WO2012137270A1 - 液化システム - Google Patents

液化システム Download PDF

Info

Publication number
WO2012137270A1
WO2012137270A1 PCT/JP2011/006897 JP2011006897W WO2012137270A1 WO 2012137270 A1 WO2012137270 A1 WO 2012137270A1 JP 2011006897 W JP2011006897 W JP 2011006897W WO 2012137270 A1 WO2012137270 A1 WO 2012137270A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
bearing
pressure
refrigerant
line
Prior art date
Application number
PCT/JP2011/006897
Other languages
English (en)
French (fr)
Inventor
英嗣 石丸
俊博 小宮
山下 誠二
芳信 森
大祐 仮屋
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Priority to US14/110,647 priority Critical patent/US9644888B2/en
Priority to CN201180069821.5A priority patent/CN103477174B/zh
Priority to AU2011365154A priority patent/AU2011365154B2/en
Publication of WO2012137270A1 publication Critical patent/WO2012137270A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D15/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01D15/005Adaptations for refrigeration plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0005Light or noble gases
    • F25J1/001Hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/004Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by flash gas recovery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/005Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by expansion of a gaseous refrigerant stream with extraction of work
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/0062Light or noble gases, mixtures thereof
    • F25J1/0067Hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0203Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle
    • F25J1/0204Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle as a single flow SCR cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0203Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle
    • F25J1/0208Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle in combination with an internal quasi-closed refrigeration loop, e.g. with deep flash recycle loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0221Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using the cold stored in an external cryogenic component in an open refrigeration loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0244Operation; Control and regulation; Instrumentation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0244Operation; Control and regulation; Instrumentation
    • F25J1/0245Different modes, i.e. 'runs', of operation; Process control
    • F25J1/0249Controlling refrigerant inventory, i.e. composition or quantity
    • F25J1/025Details related to the refrigerant production or treatment, e.g. make-up supply from feed gas itself
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/06Splitting of the feed stream, e.g. for treating or cooling in different ways
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/42Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/30Compression of the feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/02Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/02Recycle of a stream in general, e.g. a by-pass stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/14External refrigeration with work-producing gas expansion loop
    • F25J2270/16External refrigeration with work-producing gas expansion loop with mutliple gas expansion loops of the same refrigerant

Definitions

  • the present invention relates to a liquefaction system for liquefying a source gas.
  • a liquefaction system for liquefying a source gas that becomes a gas at normal temperature and pressure, such as hydrogen gas, helium gas, and neon gas.
  • the liquefaction system includes a feed line for sending the raw material gas, a refrigerant circulation line for circulating the refrigerant, and a heat exchanger for cooling the raw material gas with the refrigerant.
  • the refrigerant is compressed by the compressor, adiabatically expanded by the expansion turbine, cooled, and heated by heat exchange with the raw material gas by the heat exchanger, and returned to the compressor.
  • Gas bearings are roughly classified into static pressure gas bearings and dynamic pressure gas bearings.
  • the static pressure gas bearing is advantageous in that the load capacity is higher than that of the dynamic pressure gas bearing, and the friction between the surface of the bearing hole and the surface of the rotating shaft hardly occurs when the liquefaction system is started and stopped.
  • a line for supplying gas to the hydrostatic gas bearing may be branched from a portion of the refrigerant circulation line where the refrigerant goes from the compressor to the expansion turbine, and the refrigerant at the compressor outlet pressure may be used as the gas to be supplied to the bearing. Conceivable. However, when the demand for the liquefaction amount is small, the compressor performs a partial load operation in accordance with this, so that the outlet pressure of the compressor may be lower than the pressure necessary for supporting the rotating shaft. Therefore, in this case as well, a dedicated compressor must be provided in the line for supplying the gas to the bearing in order to stably supply the gas at a pressure higher than the pressure necessary for supporting the rotating shaft to the bearing. This dedicated compressor may be smaller than when the gas supply line to the bearings is independent, but may become useless when the compressor on the refrigerant circulation line is rated. There is.
  • the gas having the pressure required to support the rotary shaft is provided to the bearing.
  • the purpose is to enable a stable supply.
  • the liquefaction system includes a feed line for sending a raw material gas from a raw material supply source so that the pressure of the raw material gas is maintained at a predetermined pressure or higher at a predetermined portion, a refrigerant circulation line for circulating a refrigerant, A heat exchanger for cooling the source gas flowing through the feed line by the refrigerant flowing through the refrigerant circulation line; an expansion turbine provided in the refrigerant circulation line to lower the temperature of the refrigerant by expansion; and the refrigerant circulation A circulation system compressor that is provided in a line and that compresses the refrigerant and guides the refrigerant to the expansion turbine; and the refrigerant that flows in a portion of the refrigerant circulation line from the circulation system compressor toward the expansion turbine is greater than or equal to the predetermined pressure.
  • a control device for controlling the operation of the circulation compressor, a static pressure gas bearing for receiving a supply of a gas having a pressure equal to or higher than the predetermined pressure and rotatably supporting a rotation shaft of the expansion turbine, and a gas for the static pressure gas bearing.
  • a bearing supply line connecting the predetermined portion of the feed line and a gas inlet of the hydrostatic gas bearing is provided.
  • the bearing supply line connects between the predetermined part of the feed line and the gas inlet of the static pressure supply bearing
  • the raw material gas flowing through the feed line also flows from the predetermined part to the bearing supply line. It flows and is supplied to the hydrostatic gas bearing through the bearing supply line.
  • the pressure of the raw material gas which flows through a feed line is kept above the predetermined pressure in the predetermined part. Therefore, regardless of the operating condition of the circulatory system compressor and the pressure of the refrigerant, and without providing a dedicated compressor in the bearing supply line, a gas of a predetermined pressure or higher can be stably supplied to the static pressure gas bearing for expansion.
  • the rotating shaft of the turbine can be stably supported.
  • the predetermined portion may be located upstream of the heat exchanger in the feed line.
  • normal temperature gas can be supplied to the static pressure gas bearing.
  • a pressure adjusting valve provided in the bearing supply line for reducing the pressure of the gas flowing through the bearing supply line may be further provided.
  • a feed system compressor provided in the feed line upstream of the predetermined portion and compresses the source gas, and the gas outlet for returning the gas flowing out from the gas outlet of the static pressure gas bearing to the feed line.
  • a bearing gas return line connecting between the feed line and the upstream portion of the feed compressor.
  • the gas flowing out from the static pressure gas bearing can be reused as the raw material gas and the gas supplied to the bearing.
  • a boil-off gas return line for returning boil-off gas to the feed line may be provided, and the boil-off gas return line may be connected to the bearing gas return line.
  • the refrigerant may be the same as the source gas.
  • a gas return line may be further provided.
  • the gas flowing out from the static pressure gas bearing can be reused as the refrigerant. Since the gas supplied to the bearing and the refrigerant are the same, the gas can be reused without causing a problem due to the mixing of different types of gas.
  • FIG. 1 is a conceptual diagram showing the overall configuration of the liquefaction system according to the first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing the structure of the expansion turbine shown in FIG.
  • FIG. 3 is a conceptual diagram showing a main configuration of the liquefaction system shown in FIG.
  • FIG. 4 is a diagram showing the pressures of the raw material gas and the refrigerant with respect to the load of the circulation system compressor.
  • FIG. 5 is a conceptual diagram showing the main configuration of a liquefaction system according to the second embodiment of the present invention.
  • FIG. 6 is a conceptual diagram showing the main configuration of a liquefaction system according to the third embodiment of the present invention.
  • FIG. 1 is a conceptual diagram showing an overall configuration of a liquefaction system 100 according to the first embodiment of the present invention.
  • a liquefaction system 100 shown in FIG. 1 liquefies a raw material gas that becomes a gas at normal temperature and pressure.
  • the raw material gas targeted by the liquefaction system 100 is a gas whose boiling point is extremely low near absolute zero and becomes a gas at normal temperature and normal pressure, such as hydrogen gas, helium gas, and neon gas.
  • the hydrogen gas is described as the source gas unless otherwise specified.
  • the liquefaction system 100 includes a raw material tank 1, a liquid hydrogen tank 2, a feed line 3, a plurality of heat exchangers 4a to 4e, a liquid reservoir 18, and a refrigerant circulation line 5.
  • the raw material tank 1 is a raw material gas supply source, and stores hydrogen gas at normal temperature and pressure.
  • the liquid hydrogen tank 2 stores liquid hydrogen obtained by liquefying hydrogen gas.
  • the feed line 3 connects between the raw material tank 1 and the liquid hydrogen tank 2.
  • the feed line 3 is provided with a feed compressor 11 and a Joule Thomson valve 12.
  • the feed line 3 sequentially passes through the five heat exchangers 4 a to 4 e and the liquid reservoir 18 between the feed compressor 11 and the Joule Thomson valve 12.
  • the Joule-Thomson valve 12 is provided on the upstream side of the liquid hydrogen tank 2, preferably immediately before the liquid hydrogen tank 2 (that is, on the downstream side of the liquid reservoir 18).
  • the hydrogen gas in the raw material tank 1 is sent to the liquid hydrogen tank 2 along the feed line 3.
  • hydrogen gas is pressurized by the feed compressor 11.
  • the room-temperature and high-pressure hydrogen gas that has passed through the feed compressor 11 passes through the heat exchangers 4a to 4e and the liquid reservoir 18 and is sequentially cooled while maintaining the high pressure.
  • the second-stage heat exchanger 4b is a liquid nitrogen tank that stores liquid nitrogen.
  • the hydrogen gas is cooled to about the temperature of liquid nitrogen by passing through the heat exchanger 4b.
  • the refrigerant circulation line 5 is connected to the other heat exchangers 4a, 4c, 4d, 4e and the liquid reservoir 18.
  • the hydrogen gas is cooled by heat exchange with the refrigerant flowing along the refrigerant circulation line 5 when passing through each of the heat exchangers 4a, 4c, 4d, 4e and the liquid reservoir 18.
  • the low-temperature and high-pressure hydrogen gas that has passed through the liquid reservoir 18 subsequently passes through the Joule-Thomson valve 12. Thereby, hydrogen gas expand
  • This liquid hydrogen is sent to the liquid hydrogen tank 2 and stored in the liquid hydrogen tank 2.
  • the refrigerant circulation line 5 circulates the raw material gas refrigerant.
  • the refrigerant circulation line 5 is connected to the feed line 3 through a refrigerant charging line 6.
  • the refrigerant filling line 6 is opened before the liquefaction system 100 is started. Thereby, the hydrogen gas in the raw material tank 1 can be filled in the refrigerant circulation line 5.
  • the refrigerant filling line 6 is closed when the liquefaction system 100 is in operation. Thereby, the refrigerant circulation line 5 forms a closed loop, and hydrogen gas as the refrigerant circulates along the cooling circulation line 5.
  • the refrigerant is the same hydrogen gas as the source gas.
  • the high-pressure circulation system compressor 13H is provided in series with the low-pressure circulation system compressor 13L.
  • the high pressure expansion turbine 14H is provided in series with the low pressure expansion turbine 14L.
  • the low pressure circulation system compressor 13L compresses the refrigerant and guides it to the high pressure circulation system compressor 13H.
  • the high pressure circulation system compressor 13H compresses the refrigerant from the low pressure circulation system compressor 13L, and guides the compressed refrigerant to the high pressure expansion turbine 14H.
  • the refrigerant passes through the first-stage heat exchanger 4a and the second-stage heat exchanger 4b in this order in the process of being led to the high-pressure expansion turbine 14H.
  • the temperature of the refrigerant is lowered and the pressure is lowered by heat exchange with the cold described later.
  • Refrigerant cooled to about the temperature of liquid nitrogen is guided to the high-pressure expansion turbine 14H.
  • the high-pressure expansion turbine 14H lowers and lowers the temperature of the low-temperature and high-pressure refrigerant guided from the circulation system compressors 13L and 13H by expansion.
  • the refrigerant from the high-pressure expansion turbine 14H passes through the fourth-stage heat exchanger 4d and is guided to the low-pressure expansion turbine 14L.
  • the low-pressure expansion turbine 14L also lowers and lowers the temperature of the low-temperature and high-pressure refrigerant guided from the high-pressure expansion turbine 14H by expansion.
  • the refrigerant from the low-pressure expansion turbine 14L passes through the fifth-stage heat exchanger 4e, the fourth-stage heat exchanger 4d, the third-stage heat exchanger 4c, and the first-stage heat exchanger 4a in this order. Temperature.
  • the refrigerant that has passed through the first-stage heat exchanger 4a merges with the refrigerant compressed by the low-pressure circulation compressor 13L, and is returned to the inlet of the high-pressure circulation compressor 13H.
  • the refrigerant from the high-pressure circulation compressor 13H is divided into one that goes to the expansion turbines 14H and 14L and the one that goes to the liquid reservoir 18 after passing through the second-stage heat exchanger 4b.
  • the refrigerant traveling toward the liquid reservoir 18 further passes through the third-stage heat exchanger 4c, the fourth-stage heat exchanger 4d, and the fifth-stage heat exchanger 4e in this order to lower the temperature.
  • the refrigerant passes through the Joule-Thomson valve 15 and is liquefied, and then sent to the liquid reservoir 18.
  • the refrigerant in the liquid reservoir 18 cools the hydrogen gas sent to the liquid reservoir 18 along the feed line 3.
  • the refrigerant from the liquid reservoir 18 passes through the fifth-stage heat exchanger 4e, the fourth-stage heat exchanger 4d, the third-stage heat exchanger 4c, and the first-stage heat exchanger 4a in this order. After the temperature rises, it is returned to the inlet of the low-pressure circulation system compressor 13L.
  • the cooling of the refrigerant from the low pressure expansion turbine 14L to the high pressure circulation system compressor 13H and the cooling of the refrigerant from the liquid reservoir 18 to the low pressure circulation system compressor 13L. are used for cooling the source gas and the refrigerant.
  • FIG. 2 is a sectional view showing the structure of the high-pressure expansion turbine 14H shown in FIG.
  • the low-pressure expansion turbine 14L also has a structure similar to the structure shown in FIG.
  • the high-pressure expansion turbine 14 ⁇ / b> H includes a housing 21, a rotating shaft 22, and a turbine impeller 23.
  • the rotary shaft 22 extends in the vertical direction in the housing 21 and is supported so as to be rotatable around an axis in the vertical direction.
  • the turbine impeller 23 is formed at the lower end of the rotating shaft 22.
  • the housing 21 has a refrigerant inlet 24, a nozzle 25, and a refrigerant outlet 26.
  • the refrigerant inlet 24 opens at the bottom of the housing 21.
  • the nozzle 25 communicates with the refrigerant inlet 24 at one end and communicates with the accommodating portion of the turbine impeller 23 inside the housing 21 at the other end.
  • the refrigerant outlet 26 opens at the bottom center portion of the housing 21, whereby the accommodation portion of the turbine impeller 23 communicates with the outside of the housing 21.
  • the refrigerant inlet 24 is connected to a downstream end of a path from the high-pressure circulation compressor 13H toward the high-pressure expansion turbine 14H in the refrigerant circulation line 5.
  • the refrigerant outlet 26 is connected to the upstream end of the path from the high-pressure expansion turbine 14H to the low-pressure expansion turbine 14L via the heat exchanger 4d in the refrigerant circulation line 5.
  • the refrigerant from the high-pressure circulation compressor 13H flows into the housing 21 from the refrigerant inlet 24.
  • the refrigerant that has flowed into the refrigerant inlet 24 is injected from the other end of the nozzle 25 toward the turbine impeller 23.
  • the refrigerant expands and cools down as the turbine impeller 23 rotates, and then flows out of the housing 21 from the refrigerant outlet 26.
  • a static pressure gas bearing unit GB is provided in the housing 21, a static pressure gas bearing unit GB is provided.
  • the hydrostatic gas bearing unit GB has an upper hydrostatic thrust gas bearing 27, a lower hydrostatic thrust gas bearing 28, an upper hydrostatic journal gas bearing 29, a lower hydrostatic journal gas bearing 30, an upper block 31 and a lower block 32. ing.
  • These six parts 27 to 32 are formed in a substantially cylindrical shape, are provided so as to surround the outer peripheral side of the rotary shaft 22, and are arranged so as to be aligned along the axial direction of the rotary shaft 22.
  • the upper hydrostatic thrust gas bearing 27 and the lower hydrostatic thrust gas bearing 28 are arranged so as to sandwich the thrust collar 33 projecting in the radial direction from the upper and lower central portions of the rotating shaft 22, and from the outer edge of the thrust collar 33.
  • the upper hydrostatic journal gas bearing 29 and the upper hydrostatic thrust gas bearing 27 are arranged so as to sandwich the upper block 31 in the vertical direction.
  • the lower hydrostatic journal gas bearing 30 and the lower hydrostatic thrust gas bearing 28 are disposed so as to sandwich the lower block 32 in the vertical direction.
  • the static pressure gas bearing unit GB has a common air supply passage 34 and a common exhaust passage 35.
  • the common air supply passage 34 and the common exhaust passage 35 are formed at different positions in the circumferential direction, and extend in the axial direction so as to penetrate the six parts 27 to 32.
  • the common supply passage 34 is a passage through which bearing gas is supplied to the bearing gap of each static pressure gas bearing
  • the common exhaust passage 35 is a bearing gas discharged from the bearing gap of each static pressure gas bearing. It is a passage that flows through.
  • the bearing clearance of the upper hydrostatic thrust gas bearing 27 is formed between the lower end surface of the gas bearing 27 and the upper end surface of the thrust collar 33.
  • the bearing gap of the lower hydrostatic thrust gas bearing 28 is formed between the upper end surface of the gas bearing 28 and the lower end surface of the thrust collar 33.
  • the bearing clearance of the upper hydrostatic journal gas bearing 29 is formed between the inner peripheral surface of the gas bearing 29 and the outer peripheral surface of the rotary shaft 22.
  • the bearing gap of the lower hydrostatic journal gas bearing 30 is formed between the inner peripheral surface of the gas bearing 30 and the outer peripheral surface of the rotary shaft 22.
  • Each static pressure gas bearing 27, 28, 29, 30 has an air supply groove 36, 38, 40, 42 and an air supply port 37, 39, 41, 43.
  • the air supply grooves 36, 38, 40 and 42 extend from the common air supply passage 34 toward the inner peripheral side in the bearings 27, 28, 29 and 30.
  • the air supply ports 37, 39, 41, 43 communicate the corresponding air supply grooves 36, 38, 40, 42 with the bearing gap.
  • the air supply grooves 36 and 38 of the static pressure thrust gas bearings 27 and 28 extend in the axial direction
  • the air supply grooves 40 and 42 of the static pressure journal gas bearings 29 and 30 extend in the radial direction.
  • the air supply groove 40 is provided at intervals in the circumferential direction at each of two positions separated in the axial direction. The same applies to the air supply groove 42.
  • the upper block 31 and the lower block 32 have exhaust grooves 44 and 45.
  • the exhaust groove 44 of the upper block 31 communicates the inner peripheral side of the bearing gap of the upper hydrostatic thrust gas bearing 27 and the lower side of the bearing gap of the upper hydrostatic journal gas bearing 29 to the common exhaust passage 35.
  • the exhaust groove 45 of the lower block 32 communicates the inner peripheral side of the bearing gap of the lower hydrostatic thrust gas bearing 28 and the upper side of the bearing gap of the lower hydrostatic journal gas bearing 30 to the common exhaust passage 35.
  • the outer peripheral side of the bearing clearance of the static pressure thrust gas bearings 27 and 28 communicates with the common exhaust passage 35 via the exhaust groove 46 formed in the bearings 27 and 28.
  • the upper side of the bearing clearance of the upper hydrostatic journal gas bearing 29 communicates with the common exhaust passage 35 via an exhaust groove 47 formed in the housing 21.
  • the lower side of the bearing gap of the lower hydrostatic journal gas bearing 30 communicates with the common exhaust passage 35 via an exhaust groove 48 formed in the lower portion of the bearing 30.
  • the housing 21 has a bearing gas inlet 49 and a bearing gas outlet 50.
  • the bearing gas inlet 49 communicates with the common supply passage 34.
  • the bearing gas outlet 50 communicates with the common exhaust passage 35.
  • the bearing gas inlet 49 is connected to the downstream end of the bearing supply line 7.
  • the bearing supply line 7 supplies high-pressure bearing gas to the static pressure gas bearing unit GB in the housing 21 of the expansion turbine 14H.
  • the bearing gas supply source is the feed line 3 as described later, and hydrogen gas is used as the bearing gas.
  • the bearing gas outlet 50 is connected to the upstream end of the bearing gas return line 8.
  • Bearing gas from the bearing supply line 7 flows into the common supply passage 34 through the bearing gas inlet 49.
  • the bearing gas flowing into the common air supply passage 34 is injected into the bearing gaps of the static pressure gas bearings 27, 28, 29, and 30 through the air supply ports 37, 39, 41, and 43.
  • the bearing gas injected into the bearing gap is discharged to the common exhaust passage 35 through the exhaust grooves 44 to 48.
  • the bearing gas in the common exhaust passage 35 flows out of the housing 21 from the bearing gas outlet 50.
  • the bearing gas that has flowed out of the housing 21 is sent to the reuse destination along the bearing gas return line 8 in order to reuse the hydrogen gas.
  • the rotary shaft 22 By supplying the high-pressure bearing gas to the bearing gaps of the static pressure gas bearings 27 to 30 in this way, the rotary shaft 22 can be rotatably supported in the housing 21, and the radial load and thrust of the rotary shaft 22 can be supported.
  • the load can be favorably supported.
  • At the time of starting and stopping there is no friction between the outer peripheral surface of the rotating shaft 22 and the inner peripheral surfaces of the static pressure journal gas bearings 29 and 30. For this reason, the lifetime of the high pressure expansion turbine 14H and the static pressure journal gas bearings 29 and 30 can be extended.
  • a labyrinth structure 51 is provided between the bearing gap of the lower hydrostatic journal gas bearing 30 and the accommodating portion of the turbine impeller 23 inside the housing 21.
  • the bearing gas injected into the bearing gap of the gas bearing 30 can be satisfactorily suppressed from being drawn into the housing portion of the turbine impeller 23.
  • the bearing gas is the same as the source gas, and the refrigerant is the same as the source gas. For this reason, even if the bearing gas passes over the labyrinth structure 51 and is mixed into the refrigerant, there is no problem that different types of gas are mixed into the refrigerant.
  • FIG. 3 is a conceptual diagram showing a main configuration of the liquefaction system 100 shown in FIG.
  • the heat exchangers 4 b, 4 c, 4 d from the second stage to the fourth stage, the liquid reservoir 18, the refrigerant charging line 6, and the refrigerant looping line 5 are routed by the liquid reservoir 18 and low-pressure circulation. Illustration of the system compressor 13L is omitted.
  • the cooling circulation line 5 in the cooling circulation line 5, the forward path 5a from the outlet of the high pressure circulation system compressor 13H to the inlet of the low pressure expansion turbine 14L, and the outlet of the low pressure expansion turbine 14L, the high pressure circulation system compressor 13H.
  • a return path 5b leading to the entrance is shown.
  • Numerals 3a to 3d in FIG. 3 represent paths that form the feed line 3.
  • Reference numeral 3a is a first path from the raw material tank 1 (see FIG. 1) to the inlet of the feed compressor 11, and reference numeral 3b is a second path from the outlet of the feed compressor 11 to the first stage heat exchanger.
  • 3c is a third path from the first-stage heat exchanger 4a to the inlet of the Joule Thomson valve 12, and 3d is a fourth path from the outlet of the Joule Thomson valve 12 to the liquid hydrogen tank 2 (see FIG. 1). It is a route.
  • the liquefaction system 100 includes a control device 10.
  • the control device 10 is a microcomputer mainly composed of a CPU, a ROM, and an input / output interface.
  • a command to start the system, a command to stop the system, a set value of the liquefaction amount, and the like are input to the input side of the control device 10.
  • measured values of process data of the liquefaction system 100 are input to the input side of the control device 10.
  • a feed system compressor 11, a high pressure circulation system compressor 13H, a low pressure circulation system compressor 13L, a high pressure expansion turbine 14H, and a low pressure expansion turbine 14L are connected to the output side of the control device 10.
  • the CPU executes a control program stored in the ROM.
  • the CPU monitors the measured value of the process data, and the feed system compressor 11, the high pressure circulation system compressor 13H, the low pressure circulation system compressor 13L, the high pressure expansion turbine 14H, and the low pressure expansion turbine so that the liquefaction amount can be obtained as set. 14L is controlled.
  • the inlet pressure of the Joule-Thompson valve 12 is high regardless of the flow rate or liquefaction amount of the raw material gas. Therefore, the feed compressor 11 is controlled to operate at a constant pressure regardless of the set value of the liquefaction amount.
  • the circulating compressors 13H and 13L and the expansion turbines 14H and 14L are also controlled to perform rated operation.
  • the circulation system compressors 13H and 13L and the expansion turbines 14H and 14L are controlled to perform partial load operation.
  • the control device 10 controls the operations of the circulation system compressors 13H and 13L and the expansion turbines 14H and 14L so that the high load operation and the low load operation can be performed. For this reason, coldness corresponding to the set value of the flow rate or liquefaction amount of the source gas occurs. Thereby, when the set value of the liquefaction amount is small, it is possible to suitably prevent the high-pressure circulation system compressor 13H and the low-pressure circulation system compressor 13L from performing useless work and causing excessive cold.
  • Various methods can be used to realize this control. In short, any method can be used as long as it is a control method that varies the compressor load of the circulation system with respect to the set value of the load (liquefaction amount). May be.
  • FIG. 4 is a diagram showing the pressures of the raw material gas and the refrigerant with respect to the loads of the circulating compressors 13H and 13L.
  • the horizontal axis represents the load of the circulating compressors 13 ⁇ / b> H and 13 ⁇ / b> L (that is, corresponding to the set value of the liquefaction amount), and the vertical axis represents the pressure.
  • a line P3b represents the pressure of the source gas in the second path 3b of the feed line 3.
  • a line P5a represents the pressure of the refrigerant flowing in the forward path 5a of the refrigerant circulation line 5.
  • Line P0 is an example of the pressure required for the hydrostatic gas bearing unit GB to rotatably support the rotary shaft 22 while supporting the radial load and the thrust load of the rotary shaft 22.
  • the pressure (hereinafter referred to as “predetermined pressure”) to be secured as a minimum as the pressure of the bearing gas supplied to is expressed.
  • the predetermined pressure P0 is substantially constant regardless of changes in the loads on the circulating compressors 13H and 13L.
  • the pressure P3b of the raw material gas flowing through the second path 3b is also substantially constant regardless of changes in the loads on the circulating compressors 13H and 13L.
  • the pressure P3b is kept at a high value equal to or higher than the predetermined pressure P0 in order to promote liquefaction due to the Joule Thomson effect described above.
  • the pressure P5a of the refrigerant flowing in the forward path 5a changes according to changes in the loads on the circulating compressors 13H and 13L.
  • the pressure P5a becomes equal to the predetermined pressure P0.
  • the pressure P5a is equal to or higher than the predetermined pressure P0, while the circulation system compressor is higher than in the operation state S1.
  • the pressure P5a is less than the predetermined pressure P0.
  • the rotary shafts 22 of the expansion turbines 14H and 14L cannot be satisfactorily supported when the low load operation is performed.
  • a dedicated compressor must be provided in the bearing supply line 7.
  • the upstream end of the bearing supply line 7 is connected to the second path 3 b of the feed line 3, and the raw material gas flowing through the second path 3 b is used as a bearing gas supply source.
  • the source gas flowing through the second path 3b has a high pressure equal to or higher than the predetermined pressure P0 regardless of the set value of the liquefaction amount. Therefore, even if a dedicated compressor for boosting the bearing gas is not provided on the bearing supply line 7, the pressure of the predetermined pressure P0 or higher is obtained regardless of the operation state of the circulation system compressors 13H and 13L and the expansion turbines 14H and 14L.
  • the bearing gas can be stably supplied to the static pressure gas bearing unit GB.
  • the effects produced by the application of the static pressure gas bearings 27 to 30 can be obtained while preventing an increase in the cost of the liquefaction system 100. That is, the load capacity can be increased, and even if the liquefaction system 100 is repeatedly started and stopped, the wear of the static pressure gas bearing unit GB and the rotating shaft 22 is less likely to proceed.
  • the normal pressure source gas flows in the first path 3a, and the normal pressure source gas flows in the liquid state in the fourth path 3d.
  • the high-pressure source gas flows while maintaining a gas state toward the inlet of the Joule-Thompson valve 12 without reducing the pressure as much as possible. For this reason, the pressure of the raw material gas flowing through the third path 3c is also maintained at a high value equal to or higher than the predetermined pressure P0 regardless of changes in the loads on the circulation system compressors 13H and 13L.
  • the raw material gas flowing in the second path 3b disposed upstream of the first stage heat exchanger 4a in the portion where the raw material gas having a predetermined pressure P0 or higher flows in the gaseous state is used as the bearing gas. is doing. For this reason, bearing gas can be made into normal temperature.
  • the raw material gas flowing through the third path 3c may be used as bearing gas. In this case, the temperature difference between the refrigerant and the bearing gas in the housing 21 is reduced, and the thermal influence of the bearing gas on the refrigerant can be suppressed.
  • a pressure regulating valve 16 for reducing the pressure of the bearing gas is provided on the bearing supply line 7.
  • a pressure regulating valve 16 for reducing the pressure of the bearing gas is provided.
  • the pressure of the raw material gas flowing through the second path 3b is kept high enough to liquefy, and the pressure of the bearing gas supplied to the static pressure gas bearing unit GB is set to the rotary shaft. It is possible to achieve both the adjustment to the pressure required for the support of 22.
  • two expansion turbines 14H and 14L are provided on the refrigerant circulation line 5. Therefore, the downstream portion of the bearing supply line 7 is divided into two branches and connected to the respective bearing gas inlets of the two expansion turbines 14H and 14L. Thereby, high-pressure bearing gas can be stably supplied to the static pressure gas bearing provided in each expansion turbine. Since the bearing supply line 7 is bifurcated on the downstream side of the pressure regulating valve 16, the bearing gas after decompression adjustment can be supplied to any of the expansion turbines 14H and 14L.
  • the bearing gas return line 8 connects the bearing gas outlets 50 of the two expansion turbines 14H and 14L to the first path 3a of the feed line 3. For this reason, the bearing gas discharged from the bearing gas outlet 50 is returned to the first path 3a along the bearing gas return line 8 and reused as the raw material gas and the bearing gas.
  • the bearing gas has a high pressure at the bearing gas inlet 49, but the pressure is reduced by passing through the bearing gap, and the pressure becomes about normal pressure at the bearing gas outlet 50. For this reason, it is difficult to return the bearing gas to the second path 3b on the downstream side of the feed compressor 11. If the first path 3a is upstream of the feed compressor 11 as in the present embodiment, the bearing gas can be returned without increasing the pressure.
  • FIG. 5 is a conceptual diagram showing a main configuration of a liquefaction system 200 according to the second embodiment of the present invention.
  • the present embodiment will be described focusing on differences from the above-described embodiment.
  • the feed system compressor is not provided on the feed line 203.
  • the raw material tank 201 stores the raw material gas whose pressure has been increased in advance to the outlet pressure of the feed compressor 11 in the above embodiment.
  • the pressure of the gaseous source gas flowing from the raw material tank 201 to the inlet of the Joule Thomson valve 12 is equal to or higher than a predetermined pressure P0 regardless of the load of the high-pressure circulation compressor 13H or the like. Maintained at a high pressure.
  • the feed compressor does not necessarily have to be provided on the feed line 203.
  • the upstream end of the bearing supply line 7 can be connected to a path 203b from the raw material tank 201 to the first-stage heat exchanger 4a in the feed line 203.
  • high-pressure bearing gas can be stably supplied to the static pressure gas bearing unit GB.
  • the path 3c from the first stage heat exchanger 4a to the inlet of the Joule Thomson valve 12 is also a portion where the raw material gas having a pressure equal to or higher than the predetermined pressure P0 flows in a gaseous state
  • the upstream end of the bearing supply line 7 is connected to the path 3c. It may be connected to.
  • the temperature difference between the refrigerant and the bearing gas in the housing 21 is reduced, and the thermal influence of the bearing gas on the refrigerant can be suppressed.
  • the downstream end of the bearing gas return line 208 is connected to the feed line 203 and the bearing gas is reused as the source gas. Difficult to do. Therefore, as shown in FIG. 5, the downstream end of the bearing gas return line 208 can be connected to the return path 5b of the refrigerant circulation line. At this time, the downstream end of the bearing gas return line 208 is connected to a portion of the return path 5b where the refrigerant temperature is close to the bearing gas temperature, for example, the portion where the refrigerant returns from the first stage heat exchanger 4a to the circulation system compressor 13H. You may connect.
  • bearing gas Since the bearing gas is the same gas as the refrigerant, there is no problem that different types of gas are mixed into the refrigerant even if the bearing gas is reused as the refrigerant.
  • an adsorber that adsorbs impurities may be provided on the bearing gas return line 208.
  • FIG. 6 is a conceptual diagram showing the main configuration of a liquefaction system 300 according to the third embodiment of the present invention.
  • the present embodiment will be described focusing on differences from the above-described embodiment.
  • the liquefaction system 300 is provided with the feed system compressor 11 on the feed line 3 as in the first embodiment, and the bearing gas return line 308 is provided with a bearing gas outlet. 50 is connected to a path 3 a upstream of the feed compressor 11 in the feed line 3. Further, the liquefaction system 300 includes boil-off gas return lines 309 and 310 that return boil-off gas generated in the liquid hydrogen tank 302. The boil-off gas return lines 309 and 310 are connected to the bearing gas return line 308. For this reason, in the present embodiment, the boil-off gas can be reused as the raw material gas and the bearing gas together with the bearing gas.
  • the heat exchangers 4a to 4e, the liquid hydrogen reservoir 18, and the turbine portions of the expansion turbines 14H and 14L are accommodated in a cold box (cold box) for keeping them cold.
  • the boil-off gas in the liquid hydrogen tank 302 is at a low temperature near the boiling point of liquid hydrogen. Therefore, the boil-off gas return line 309 is provided between the liquid hydrogen tank 302 and the connection point with the bearing gas return line 308, the fifth-stage heat exchanger 4e, the fourth-stage heat exchanger 4d, and the third-stage heat exchanger 4d. It passes through the heat exchanger 4c and the first-stage heat exchanger 4a in this order. Thereby, the cooling of the boil-off gas can be used for cooling the raw material gas and the refrigerant flowing in the forward path 5a, and the load on the circulation system compressors 13H and 13L and the expansion turbines 14H and 14L on the refrigerant circulation line 5 can be reduced. it can.
  • the boil-off gas return line 310 does not pass any heat exchanger between the liquid hydrogen tank 302 and the connection point with the bearing gas return line 310. Instead, a heater 311 for heating the boil-off gas from the liquid hydrogen tank 302 toward the bearing gas return line 308 is provided on the boil-off gas return line 310. Thereby, the temperature difference can be reduced and the boil-off gas can be reused.
  • the boil-off gas return line according to the third embodiment may be applied to the liquefaction system 200 according to the second embodiment. Even if a compressor is provided on the feed line 3, the downstream end of the bearing gas return line may be connected to the forward path of the refrigerant circulation line, and then the boil-off gas return line is applied. Also good.
  • boil-off gas return lines 309 and 310 may be omitted.
  • the liquefaction system may be configured to be able to switch which line is used to return the boil-off gas. For this switching, an open / close valve may be provided in each line.
  • the source gas supply source is a source tank.
  • the source source may be a plant that generates source gas.
  • the normal pressure or high pressure generated in the plant may be used.
  • Source gas is fed into the feed line 3.
  • source gas was demonstrated as hydrogen gas, this invention can be applied suitably also to the system which produces liquid helium and liquid neon.
  • the present invention can stably supply a gas exceeding the pressure required to support the rotating shaft of the expansion turbine to the static pressure gas bearing without providing a dedicated compressor in the line supplying the gas to the static pressure gas bearing. Therefore, the present invention can be widely used in a liquefaction system including a static pressure gas bearing that supports a rotating shaft of an expansion turbine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

 液化システム(100)が、原料ガスの圧力が所定部分(3b,3c)で所定圧(P0)以上に保たれるように原料供給源(1)からの原料ガスを送るフィードライン(3)と、冷媒を循環させるための冷媒循環ライン(5)と、所定圧(P0)以上のガスの供給を受けて膨張タービン(14H,14L)の回転軸(22)を回転可能に支持する静圧気体軸受(GB)と、静圧気体軸受(GB)にガスを供給するために、フィードライン(3)の所定部分(3b,3c)と静圧気体軸受(GB)のガス入口(49)とを接続する軸受供給ライン(7)と、を備えている。

Description

液化システム
 本発明は、原料ガスを液化するための液化システムに関する。
 従来、例えば水素ガス、ヘリウムガス及びネオンガスなど常温常圧で気体となる原料ガスを液化する液化システムが良く知られている。液化システムは、原料ガスを送るフィードライン、冷媒を循環させる冷媒循環ライン、及び冷媒で原料ガスを冷却するための熱交換器を備えている。冷媒循環ラインを循環する過程で、冷媒は、圧縮機で圧縮され、膨張タービンで断熱膨張して降温し、熱交換器で原料ガスとの熱交換により昇温し、圧縮機へ戻る。
 膨張タービンで冷媒を断熱膨張する場合、膨張タービンの回転軸を支持するための軸受が必要になる。軸受に液体軸受が適用されると、オイル等の潤滑剤が膨張タービンを通過する冷媒に混じり、冷媒循環ラインに潤滑剤が流入するおそれがある。このため、軸受には、冷媒と同一のガスを潤滑剤とする気体軸受を適用することが好ましい(特許文献1、2及び非特許文献1参照)。
 気体軸受は、静圧気体軸受と動圧気体軸受とに大別される。静圧気体軸受は、動圧気体軸受と比べて負荷容量が高い点、液化システムの始動時及び停止時に軸受孔の表面と回転軸の表面との間の摩擦が生じにくい点で有利である。
特開2000-55050号公報 特開平6-94032号公報
熊木他:"Linde社製新型ヘリウム液化機シリーズとその運転制御", 太陽日酸技報, No. 25, pp. 44-46, (2006)
 しかし、静圧気体軸受を適用する場合、回転軸の支持に必要な圧力以上のガスを軸受へと安定的に供給するため、高圧ガス源が必要になる。外部から静圧気体軸受へとガスを供給するためのラインが、フィードライン及び冷媒循環ラインと独立しているような場合、そのラインにガスを昇圧するための専用圧縮機を設ける必要がある。すると、液化システムのコストの増加を招く。
 静圧気体軸受へガスを供給するためのラインを、冷媒循環ラインのうち冷媒が圧縮機から膨張タービンに向かう部分から分岐させ、圧縮機出口圧力の冷媒を軸受に供給するガスに利用することも考えられる。しかし、液化量の需要が少ないときには、これに合わせて圧縮機が部分負荷運転を行うので、圧縮機の出口圧力が回転軸の支持に必要な圧力よりも低くなるおそれがある。したがって、この場合も、軸受に回転軸の支持に必要な圧力以上のガスを安定供給するためには、軸受にガスを供給するためのラインに専用圧縮機を設けなくてはならない。この専用圧縮機は、軸受にガスを供給するラインが独立している場合と比べて小型化可能になるかもしれないが、冷媒循環ライン上の圧縮機が定格運転しているときには無用になるおそれがある。
 このように、従来、膨張タービンの回転軸を支持するための軸受に静圧気体軸受を適用すると、軸受にガスを安定供給するために専用圧縮機が必要になる(特許文献1、2参照)。したがって、静圧気体軸受が膨張タービンの回転軸の支持に適していると考えられるにも関わらず、専用圧縮機の追加により生ずるコストに照らして、動圧気体軸受が適用されることがある(非特許文献1参照)。
 そこで本発明は、膨張タービンの回転軸を静圧気体軸受で支持するにあたり、軸受にガスを供給するラインに専用圧縮機を設けなくても、回転軸の支持に必要な圧力のガスを軸受に安定供給可能にすることを目的としている。
 本発明に係る液化システムは、原料ガスの圧力が所定部分で所定圧以上に保たれるように、原料供給源からの原料ガスを送るフィードラインと、冷媒を循環させるための冷媒循環ラインと、前記冷媒循環ラインを流れる前記冷媒により前記フィードラインを流れる前記原料ガスを冷却するための熱交換器と、前記冷媒循環ラインに設けられ、前記冷媒を膨張により温度低下させる膨張タービンと、前記冷媒循環ラインに設けられ、前記冷媒を圧縮して前記膨張タービンに導く循環系圧縮機と、前記冷媒循環ラインのうち前記循環系圧縮機から前記膨張タービンへ向かう部分を流れる前記冷媒が前記所定圧以上となる高負荷運転と、当該部分を流れる前記冷媒が前記所定圧未満となる低負荷運転とを実施可能なように前記膨張タービン及び前記循環系圧縮機の動作を制御する制御装置と、前記所定圧以上のガスの供給を受けて前記膨張タービンの回転軸を回転可能に支持する静圧気体軸受と、前記静圧気体軸受にガスを供給するために、前記フィードラインの前記所定部分と前記静圧気体軸受のガス入口とを接続する軸受供給ラインと、を備えている。
 前記構成によれば、軸受供給ラインは、フィードラインの所定部分と静圧供給軸受のガス入口との間を接続しているので、フィードラインを流れる原料ガスは、所定部分から軸受供給ラインにも流れていき、軸受供給ラインを介して静圧気体軸受へと供給される。そして、フィードラインを流れる原料ガスの圧力は、所定部分において所定圧以上に保たれている。したがって、循環系圧縮機の運転状態及び冷媒の圧力と関係なく、また、軸受供給ラインに専用の圧縮機を設けなくとも、静圧気体軸受に所定圧以上のガスを安定的に供給し、膨張タービンの回転軸を安定的に支持することができる。
 前記所定部分が、前記フィードラインのうち前記熱交換器の上流側に位置していてもよい。
 前記構成によれば、静圧気体軸受に常温のガスを供給することができる。
 前記軸受供給ラインに設けられ、前記軸受供給ラインを流れるガスの圧力を減圧するための圧力調整弁を更に備えていてもよい。
 前記構成によれば、原料ガスを液化するために十分に高い圧力に保つことと、静圧気体軸受に供給されるガスの圧力を回転軸の支持のため必要とされる圧力に調整することとを両立することができる。
 前記所定部分の上流側で前記フィードラインに設けられ、前記原料ガスを圧縮するフィード系圧縮機と、前記静圧気体軸受のガス出口から流出するガスを前記フィードラインに戻すために、前記ガス出口と、前記フィードラインのうち前記フィード系圧縮機の上流側部分との間を接続する軸受ガス戻しラインと、を更に備えていてもよい。
 前記構成によれば、静圧気体軸受から流出するガスを、原料ガス及び軸受に供給されるガスとして再利用することができる。
 ボイルオフガスを前記フィードラインに戻すためのボイルオフガス戻しラインを備え、前記ボイルオフガス戻しラインが前記軸受ガス戻しラインに接続されていてもよい。
 前記構成によれば、静圧気体軸受から流出するガスだけでなく、ボイルオフガスをも原料ガス及び軸受に供給されるガスとして再利用することができる。
 前記冷媒が、前記原料ガスと同一であってもよい。
 前記構成によれば、静圧気体軸受に供給されたガスが、膨張タービンで冷媒循環ラインを循環する冷媒と混合しても、異なる種類のガスの混入による問題が生じない。また、膨張タービンでは、冷媒の漏れが発生することもありえるが、仮に漏れが生じても、静圧気体軸受に供給されたガスによって、この漏れ分を補充することができる。
 前記静圧気体軸受のガス出口から流出するガスを前記冷媒循環ラインに送るために、前記ガス出口と、前記冷媒循環ラインのうち前記膨張タービンから前記圧縮機に向かう部分との間を接続する軸受ガス戻しラインを更に備えていてもよい。
 前記構成によれば、静圧気体軸受から流出するガスを冷媒として再利用することができる。なお、軸受に供給されるガスと冷媒とは同一であるので、異なる種類のガスの混入による問題を生じさせることなくガスの再利用をすることができる。
 以上のように、本発明によれば、静圧気体軸受にガスを供給するラインに専用の圧縮機を設けなくても、膨張タービンの回転軸の支持に必要とされる圧力のガスを静圧気体軸受に安定供給可能な液化システムを提供することができる。本発明の上記及び他の目的、目的、特徴、及び利点は、添付図面参照の下、以下の好適な実施態様の詳細な説明から明らかにされる。
図1は、本発明の第1実施形態に係る液化システムの全体構成を示す概念図である。 図2は、図1に示す膨張タービンの構造を示す断面図である。 図3は、図1に示す液化システムの要部構成を示す概念図である。 図4は、循環系圧縮機の負荷に対する原料ガス及び冷媒の圧力を示す線図である。 図5は、本発明の第2実施形態に係る液化システムの要部構成を示す概念図である。 図6は、本発明の第3実施形態に係る液化システムの要部構成を示す概念図である。
 以下、本発明の実施形態について図面を参照しながら説明する。なお、全ての図を通じて同一又は相当の要素には同一の符号を付し、その重複する詳細説明を省略する。
 (第1実施形態)
 図1は、本発明の第1実施形態に係る液化システム100の全体構成を示す概念図である。図1に示す液化システム100は、常温常圧で気体となる原料ガスを液化する。液化システム100が対象とする原料ガスは、沸点が絶対零度に近い極低温であって常温常圧で気体となるもの、例えば水素ガス、ヘリウムガス及びネオンガスである。本実施形態では、特段記載しない限り、原料ガスに水素ガスを適用するものとして説明する。
 液化システム100は、原料タンク1、液体水素タンク2、フィードライン3、複数の熱交換器4a~4e、液体溜18及び冷媒循環ライン5を備えている。原料タンク1は、原料ガスの供給源であり、常温常圧の水素ガスを貯留する。液体水素タンク2は、水素ガスを液化することによって得られる液体水素を貯留する。
 フィードライン3は、原料タンク1と液体水素タンク2との間を接続している。フィードライン3には、フィード系圧縮機11及びジュールトムソン弁12が設けられている。フィードライン3は、フィード系圧縮機11とジュールトムソン弁12との間において、5つの熱交換器4a~4e及び液体溜18を順次通過する。このように、ジュールトムソン弁12は、液体水素タンク2の上流側、望ましくは液体水素タンク2の直前(すなわち、液体溜18の下流側)に設けられている。
 原料タンク1内の水素ガスは、フィードライン3に沿って液体水素タンク2まで送られる。この過程で、まず、水素ガスがフィード系圧縮機11で昇圧される。フィード系圧縮機11を通過した常温高圧の水素ガスは、熱交換器4a~4e及び液体溜18を通過することで、高圧のまま順次冷却されていく。なお、2段目の熱交換器4bは、液体窒素を貯留した液体窒素タンクである。水素ガスは、当該熱交換器4bを通過することで、液体窒素の温度程度にまで冷却される。他の熱交換器4a,4c,4d,4e及び液体溜18には、冷媒循環ライン5が接続されている。水素ガスは、各熱交換器4a,4c,4d,4e及び液体溜18を通過するときに、冷媒循環ライン5に沿って流れる冷媒との熱交換により冷却される。液体溜18を通過した低温高圧の水素ガスは、続いてジュールトムソン弁12を通過する。これにより、水素ガスは、膨張して液化し、低温常圧の液体状態となる。この液体状態の水素は、液体水素タンク2へと送られ、液体水素タンク2内に貯留される。
 冷媒循環ライン5は、原料ガスの冷媒を循環させる。冷媒循環ライン5は、冷媒充填ライン6を介してフィードライン3と接続されている。冷媒充填ライン6は液化システム100の始動前に開放される。これにより、原料タンク1内の水素ガスを冷媒循環ライン5に充填可能になる。冷媒充填ライン6は液化システム100の稼働時には閉鎖される。これにより、冷媒循環ライン5が閉ループを成し、冷媒としての水素ガスが冷却循環ライン5に沿って循環する。このように、本実施形態では、冷媒が、原料ガスと同一の水素ガスである。
 冷媒循環ライン5上には、2台の圧縮機(高圧循環系圧縮機13H及び低圧循環系圧縮機13L)と、2台の膨張タービン(高圧膨張タービン14H及び低圧膨張タービン14L)とが設けられている。高圧循環系圧縮機13Hは、低圧循環系圧縮機13Lと直列的に設けられている。高圧膨張タービン14Hは、低圧膨張タービン14Lと直列的に設けられている。低圧循環系圧縮機13Lは、冷媒を圧縮して高圧循環系圧縮機13Hに導く。高圧循環系圧縮機13Hは、低圧循環系圧縮機13Lからの冷媒を圧縮し、圧縮した冷媒を高圧膨張タービン14Hに導く。
 冷媒は、高圧膨張タービン14Hへと導かれる過程で、1段目の熱交換器4a及び2段目の熱交換器4bをこの順で通過する。これにより、冷媒は、後述する寒冷との熱交換により、降温及び降圧していく。高圧膨張タービン14Hには、液体窒素の温度程度まで冷却された冷媒が導かれる。高圧膨張タービン14Hは、循環系圧縮機13L,13Hから導かれた低温高圧の冷媒を、膨張により降温及び降圧させる。高圧膨張タービン14Hからの冷媒は、4段目の熱交換器4dを通過して、低圧膨張タービン14Lに導かれる。低圧膨張タービン14Lも、高圧膨張タービン14Hから導かれた低温高圧の冷媒を、膨張により降温及び降圧させる。
 低圧膨張タービン14Lからの冷媒は、5段目の熱交換器4e、4段目の熱交換器4d、3段目の熱交換器4c及び1段目の熱交換器4aをこの順で通過して昇温する。1段目の熱交換器4aを通過した冷媒は、低圧循環系圧縮機13Lにより圧縮された冷媒と合流し、高圧循環系圧縮機13Hの入口へと戻される。
 また、高圧循環系圧縮機13Hからの冷媒は、2段目の熱交換器4bを通過した後、前述した膨張タービン14H,14Lに向かうものと、液体溜18に向かうものとで分かれる。液体溜18に向かう冷媒は、更に3段目の熱交換器4c、4段目の熱交換器4d及び5段目の熱交換器4eをこの順で通過して降温する。その後、当該冷媒は、ジュールトムソン弁15を通過して液化された後、液体溜18へと送られる。液体溜18内の冷媒は、フィードライン3に沿って液体溜18に送られた水素ガスを冷却する。液体溜18からの冷媒は、5段目の熱交換器4e、4段目の熱交換器4d、3段目の熱交換器4c及び1段目の熱交換器4aをこの順で通過して昇温してから、低圧循環系圧縮機13Lの入口へと戻される。このように、熱交換器4a,4c,4d,4eにおいては、低圧膨張タービン14Lから高圧循環系圧縮機13Hに向かう冷媒の寒冷と、液体溜18から低圧循環系圧縮機13Lに向かう冷媒の寒冷とが、原料ガス及び冷媒の冷却に利用される。
 図2は、図1に示す高圧膨張タービン14Hの構造を示す断面図である。なお、低圧膨張タービン14Lも、図2に示す構造と同様の構造を有している。図2に示すように、高圧膨張タービン14Hは、ハウジング21、回転軸22及びタービンインペラ23を備えている。回転軸22は、ハウジング21内で上下方向に延び、上下方向の軸線回りに回転可能に支持されている。タービンインペラ23は、回転軸22の下端部に形成されている。
 ハウジング21は、冷媒入口24、ノズル25及び冷媒出口26を有している。冷媒入口24は、ハウジング21の底部に開口している。ノズル25は、一端において冷媒入口24と連通し、他端においてハウジング21内部のタービンインペラ23の収容部分と連通している。冷媒出口26は、ハウジング21の底中央部に開口しており、これにより前記タービンインペラ23の収容部分がハウジング21外部に連通する。
 冷媒入口24は、冷媒循環ライン5のうち高圧循環系圧縮機13Hから高圧膨張タービン14Hに向かう経路の下流端部と接続されている。冷媒出口26は、冷媒循環ライン5のうち高圧膨張タービン14Hから熱交換器4dを経て低圧膨張タービン14Lに向かう経路の上流端部と接続されている。高圧循環系圧縮機13Hからの冷媒は、冷媒入口24からハウジング21内部に流入する。冷媒入口24に流入した冷媒は、ノズル25の前記他端よりタービンインペラ23に向けて噴射される。冷媒は、タービンインペラ23の回転に伴い膨張及び降温した後に、冷媒出口26からハウジング21外部に流出する。
 ハウジング21内には、静圧気体軸受ユニットGBが設けられている。静圧気体軸受ユニットGBは、上静圧スラスト気体軸受27、下静圧スラスト気体軸受28、上静圧ジャーナル気体軸受29、下静圧ジャーナル気体軸受30、上ブロック31及び下ブロック32を有している。これら6つの部品27~32は、略円筒状に形成され、回転軸22の外周側を取り囲むようにして設けられ、回転軸22の軸線方向に沿って並ぶように配置されている。上静圧スラスト気体軸受27及び下静圧スラスト気体軸受28は、回転軸22の上下中央部から径方向に突出するスラストカラー33を上下方向に挟むようにして配置され、また、スラストカラー33の外縁よりも外周側で互いに接触している。上静圧ジャーナル気体軸受29及び上静圧スラスト気体軸受27は、上ブロック31を上下方向に挟むようにして配置されている。下静圧ジャーナル気体軸受30及び下静圧スラスト気体軸受28は、下ブロック32を上下方向に挟むようにして配置されている。
 静圧気体軸受ユニットGBは、共通給気通路34と共通排気通路35とを有している。共通給気通路34及び共通排気通路35は、周方向に異なる位置に形成され、6つの部品27~32を貫くようにして軸線方向に延びている。共通給気通路34は、軸受ガスを各静圧気体軸受の軸受隙間に供給される軸受ガスが流れる通路であり、共通排気通路35は、各静圧気体軸受の軸受隙間から排出された軸受ガスが流れる通路である。なお、上静圧スラスト気体軸受27の軸受隙間は、気体軸受27の下端面とスラストカラー33の上端面との間に形成される。下静圧スラスト気体軸受28の軸受隙間は、気体軸受28の上端面とスラストカラー33の下端面との間に形成される。上静圧ジャーナル気体軸受29の軸受隙間は、気体軸受29の内周面と回転軸22の外周面との間に形成される。下静圧ジャーナル気体軸受30の軸受隙間は、気体軸受30の内周面と回転軸22の外周面との間に形成される。
 各静圧気体軸受27,28,29,30は、給気溝36,38,40,42と、給気口37,39,41,43とを有している。給気溝36,38,40,42は、軸受27,28,29,30内を共通給気通路34から内周側に向けて延びている。給気口37,39,41,43は、対応する給気溝36,38,40,42を軸受隙間に連通させる。静圧スラスト気体軸受27,28の給気溝36,38は軸線方向に延びており、静圧ジャーナル気体軸受29,30の給気溝40,42は、径方向に延びている。給気溝40は、軸線方向に離れた2つの位置の各々にて、周方向に間隔をおいて設けられている。給気溝42も同様である。
 上ブロック31及び下ブロック32は、排気溝44,45を有している。上ブロック31の排気溝44は、上静圧スラスト気体軸受27の軸受隙間の内周側及び上静圧ジャーナル気体軸受29の軸受隙間の下側を共通排気通路35に連通させる。下ブロック32の排気溝45は、下静圧スラスト気体軸受28の軸受隙間の内周側及び下静圧ジャーナル気体軸受30の軸受隙間の上側を共通排気通路35に連通させる。なお、静圧スラスト気体軸受27,28の軸受隙間の外周側は、これら軸受27,28に形成された排気溝46を介し共通排気通路35に連通している。上静圧ジャーナル気体軸受29の軸受隙間の上側は、ハウジング21に形成された排気溝47を介し共通排気通路35に連通している。下静圧ジャーナル気体軸受30の軸受隙間の下側は、この軸受30の下部に形成された排気溝48を介し共通排気通路35に連通している。
 ハウジング21は、軸受ガス入口49及び軸受ガス出口50を有している。軸受ガス入口49は、共通給気通路34と連通している。軸受ガス出口50は、共通排気通路35と連通している。軸受ガス入口49は、軸受供給ライン7の下流端部と接続される。軸受供給ライン7は、膨張タービン14Hのハウジング21内の静圧気体軸受ユニットGBに高圧の軸受ガスを供給する。本実施形態では、軸受ガスの供給源が後述するとおりフィードライン3であり、軸受ガスに水素ガスが利用される。軸受ガス出口50は、軸受ガス戻しライン8の上流端部と接続される。
 軸受供給ライン7からの軸受ガスは、軸受ガス入口49を介して共通給気通路34に流入する。共通給気通路34に流入した軸受ガスは、給気口37,39,41,43より、各静圧気体軸受27,28,29,30の軸受隙間に噴射される。軸受隙間に噴射された軸受ガスは、排気溝44~48を介して共通排気通路35に排出される。共通排気通路35内の軸受ガスは、軸受ガス出口50からハウジング21外部に流出する。ハウジング21外部に流出した軸受ガスは、水素ガスの再利用のため、軸受ガス戻しライン8に沿って再利用先へと送られる。
 このように静圧気体軸受27~30の軸受隙間に高圧の軸受ガスが供給されることにより、回転軸22をハウジング21内で回転可能に支持することができ、回転軸22のラジアル荷重及びスラスト荷重を良好に支持することができる。起動時及び停止時に、回転軸22の外周面と、静圧ジャーナル気体軸受29,30の内周面との間で摩擦が生じない。このため、高圧膨張タービン14H及び静圧ジャーナル気体軸受29,30の長寿命化を図ることができる。なお、下静圧ジャーナル気体軸受30の軸受隙間と、ハウジング21内部のタービンインペラ23の収容部分との間には、ラビリンス構造51が設けられている。このため、気体軸受30の軸受隙間に噴射された軸受ガスが、前記タービンインペラ23の収容部分に引き込まれるのを良好に抑制することができる。本実施形態では、軸受ガスが原料ガスと同一であり、冷媒も原料ガスと同一である。このため、仮に軸受ガスがラビリンス構造51を乗り越えて冷媒に混入しても、冷媒に異なる種類のガスが混入するという問題がなくなる。
 図3は、図1に示す液化システム100の要部構成を示す概念図である。図3では、説明の便宜上、2段目から4段目までの熱交換器4b,4c,4d、液体溜18、冷媒充填ライン6、冷媒循環ライン5のうち液体溜18で折り返すルート及び低圧循環系圧縮機13Lの図示を省略する。図3には、冷却循環ライン5のうち、高圧循環系圧縮機13Hの出口から低圧膨張タービン14Lの入口に向かうまでの往路5a、及び、低圧膨張タービン14Lの出口から高圧循環系圧縮機13Hの入口に向かうまでの復路5bが示されている。
 図3中符号3a~3dは、フィードライン3を成す経路を表わしている。符号3aは、原料タンク1(図1参照)からフィード系圧縮機11の入口に向かう第1経路、符号3bは、フィード系圧縮機11の出口から1段目の熱交換器に向かう第2経路、符号3cは、1段目の熱交換器4aからジュールトムソン弁12の入口に向かう第3経路、符号3dは、ジュールトムソン弁12の出口から液体水素タンク2(図1参照)に向かう第4経路である。
 図3に示すように、液化システム100は、制御装置10を備えている。制御装置10は、CPU、ROM及び入出力インターフェイスを主体として構成されたマイクロコンピュータである。制御装置10の入力側には、システムを起動させる指令、停止させる指令、液化量の設定値などが入力される。また、制御装置10の入力側には、液化システム100のプロセスデータ(原料ガス及び冷媒の温度、圧力、流量や、液化量など)の測定値が入力される。制御装置10の出力側には、フィード系圧縮機11、高圧循環系圧縮機13H、低圧循環系圧縮機13L、高圧膨張タービン14H及び低圧膨張タービン14Lが接続されている。CPUは、ROMに記憶されている制御プログラムを実行する。CPUは、プロセスデータの測定値を監視しながら、液化量が設定どおり得られるようにフィード系圧縮機11、高圧循環系圧縮機13H、低圧循環系圧縮機13L、高圧膨張タービン14H及び低圧膨張タービン14Lを制御する。
 ジュールトムソン効果による液化を促進するためには、原料ガスの流量又は液化量に関わらず、ジュールトムソン弁12の入口圧が高圧となっていることが好ましい。そこで、フィード系圧縮機11は、液化量の設定値に関わらず一定圧運転するように制御される。液化量の設定値が定格であるとき、循環系圧縮機13H,13L及び膨張タービン14H,14Lも定格運転するよう制御される。一方、液化量の設定値が定格未満であるとき、循環系圧縮機13H,13L及び膨張タービン14H,14Lは部分負荷運転するように制御される。このように、制御装置10は、高負荷運転と低負荷運転とを実施可能なように循環系圧縮機13H,13L及び膨張タービン14H,14Lの動作を制御する。このため、原料ガスの流量又は液化量の設定値に見合った寒冷が発生する。これにより、液化量の設定値が小さいときに高圧循環系圧縮機13H及び低圧循環系圧縮機13Lが無駄な仕事をして過剰な寒冷が発生するのを好適に防止することができる。この制御を実現する方法としては様々なものを採用しうるが、要するに負荷(液化量)の設定値に対して循環系の圧縮機負荷を変動させる制御方法であれば、どのような方法が採用されてもよい。
 図4は、循環系圧縮機13H,13Lの負荷に対する原料ガス及び冷媒の圧力を示す線図である。図4において、横軸は、循環系圧縮機13H,13Lの負荷(すなわち液化量の設定値に相当)を表わし、縦軸は、圧力を表している。線P3bは、フィードライン3の第2経路3bにおける原料ガスの圧力を表している。線P5aは、冷媒循環ライン5の往路5aを流れる冷媒の圧力を表している。線P0は、静圧気体軸受ユニットGBが回転軸22のラジアル負荷及びスラスト負荷を支持しながら該回転軸22を回転可能に支持するために必要とされる圧力の一例であり、軸受ガス入口49に供給される軸受ガスの圧力として最低限確保したい圧力(以下、「所定圧」と称す)を表わしている。
 図4に示すように、所定圧P0は、循環系圧縮機13H,13Lの負荷の変化に関わらず略一定である。第2経路3bを流れる原料ガスの圧力P3bも、循環系圧縮機13H,13Lの負荷の変化に関わらず略一定である。しかも、当該圧力P3bは、前述したジュールトムソン効果による液化促進のため、所定圧P0以上の高い値に保たれる。
 往路5aを流れる冷媒の圧力P5aは、循環系圧縮機13H,13Lの負荷の変化に応じて変化する。部分負荷運転を実施している或る運転状態S1で、当該圧力P5aは所定圧P0と等しくなる。当該運転状態S1よりも循環系圧縮機13L,13Hの負荷が高くなる高負荷運転を実施しているときには、当該圧力P5aは所定圧P0以上となる一方、当該運転状態S1よりも循環系圧縮機13L,13Hの負荷が低くなる低負荷運転を実施しているときには、当該圧力P5aが所定圧P0未満となる。仮に、往路5aを流れる冷媒が軸受ガスの供給源に利用されると、当該低負荷運転を実施しているときには、膨張タービン14H,14Lの各回転軸22を良好に支持することができなくなるので、軸受供給ライン7に専用圧縮機を設けなくてはならない。
 図3に戻り、本実施形態では、軸受供給ライン7の上流端が、フィードライン3の第2経路3bに接続されており、第2経路3bを流れる原料ガスが、軸受ガスの供給源に利用されている。前述のとおり、第2経路3bを流れる原料ガスは、液化量の設定値等に関わらず、所定圧P0以上の高圧を有している。このため、軸受供給ライン7上に軸受ガスを昇圧するための専用圧縮機を設けなくても、循環系圧縮機13H,13L及び膨張タービン14H,14Lの運転状態に関わらず、所定圧P0以上の軸受ガスを静圧気体軸受ユニットGBに安定して供給することができる。これにより、液化システム100のコストの増加を防ぎながら、静圧気体軸受27~30の適用によって生ずる効果を得ることができる。つまり、負荷容量を大きくすることができるし、液化システム100が起動及び停止を繰り返しても、静圧気体軸受ユニットGB及び回転軸22の磨耗が進行しにくくなる。
 第1経路3aでは常圧の原料ガスが流れ、第4経路3dでは常圧の原料ガスが液体状態で流れる。第3経路3cでは、高圧の原料ガスが、なるべく降圧することなく、ジュールトムソン弁12の入口に向かって気体状態を維持して流れる。このため、第3経路3cを流れる原料ガスの圧力も、循環系圧縮機13H,13Lの負荷の変化に関わらず、所定圧P0以上の高い値に保たれる。本実施形態では、所定圧P0以上の原料ガスが気体状態で流れる部分のうち、1段目の熱交換器4aよりも上流側に配置された第2経路3bを流れる原料ガスを軸受ガスに利用している。このため、軸受ガスを常温とすることができる。第3経路3cを流れる原料ガスが軸受ガスに利用されてもよい。この場合、ハウジング21内での冷媒と軸受ガスとの間の温度差が小さくなり、軸受ガスが冷媒に与える熱的影響を抑えることができる。
 軸受供給ライン7上には、軸受ガスの圧力を減圧するための圧力調整弁16が設けられている。このような圧力調整弁16を設けると、第2経路3bを流れる原料ガスの圧力を液化するために十分に高く保つことと、静圧気体軸受ユニットGBに供給される軸受ガスの圧力を回転軸22の支持のため必要とされる圧力に調整することとを両立することができる。
 本実施形態では、冷媒循環ライン5上に2つの膨張タービン14H,14Lが設けられている。そこで軸受供給ライン7の下流部が、二股に分かれており、2つの膨張タービン14H,14Lの各軸受ガス入口にそれぞれ接続されている。これにより、各膨張タービンに設けられた静圧気体軸受に高圧の軸受ガスを安定供給可能になる。軸受供給ライン7は、圧力調整弁16よりも下流側で二股に分岐しているので、何れの膨張タービン14H,14Lにも減圧調整後の軸受ガスを供給することができる。
 軸受ガス戻しライン8は、2つの膨張タービン14H,14Lの各軸受ガス出口50を、フィードライン3の第1経路3aに接続している。このため、軸受ガス出口50から排出された軸受ガスは、軸受ガス戻しライン8に沿って第1経路3aへ戻され、原料ガス及び軸受ガスとして再利用される。なお、軸受ガスは、軸受ガス入口49において高圧とされるが、軸受隙間を通過することで降圧し、軸受ガス出口50では常圧程度となる。このため、フィード系圧縮機11よりも下流側の第2経路3bに軸受ガスを戻すことは難しい。本実施形態のように、フィード系圧縮機11よりも上流側の第1経路3aであれば、軸受ガスを昇圧することなく戻すことができる。
 (第2実施形態)
 図5は、本発明の第2実施形態に係る液化システム200の要部構成を示す概念図である。以下、上記実施形態との相違を中心にして本実施形態について説明する。
 図5に示すように、本実施形態に係る液化システム200においては、フィード系圧縮機がフィードライン203上に設けられていない。替わりに、原料タンク201が、上記実施形態におけるフィード系圧縮機11の出口圧力相当にまで予め昇圧されている原料ガスを貯留している。この場合、フィードライン203のうち、原料タンク201からジュールトムソン弁12の入口までを流れている気体状態の原料ガスの圧力が、高圧循環系圧縮機13H等の負荷に関わらず、所定圧P0以上の高圧に維持される。このように、フィードライン203上には、フィード系圧縮機が必ずしも設けられていなくてもよい。
 また、この場合、図5に示すように、軸受供給ライン7の上流端を、フィードライン203のうち、原料タンク201から1段目の熱交換器4aまでの経路203bに接続することができる。これにより、上記実施形態と同様、静圧気体軸受ユニットGBに高圧の軸受ガスを安定供給可能となる。1段目の熱交換器4aからジュールトムソン弁12の入口までの経路3cも所定圧P0以上の圧力の原料ガスが気体状態で流れる部分となるので、軸受供給ライン7の上流端は当該経路3cに接続されていてもよい。この場合、上記実施形態と同様、ハウジング21内での冷媒と軸受ガスとの間の温度差が小さくなり、軸受ガスが冷媒に与える熱的影響を抑えることができる。
 本実施形態においては、フィードライン203に、低圧の原料ガスが気体状態で流れる部分が存在しないので、軸受ガス戻しライン208の下流端をフィードライン203に接続し、軸受ガスを原料ガスとして再利用することが難しい。そこで、図5に示すように、軸受ガス戻しライン208の下流端を冷媒循環ラインの復路5bに接続することができる。このとき、軸受ガス戻しライン208の下流端を、復路5bのうち冷媒の温度が軸受ガスの温度に近い部分、例えば1段目の熱交換器4aから循環系圧縮機13Hに冷媒が戻る部分に接続してもよい。軸受ガスは冷媒と同一のガスであるので、軸受ガスを冷媒として再利用しても、冷媒に異なる種類のガスが混入するという問題がない。軸受ガスに含まれる不純物が冷媒に混入するのを防ぐため、軸受ガス戻しライン208上に不純物を吸着する吸着器が設けられていてもよい。
 (第3実施形態)
 図6は、本発明の第3実施形態に係る液化システム300の要部構成を示す概念図である。以下、上記実施形態との相違を中心にして本実施形態について説明する。
 図6に示すように、本実施形態に係る液化システム300は、第1実施形態と同様、フィードライン3上にフィード系圧縮機11が設けられており、軸受ガス戻しライン308が、軸受ガス出口50をフィードライン3のうちフィード系圧縮機11よりも上流側の経路3aに接続している。また、液化システム300は、液体水素タンク302内で発生したボイルオフガスを戻すボイルオフガス戻しライン309,310を備えている。ボイルオフガス戻しライン309,310は、軸受ガス戻しライン308に接続されている。このため、本実施形態においては、軸受ガスとともにボイルオフガスも、原料ガス及び軸受ガスとして再利用することができる。なお、熱交換器4a~4e、液体水素溜18及び膨張タービン14H,14Lのタービン部は、これらを保冷するためのコールドボックス(低温ボックス)内に収容されている。
 液体水素タンク302内のボイルオフガスは、液体水素の沸点付近の低温となっている。そこで、ボイルオフガス戻しライン309は、液体水素タンク302から軸受ガス戻しライン308との接続点までの間で、5段目の熱交換器4e、4段目の熱交換器4d、3段目の熱交換器4c及び1段目の熱交換器4aをこの順で通過する。これにより、ボイルオフガスの寒冷を原料ガス及び往路5aを流れる冷媒の冷却に利用することができ、冷媒循環ライン5上の循環系圧縮機13H,13L及び膨張タービン14H,14Lの負荷を下げることができる。一方、ボイルオフガス戻しライン310は、液体水素タンク302から軸受ガス戻しライン310との接続点までの間で、何れの熱交換器も通過していない。替わりに、ボイルオフガス戻しライン310上には、液体水素タンク302から軸受ガス戻しライン308に向かうボイルオフガスを加熱するためのヒータ311が設けられている。これにより、温度差を小さくしてボイルオフガスを再利用することができる。
 上記説明から、当業者にとっては、本発明の多くの改良や他の実施形態が明らかである。従って、上記説明は、例示としてのみ解釈されるべきであり、本発明を実行する最良の態様を当業者に教示する目的で提供されたものである。本発明の精神を逸脱することなく、その構造及び/又は機能の詳細を実質的に変更できる。例えば、第2実施形態に係る液化システム200に、第3実施形態に係るボイルオフガス戻しラインが適用されてもよい。また、フィードライン3上に圧縮機が設けられている場合であっても、軸受ガス戻しラインの下流端を冷媒循環ラインの往路に接続してもよく、そのうえで、ボイルオフガス戻しラインが適用されてもよい。第3実施形態に係るボイルオフガス戻しライン309,310は、何れか一方が省略されていてもよい。また、両方のボイルオフ戻しライン309,310が適用される場合、液化システムは、何れのラインを利用してボイルオフガスを戻すのかを切換可能に構成されていてもよい。この切換えのため、各ラインに開閉弁が設けられていてもよい。
 また、上記実施形態においては、原料ガスの供給源を原料タンクとしているが、供給源は、原料ガスを生成するプラントであってもよく、この場合、当該プラントで生成された常圧又は高圧の原料ガスが、フィードライン3に送り込まれる。また、上記実施形態においては、原料ガスを水素ガスとして説明したが、液体ヘリウム、液体ネオンを生産するシステムにも本発明を好適に適用することができる。
 本発明は、静圧気体軸受にガスを供給するラインに専用の圧縮機を設けなくても、膨張タービンの回転軸の支持に必要とされる圧力以上のガスを静圧気体軸受に安定供給可能な液化システムを提供することができるという作用効果を奏し、膨張タービンの回転軸を支持する静圧気体軸受を備えた液化システムに広く利用することができる。
100、200、300 液化システム
1、201 原料タンク
2、302 液体水素タンク
3、203、303 フィードライン
4a、4b、4c、4d、4e 熱交換器
5 冷媒循環ライン
7 軸受供給ライン
8、208、308 軸受ガス戻しライン
309,310 ボイルオフガス戻しライン
11 フィード系圧縮機
12 ジュールトムソン弁
13H 高圧循環系圧縮機
13L 低圧循環系圧縮機
14H 高圧膨張タービン
14L 低圧膨張タービン
15 ジュールトムソン弁
16 圧力調整弁
18 液体溜
22 回転軸
27 上静圧スラスト気体軸受
28 下静圧スラスト気体軸受
29 上静圧ジャーナル気体軸受
30 下静圧ジャーナル気体軸受
GB 静圧気体軸受ユニット
49 軸受ガス入口
50 軸受ガス出口

Claims (7)

  1.  原料ガスの圧力が所定部分で所定圧以上に保たれるように、原料供給源からの原料ガスを送るフィードラインと、
     冷媒を循環させるための冷媒循環ラインと、
     前記冷媒循環ラインを流れる前記冷媒により前記フィードラインを流れる前記原料ガスを冷却するための熱交換器と、
     前記冷媒循環ラインに設けられ、前記冷媒を膨張により温度低下させる膨張タービンと、
     前記冷媒循環ラインに設けられ、前記冷媒を圧縮して前記膨張タービンに導く循環系圧縮機と、
     前記冷媒循環ラインのうち前記循環系圧縮機から前記膨張タービンへ向かう部分を流れる前記冷媒が前記所定圧以上となる高負荷運転と、当該部分を流れる前記冷媒が前記所定圧未満となる低負荷運転とを実施可能なように前記膨張タービン及び前記循環系圧縮機の動作を制御する制御装置と、
     前記所定圧以上のガスの供給を受けて前記膨張タービンの回転軸を回転可能に支持する静圧気体軸受と、
     前記静圧気体軸受にガスを供給するために、前記フィードラインの前記所定部分と前記静圧気体軸受のガス入口とを接続する軸受供給ラインと、を備えている、液化システム。
  2.  前記所定部分が、前記フィードラインのうち前記熱交換器の上流側に位置する、請求項1に記載の液化システム。
  3.  前記軸受供給ラインに設けられ、前記軸受供給ラインを流れるガスの圧力を減圧するための圧力調整弁を更に備える、請求項1に記載の液化システム。
  4.  前記所定部分の上流側で前記フィードラインに設けられ、前記原料ガスを圧縮するフィード系圧縮機と、
     前記静圧気体軸受のガス出口から流出するガスを前記フィードラインに戻すために、前記ガス出口と、前記フィードラインのうち前記フィード系圧縮機の上流側部分との間を接続する軸受ガス戻しラインと、を更に備える、請求項1に記載の液化システム。
  5.  ボイルオフガスを前記フィードラインに戻すためのボイルオフガス戻しラインを備え、
     前記ボイルオフガス戻しラインが前記軸受ガス戻しラインに接続されている、請求項4に記載の液化システム。
  6.  前記冷媒が、前記原料ガスと同一である、請求項1に記載の液化システム。
  7.  前記静圧気体軸受のガス出口から流出するガスを前記冷媒循環ラインに送るために、前記ガス出口と、前記冷媒循環ラインのうち前記膨張タービンから前記圧縮機に向かう部分との間を接続する軸受ガス戻しラインを更に備える、請求項6に記載の液化システム。
PCT/JP2011/006897 2011-04-08 2011-12-09 液化システム WO2012137270A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/110,647 US9644888B2 (en) 2011-04-08 2011-12-09 Liquefier system
CN201180069821.5A CN103477174B (zh) 2011-04-08 2011-12-09 液化系统
AU2011365154A AU2011365154B2 (en) 2011-04-08 2011-12-09 Liquefier system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011085979A JP5824229B2 (ja) 2011-04-08 2011-04-08 液化システム
JP2011-085979 2011-04-08

Publications (1)

Publication Number Publication Date
WO2012137270A1 true WO2012137270A1 (ja) 2012-10-11

Family

ID=46968711

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/006897 WO2012137270A1 (ja) 2011-04-08 2011-12-09 液化システム

Country Status (5)

Country Link
US (1) US9644888B2 (ja)
JP (1) JP5824229B2 (ja)
CN (1) CN103477174B (ja)
AU (1) AU2011365154B2 (ja)
WO (1) WO2012137270A1 (ja)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6591185B2 (ja) * 2015-03-26 2019-10-16 川崎重工業株式会社 原料ガス液化装置の起動方法及び停止方法、並びに原料ガス液化装置
JP6616109B2 (ja) * 2015-06-19 2019-12-04 川崎重工業株式会社 膨張タービン装置
JP6526492B2 (ja) * 2015-06-19 2019-06-05 川崎重工業株式会社 膨張タービン装置
EP3163236A1 (en) * 2015-10-27 2017-05-03 Linde Aktiengesellschaft Large-scale hydrogen liquefaction by means of a high pressure hydrogen refrigeration cycle combined to a novel single mixed-refrigerant precooling
EP3162871A1 (en) * 2015-10-27 2017-05-03 Linde Aktiengesellschaft Hydrogen-neon mixture refrigeration cycle for large-scale hydrogen cooling and liquefaction
US10309718B2 (en) * 2016-01-20 2019-06-04 Hylium Industries, Inc. Small-scale hydrogen liquefaction system equipped with cryocooler
US10612841B2 (en) 2016-01-20 2020-04-07 Hylium Industries, Inc Small-scale hydrogen liquefaction system equipped with cryocooler
JP6796505B2 (ja) * 2016-02-23 2020-12-09 トキコシステムソリューションズ株式会社 高圧水素の膨張タービン・コンプレッサ式充填システム
KR102173489B1 (ko) * 2016-02-23 2020-11-03 토키코 시스템 솔루션즈 가부시키가이샤 고압 수소의 팽창 터빈·컴프레서식 충전 시스템 및 그 제어 방법
US10247017B2 (en) * 2016-06-29 2019-04-02 General Electric Company System and method for gas bearing support of turbine
US10634425B2 (en) * 2016-08-05 2020-04-28 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Integration of industrial gas site with liquid hydrogen production
JP6741565B2 (ja) * 2016-12-08 2020-08-19 川崎重工業株式会社 原料ガス液化装置及びその制御方法
JP6845675B2 (ja) * 2016-12-08 2021-03-24 川崎重工業株式会社 原料ガス液化装置及びその制御方法
WO2018111067A1 (es) * 2016-12-15 2018-06-21 Encinas Luna Diego Francisco Sistema de licuefaccion de gases por medio de condensación flash, enfriador criogénico e intercambiador de calor bahx
JP6985886B2 (ja) * 2017-10-27 2021-12-22 川崎重工業株式会社 ガス膨張システム
JP7048258B2 (ja) * 2017-10-27 2022-04-05 川崎重工業株式会社 膨張タービン
GB2571569A (en) * 2018-03-02 2019-09-04 Linde Ag Cooling system
CN108444213B (zh) * 2018-05-28 2023-09-26 江苏国富氢能技术装备股份有限公司 氢气液化装置中的净化装置
CN108679929B (zh) * 2018-05-28 2024-05-03 张家港氢云新能源研究院有限公司 一种具备氢气成分检测功能的氢气液化系统
CN108547669A (zh) * 2018-05-28 2018-09-18 张家港富瑞氢能装备有限公司 一种氢液化用氢透平膨胀机组
CN108800752A (zh) * 2018-05-28 2018-11-13 张家港富瑞氢能装备有限公司 氢液化系统中的蒸发氢气回收利用装置
CN108759146A (zh) * 2018-05-28 2018-11-06 张家港富瑞氢能装备有限公司 一种氢透平膨胀装置
US20200141637A1 (en) * 2018-11-07 2020-05-07 L'Air Liquide, Société Anonyme pour I'Etude et I'Exploitation des Procédés Georges Claude Integration of hydrogen liquefaction with gas processing units
US11815309B2 (en) 2018-11-07 2023-11-14 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Integration of hydrogen liquefaction with gas processing units
GB2581135A (en) * 2019-01-30 2020-08-12 Linde Ag Cooling method for liquefying a feed gas
FR3097950B1 (fr) * 2019-06-27 2022-04-08 Air Liquide Installation et procédé de liquéfaction de gaz
US20220196323A1 (en) * 2020-12-22 2022-06-23 Caterpillar Inc. Cryogenic Containment System
US11391511B1 (en) 2021-01-10 2022-07-19 JTurbo Engineering & Technology, LLC Methods and systems for hydrogen liquefaction
MX2023014287A (es) * 2021-06-08 2024-01-18 Chart Energy & Chemicals Inc Sistema y metodo de licuefaccion de hidrogeno.
CN115929679A (zh) * 2022-11-30 2023-04-07 珠海格力电器股份有限公司 静压轴承组件、压缩机及冷媒循环系统
FR3145032A1 (fr) * 2023-01-16 2024-07-19 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Installation et procédé de liquéfaction d'un flux de fluide

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05172413A (ja) * 1991-12-20 1993-07-09 Kobe Steel Ltd 冷却システム
JP2000002481A (ja) * 1998-06-16 2000-01-07 Nippon Sanso Kk 窒素製造装置及び方法
US6523366B1 (en) * 2001-12-20 2003-02-25 Praxair Technology, Inc. Cryogenic neon refrigeration system
JP2005241232A (ja) * 2004-01-27 2005-09-08 Kansai Electric Power Co Inc:The 水素液化装置及び液体水素製造システム

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3105631A (en) * 1961-08-15 1963-10-01 Sulzer Ag Expansion turbine having a gas bearing
CH500006A (de) * 1968-08-23 1970-12-15 Escher Wyss Ag Syntheseanlage
DE1938831A1 (de) * 1969-07-30 1971-02-25 Linde Ag Wellenlagerung fuer eine Entspannungsturbine in einem Kaeltekreislauf
US5036671A (en) * 1990-02-06 1991-08-06 Liquid Air Engineering Company Method of liquefying natural gas
JP3103213B2 (ja) 1992-09-09 2000-10-30 株式会社神戸製鋼所 タービン式膨張機及びその静圧スラスト気体軸受
JP2000055050A (ja) 1998-08-04 2000-02-22 Nippon Sanso Kk 気体軸受の軸受支持構造
US7637122B2 (en) * 2001-05-04 2009-12-29 Battelle Energy Alliance, Llc Apparatus for the liquefaction of a gas and methods relating to same
DE10234505A1 (de) * 2002-07-23 2004-02-19 Enginion Ag Lagerung für eine dampfbetriebene Expansions-Kraftmaschine
CA2695348A1 (en) * 2007-08-24 2009-03-05 Exxonmobil Upstream Research Company Natural gas liquefaction process

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05172413A (ja) * 1991-12-20 1993-07-09 Kobe Steel Ltd 冷却システム
JP2000002481A (ja) * 1998-06-16 2000-01-07 Nippon Sanso Kk 窒素製造装置及び方法
US6523366B1 (en) * 2001-12-20 2003-02-25 Praxair Technology, Inc. Cryogenic neon refrigeration system
JP2005241232A (ja) * 2004-01-27 2005-09-08 Kansai Electric Power Co Inc:The 水素液化装置及び液体水素製造システム

Also Published As

Publication number Publication date
CN103477174A (zh) 2013-12-25
CN103477174B (zh) 2015-09-16
JP5824229B2 (ja) 2015-11-25
AU2011365154A1 (en) 2013-10-24
US20140053598A1 (en) 2014-02-27
JP2012219711A (ja) 2012-11-12
US9644888B2 (en) 2017-05-09
AU2011365154B2 (en) 2015-05-21

Similar Documents

Publication Publication Date Title
WO2012137270A1 (ja) 液化システム
US11493240B2 (en) Gas expansion system
ITMI20121625A1 (it) Circuito refrigerante per la liquefazione del gas naturale
JP6591185B2 (ja) 原料ガス液化装置の起動方法及び停止方法、並びに原料ガス液化装置
US11067320B2 (en) Gas recovery system for compressor, compressor system, and refrigeration cycle system
JP2016203852A (ja) ボイルオフガス利用システム
US11808502B2 (en) Raw material gas liquefying device and method of controlling this raw material gas liquefying device
CN107614836B (zh) 膨胀涡轮装置
US12072143B2 (en) Plant and method for liquefying gas
WO2019082643A1 (ja) 膨張タービン
JP2013210125A (ja) 液化装置及びその起動方法
US20230375259A1 (en) Facility and method for refrigeration and/or liquefaction of a fluid
US11143203B2 (en) Motor and bearing cooling paths
WO2024185590A1 (ja) ターボ機械
US11852166B2 (en) Motor and bearing cooling paths
US20240230220A1 (en) System and method for combined liquefaction and densification of oxygen
US20220196325A1 (en) Method and apparatus for improving start-up for an air separation apparatus
AU2023254090A1 (en) Cryogenic expansion turbine with magnetic bearings
WO2023201220A1 (en) Cryogenic expansion turbine with magnetic bearings
Agahi et al. High Performance cryogenic turboexpanders

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11863197

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2011365154

Country of ref document: AU

Date of ref document: 20111209

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14110647

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11863197

Country of ref document: EP

Kind code of ref document: A1