーブルを収納することによって、ナセルが旋回した場合であっても、ケーブルが損傷することを防止できる。なお、前記ケーブルには、油圧ポンプ等のようにナセル内に配置される電気利用機器への電力供給に用いられる電力ケーブル若しくは制御に用いられる通信ケーブル、ナセル側に取り付けられる各種計測機器に接続される信号ケーブル、または、回転翼やナセルへの落雷の際に電気を逃がす避雷用ケーブル等のケーブルが適用される。
 また、上述の場合、上記再生エネルギー型発電装置は、前記油圧ポンプに接続される第1内側配管及び第1外側配管を有し、前記ナセル側に支持されるとともに前記タワー内部を通って前記タワーの基端部に向かって延びる第1二重管と、前記油圧モータに接続される第2内側配管及び第2外側配管を有し、前記第1二重管よりも前記ナセルから遠い側に位置して該第1二重管に嵌合される第2二重管とを備え、前記第1内側配管は、前記第2内側配管に連通し、前記第2内側配管とともに内側流路を形成し、前記第1外側配管は、前記第2外側配管に連通し、前記第2外側配管とともに外側流路を形成し、前記内側流路及び前記外側流路の一方には、前記油圧モータから排出されて前記油圧ポンプに戻される低圧油が流れ、前記内側流路及び前記外側流路の他方には、前記油圧ポンプから吐出されて前記油圧モータに送られる高圧油が流れ、前記ナセル側に支持された前記第1二重管は、回転自在に前記第2二重管に接続されていることが好ましい。
 このように、ナセル側に支持された第1二重管と、第2二重管とが回転自在に接続されていることによって、ナセルとタワーとの間の作動油の流れを確保しつつ、ナセル側配管とタワー側配管との相対的な旋回を可能としている。また、第1内側配管及び第2内側配管によって内側流路が形成され、第1外側配管及び第2外側配管によって外側流路が形成されており、内側流路及び外側流路の一方には低圧油が流れ、他方には高圧油が流れるようにしたので、油圧ポンプから油圧モータに向かう作動油、及び、油圧モータから油圧ポンプに向かう作動油の流れをそれぞれ確保することができる。
 この場合、前記第1内側配管の管壁面と前記第2内側配管の管壁面との間をシールする内側シールをさらに備え、前記内側シールは、前記内側流路と前記外側流路との間に挟まれるように配置されていてもよい。
 このように第1内側配管の管壁面と第2内側配管の管壁面との間をシールする内側シールを、内側流路と外側流路との間に挟まれるように配置することで、万が一、内側シールのシール機能が損なわれても、内側流路を流れる高圧油は外側流路に漏れる。よって、高圧油の外部への漏洩を防止できる。
 また、前記第1外側配管の管壁面と前記第2外側配管の管壁面との間をシールする一対の外側シールと前記一対の外側シール間に連通する油溜めと、前記油溜めに連通するタンクとを備えていてもよい。
 これにより、万が一、第1外側配管の管壁面と第2外側配管の管壁面との間をシールする一対の外側シールのシール機能が損なわれても、外側流路から漏れ出た低圧油は油溜めを介してタンクに導かれる。すなわち、外側流路から漏れた低圧油は、圧力が十分に下げられてからタンクに回収される。よって、低圧油の外部への漏洩を防止できる。
 さらに、前記第1二重管を前記第2二重管に回転自在に支持し、前記第1二重管及び前記第2二重管の長手方向に沿ったスラスト荷重及び径方向に沿ったラジアル荷重の少なくとも一方の荷重を受ける軸受をさらに備えていてもよい。
 このように、軸受によって第1二重管を第2二重管に回転自在に支持することで、ナセルに伴われた第1二重管の旋回を妨げることがない。
 また、第1二重管の重量や、内側流路及び外側流路を流れる高圧油と低圧油によって発生する油圧スラスト等のスラスト荷重、あるいはラジアル荷重を軸受によって確実に受けることができる。
 また、前記第1二重管と前記第2二重管とは、前記第1内側配管及び前記第2内側配管が長手方向に相対的に摺動自在、かつ、前記第1外側配管及び前記第2外側配管が長手方向に相対的に摺動自在となるように嵌合されていてもよい。
 このように、第1内側配管が第2内側配管に対して、さらには、第1外側配管が第2外側配管に対して相対的に長手方向に摺動自在になるように第1二重管を第2二重管に嵌合することで、第1二重管の第2二重管に対する長手方向の動きが許容され、第1二重管及び第2二重管の油温上昇等による熱伸びを吸収することができる。
 さらに、前記ナセル内において前記油圧ポンプと前記第1二重管との間に設けられ、前記油圧ポンプの脈動を防止する脈動防止アキュムレータをさらに備えていてもよい。
 このように、脈動防止アキュムレータをナセル内に設けることで、脈動防止アキュムレータと油圧ポンプとの距離が縮まり、油圧ポンプの脈動を効果的に防止できる。なお、脈動防止アキュムレータの容量は比較的小さくてもよいから、ナセル内に十分に収納できる。
 また、上述の場合、上記再生エネルギー型発電装置において、前記油圧モータ及び前記発電機は、前記タワー内に収納され、前記油圧モータと前記発電機とが略鉛直方向に配置されることが好ましい。
 このように、油圧モータ及び発電機をともにタワー内に収納することで、ナセル内に油圧モータ及び発電機を設置しないためナセルのさらなる小型化及び軽重量化が図れる。さらに、油圧モータ及び発電機をタワー内に鉛直方向に配置することで、タワーの径を拡張することなくこれらを容易に設置できる。
 また、前記再生エネルギー型発電装置は風力発電装置であり、前記タワーが基端部から先端部に向かって鉛直方向上方に延びるとともに、前記回転翼によって風を受けることで前記主軸が回転するようになっていてもよい。
 上記再生エネルギー型発電装置において、前記油圧モータは、前記発電機にフレキシブル継手を介して連結されることが好ましい。このように、可撓性を有するフレキシブル継手を用いて、油圧モータと発電機とを連結することにより、これらの相対位置関係の自由度が向上し、また簡単に位置調整することも可能となる。
 本発明の再生エネルギー型発電装置は、油圧モータ及び発電機の少なくとも一方が、ナセル及びタワー上部の少なくとも一方に収納されるようにしたので、これらがタワー基端部に設置される場合に比べて、作動油が循環する配管を短くすることができる。
 また、油圧モータ及び発電機の少なくとも一方が、主軸及び油圧ポンプと、ナセルの壁面のうち回転翼から遠い側の後端側壁面との間のエリアを除く空間に配置されるようにしたので、油圧モータ及び発電機を、ナセル内の主軸及び油圧ポンプとナセル後端側壁面との間に配置する場合に比べて、ナセル長さを短くすることができ、ナセルの小型化および軽重量化が可能となる。
本発明の第1実施形態に係る風力発電装置の概略を示す全体構成図である。 図1に示す風力発電装置の具体的構成例を示す斜視図である。 図1に示す風力発電装置の具体的構成例を示す平面図である。 図1に示す風力発電装置の具体的構成例を示す側面図である。 本発明の第2実施形態に係る風力発電装置の概略を示す全体構成図である。 図3に示す風力発電装置の具体的構成例を示す平面図である。 図3に示す風力発電装置の具体的構成例を示す側面図である。 図4BのA方向矢視図である。 本発明の第3実施形態に係る風力発電装置の概略を示す全体構成図である。 図5に示す風力発電装置の具体的構成例を示す斜視図である。 図1に示す風力発電装置の具体的構成例を示す平面図である。 図1に示す風力発電装置の具体的構成例を示す側面図である。 本発明の実施形態に係る風力発電装置に適用されるスイベル構造の第1構成例を示す図である。 本発明の実施形態に係る風力発電装置に適用されるスイベル構造の第2構成例を示す図である。
 以下、添付図面に従って本発明の実施形態について説明する。ただし、この実施形態に記載されている構成部品の寸法、材質、形状、その相対的配置等は、特定的な記載がない限り本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
[第1実施形態]
 第1実施形態では、再生エネルギー型発電装置の一例として風力発電装置について説明する。図1は、本発明の第1実施形態に係る風力発電装置の概略を示す全体構成図で、図2Aは図1に示す風力発電装置の具体的構成例を示す斜視図で、図2Bは図1に示す風力発電装置の具体的構成例を示す平面図で、図2Cは図1に示す風力発電装置の具体的構成例を示す側面図である。
 図1及び図2A~図2Cに示すように、風力発電装置1は、主として、タワー2と、タワー先端部2Bに設けられたナセル4と、風を受けて回転するロータ6と、油圧ポンプ8及び油圧モータ10と、油圧モータ10に連結された発電機12とで構成される。
 タワー2は、地面や海洋上に設けられる基礎3上に立設されており、基礎3側の基端部2Aから鉛直方向上方に先端部2Bまで延びている。タワー2の先端部2B上には、ナセル4が設けられている。
 ナセル4は、ナセル台板16を有しており、このナセル台板16はナセル軸受18によってタワー2の先端部2Bに旋回自在に支持されている。具体的には、ナセル台板16はナセル軸受18の内輪18Aに固定され、タワー2の先端部2Bはナセル軸受18の外輪18Bに固定されている。
 そして、ナセル台板16にはナセル旋回機構19が取り付けられるとともに、ナセル台板上にはヨー駆動機構13が配設されている。このナセル旋回機構19及びヨー駆動機構13によって、ナセル台板16がタワー2の先端部2Bに対して旋回するようになっている。
 ナセル旋回機構19は、例えば、タワー2の先端部2Bの内周面に設けられた内歯車19Bと噛み合うギヤ19Aとで構成されていてもよい。
 ヨー駆動機構13は、例えば、ギヤ19Aの軸に直接連結されるか、またはギヤ19Aにピニオンを介して連結される減速機と、クラッチと、ヨーモータと、電磁ブレーキと、これらを収納するハウジングとで構成されていてもよい。なお、ヨー駆動機構13は、タワー2の軸線を中心とした円周上に複数設けられていてもよい。
 上記構成を有する場合、クラッチが結合状態で電磁ブレーキがONにされたら、ヨーモータの駆動力が減速機を介してギヤ19Aに伝達され、ギヤ19Aが内歯車19Bと噛み合いながら回転する。これにより、ナセル4がタワー2に対してヨー方向に旋回する。
 ナセル4には、主軸14及びこの主軸14に取り付けられた油圧ポンプ8が収納されている。なお、主軸14は、主軸軸受15によってナセル4に回転自在に支持されている。
 ロータ6は、ハブ6Aと、ハブ6Aから放射状に延びる複数枚の回転翼6Bとからなる。ロータ6のハブ6Aは、主軸14に連結されている。このため、風を受けてロータ6が回転すると、主軸14もハブ6Aとともに回転する。そして、主軸14の回転が油圧ポンプ8に入力されることで、油圧ポンプ8において高圧の作動油(高圧油)が生成される。
 油圧モータ10は、ナセル4内に収納されている。また、油圧モータ10は、主軸14及び油圧ポンプ8と、ナセル4の壁面のうち回転翼から遠い側の後端側壁面4Aとの間のエリア5を除く空間に配置される。このとき、油圧モータ10は、ナセル台板16上に設置してもよいし、ナセル4内に配置されるフレーム41、棚42(図2A~図2C参照)等に据え付けるようにしてもよい。
 そして、油圧モータ10は、ナセル4内の油圧ポンプ8から供給される高圧油によって駆動されるようになっている。
 油圧ポンプ8及び油圧モータ10の間には作動油配管30が接続され、作動油配管30を作動油が循環するようになっている。作動油配管30は、油圧ポンプ8から排出される高圧油を油圧モータ10に供給する高圧側配管31と、油圧モータ10から排出される低圧の作動油(低圧油)を油圧ポンプ8に供給する低圧側配管33とを有する。
 また、油圧モータ10に出力軸を介して連結される発電機12も、やはり油圧モータ10と同様に、ナセル4内に収納されている。さらに、発電機12は、主軸14及び油圧ポンプ8と、ナセル4の後端側壁面4Aとの間のエリア5を除く空間に配置される。
 なお、油圧モータ10と発電機12との相対的な位置関係は、図1に示すように、これらが互いに水平に位置するように配置されてもよいし、これらが互いに鉛直に位置するように配置されてもよいし、これらが互いに傾斜して位置するように配置されてもよい。また、図には、油圧モータ10及び発電機12の両方が、エリア5を除く空間に配置された場合を示したが、油圧モータ10及び発電機12の少なくとも一方がこの空間に配置されていればよい。すなわち、油圧モータ10及び発電機12のいずれか一方がエリア5に配置されていてもよい。
 上述の風力発電装置1によれば、油圧モータ10及び発電機12が、ナセル4内に収納されるようにしたので、これらがタワー2の基端部2Aに設置される場合に比べて、作動油が循環する配管を短くすることができる。
 また、この風力発電装置1では、油圧モータ10及び発電機12の少なくとも一方が、主軸14及び油圧ポンプ8と、ナセル4の後端側壁面4Aとの間のエリア5を除く空間に配置されるようにしたので、油圧モータ10及び発電機12がエリア5に配置される場合に比べて、ナセル長さ(主軸方向)を短くすることができ、ナセル4の小型化および軽重量化が可能となる。
 また、この風力発電装置1では、図2Cに示すように油圧モータ10及び発電機12の少なくとも一方がヨー駆動装置13の上方で、且つ、図2Bに示すように油圧ポンプ8の側方に配置されることが好ましく、これによりナセル4内の空間を有効利用することができる。また、ナセル4の横幅(水平面内で主軸14に垂直な方向)を拡大することなく、油圧モータ10及び発電機12の少なくとも一方を配置することができ、ナセル4のさらなる小型化および軽重量化が可能となる。
 さらに、この風力発電装置1では、油圧モータ10及び発電機12がナセル4内に収納され、油圧モータ10と発電機12とが相対的に略水平に配置されるとともに、油圧ポンプ8の側方に、出力軸14で連結される油圧モータ10及び発電機12の少なくとも一部が配置されることが好ましい。
 このように、油圧モータ10及び発電機12がともにナセル4内に収納されることで、作動油を循環させる配管の長さを短くできる。また、油圧モータ10及び発電機12が相対的に略水平に配置されるとともに、出力軸11で連結される油圧モータ10及び発電機12の少なくとも一部が、油圧ポンプ8の側方に配置されることで、ナセル4内の空間を有効利用でき、ナセル4のさらなる小型化および軽重量化が可能となる。
[第2実施形態]
 次に、図3及び図4A~図4Cを参照して、第2実施形態に係る風力発電装置について説明する。図3は、本発明の第2実施形態に係る風力発電装置の概略を示す全体構成図で、図4Aは、図3に示す風力発電装置の具体的構成例を示す平面図で、図4Bは、図3に示す風力発電装置の具体的構成例を示す側面図で、図4Cは、図4BのA方向矢視図である。なお、本実施形態に係る風力発電装置1は、油圧トランスミッション及び作動油配管30の構成が異なる点を除けば、第1実施形態に係る風力発電装置1とほぼ同一の構成を有する。よって、ここでは、第1実施形態と異なる点を中心に説明することとし、図3及び図4A~図4Cでは風力発電装置1と共通する箇所には同一の符号を付し、その説明を省略する。
 本実施形態に係る風力発電装置1は、支持体44によって油圧モータ10及び発電機12をともにナセル4側に支持させるとともに、油圧モータ10をナセル4内に配置し、発電機12をタワー2上部に配置した構成としている。例えば、ナセル4内のフレーム41に支持体44(図4A~図4C参照)を固定し、この支持体44に油圧モータ10及び発電機12を支持させる。油圧モータ10及び発電機12は、ナセル4内の固定部材であれば何れに支持させてもよく、他にも、フレーム41に直接支持させたり、ナセル台板16に支持させたり、台板16上に配置される棚42に支持させたりすることができる。なお、ナセル4内の固定部材は、いずれも支持体として用いることができる。
 このとき、油圧モータ10は、作動油配管30によって油圧ポンプ8とヨー方向に相対変位不能に接続されている。なお、油圧モータ10と発電機12とは出力軸11で連結されているので、油圧モータ10及び発電機12の一方が支持体44によってタワー2に固定されることで、他方もタワー2に支持されることとなる。また、図では発電機12をタワー2上部に配置した場合を示しているが、油圧モータ10及び発電機12の少なくとも一部がタワー2上部に配置されていればよい。すなわち、油圧モータ10のみ、若しくは油圧モータ10と発電機12の両方がタワー2上部に配置されていてもよい。なお、タワー2上部とは、タワー2の基端部2Aから先端部2Bの間で、基端部2Aと先端部2Bの鉛直方向中間位置より上方であることが好ましい。
 このように、油圧モータ10及び発電機12は、支持体44によってナセル4側に支持されるとともに、出力軸11によって連結される油圧モータ10及び発電機12の少なくとも一部がタワー2上部に配置されることで、タワー2の基端部にこれらを設置する場合に比べて、作動油を循環させる配管の長さを短くできる。また、油圧モータ10及び発電機12の少なくとも一部がタワー2側に配置されるようにしたので、ナセル4のさらなる小型化および軽重量化が可能となる。
 この風力発電装置1では、油圧モータ10がナセル4内に収納され、出力軸11が鉛直方向となるように、油圧モータ10及び発電機12がそれぞれ配置されるようにしてもよい。
 このように、油圧モータ10がナセル4内に収納されることで、油圧モータ10を油圧ポンプ8の近くに配置でき、作動油が流れる配管30を短くすることができる。一方、発電機12の少なくとも一部はタワー2上部に配置されることとなるが、このとき、油圧モータ10及び発電機12が鉛直方向に配置されることで、タワー2の径を拡張することなく油圧モータ10及び発電機12を容易に設置することが可能となる。
 また、この風力発電装置1では、油圧モータ10は、支持体44によってナセル4側に支持されるとともに、タワー2上部空間に配置されることが好ましい。
 このように、油圧モータ10をタワー2上部空間に配置することで、ナセル4のさらなる小型化及び軽重量化が可能となる。このとき、油圧モータ10は支持体44によってナセル4側に支持されているので、ナセル旋回時に、油圧モータ10と、油圧ポンプ8及び油圧モータ10を接続する配管30とを、油圧ポンプ8と一体に回転させることができる。
[第3実施形態]
 次に、図5及び図6A~図6Cを参照して、第3実施形態に係る風力発電装置について説明する。図5は、本発明の第3実施形態に係る風力発電装置の概略を示す全体構成図で、図6Aは、図5に示す風力発電装置の具体的構成例を示す斜視図で、図6Bは、図5に示す風力発電装置の具体的構成例を示す平面図で、図6Cは、図5に示す風力発電装置の具体的構成例を示す側面図である。なお、本実施形態に係る風力発電装置1は、油圧トランスミッション及び作動油配管30の構成が異なる点を除けば、第1実施形態に係る風力発電装置1とほぼ同一の構成を有する。よって、ここでは、第1実施形態と異なる点を中心に説明することとし、図5及び図6では風力発電装置1と共通する箇所には同一の符号を付し、その説明を省略する。
 本実施形態に係る風力発電装置1は、油圧モータ10及び発電機12をタワー2側に支持させ、これらをタワー2上部に配置した構成となっている。
 タワー2内には、タワー2の側壁に固定される床部45が鉛直方向に複数段設けられている。この床部45は、はしご46によって接続され、作業者が昇降できるようになっている。
 油圧モータ10及び発電機12は、この床部45にそれぞれ据え付けられる。このとき、油圧モータ10及び発電機12の相対的な位置関係は、互いに水平方向に配置されていてもよいし、図に示すように、互いに鉛直方向に配置されていてもよいし、互いに傾斜して配置されていてもよい。なお、図には、油圧モータ10及び発電機12がともに床部45に設置された場合を示したが、油圧モータ10及び発電機12のタワー2側への固定手段はこれに限定されるものではなく、タワー2内の固定部材であればいずれに支持させてもよく、他にも、タワー2の側壁に支持させることもできる。また、タワー2内の固定部材は、いずれも支持体として用いることができる。
 また、油圧ポンプ8と油圧モータ10とは、作動油が流れる作動油配管30で接続されている。
 作動油配管30は、油圧ポンプ8から排出される高圧油を油圧モータ10に供給する高圧側配管31(31a、31b)と、油圧モータ10から排出される低圧油を油圧ポンプ8に供給する低圧側配管33(33a、33b)とを有する。
 高圧側配管31は、ナセル4側に支持される高圧側第1配管31aと、タワー2側に支持される高圧側第2配管31bとから構成される。高圧側第1配管31aと高圧側第2配管31bとの間には、スイベル構造を有する接続部100が介装されており、接続部100によって高圧側第1配管31aと高圧側第2配管31bとが相対的に旋回自在に接続されている。
 低圧側配管は、ナセル4側に支持される低圧側第1配管33aと、タワー2側に支持される低圧側第2配管33bとから構成される。低圧側第1配管33aと低圧側第2配管33bとの間には、上記した接続部100が介装されており、接続部100によって低圧側第1配管33aと低圧側第2配管33bとが相対的に回転自在に接続されている。
 スイベル構造を有する接続部100は、ナセル4の旋回中心に配置される。なお、この接続部100の構成については後述する。
 油圧ポンプ8は、主軸14によって駆動されて高圧油を生成する。この高圧油は、高圧側配管31を介して油圧モータ10に供給され、該高圧油によって油圧モータ10が駆動される。このとき、油圧モータ10に連結された発電機12が駆動され、発電機12において電力が生成される。油圧モータ10から吐出された低圧油は、低圧側配管33を介して油圧ポンプ8に供給され、油圧ポンプ8において再び昇圧されて油圧モータ10に送られる。
 上記したように、油圧モータ10及び発電機12をタワー2側に支持させることで、油圧モータ10及び発電機12の少なくとも一方を安定してタワー2に固定することが可能となる。また、ナセル4側に支持された油圧ポンプ8に接続される配管31a、33aと、タワー2側に支持された油圧モータ10に接続される配管31b、33bとが、相対的に回転自在に接続されているので、ナセル4がヨー旋回する場合にも配管構造を適切に保持できる。
 また、上記構成において、油圧モータ10と発電機12とが略鉛直方向に配置されることが好ましい。これにより、タワー2の径を拡張することなく、油圧モータ10及び発電機12を容易に設置できる。
 さらにまた、上記構成において、油圧モータ10は、発電機12にフレキシブル継手を介して連結されることが好ましい。これにより、油圧モータ10及び発電機12の相対位置関係の自由度が向上し、また簡単に位置調整することも可能となる。
 次に、図7及び図8を用いて、上述した接続部100の具体的な構成例について説明する。
 図7は、本発明の実施形態に係る風力発電装置に適用されるスイベル構造の第1構成例を示す図である。
 第1構成例におけるスイベル構造の接続部100は、タワー2の軸方向に延設された二重管110と、二重管110を取り囲むように設けられた第1ジャケット114及び第2ジャケット116とを有しており、これらによって、ナセル4側の油圧ポンプ8からタワー2側の油圧モータ10へ向かう高圧油が流れる第1流路121と、油圧モータ10から油圧ポンプ8へ向かう低圧油が流れる第2流路122とが形成される。
 二重管110は内管110Aと外管110Bとからなり、内管110Aの内部には内側流路が形成され、内管110A及び外管110Bにより外側流路が形成されている。
 第1ジャケット114は、内管110Aの外周側に設けられる。第1ジャケット114の内壁面と内管110Aの外壁面とから形成される環状流路114aは、第1ジャケット114の外周に接続される高圧側第1配管31aに連通している。また、環状流路114aは、内管110Aに設けられた第1連通口111を介して、内側流路に連通している。さらに、この内側流路は、内管110Aの端部に接続される高圧側第2配管31bに連通している。そして、環状流路114a及び内側流路によって第1流路121が形成される。高圧側第1配管31aから第1流路121に供給される高圧油は、環状流路114a、第1連通口111、内側流路を通って、高圧側第2配管31bへ送出される。
 第2ジャケット116は、外管110Bの外周側に設けられ、第1ジャケット114よりもタワー2側に配置されている。第2ジャケット116は、ボルト125によって第1ジャケット114に締結されている。外側流路は、外管110Bの外周に接続される低圧側第2配管33bに連通しているとともに、第2ジャケット116の内壁面と内管110Aの外壁面との間に形成される環状流路116aに連通している。環状流路116aは、第2ジャケット116の外周に接続される低圧側第1配管33aに連通している。そして、外側流路及び環状流路116aによって第2流路122が形成される。低圧側第2配管33bから第2流路122に供給される低圧油は、外側流路、環状流路116aを通って、低圧側第1配管33aへ送出される。
 第1ジャケット114及び第2ジャケット116は、ナセル4側に支持されている。一方、二重管110は、タワー2側に支持されている。第1ジャケット114と二重管110の内管110Aとの間には液密性を確保するように内側シール126が設けられている。また、第2ジャケット116と外管110Bとの間には液密性を確保するように外側シール127が設けられている。これらの内側シール126及び外側シール127によって液密性が確保されるとともに、第1ジャケット114及び第2ジャケット116は、二重管110に対して相対的に旋回自在に取り付けられている。なお、第1ジャケット114または第2ジャケット116と、二重管110との間に、摺動性を向上させることを目的として軸受を設けてもよい。
 上記構成により、ナセル4側の油圧ポンプ8からタワー2側の油圧モータ10へ向かう高圧油、及び、油圧ポンプ8から油圧モータ10に向かう低圧油の流れを確保しつつ、第1配管(高圧側第1配管31a、低圧側第1配管33a)と第2配管(高圧側第2配管31b、低圧側第2配管33b)との相対的な旋回を可能としている。したがって、ナセル4が旋回しても、ナセル4内の油圧ポンプ8とタワー2内の油圧モータ10との間の高圧油及び低圧油のやり取りを接続部100を介して円滑に行うことができる。
 また、上述した第1構成例において、第1流路及び第2流路の少なくとも一方の内部に、ナセル4からタワー2まで延設されるケーブルを収納してもよい。ここで、ケーブルには、油圧ポンプ8等のようにナセル4内に配置される電気利用機器への電力供給に用いられる電力ケーブル若しくは制御に用いられる通信ケーブル、ナセル4側に取り付けられる各種計測機器に接続される信号ケーブル、または、回転翼6Bやナセル4への落雷の際に電気を逃がす避雷用ケーブル等のケーブルが適用される。
 このように、第1流路及び第2流路の少なくとも一方に、ケーブルを収納することによって、ナセル4が旋回した場合であっても、ケーブルが損傷することを防止できる。
 図8は、本発明の実施形態に係る風力発電装置に適用されるスイベル構造の第2構成例を示す図である。
 第2構成例におけるスイベル構造の接続部100’は、ナセル4に収納された油圧ポンプ8と、タワー2内に設けられた油圧モータ10とを、第1二重管130及び第2二重管140を用いて接続している。
 第1二重管130はナセル4に固定され、第2二重管140はタワー2に固定され、第1二重管130及び第2二重管140は相対的に回転可能に構成されている。
 以下に、第1二重管130及び第2二重管140の具体的な構成を説明する。
 第1二重管130は、フランジ部においてボルト135で締結された上側部材131及び下側部材133によって構成されている。なお、上側部材131と下側部材133との接合面にはシール136が設けられ、液密性が保たれている。上側部材131は、その上部において油圧ポンプ8の吐出側に、高圧側第1配管31aを介して接続される高圧油入口を有する。下側部材133は、上側部材131に接合されたフランジ部から下方に垂れる内周側円筒部と外周側円筒部とを有し、この外周側円筒部の側面には油圧ポンプ8の吸込側に、低圧側第1配管33aを介して接続される低圧油出口が設けられている。
 そして、上側部材131と下側部材133の一部(内周側円筒部)とによって、第1二重管130の第1内側配管132が形成されている。また、下側部材133の一部(外周側円筒部)によって、第1二重管130の第1外側配管134が形成されている。
 一方、第2二重管140は、第2内側配管142及びこの第2内側配管142の外周に設けられる第2外側配管144を有する。また、第2二重管140の下部には、高圧側第2配管31bに接続される高圧油出口が設けられている。さらに、第2二重管140の側面には、低圧側第2配管33bに接続される低圧油入口が設けられている。
 そして、第1二重管130は、第2二重管140に回転自在に嵌合されている。このように嵌合された第1二重管130及び第2二重管140によって、ナセル4側からタワー2側へ向かう高圧油が流れる内側流路151と、タワー2側からナセル4側へ向かう低圧油が流れる外側流路152とが形成される。
 このように、ナセル4側に支持された第1二重管130と、第2二重管140とが回転自在に接続されていることによって、ナセル4とタワー2との間の作動油の流れを確保しつつ、ナセル側配管31a、33aとタワー側配管31b、33bとの相対的な旋回を可能としている。また、第1内側配管132及び第2内側配管142によって内側流路151が形成され、第1外側配管134及び第2外側配管144によって外側流路152が形成されており、外側流路152には低圧油が流れ、内側流路151には高圧油が流れるようにしたので、油圧ポンプ8から油圧モータ10に向かう作動油、及び、油圧モータ10から油圧ポンプ8に向かう作動油の流れをそれぞれ確保することができる。なお、上記構成において、外側流路152に高圧油が流れ、内側流路151に低圧油が流れるようにしてもよい。
 また、第1二重管130を第2二重管140に回転自在に支持し、第1二重管130及び第2二重管140の長手方向に沿ったスラスト荷重及び径方向に沿ったラジアル荷重の少なくとも一方の荷重を受ける軸受をさらに備えていてもよい。例えば、第1内側配管132の内壁面と第2内側配管142の外壁面との間に、内側軸受181を設けてもよい。また、第1外側配管134の内壁面と第2外側配管144の外壁面との間に、外側軸受182を設けてもよい。
 このように、軸受181、182によって第1二重管130を第2二重管140に回転自在に支持することで、ナセル4に伴われた第1二重管130の旋回を妨げることがない。また、第1二重管130の重量や、内側流路151及び外側流路152を流れる高圧油と低圧油によって発生する油圧スラスト等のスラスト荷重、あるいはラジアル荷重を軸受によって確実に受けることができる。
 上記構成によれば、ナセル4側に支持された第1二重管130を回転自在に第2二重管140に接続したので、ナセル4が旋回しても、ナセル4内の油圧ポンプ8とタワー2内の油圧モータ10との間の高圧油及び低圧油のやり取りを第1二重管130と第2二重管140とを介して行うことができる。
 さらに、第1二重管130と第2二重管140とは、第1内側配管132及び第2内側配管142が長手方向に相対的に摺動自在、かつ、第1外側配管134及び第2外側配管144が長手方向に相対的に摺動自在となるように嵌合されていてもよい。
 このように、第1内側配管132が第2内側配管142に対して、さらには、第1外側配管134が第2外側配管144に対して相対的に長手方向に摺動自在になるように第1二重管130を第2二重管140に嵌合することで、第1二重管130の第2二重管140に対する長手方向の動きが許容され、第1二重管130及び第2二重管140の油温上昇等による熱伸びを吸収することができる。
 第1内側配管132の管壁面と第2内側配管142の管壁面との間には、内側シール155が設けられていることが好ましい。この内側シール155は、内側流路151と外側流路152との間に挟まれるように配置される。このように第1内側配管132の管壁面と第2内側配管142の管壁面との間をシールする内側シール155を、内側流路151と外側流路152との間に挟まれるように配置することで、万が一、内側シール155のシール機能が損なわれても、内側流路151を流れる高圧油は外側流路152に漏れる。よって、高圧油の外部への漏洩を防止できる。
 また、第1外側配管134の管壁面と第2外側配管144の管壁面との間には、一対の外側シール156と、一対の外側シール156間に連通する油溜め158と、油溜め158に連通する大気圧タンク170とが設けられていることが好ましい。
 これにより、万が一、第1外側配管134の管壁面と第2外側配管144の管壁面との間をシールする一対の外側シールのシール機能が損なわれても、外側流路から漏れ出た低圧油は油溜め158を介して大気圧タンク170に導かれる。すなわち、外側流路152から漏れた低圧油は、圧力が十分に下げられてから大気圧タンク170に回収される。よって、低圧油の外部への漏洩を防止できる。
 さらに、油圧ポンプ8の脈動を抑える観点から、ナセル4内において油圧ポンプ8と第1二重管130との間に脈動防止アキュムレータ160を設けることが好ましい。
 このように、脈動防止アキュムレータ160をナセル4内に設けることで、脈動防止アキュムレータ160と油圧ポンプ8との距離が縮まり、油圧ポンプ8の脈動を効果的に防止できる。なお、脈動防止アキュムレータ160の容量は比較的小さくてもよいから、ナセル4内に十分に収納できる。特に、本実施形態では、油圧モータ10及び発電機12をナセル4に設置するのではなく、タワー2側に設置するようにしたので、ナセル4内において脈動防止アキュムレータ160のための設置スペースを十分に確保できる。
 また、第2二重管140と油圧モータ10との間に、油圧蓄積アキュムレータ161を設けてもよい。これは、タワー内部空間に、高圧側第2配管31bから分岐される分岐流路165を設け、分岐流路165にリリーフ弁166を介して油圧蓄積アキュムレータ161を接続している。この油圧蓄積アキュムレータ161は、脈動防止アキュムレータ160に比べて十分に大きな容量を有する。油圧蓄積アキュムレータ161は、例えば、突風が吹いたときに過剰な回転エネルギーを吸収するために高圧油の油圧を蓄積したり、系統電圧低下時のライドスルー機能を実現するために高圧油の油圧を蓄積したり、風力発電装置の出力が余剰であるときに過剰な回転エネルギーを吸収するために高圧油の油圧を蓄積したりする目的で使用される。
 以上、本発明の実施形態について詳細に説明したが、本発明はこれに限定されず、本発明の要旨を逸脱しない範囲において、各種の改良や変形を行ってもよいのはいうまでもない。
 さらに、上述の実施形態では、再生エネルギー型発電装置の具体例として風力発電装置1について説明したが、本発明は、風力発電装置以外の再生エネルギー型発電装置にも適用できる。
 例えば、潮流、海流又は河流を利用した発電装置であって、タワーが基端部から先端部に向かって海中又は水中を鉛直方向に延びるとともに、回転翼によって潮流、海流又は河流を受けることで主軸が回転するような発電装置に本発明を適用してもよい。
1   風力発電装置
2   タワー
2A  タワー基端部
2B  タワー先端部
4   ナセル
6   ロータ
6A  ハブ
6B  回転翼
8   油圧ポンプ
10  油圧モータ
11  出力軸
12  発電機
13  ヨー駆動装置
14  主軸
15  主軸軸受
16  ナセル台板
18  ナセル軸受
18A 内輪
18B 外輪
31  高圧側配管
31a 高圧側第1配管
31b 高圧側第2配管
33  低圧側配管
33a 低圧側第1配管
33b 低圧側第2配管
41  フレーム
42  棚
45  床
100、100’ 接続部
 
 

Claims (18)

  1.  再生エネルギーから電力を生成する再生エネルギー型発電装置であって、
     タワーと、
     前記タワーの先端部に設けられたナセルと、
     前記ナセルに収納され、回転翼とともに回転する主軸と、
     前記ナセルに収納され、前記主軸に取り付けられる油圧ポンプと、
     前記油圧ポンプから供給される作動油によって駆動される油圧モータと、
     前記油圧モータに連結された発電機と、
     前記油圧ポンプ及び前記油圧モータの間で前記作動油を循環させる配管とを備え、
     前記油圧モータは、前記ナセル及び前記タワー上部の少なくとも一方に収納され、
     前記発電機は、前記ナセル及び前記タワー上部の少なくとも一方に収納されるとともに、
     前記油圧モータ及び前記発電機の少なくとも一方が、前記主軸及び前記油圧ポンプと、前記ナセルの壁面のうち前記回転翼から遠い側の後端側壁面との間のエリアを除く空間に配置されることを特徴とする再生エネルギー型発電装置。
  2.  前記ナセルの下部に設けられ、前記ナセルをヨー旋回させるヨー駆動装置をさらに備え、
     前記ヨー駆動装置の上方で且つ前記油圧ポンプの側方に、前記油圧モータ及び前記発電機の少なくとも一方が配置されることを特徴とする請求項1に記載の再生エネルギー型発電装置。
  3.  前記油圧モータ及び前記発電機が前記ナセル内に収納され、前記油圧モータと前記発電機とが相対的に略水平に配置されるとともに、
     前記油圧ポンプの側方に、前記出力軸で連結される前記油圧モータ及び前記発電機の少なくとも一部が配置されることを特徴とする請求項2に記載の再生エネルギー型発電装置。
  4.  前記ナセルは、前記タワーに対してヨー方向に回転自在に設けられており、
     前記油圧モータ及び前記発電機は、支持体によって前記ナセル側に支持され、前記油圧モータが、前記配管によって前記油圧ポンプとヨー方向に相対変位不能に接続され、
     出力軸によって連結される前記油圧モータ及び前記発電機の少なくとも一部が前記タワー上部に配置されることを特徴とする請求項1に記載の再生エネルギー型発電装置。
  5.  前記油圧モータが前記ナセル内に収納され、
     前記出力軸が鉛直方向となるように、前記油圧モータ及び前記発電機がそれぞれ配置されることを特徴とする請求項4に記載の再生エネルギー型発電装置。
  6.  前記油圧モータは、支持体によって前記ナセル側に支持されるとともに、前記タワー上部空間に配置されることを特徴とする請求項2に記載の再生エネルギー型発電装置。 
  7.  前記タワーに支持された一または複数の支持体をさらに備え、
     前記油圧モータ及び前記発電機の少なくとも一方は、前記支持体に固定され、
     前記油圧ポンプに接続される前記配管と、前記油圧モータに接続される前記配管とが、相対的にヨー方向に回転自在に接続されていることを特徴とする請求項1に記載の再生エネルギー型発電装置。
  8.  前記ナセル側に支持されて前記油圧ポンプに接続される複数の第1配管と、
     前記第1配管よりも前記ナセルから遠い側に位置して該第1配管に嵌合される複数の第2配管とをさらに備え、
     前記ナセル側に支持された前記第1配管は回転自在に前記第2配管に接続され、
     少なくとも一組の前記第1配管及び前記第2配管が連通してなる第1流路には、前記油圧ポンプから排出される高圧油が流れ、
     少なくとも他の一組の第1配管及び第2配管が連通してなる第2流路には、前記油圧モータから排出される低圧油が流れることを特徴とする請求項7に記載の再生エネルギー型発電装置。
  9.  前記第1流路及び前記第2流路の少なくとも一方の内部に、前記ナセルから前記タワーまで延設されるケーブルが収納され、
     前記ケーブルは、前記作動油の侵入を防止する保護管で被覆されていることを特徴とする請求項8に記載の再生エネルギー型発電装置。
  10.  前記油圧ポンプに接続される第1内側配管及び第1外側配管を有し、前記ナセル側に支持されるとともに前記タワー内部を通って前記タワーの基端部に向かって延びる第1二重管と、
     前記油圧モータに接続される第2内側配管及び第2外側配管を有し、前記第1二重管よりも前記ナセルから遠い側に位置して該第1二重管に嵌合される第2二重管とを備え、
     前記第1内側配管は、前記第2内側配管に連通し、前記第2内側配管とともに内側流路を形成し、
     前記第1外側配管は、前記第2外側配管に連通し、前記第2外側配管とともに外側流路を形成し、
     前記内側流路及び前記外側流路の一方には、前記油圧モータから排出されて前記油圧ポンプに戻される低圧油が流れ、
     前記内側流路及び前記外側流路の他方には、前記油圧ポンプから吐出されて前記油圧モータに送られる高圧油が流れ、
     前記ナセル側に支持された前記第1二重管は、回転自在に前記第2二重管に接続されていることを特徴とする請求項7に記載の再生エネルギー型発電装置。
  11.  前記第1内側配管の管壁面と前記第2内側配管の管壁面との間をシールする内側シールをさらに備え、
     前記内側シールは、前記内側流路と前記外側流路との間に挟まれるように配置されていることを特徴とする請求項10に記載の再生エネルギー型発電装置。
  12.  前記第1外側配管の管壁面と前記第2外側配管の管壁面との間をシールする一対の外側シールと
     前記一対の外側シール間に連通する油溜めと、
     前記油溜めに連通するタンクとを備えることを特徴とする請求項10に記載の再生エネルギー型発電装置。
  13.  前記第1二重管を前記第2二重管に回転自在に支持し、前記第1二重管及び前記第2二重管の長手方向に沿ったスラスト荷重及び径方向に沿ったラジアル荷重の少なくとも一方の荷重を受ける軸受をさらに備えることを特徴とする請求項10に記載の再生エネルギー型発電装置。
  14.  前記第1二重管と前記第2二重管とは、前記第1内側配管及び前記第2内側配管が長手方向に相対的に摺動自在、かつ、前記第1外側配管及び前記第2外側配管が長手方向に相対的に摺動自在となるように嵌合されていることを特徴とする請求項10に記載の再生エネルギー型発電装置。
  15.  前記ナセル内において前記油圧ポンプと前記第1二重管との間に設けられ、前記油圧ポンプの脈動を防止する脈動防止アキュムレータをさらに備えることを特徴とする請求項10に記載の再生エネルギー型発電装置。
  16.  前記油圧モータ及び前記発電機は、前記タワー内に収納され、
     前記油圧モータと前記発電機とが略鉛直方向に配置されることを特徴とする請求項7に記載の再生エネルギー型発電装置。
  17.  前記再生エネルギー型発電装置は風力発電装置であり、
     前記タワーが基端部から先端部に向かって鉛直方向上方に延びるとともに、
     前記回転翼によって風を受けることで前記主軸が回転する請求項1に記載の再生エネルギー型発電装置。
  18.  前記油圧モータは、前記発電機にフレキシブル継手を介して連結されることを特徴とする請求項1に記載の再生エネルギー型発電装置。
     
     
PCT/JP2011/071674 2010-11-30 2011-09-22 再生エネルギー型発電装置 WO2012137371A1 (ja)

Priority Applications (16)

Application Number Priority Date Filing Date Title
EP11817195.8A EP2530310B1 (en) 2011-04-05 2011-09-22 Renewable energy generator
KR1020127034038A KR101296054B1 (ko) 2011-04-05 2011-09-22 재생 에너지형 발전 장치
JP2012507508A JP5358020B2 (ja) 2011-04-05 2011-09-22 再生エネルギー型発電装置
CN2011800220542A CN102869881A (zh) 2011-04-05 2011-09-22 再生能量型发电装置
JP2012507512A JP5502190B2 (ja) 2010-11-30 2011-11-30 再生エネルギー型発電装置
PCT/JP2011/006695 WO2012073505A1 (en) 2010-11-30 2011-11-30 Power generating apparatus of renewable energy type
EP11799883.1A EP2646685B1 (en) 2010-11-30 2011-11-30 Power generating apparatus of renewable energy type
CN2011800307298A CN102959240A (zh) 2010-11-30 2011-11-30 可再生能源型发电装置
KR1020127034108A KR20130053416A (ko) 2010-11-30 2011-11-30 재생 에너지형 발전 장치
US13/390,362 US20120285150A1 (en) 2010-11-30 2011-11-30 Power generating apparatus of renewable energy type
EP13160517.2A EP2650533B1 (en) 2010-11-30 2011-11-30 Power generating apparatus of renewable energy type
US13/398,484 US8601805B2 (en) 2011-04-05 2012-02-16 Power generating apparatus of renewable energy type
PCT/JP2012/070492 WO2013042487A1 (ja) 2011-04-05 2012-08-10 再生エネルギー型発電装置
JP2013534695A JP5620009B2 (ja) 2011-09-22 2012-09-14 再生エネルギー型発電装置
EP12833851.4A EP2759701B1 (en) 2011-09-22 2012-09-14 Power generating apparatus of renewable energy type
PCT/JP2012/073589 WO2013042621A1 (ja) 2011-09-22 2012-09-14 再生エネルギー型発電装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/JP2011/058647 WO2012137311A1 (ja) 2011-04-05 2011-04-05 再生エネルギー型発電装置
JPPCT/JP2011/058647 2011-04-05

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/398,484 Continuation US8601805B2 (en) 2011-04-05 2012-02-16 Power generating apparatus of renewable energy type

Publications (1)

Publication Number Publication Date
WO2012137371A1 true WO2012137371A1 (ja) 2012-10-11

Family

ID=45806877

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2011/058647 WO2012137311A1 (ja) 2010-11-30 2011-04-05 再生エネルギー型発電装置
PCT/JP2011/071674 WO2012137371A1 (ja) 2010-11-30 2011-09-22 再生エネルギー型発電装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/058647 WO2012137311A1 (ja) 2010-11-30 2011-04-05 再生エネルギー型発電装置

Country Status (8)

Country Link
US (2) US8403644B2 (ja)
EP (2) EP2530307A4 (ja)
JP (1) JP4950368B1 (ja)
KR (2) KR20120139667A (ja)
CN (2) CN102822513A (ja)
AU (1) AU2011310936A1 (ja)
IN (1) IN2012DN03058A (ja)
WO (2) WO2012137311A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016135800A1 (ja) * 2015-02-23 2016-09-01 株式会社日立製作所 発電システム

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8541897B2 (en) * 2009-09-01 2013-09-24 University Of Southern California Generation of electric energy using cable-supported windmills
US20130028729A1 (en) * 2011-07-28 2013-01-31 Jones Jack A Power generation systems and methods
JP6045605B2 (ja) * 2012-12-19 2016-12-14 三菱重工業株式会社 再生可能エネルギー型発電装置
US8777555B1 (en) * 2013-02-21 2014-07-15 Lockheed Martin Corporation Yaw drive tidal turbine system and method
JP6125910B2 (ja) * 2013-05-31 2017-05-10 株式会社日立製作所 風力発電設備
GB2515298B (en) * 2013-06-18 2015-06-17 Tidal Generation Ltd Water current power generation structure
JP6448114B2 (ja) * 2013-07-23 2019-01-09 大洋プラント株式会社 風力エネルギー利用装置
WO2016006965A1 (ko) * 2014-07-10 2016-01-14 송길봉 베어링 장치 및 이를 포함하는 발전장치
US9885340B2 (en) * 2015-01-26 2018-02-06 Patrick Kenneth Powell Aerodynamic screen system
EP3096007A1 (en) * 2015-05-21 2016-11-23 Rotation Consultancy & Science Publications A wind turbine
US20170074248A1 (en) * 2015-09-10 2017-03-16 Ben M. Enis Wind turbine station and tower with vertical storage tanks
US9845792B2 (en) * 2015-10-13 2017-12-19 Huseyin Ozcan Wind turbine system
US10619646B2 (en) * 2015-12-16 2020-04-14 Twin City Fan Companies, Ltd. Elongated air jet device and method
CN106121928A (zh) * 2016-07-25 2016-11-16 燕山大学 一种液压型风浪互补发电机组
JP6363148B2 (ja) 2016-11-04 2018-07-25 三菱重工業株式会社 再生可能エネルギー型発電装置
CN106640527A (zh) * 2016-12-12 2017-05-10 江苏金风科技有限公司 液压控制系统及风力发电机组
DE102017004800A1 (de) * 2017-05-18 2018-11-22 Senvion Gmbh Gondelkomponente für eine Windenergieanlage und Verfahren zum Montieren einer Gondelkomponente
CN109667721B (zh) * 2019-01-02 2021-01-29 武汉船用机械有限责任公司 一种塔筒单元竖立工装
CN110360057B (zh) * 2019-07-30 2020-11-13 上海电气风电集团股份有限公司 一种风力发电机组单叶片吊装盘车装置及其吊装方法
FR3109804B1 (fr) * 2020-05-01 2023-07-14 Roux Jean Francois Eolienne en mer fixee sur une embarcation submersible actionnant trois generatrices electriques logees dans la coque centrale.

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5928136Y2 (ja) * 1979-08-30 1984-08-14 株式会社島津製作所 風力エネルギ−の変換装置
JPS61212674A (ja) * 1985-03-19 1986-09-20 Matsushita Seiko Co Ltd 風車の動力伝達装置
WO2008113699A2 (de) * 2007-03-21 2008-09-25 Rle-International Gmbh Energieumwandlungsvorrichtung mit hydraulischem antrieb
JP4181041B2 (ja) * 2001-09-25 2008-11-12 ニコラウス,トーマス 風力原動機
JP2009513882A (ja) * 2005-10-31 2009-04-02 チャプドライヴ・アクティーゼルスカブ タービン駆動式発電システム及びその制御方法

Family Cites Families (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT527036A (ja) * 1950-04-24
US2706255A (en) * 1954-01-18 1955-04-12 Garrett Corp Electric power generating and air cooling system
US3030118A (en) * 1958-05-13 1962-04-17 Cocker Machine & Foundry Compa Seal for a rotating shaft
US3547556A (en) * 1968-12-23 1970-12-15 Herman P Smith Hydraulically driven wind machine
US3943717A (en) * 1974-01-07 1976-03-16 Caterpillar Tractor Co. Contaminant removal from a hydraulic cylinder
US4280061A (en) 1978-10-25 1981-07-21 Sir Henry Lawson-Tancred, Sons & Co. Ltd. Method and apparatus for generating electricity from a fixed pitch wind wheel
JPS6220678A (ja) * 1985-07-19 1987-01-29 Matsushita Seiko Co Ltd 風力暖房装置
JPH04181041A (ja) * 1990-11-16 1992-06-29 Toyota Motor Corp 車両振動低減装置
DK9500262U4 (da) 1995-07-07 1996-10-07 Bonus Energy As Bundramme til vindmøllehus samt vindmølle omfattende samme
DE19814629A1 (de) 1998-03-26 1999-09-30 Tacke Windenergie Gmbh Anordnung zur drehbaren Lagerung der Maschinengondel einer Windkraftanlage
JP2975923B1 (ja) * 1998-05-22 1999-11-10 日本ピラー工業株式会社 回転継手装置
JP2002213842A (ja) 2001-01-17 2002-07-31 Calsonic Kansei Corp 膨張弁に対する二重管の接続構造及び膨張弁
ES2443171T3 (es) * 2001-12-28 2014-02-18 Mitsubishi Heavy Industries, Ltd. Aerogenerador de tipo contra el viento y método de funcionamiento del mismo
CN100347445C (zh) * 2002-05-16 2007-11-07 Mlh环球有限公司 具有液压传动装置的风轮机
DK1566543T3 (da) 2004-02-18 2009-12-21 Franz Mitsch Elastomerleje med regulerbar stivhed
JP2005248738A (ja) 2004-03-02 2005-09-15 Fuchu Giken:Kk 風力発電装置の運転制御方法
EP1637733A1 (en) * 2004-09-17 2006-03-22 Elsam A/S A power plant, a windmill, and a method of producing electrical power from wind energy
ES2315042B1 (es) 2004-12-15 2010-01-11 GAMESA INNOVATION & TECHNOLOGY, S.L. Sistema de retirada de la capota de un aerogenerador.
ES2264625B1 (es) 2004-12-15 2007-12-01 GAMESA INNOVATION & TECHNOLOGY, S.L. Procedimiento de retirada de la cubierta de un aerogenerador.
US7183664B2 (en) 2005-07-27 2007-02-27 Mcclintic Frank Methods and apparatus for advanced wind turbine design
NO323807B1 (no) * 2005-10-31 2007-07-09 Chapdrive As Fremgangsmate og system for hydraulisk overforing
JP3118509U (ja) 2005-11-11 2006-01-26 興國機工株式会社 ツインスイベルジョイントの構造
US20080047271A1 (en) * 2006-05-19 2008-02-28 General Compression, Inc. Wind turbine system
US7569943B2 (en) 2006-11-21 2009-08-04 Parker-Hannifin Corporation Variable speed wind turbine drive and control system
US7615884B2 (en) * 2007-01-30 2009-11-10 Mcmastercorp, Inc. Hybrid wind turbine system, apparatus and method
US7656055B2 (en) 2007-04-12 2010-02-02 Rosalia Torres Hydro-wind power generating turbine system and retrofitting method
DK2003362T3 (en) 2007-06-14 2018-01-15 Fm Energie Gmbh & Co Kg Hydraulically biased elastomeric spring element and its use in bearings for wind turbines
JP5196685B2 (ja) 2007-06-26 2013-05-15 メディア パテンツ エセ.エレ. マルチキャストグループを管理する方法と装置
KR100832053B1 (ko) * 2007-08-21 2008-05-27 김동용 유체 토크 컨버터를 이용한 풍력 발전 시스템
NO327277B1 (no) * 2007-10-30 2009-06-02 Chapdrive As Vindturbin med hydraulisk svivel
NO327276B1 (no) 2007-11-08 2009-06-02 Chapdrive As Vindturbin med elektrisk svivel
NO327275B1 (no) * 2007-11-13 2009-06-02 Chapdrive As Vindturbin med roterende hydrostatisk transmisjonssystem
JP4796039B2 (ja) * 2007-11-22 2011-10-19 三菱重工業株式会社 風力発電装置
WO2009076757A2 (en) * 2007-12-14 2009-06-25 David Mcconnell Wind to electric energy conversion with hydraulic storage
JP2009162305A (ja) 2008-01-07 2009-07-23 Tgk Co Ltd フレキシブルホース
DE102008013728A1 (de) 2008-03-11 2009-09-17 Kenersys Gmbh Windenergieanlage zur Erzeugung elektrischer Energie
EP2300709B1 (de) 2008-04-30 2015-12-02 Multibrid GmbH Verkleidung einer gondel einer windenergieanlage
CN101688522B (zh) * 2008-06-11 2011-12-07 三菱重工业株式会社 风力发电装置
US20100032959A1 (en) 2008-08-08 2010-02-11 General Electric Company Wind turbine system
GB2463647B (en) 2008-09-17 2012-03-14 Chapdrive As Turbine speed stabillisation control system
WO2010070450A2 (en) 2008-12-15 2010-06-24 Jochen Corts Segmented composite bearings and wind generator utilizing hydraulic pump/motor combination
US8021101B2 (en) 2008-12-15 2011-09-20 General Electric Company Wind turbine and method of assembling the same
WO2010102635A2 (en) 2009-03-13 2010-09-16 Vestas Wind Systems A/S Wind turbine nacelle
US20100232977A1 (en) 2009-03-13 2010-09-16 Vestas Wind Systems A/S Height Adjustable Wind Turbine Nacelle
US7763989B2 (en) 2009-07-07 2010-07-27 General Electric Company Method and apparatus for controlling the tip speed of a blade of a wind turbine
WO2011051272A2 (en) 2009-10-27 2011-05-05 Vestas Wind Systems A/S A wind turbine
EP2317137B1 (en) 2009-11-02 2012-07-25 General Electric Company Configuration of a wind turbine nacelle
US8591186B2 (en) 2009-11-17 2013-11-26 Vestas Wind Systems A/S Nacelle for wind turbine
DK2529112T3 (en) 2010-02-23 2015-10-19 Artemis Intelligent Power Ltd Fluid working WITH RADIAL PISTONS AND VARIABLE Displacement
CN102906420B (zh) 2010-03-22 2015-05-13 维斯塔斯风力系统有限公司 用于风轮机的包括侧单元的机舱
DK2375066T3 (en) 2010-04-06 2016-08-29 Siemens Ag Screen for a wind turbine nacelle
CN201747854U (zh) 2010-05-14 2011-02-16 华锐风电科技(集团)股份有限公司 大型风力发电机组的齿轮箱液压弹性支撑
US8016569B2 (en) 2010-06-09 2011-09-13 General Electric Company Configuration of a wind turbine nacelle for transportation
CN201982255U (zh) 2010-12-17 2011-09-21 中国石油天然气集团公司 一种风机齿轮箱液压支撑装置
WO2012137312A1 (ja) * 2011-04-05 2012-10-11 三菱重工業株式会社 再生エネルギー型発電装置及び油圧ポンプの取付け方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5928136Y2 (ja) * 1979-08-30 1984-08-14 株式会社島津製作所 風力エネルギ−の変換装置
JPS61212674A (ja) * 1985-03-19 1986-09-20 Matsushita Seiko Co Ltd 風車の動力伝達装置
JP4181041B2 (ja) * 2001-09-25 2008-11-12 ニコラウス,トーマス 風力原動機
JP2009513882A (ja) * 2005-10-31 2009-04-02 チャプドライヴ・アクティーゼルスカブ タービン駆動式発電システム及びその制御方法
WO2008113699A2 (de) * 2007-03-21 2008-09-25 Rle-International Gmbh Energieumwandlungsvorrichtung mit hydraulischem antrieb

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2530310A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016135800A1 (ja) * 2015-02-23 2016-09-01 株式会社日立製作所 発電システム

Also Published As

Publication number Publication date
KR20130018954A (ko) 2013-02-25
KR101296054B1 (ko) 2013-08-12
US8403644B2 (en) 2013-03-26
US8601805B2 (en) 2013-12-10
CN102869881A (zh) 2013-01-09
JP4950368B1 (ja) 2012-06-13
EP2530307A4 (en) 2013-07-17
EP2530307A1 (en) 2012-12-05
US20120063898A1 (en) 2012-03-15
EP2530310A1 (en) 2012-12-05
WO2012137311A1 (ja) 2012-10-11
IN2012DN03058A (ja) 2015-07-31
KR20120139667A (ko) 2012-12-27
EP2530310B1 (en) 2014-05-14
US20120255291A1 (en) 2012-10-11
AU2011310936A1 (en) 2012-10-18
CN102822513A (zh) 2012-12-12
EP2530310A4 (en) 2013-10-30
JPWO2012137311A1 (ja) 2014-07-28

Similar Documents

Publication Publication Date Title
WO2012137371A1 (ja) 再生エネルギー型発電装置
CA2973250C (en) Tidal current energy electric generating device
EP2758661B1 (en) A power generating apparatus of renewable energy type
EP2644884B1 (en) Water flow electricity generating device
WO2012137370A1 (ja) 再生エネルギー型発電装置
CN102959240A (zh) 可再生能源型发电装置
JP4995357B1 (ja) 再生エネルギー型発電装置
JP5358020B2 (ja) 再生エネルギー型発電装置
US11719215B2 (en) Conduit turbine for supporting conduit of water wheel rotational body, and hydroelectric generator having conduit turbines serially provided in multiple levels
KR20090086859A (ko) 풍력발전 시스템
JP6109760B2 (ja) 水流発電装置
JP6106697B2 (ja) 風力発電装置
WO2022038503A1 (en) Hybrid electricity producing arrangement
JP6045605B2 (ja) 再生可能エネルギー型発電装置
JP5836478B2 (ja) 再生エネルギー型発電装置
EP2769087A2 (en) Apparatus and method for tidal energy extraction and storage

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180022054.2

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2012507508

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011817195

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11817195

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127034038

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE