WO2012136912A1 - Particule d'un matériau à changement de phase avec couche d'enrobage - Google Patents

Particule d'un matériau à changement de phase avec couche d'enrobage Download PDF

Info

Publication number
WO2012136912A1
WO2012136912A1 PCT/FR2012/050514 FR2012050514W WO2012136912A1 WO 2012136912 A1 WO2012136912 A1 WO 2012136912A1 FR 2012050514 W FR2012050514 W FR 2012050514W WO 2012136912 A1 WO2012136912 A1 WO 2012136912A1
Authority
WO
WIPO (PCT)
Prior art keywords
mcp
particle
particles
coating layer
psa
Prior art date
Application number
PCT/FR2012/050514
Other languages
English (en)
Inventor
Vincent Gueret
Christian Monereau
Pluton Pullumbi
Original Assignee
L'air Liquide,Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by L'air Liquide,Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude filed Critical L'air Liquide,Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude
Priority to EP12713227.2A priority Critical patent/EP2694187A1/fr
Priority to US14/009,799 priority patent/US20140023853A1/en
Priority to CN2012800145387A priority patent/CN103476479A/zh
Publication of WO2012136912A1 publication Critical patent/WO2012136912A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/06Materials undergoing a change of physical state when used the change of state being from liquid to solid or vice versa
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0407Constructional details of adsorbing systems
    • B01D53/0438Cooling or heating systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28011Other properties, e.g. density, crush strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/2803Sorbents comprising a binder, e.g. for forming aggregated, agglomerated or granulated products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3028Granulating, agglomerating or aggregating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3042Use of binding agents; addition of materials ameliorating the mechanical properties of the produced sorbent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3202Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
    • B01J20/3206Organic carriers, supports or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3234Inorganic material layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3242Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
    • B01J20/3268Macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3291Characterised by the shape of the carrier, the coating or the obtained coated product
    • B01J20/3293Coatings on a core, the core being particle or fiber shaped, e.g. encapsulated particles, coated fibers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3291Characterised by the shape of the carrier, the coating or the obtained coated product
    • B01J20/3297Coatings in the shape of a sheet
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/06Materials undergoing a change of physical state when used the change of state being from liquid to solid or vice versa
    • C09K5/063Materials absorbing or liberating heat during crystallisation; Heat storage materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • F28D20/023Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat the latent heat storage material being enclosed in granular particles or dispersed in a porous, fibrous or cellular structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/10Nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/12Oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/16Hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/65Employing advanced heat integration, e.g. Pinch technology
    • B01D2259/655Employing advanced heat integration, e.g. Pinch technology using heat storage materials
    • B01D2259/657Employing advanced heat integration, e.g. Pinch technology using heat storage materials using latent heat, e.g. with phase change materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/50Aspects relating to the use of sorbent or filter aid materials
    • B01J2220/56Use in the form of a bed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles

Definitions

  • the invention relates to modifying the physical characteristics of particles of a phase change material (PCM) by coating said particles, mixing such a coated material with at least one adsorbent material, and the adsorption unit. implementing such a mixture.
  • PCM phase change material
  • thermocyclic process refers to any cyclic process in which certain stages are exothermic, ie accompanied by a release of heat, while certain other stages are endothermic, that is to say that is accompanied by a consumption of heat.
  • thermocyclic processes include pressure swing adsorption gas separation processes, and any method employing chemical conversion coupled with pressure swing adsorption cycles, as mentioned herein. above, to shift the balance of chemical reactions.
  • PSA process designates, unless otherwise stipulated otherwise, any pressure-swing adsorption gas separation process, implementing a cyclic variation of the pressure between a high pressure, so-called adsorption pressure, and a low pressure, called regeneration pressure. Therefore, the generic name PSA process is used interchangeably to designate the following cyclic processes:
  • a PSA process makes it possible to separate one or more gas molecules from a gaseous mixture containing them, by exploiting the difference in affinity of a given adsorbent or, where appropriate, of several adsorbents for these different molecules of gas.
  • the affinity of an adsorbent for a gaseous molecule depends on the structure and composition of the adsorbent, as well as the properties of the molecule, including its size, electronic structure and multipolar moments.
  • An adsorbent may be, for example, a zeolite, an activated carbon, an activated alumina, a silica gel, a carbon molecular sieve or not, a metallo-organic structure, one or more oxides or hydroxides of alkali or alkaline-earth metals, or a porous structure containing a substance capable of reacting reversibly with one or more gas molecules, such as amines, physical solvents, metal complexing agents, metal oxides or hydroxides, for example
  • Adsorption is an exothermic phenomenon, each molecule-adsorbent pair being characterized by an adsorption enthalpy (isosteric heat) or a reaction enthalpy in general. Symmetrically, the desorption is endothermic.
  • a PSA process is a cyclic process comprising several sequential stages of adsorption and desorption.
  • stages of the PSA cycle are exothermic, in particular the step of adsorption of the adsorbed gas molecules on the adsorbent, while other stages are endothermic, in particular the step of regeneration or desorption of the molecules. adsorbed on the adsorbent.
  • Thermal couplings between the adsorption phase and the regeneration phase have also been proposed, the adsorbent being placed in the successive passages of a plate exchanger, the circulation of the fluids then being organized so that the passages are alternately in phase. adsorption and desorption.
  • phase change material PCM
  • a phase change material PCM
  • the MPCs are in practice generally microencapsulated in a micronic solid shell, preferably based on polymers (melamine formaldehyde, acrylic, etc.).
  • Microencapsulated MCP available in powder form, can not be introduced as such into an adsorbent bed because they would be driven by the gas flows flowing in the adsorber.
  • WO 2008/037904 discloses a PSA-type process employing a bed comprising adsorbent particles and particles of a phase change material (PCM) in the form of agglomerates with a density different from that of the adsorbent but meeting the criteria of stability of the mixture based on the ratio on the one hand densities and on the other hand diameters of the agglomerates of MCP and adsorbent particles in the composite bed.
  • PCM phase change material
  • a problem that arises is to provide a mixture of adsorbent particles and MCP retaining physical and especially mechanical properties compatible with their industrial use in different types of adsorbers such as for example cylindrical adsorbers vertical axis or horizontal, radial adsorbers; and for the different applications envisaged.
  • the mixture must have sufficient characteristics in terms of crush strength, resistance to attrition , elasticity.
  • the crush resistance can be measured ball by ball or in bed.
  • the number of balls, the preliminary sieving of the balls, their residual water content, the way to increase the applied pressure - for example the speed - must be defined in order to have reliable and repetitive measurements.
  • Resistance to attrition generally consists of measuring the percentage of dust mass created after having subjected a certain quantity of adsorbent to a well-defined treatment. Here again, all the parameters must be defined to obtain useful measurements.
  • PCM particles having mechanical properties at least close to those of the adsorbents so that these particles are not the weakest link in the mixture by breaking or eroding.
  • the “equivalent diameter” of a particle is that of the sphere having the same specific surface area, the specific surface area being the surface area relative to the volume of the particle considered.
  • the equivalent diameter is the diameter of the particle.
  • the equivalent diameter is directly the diameter of the ball.
  • the equivalent diameter of a population of beads is the diameter of identical balls which for the same volume of bed would give the same total area.
  • crushed adsorbents a form in which we can in particular find some activated carbons, the particles are assimilated to spheres whose diameter distribution is determined by sieving, and then the preceding calculation formula is applied.
  • a solution of the invention is a particle of MCP consisting of an agglomerate comprising a phase change material (PCM) and a coating layer of a composition different from that of the agglomerate.
  • PCM phase change material
  • the solution consists only in modifying the surface of the agglomerate to increase its mechanical properties, that is to say to modify the composition or the distribution of the constituents used during the formation of the particle a little before 'get the desired size.
  • the agglomerate is coated with a layer having different mechanical properties generally improving the mechanical strength of the MCP particle: crush strength, attrition and elasticity.
  • this coating could also have other beneficial functions such as improving the fluid tightness of the particle that can be made non-porous, resistance to chemical attack, heat transfer ...
  • this coating process is not applicable to the adsorbent since in its case the transfer of the molecules of the fluid to the active sites of the adsorbent is predominant and any additional resistance to this transfer would be detrimental or even catastrophic. if we tended towards a tight barrier.
  • FIG. 1 represents a particle of MCP 1, according to the invention, consisting of an agglomerate of microcapsules of MCP 2 - optionally agglomerated with a binder 3- and coated with a coating layer 4.
  • One advantage of a coating layer is that in case of accidental release of microcapsule microcapsules of the aggregate, they are retained inside the coating layer and are not likely to be entrained. by the fluid.
  • the MCP particle according to the invention may have one or more of the following characteristics:
  • the thickness of the coating layer represents between 0.001 and 10% of the diameter of the particle, preferably between 0.01% and 1% of the diameter of the particle; Note that the thickness of the coating is a compromise between the amplitude of the changes in the mechanical or thermal properties that are sought and the useful volume of microcapsules MCP, that is to say in practice the amount of volume heat available during phase change. The thickness will also depend on the deposition process implemented. The nature of the deposit can be varied. It will depend mainly on the improvements that are sought;
  • the coating layer comprises an organic or inorganic material;
  • An organic coating will, for example, improve resistance to attrition and elasticity while an inorganic coating will promote heat conduction and hardness.
  • the content of organic or inorganic material is greater than the content of organic or inorganic material of the agglomerate
  • the organic material is at least one polymer;
  • the volume percentage of the at least one polymer in the coating layer is preferably greater than 50% and can reach 100%.
  • a fully polymer coating layer can render the MCP particle completely gas-tight, thereby making for improved performance of the adsorption unit that would use such MCP particles (by decreasing the volume of the MCP particle). gaseous in the adsorbent bed / MCP).
  • the polymer is preferably polyurethane and / or polycarbonate. These polymers are indeed one of the basic solutions for producing the envelope and more particularly the polyurethane because of its low cost and its physical properties.
  • the coating layer comprises solid particles of thermal conductivity greater than 0.5 W / m / K; the coating layer preferably comprises in volume between 0 and 50% of solid particles, more preferably between 0 and 15% of solid particles;
  • the coating layer comprises at least 0.5% of polymer and is impervious
  • the inorganic material is a metal compound, a metal or a metal alloy; Nitrides, oxides or carbides, or metal alloys as well as pure metals can be used.
  • a ferro magnetic character different from that of the adsorbent particles may allow magnetic separation of the particles of MCP and adsorbent.
  • phase change material content of the coating layer is lower than the content of phase change material of the agglomerate
  • the coating layer comprises graphite rods.
  • phase-change material is chosen from paraffins, fatty acids, nitrogen compounds, oxygenated compounds, phenyls and hydrated salts or a mixture of these compounds.
  • the thickness of the coating layer varies naturally locally for a given particle but also from particle to particle.
  • thickness of the layer is meant average thickness that can be measured from a sample of particles open in their middle.
  • Figure 8 shows a sample of 4 half-balls corresponding to a sample of 4 random particles.
  • the ratio can be defined as the average of the 8 EP thicknesses measured along the AA axis on the average of the 4 diameters D measured along the same axis.
  • the diameter of a sample of uncoated agglomerates and the diameter of a second sample of the same population (same manufacture) coated By difference of the diameters, it is easy to go back to the thickness of the coating.
  • the MCPs are in practice generally microencapsulated in a micronic solid shell, preferably based on polymers (melamine formaldehyde, acrylic, etc.).
  • paraffins in particular, are relatively easy to encapsulate, they are generally MCPs of choice over hydrated salts, even though paraffins have a latent heat that is generally lower than those of hydrated salts.
  • paraffins have other advantages such as reversal of phase change, chemical stability, defined phase change temperature or defined lower and higher phase change temperatures (i.e. there is no hysteresis effect), low cost, limited toxicity and wide choice of phase change temperatures depending on the number of carbon atoms and the structure of the molecule.
  • the microencapsulated paraffinic PCMs are in the form of a powder, each micro capsule constituting this powder being between 50 nm and 100 ⁇ m in diameter, preferably between 0.2 and 50 ⁇ m in diameter.
  • Each micro capsule has a thermal conductivity of the order of 0.1 to 0.2 W / m / K, depending on whether the paraffin is in the solid or liquid state inside the microcapsule.
  • Microencapsulated MCP available in powder form, can not be introduced as such into an adsorbent bed because they would be driven by the gas flows flowing in the adsorber.
  • these microcapsules are agglomerated.
  • agglomerate of micro-capsules is meant a solid of dimension greater than 0.1 mm manufactured according to one of the known techniques of powder agglomeration (granulation, extrusion, atomization, fluidized bed, etc.) and which may take various forms. , in particular a form of ball, extruded, pellet, cracked obtained by crushing and sieving blocks of higher dimensions, or wafer obtained by cutting previously compacted leaves, or other.
  • the agglomerate of microcapsules of MCP is formed by a wet-granulation process in a fluidized bed (spray coating) or by an extrusion process followed optionally by shaping in a fluidized bed granulation process.
  • the method of wet granulation in a fluidized bed consists in the progressive coating of the micro-capsules by spraying a suspension containing these PCMs, according to the technique known as spray-coating, on the agglomerates being formed and advantageously simultaneously dried.
  • the particles are kept in suspension in a stream of hot air while the coating suspension composed of a solvent (preferably water, MCP whose concentration in said suspension varies between 10% and 50% by weight as well as binders and if necessary surfactants) is sprayed.
  • a solvent preferably water, MCP whose concentration in said suspension varies between 10% and 50% by weight as well as binders and if necessary surfactants
  • the passage several times in the coating cycle makes it possible to uniformly cover the surface of the particles.
  • the temperature and the air flow, as well as the flow rate and the spray pressure are chosen so as to form a homogeneous layer and to prevent the formation of scales. In this way, a population of spheroidal particles of essentially identical diameter is obtained.
  • Extrusion is a (thermo) mechanical manufacturing / agglomeration process by which the powdery material is compressed (mixed or not with appropriate binders) and forced through a die having the section of agglomerated objects to be obtained. Extrusion is applied in various branches of industry, with materials such as metals, plastics, rubbers, composite materials, adsorbents, clay for the manufacture of cellular bricks, pasta.
  • a liquid (or wet) process in which the components of said coating are provided in the form of a solution, emulsion or dispersion containing the solvent (preferably water) as well as the compounds necessary for the formation of the coating obtainable by polymerization or copolymerization or crosslinking by one or more of the following: increasing temperature, increasing concentration, generating free radicals or surface chemical reaction; We speak of a process by dipping, spraying, coating ...
  • PVD Physical Vapor Deposition
  • CVD Chemical Vapor Deposition
  • the deposition of the thin layer is carried out by atomization and by drying a solution on the surface of each particle MCP
  • the processes in which the coating is carried out by the dry route are generally carried out either in a fluidized bed, under vacuum, or in a rotary chamber for moving particles or extrusions MCP.
  • the nature of the solution used to make this final coating will depend on the property or properties that it is desired to improve as well as on the nature of the agglomerate of MCP. which serves as a support.
  • the main compound of this solution may be an aqueous dispersion of polymers chosen from the following classes of polymers:
  • An aqueous polyurethane dispersion which comprises an aqueous medium with dispersed acrylic polyurethane particles, comprising a reaction product obtained by the polymerization of a pre-emulsion formed from hydrophobic monomers.
  • polymerizable ethylenically unsaturated, of a crosslinking monomer, and of an active prepolymer of hydrogenated acrylic polyurethane which is a reaction product obtained by the reaction of a polyol, an ethylenically unsaturated polymerizable monomer containing at least one group hydroxyl and optionally a carboxylic acid group, and a polyisocyanate.
  • Aqueous dispersions of polyurethane (PUD), either as a single component or combined with other polymers, are increasingly used in the field of coatings (paints, coatings, inks, varnishes, etc.), particularly because of legislative pressures for the reduction of VOC emissions (Compound Organic Volatile), but also because they have excellent properties, difficult to obtain with other polymers.
  • PUDs are a wide variety in macro molecular composition and therefore a wide range of performance characteristics; good physical properties (elasticity, elongation at break %), good resistance to shocks and abrasion; minimum temperatures of film formation and low glass transition, which has the consequence of being able to reduce the rate of coalescence and the possible addition of plasticizers; It can also be noted a good compatibility with pigments, even metallic; good adhesion to metals and plastics; good compatibility with other polymers, in particular acrylic polymers.
  • PUD are essentially high molecular weight linear polyurethanes / ureas stabilized in water into spherical particles with a diameter of less than 1 ⁇ .
  • the dispersibility of polyurethane in water is facilitated by the presence of ionic functions within the polymer chains.
  • the viscosity of the PUD is quite low (50 to 500 mPa.s), and it is sometimes necessary to add a thickener in order to obtain the desired rheological properties during the step of injection into the fluidized bed of MCP during the formation of film coating each particle MCP.
  • the dry matter content can vary from 30% for rigid products to 50% for flexible products, even 60% for textile coatings.
  • Flexible polymers are generally solvent-free, whereas rigid polymers contain polar, water-miscible cosolvents (such as tetrahydrofuran, dimethyl formamide, or N-methyl pyrrolidone) to help coalesce the particles.
  • the final products can combine flexible polymers, extremely flexible (used in textiles), rigid polymers, resistant to abrasion and shock, used in the design of varnish to protect wood, metal or plastics. In our case one of the desired properties was the improvement of the mechanical strength of the MCP particles. The choice of the PUDs was done to maximize this property.
  • aqueous dispersion of a polymer of the group of thermosetting resins consisting of resins based on phenol, urea, melamine, xylene, diallylphthalate, epoxy, aniline, furan, polyurethane.
  • thermoplastic elastomers consisting of styrene-type elastomers such as styrene-butadiene-styrene block copolymers or styrene-isoprene-styrene block copolymers or their hydrogenated form, elastomers of PVC, urethane or polyester type; polyamide, thermoplastic elastomers of polybutadiene type such as resins 1, 2-polybutadiene or trans-1,4-polybutadiene; chlorinated polyethylene;
  • the formation of the coating can be accelerated by photo-crosslinking in situ during the formation of the coating in the fluidized bed.
  • the UV radiation-enhanced crosslinking is a UV-initiated polymerization reaction which converts, in a fraction of a second, a coated liquid film applied to a substrate into a three-dimensional solid polymeric material.
  • the typical formulation of a photo-crosslinkable resin contains three basic ingredients: a photoinitiator, a monomer and an oligomer, the latter two being provided with reactive chemical functions.
  • Photocrosslinking under UV is a technique that uses UV light to start the crosslinking a liquid formulation (or a powder) and obtain a dry, solid and well-crosslinked coating.
  • UV crosslinkable coatings in a fluidized bed is one of the techniques which makes it possible to obtain excellent coatings of MCP particles having high performance for a relatively thin layer.
  • Crosslinking is the formation of one or more three-dimensional networks, either chemically or physically.
  • the crosslinked structures are most often prepared from linear or branched prepolymers of low molecular weight (resulting from partial polymerization), crosslinked under the effect of heat in the presence of a catalyst / hardener.
  • the polymerization is almost instantaneous, the passage from the molecule to the polymer material taking place in a few tenths of a second under intense irradiation; it requires, therefore, only a small energy expenditure;
  • the reaction can be triggered at a precise moment even inside the fluidized bed and stopped at any time, thanks to a temporal control of the irradiation;
  • the intensity of the light source is adjustable over a very wide range, which makes it possible to control the priming speed
  • the penetration depth of the light by acting on the wavelength of the light radiation and / or on the photoinitiator concentration, it is possible to adjust the penetration depth of the light and therefore the thickness of the polymer layer formed, which may vary from a few micrometers several millimeters;
  • the photoinitiated polymerizations are usually carried out at room temperature, with resins not containing a solvent, which reduces the emission of polluting vapors;
  • the polymeric substances produced by this process have technical characteristics which compare very favorably with those of the film polymerization products or by the use of aqueous dispersions and the characteristics obtained show good resistance to solvents and abrasion, excellent surface, very high degree of conversion, no smell.
  • Different crosslinking mechanisms are possible for the initiation of the polymerization.
  • the crosslinking mechanism by radical initiation is particularly suitable for methacrylate acrylates, poly-fumarates unsaturated polyesters, polyvinyls, polycarbonates, vinyl ethers and urethanes.
  • the cationic initiation crosslinking mechanism is suitable for aliphatic cyclo epoxies, carbohydrate ethers as well as epoxy / oxetane systems and vinyl ethers.
  • the hardness of the surface of a coating obtained by one of these methods of wet deposition in a fluidized bed, measured by indentation techniques, may vary from 10 N / mm 2 to about 1000 N / mm 2, but is, however, generally less than 500 N / mm 2 .
  • this coating of agglomerates of microcapsules of PCM can be done by various coating processes: in liquid or dry process: spraying, immersion, coating, contact with vapors and this in specific equipment (Of reactor type) or during transfer (moving belt, vibrating belt ...) .... but preferably this coating will be carried out in a vertical fluidized bed, continuous or discontinuous.
  • the coating step will be carried out in the same device as the agglomeration step of the MCP particles by modifying the moment the composition of the suspension injected into the reactor.
  • the injected solution is modified in order to proceed to the coating step.
  • This modification may consist in spraying only the coating product without microcapsule MCP (or with a percentage significantly lower than in the previous step of agglomeration, ie less than 50% of the previous amount, preferably less than 10 %).
  • It may consist in injecting a solution comprising one or more constituents of those used previously.
  • the present invention also relates to a mixture of MCP particles according to the invention and adsorbent particles.
  • Figure 2 shows a particle of MCP manufactured according to this method and further comprising in the center a core, for example an iron core.
  • the thickness of the coating layer 13 is small compared with the diameter of the particle produced.
  • the thickness of the coating will be from a few microns to a few tens of microns for particles of diameter generally between 0.5 and 5 millimeters.
  • the thickness to diameter ratio will range from about 5/5000 to 50 out of 500 (in microns), ie from 0.1% to 10%.
  • Figures 3 to 6 show enlargements of the coating zone.
  • Figure 3 shows a coating 23 containing solid particles 22. These solid particles can be ferro-magnetic to allow separation of MCP particles / adsorbent particles by magnetization; they can be heat conducting and improve the thermal transfer of the wall towards the microcapsules 21; they may consist of fin sorts on the surface of the particle to increase the heat transfer of the fluid to the PCM.
  • Figure 4 shows the simplest coating 32. This layer may contain a number of microcapsules MCP still free at the beginning of the coating.
  • the coating of FIG. 4 can be fluid-tight, in particular to a gas so that the apparent porosity of the coated PCM particle can be almost zero, let us say statistically less than 5% for a bed having a large number of people.
  • the coating can effectively seal the agglomerate to the treated fluid in the adsorber containing the adsorbent / MCP mixture.
  • Figures 5.a and 5.b illustrate a very thin coating 41 whose purpose is to enhance the adhesion of microcapsules 40 to the surface and to limit attrition.
  • Figure 6 shows a coating 50 trapping graphite rods or filaments 52 which can penetrate the inner agglomerate of MCP 51 and / or exit outwards.
  • a further advantage of such thin film-coated agglomerates is that the particle because of the lesser amount of binder - or the possibility of using other types of binder - may be more elastic than the uncoated particle.
  • the adsorbent / MCP mixture also has a greater elasticity which leads to reducing the stresses between particles and between particles and wall of the adsorber during operations.
  • FIGS. 7a and 7b respectively illustrate the contacts of the quasi-point type between adsorbent 60 and MCP 61 in the case of rigid particles and the contacts involving a not insignificant surface between rigid adsorbent 62 and relatively elastic MCP 63.
  • the present invention therefore also relates to mixtures in any proportion of coated PCM particles and adsorbent such as activated alumina, silica gel, zeolite, MOF, adsorbent exchanged or doped, "grafted" adsorbent that is to which we add a function, such as an amino function ...
  • adsorbent such as activated alumina, silica gel, zeolite, MOF, adsorbent exchanged or doped, "grafted" adsorbent that is to which we add a function, such as an amino function ...
  • the present invention also relates to an adsorption unit comprising a fixed bed or a moving bed in which is implemented a mixture according to the invention.
  • the adsorption unit may have one or more of the following characteristics:
  • the adsorption unit comprises a fixed bed and the proportion of MCP particles is substantially constant throughout the volume of the bed;
  • said unit is a PSA H2, a PSA CO2, a PSA 02 or a PSA N2.
  • the adsorption unit comprises a fixed bed
  • this bed may comprise one or more layers of adsorbent commonly called multi-bed in the technical language.
  • the invention therefore relates to the majority of PSA processes and more particularly in a nonlimiting manner, in addition to PSA H2, O2, N2, CO and CO2, the PSA fractionation of syngas in at least two fractions, PSA on natural gas to remove nitrogen, and PSA to split hydrocarbon mixtures.
  • the invention can be implemented, moreover, in a method:
  • PSA Ar makes it possible to produce oxygen with a purity higher than 93%, by preferentially adsorbing either argon or oxygen, present in a flow rich in 02 resulting for example from a PSA 02.
  • PSA Ar generally use a carbon molecular sieve or zeolite exchanged with silver (US-A-6,432,170).
  • PSA He which makes it possible to produce helium by preferentially adsorbing the other molecules present in the feed stream.
  • Any PSA allowing the separation between an alkene and an alkane typically PSA ethylene / ethane or propylene / propane, for example. These separations are based on a difference in adsorption kinetics of the molecules on a molecular sieve, carbon or not.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

Particule de MCP constituée d'un agglomérat comprenant un matériau à changement de phase (MCP) et d'une couche d'enrobage de composition différente de celle de l'agglomérat.

Description

Particule d'un matériau à changement de phase avec couche d'enrobage
L'invention concerne la modification des caractéristiques physiques des particules d'un matériau à changement de phase (MCP) par enrobage des dites particules, le mélange d'un tel matériau enrobé avec au moins un matériau adsorbant, et l'unité d'adsorption mettant en œuvre un tel mélange.
On appelle « procédé thermo-cyclique », tout procédé cyclique au cours duquel certaines étapes sont exothermiques, c'est-à-dire s 'accompagnant d'un dégagement de chaleur, alors que certaines autres étapes sont endothermiques, c'est-à-dire s 'accompagnant d'une consommation de chaleur.
Des exemples typiques de procédés thermo-cycliques selon la présente invention incluent les procédés de séparation de gaz par adsorption modulée en pression, et- tout procédé mettant en œuvre une conversion chimique couplée à des cycles d'adsorption modulée en pression, tels que mentionnés ci-dessus, permettant de déplacer l'équilibre des réactions chimiques.
Dans le cadre de la présente invention, on désigne, sauf stipulation autre, par les termes « procédé PSA », tout procédé de séparation de gaz par adsorption modulée en pression, mettant en œuvre une variation cyclique de la pression entre une pression haute, dite pression d'adsorption, et une pression basse, dite pression de régénération. Par conséquent, l'appellation générique procédé PSA est employée indifféremment pour désigner les procédés cycliques suivants :
- les procédés VSA dans lesquels Γ adsorption s'effectue sensiblement à la pression atmosphérique, dite « pression haute », c'est-à-dire entre 1 bara et 1,6 bara (bara = bar absolu), préférentiellement entre 1,1 et 1,5 bara, et la pression de désorption, dite « pression basse », est inférieure à la pression atmosphérique, typiquement entre 30 et 800 mbara, de préférence entre 100 et 600 mbara.
- les procédés VPSA ou MPSA dans lesquels l'adsorption s'effectue à une pression haute sensiblement supérieure à la pression atmosphérique, généralement entre 1,6 et 8 bara, préférentiellement entre 2 et 6 bara, et la pression basse est inférieure à la pression atmosphérique, typiquement entre 30 et 800 mbara, de préférence entre 100 et 600 mbara. - les procédés PSA dans lesquels l'adsorption s'effectue à une pression haute nettement supérieure à la pression atmosphérique, typiquement entre 1,6 et 50 bara, préférentiellement entre 2 et 35 bara, et la pression basse est supérieure ou sensiblement égale à la pression atmosphérique, donc entre 1 et 9 bara, de préférence entre 1,2 et 2,5 bara.
On parlera par la suite de « procédé RPSA » pour désigner des procédés PSA de cycle très rapide, en général inférieur à la minute.
De manière générale, un procédé PSA permet de séparer une ou plusieurs molécules de gaz d'un mélange gazeux les contenant, en exploitant la différence d'affinité d'un adsorbant donné ou, le cas échéant, de plusieurs adsorbants pour ces différentes molécules de gaz.
L'affinité d'un adsorbant pour une molécule gazeuse dépend de la structure et de la composition de l'adsorbant, ainsi que des propriétés de la molécule, notamment sa taille, sa structure électronique et ses moments multipolaires.
Un adsorbant peut être par exemple une zéolite, un charbon actif, une alumine activée, un gel de silice, un tamis moléculaire carboné ou non, une structure métallo-organique, un ou des oxydes ou des hydroxydes de métaux alcalins ou alcalino-terreux, ou une structure poreuse contenant une substance capable de réagir réversiblement avec une ou plusieurs molécules de gaz, telle que aminés, solvants physiques, complexants métalliques, oxydes ou hydroxydes métalliques par exemple
L'adsorption est un phénomène exothermique, chaque couple molécule-adsorbant étant caractérisé par une enthalpie d'adsorption (chaleur isostérique) ou une enthalpie de réaction en général. Symétriquement, la désorption est endothermique.
Par ailleurs, un procédé PSA est un procédé cyclique comprenant plusieurs étapes séquentielles d'adsorption et de désorption.
Par conséquent, certaines étapes du cycle d'un PSA sont exothermiques, notamment l'étape d'adsorption des molécules de gaz adsorbées sur l'adsorbant, alors que d'autres étapes sont endothermiques, notamment l'étape de régénération ou désorption des molécules adsorbées sur l'adsorbant.
Les effets thermiques qui résultent de Γ enthalpie d'adsorption ou de Γ enthalpie de réaction conduisent, d'une manière générale, à la propagation, à chaque cycle, d'une onde de chaleur à l'adsorption limitant les capacités d'adsorption et d'une onde de froid à la désorption limitant la désorption. Ce phénomène cyclique local de battements en température a un impact non négligeable sur les performances de séparation du procédé, telles que la productivité, le rendement de séparation et l'énergie spécifique de séparation, comme le rappelle le document EP-A- 1188470.
Ainsi, il a été montré que si les battements thermiques dus à l'enthalpie d'adsorption étaient totalement éradiqués, la productivité de certains PSA 02 industriels actuels serait améliorée de l'ordre de 50% et le rendement en oxygène serait amélioré de 10%. De même pour les autres types de PSA, l'atténuation des battements thermiques entraînerait une amélioration notable des performances de séparation.
Ce phénomène négatif ayant été identifié, plusieurs solutions ont déjà été décrites pour tenter de le diminuer ou de le supprimer.
Ainsi, il a été proposé d'augmenter la capacité calorifique du milieu adsorbant par addition de liant inerte, lors de la fabrication des particules, par dépôt du milieu adsorbant sur un noyau inerte, par adjonction de particules identiques à l'adsorbant mais inertes. Par exemple, dans le cas d'un procédé PSA 02, il a déjà été testé de réaliser l'adsorption de l'azote contenu dans l'air sur un lit composite constitué de zéolites 5 A et 3 A ne se différentiant que par la taille de leurs pores : seuls ceux de la zéolite 5A permettent l'adsorption d'azote, puisque ceux de la zéolite 3A sont de dimension trop faible.
Par ailleurs, il a été également décrit l'utilisation de moyens extérieurs de chauffage et/ou de refroidissement pour contre-balancer les effets thermiques de la désorption ou de l'adsorption, tels que l'utilisation d'échangeurs thermiques.
Des couplages thermiques entre phase d'adsorption et phase de régénération ont également été proposés, l'adsorbant étant disposé dans les passages successifs d'un échangeur à plaques, la circulation des fluides étant alors organisée de telle sorte que les passages soient alternativement en phase d'adsorption et de désorption.
Une autre solution permettant de diminuer l'amplitude des battements thermiques consiste à ajouter dans le lit d' adsorbant un matériau à changement de phase (MCP), comme décrit par le document US-A-4, 971,605. De cette manière, la chaleur d'adsorption et de désorption, ou une partie de cette chaleur, est absorbée sous forme de chaleur latente par le MCP, à la température, ou dans le domaine de températures, du changement de phase du MCP. Il est possible alors d'opérer l'unité PSA dans un mode plus proche de l'isotherme. En pratique, les matériaux à changement de phase (MCP) agissent comme des puits thermiques à leur température de changement de phase, ou sur leur domaine de températures de changement de phase compris entre une température inférieure et une température supérieure de changement de phase.
Pour pouvoir les manipuler, qu'ils soient à l'état solide ou liquide, les MPC sont en pratique généralement micro encapsulés dans une coquille solide micronique, préférentiellement à base de polymères (mélamine formaldéhyde, acrylique...).
Les MCP micro encapsulés, disponibles sous forme de poudre, ne peuvent pas être introduits tels quels dans un lit d'adsorbant car ils seraient entraînés par les flux de gaz circulant dans l'adsorbeur.
Le document WO 2008/037904 décrit un procédé de type PSA mettant en œuvre un lit comprenant des particules d'adsorbant et des particules d'un matériau à changement de phase (MCP) se présentant sous forme d'agglomérats de densité différente de celle de l'adsorbant mais respectant des critères de stabilité du mélange basés sur le rapport d'une part des densités et d'autre part des diamètres des agglomérats de MCP et des particules d'adsorbants dans le lit composite.
Une des solutions qui semble s'imposer pour améliorer la thermique des unités PSA et par là, leur performances, est donc de réaliser des mélanges d'adsorbant et d'agglomérat de MCP de dimension et masse volumique relativement proches pour éviter ou limiter les problèmes de ségrégation.
Cependant, un problème qui se pose est de fournir un mélange de particules d'adsorbant et de MCP conservant des propriétés physiques et en particulier mécaniques compatibles avec leur utilisation industrielle dans différents types d'adsorbeurs tels que par exemple les adsorbeurs cylindriques à axe vertical ou horizontal, les adsorbeurs radiaux ; et pour les différentes applications envisagées.
En effet, en particulier, pour éviter des problèmes de création de poussière, de débris de particules, de tassement local..., .le mélange doit présenter des caractéristiques suffisantes en terme de résistance à l'écrasement, de résistance à l'attrition, d'élasticité.
Pour l'adsorbant proprement dit, ces propriétés font généralement partie des
spécifications particulières définissant ses caractéristiques physiques. On trouve typiquement une valeur de résistance à l'écrasement, une valeur caractéristique de la résistance à l'érosion par frottement. Les méthodes de tests correspondantes sont soit normalisées, soit propres à chaque fournisseur.
Par exemple la résistance à l'écrasement peut être mesurée bille par bille ou en lit. Le nombre de billes, le tamisage préalable des billes, leur teneur résiduelle en eau, la façon d'augmenter la pression appliquée - par exemple la vitesse- doivent être définis afin d'avoir des mesures fiables et répétitives.
La résistance à l'attrition consiste généralement à mesurer le pourcentage masse de poussière crée après avoir soumis une certaine quantité d'adsorbant à un traitement bien défini. Là également, tous les paramètres doivent être définis pour obtenir des mesures utiles.
Il n'y a pas lieu ici de rentrer dans le détail de toutes les procédures existantes pour mesurer certaines propriétés mécaniques ou de lister les valeurs de ces propriétés pour l'ensemble des adsorbants mais juste de montrer que ces propriétés mécaniques font partie des caractéristiques de base des adsorbants et que des valeurs minimales ( par exemple résistance à l'écrasement)ou maximales (par exemple création de poussière par attrition) sont requises pour utiliser les adsorbants de façon efficace et sûre.
Il convient donc de produire des particules de PCM présentant des propriétés mécaniques voisines au minimum de celles des adsorbants de sorte que ces particules ne soient pas le maillon faible du mélange en se brisant ou s'érodant.
Notons que dans le cadre de la présente invention, on appellera « diamètre », le diamètre équivalent de la particule de MCP. Le « diamètre équivalent » d'une particule est celui de la sphère ayant la même surface spécifique, la surface spécifique étant la surface rapportée au volume de la particule considérée.
Ainsi, pour un bâtonnet de diamètre d et de longueur 1, on obtient un diamètre équivalent De tel que : De = 6 . 1 . d / (2 . d + 4 . 1)
Pour une pastille telle que d = 1, le diamètre équivalent est le diamètre de la particule. De façon générale, pour la majorité des géométries de particules utilisées de type cylindrique, on trouve un diamètre équivalent compris entre 0.75 et 1.3 fois le diamètre du cylindre.
Pour une bille sphéroïde, le diamètre équivalent est directement le diamètre de la bille. Pour une population de billes essentiellement sphériques mais dont les diamètres présentent une dispersion inhérente au procédé industriel de fabrication, on retient une définition classique : le diamètre équivalent d'une population de billes est le diamètre de billes identiques qui pour le même volume de lit donneraient la même surface totale. En effet, dès lors qu'on a déterminé la distribution en diamètre (c'est-à-dire qu'on a déterminé les différentes fractions Xi de diamètre Di, avec de préférence i supérieur ou égal à 5 pour obtenir une précision suffisante, par exemple par tamisage ou à partir d'appareils de traitement d'images ), on obtient le diamètre équivalent par la formule : 1 / De =∑i (Xi / Di)
Pour les adsorbants concassés, forme sous laquelle on peut en particulier trouver certains charbons actifs, on assimile les particules à des sphères dont on détermine la distribution en diamètre par tamisage, puis on applique la formule de calcul précédente.
Une solution de l'invention est une particule de MCP constituée d'un agglomérat comprenant un matériau à changement de phase (MCP) et d'une couche d'enrobage de composition différente de celle de l'agglomérat.
Aussi, la solution ne consiste qu'à modifier la surface de l'agglomérat pour accroître ses propriétés mécaniques, c'est-à-dire à modifier la composition ou la répartition des constituants utilisés lors de la formation de la particule un peu avant d'obtenir la taille souhaitée. De la sorte l'agglomérat se trouve enrobé d'une couche présentant des propriétés mécaniques différentes améliorant globalement la tenue mécanique de la particule de MCP : la résistance à l'écrasement, l'attrition et l'élasticité.
Il est apparu que cet enrobage pouvait avoir également d'autres fonctions bénéfiques telles que l'amélioration de l'étanchéité au fluide de la particule qui peut être rendue non poreuse, de la résistance aux attaques chimiques, du transfert thermique...
On notera que ce procédé d'enrobage n'est pas applicable à l'adsorbant car dans son cas, le transfert des molécules du fluide vers les sites actifs de l'adsorbant est prépondérant et toute résistance supplémentaire à ce transfert serait préjudiciable, voire catastrophique si on tendait vers une barrière étanche.
L'enrobage des particules de MCP n'est envisageable ici que parce que l'on a séparé physiquement les fonctions d'adsorption (la particule d'adsorbant) de la fonction puits thermique (la particule de MCP). La Figure 1 représente une particule de MCP 1, selon l'invention, constituée d'un agglomérat de micro capsules de MCP 2 - éventuellement agglomérées par un liant 3- et enrobée par une couche d'enrobage 4.
Un avantage que procure une couche d'enrobage est qu'en cas de libération accidentelle de micro capsules de MCP de l'agrégat, celles-ci sont retenues à l'intérieur de la couche d'enrobage et ne risquent pas d'être entraînées par le fluide.
A l'extrême, cela permet de limiter la quantité de liant au minimum pour assurer la cohésion de l'agglomérat pendant sa fabrication permettant ainsi d'obtenir une particule très riche en MCP et donc très performante thermiquement. Les propriétés mécaniques, en particulier de résistance à l'attrition sont alors essentiellement dues à la présence de la couche d'enrobage qui dans ce cas a un rôle de coque.
Selon le cas, la particule de MCP selon l'invention peut présenter une ou plusieurs des caractéristiques suivantes :
- l'épaisseur de la couche d'enrobage représente entre 0,001 et 10% du diamètre de la particule, de préférence entre 0,01% et 1% du diamètre de la particule ; Notons que l'épaisseur de l'enrobage est un compromis entre l'amplitude des modifications des propriétés mécaniques ou thermiques que l'on cherche et le volume utile de micro capsules de MCP, c'est-à-dire en pratique la quantité de chaleur volumique disponible lors du changement de phase. L'épaisseur va également dépendre du procédé de dépôt mis en œuvre. La nature du dépôt peut être variée. Elle dépendra essentiellement des améliorations que l'on recherche ;
- la couche d'enrobage comprend un matériau organique ou inorganique ; Un enrobage organique améliorera par exemple la résistance à l'attrition et l'élasticité alors qu'un enrobage inorganique favorisera la conduction thermique et la dureté.
- la teneur en matériau organique ou inorganique est supérieure à la teneur en matériau organique ou inorganique de l'agglomérat ;
- le matériau organique est au moins un polymère ; Le pourcentage volumique du au moins un polymère dans la couche d'enrobage est préférentiellement supérieure à 50%> et peut atteindre 100%. Une couche d'enrobage totalement en polymère peut rendre la particule de MCP totalement étanche au gaz et ce faisant aller dans le sens d'une amélioration des performances de l'unité d'adsorption qui utiliserait de telles particules de MCP (par diminution du volume gazeux dans le lit d'adsorbant/MCP). Le polymère est de préférence du polyuréthane et/ou du polycarbonate. Ces polymères constituent en effet une des solutions de base pour la réalisation de l'enveloppe et plus particulièrement le polyuréthane à cause de son faible coût et de ses propriétés physiques
- la couche d'enrobage comprend des particules solides de conductibilité thermique supérieure à 0,5 W/m/K ; la couche d'enrobage comprend de préférence en volume entre 0 et 50% de particules solides, plus préférentiellement entre 0 et 15% de particules solides ;
- la couche d'enrobage comprend au moins 0,5%> de polymère et est étanche ;
- le matériau inorganique est un composé métallique, un métal ou un alliage métallique ; Les nitrures, les oxydes ou les carbures métalliques, ou d'alliages métalliques ainsi que des métaux purs peuvent être utilisés. Un caractère ferro magnétique différent de celui des particules d'adsorbant, pourra permettre une séparation magnétique des particules de MCP et d'adsorbant.
- la teneur en matériau à changement de phase de la couche d'enrobage est inférieure à la teneur en matériau à changement de phase de l'agglomérat ;
- la couche d'enrobage comprend des tiges de graphite.
- le matériau à changement de phase est choisi parmi les paraffines, les acides gras, les composés azotés, les composés oxygénés, les phényles et les sels hydratés ou un mélange de ces composés.
Notons que sauf stipulation autre, quand on mentionne diamètre d'une population de particules (agglomérats de MCP, adsorbant), on veut signifier « diamètre équivalent moyen ».
L'épaisseur de la couche d'enrobage varie bien entendu localement pour une particule donnée mais également de particule à particule.
Par épaisseur de la couche, on entend épaisseur moyenne que l'on peut mesurer à partir d'un échantillon de particules ouvertes en leur milieu. La Figure 8 montre un échantillon de 4 demi- billes correspondant à un prélèvement de 4 particules au hasard.
On peut définir le ratio comme la moyenne des 8 épaisseurs EP mesurées suivant l'axe AA sur la moyenne des 4 diamètres D mesurés selon le même axe.
Si l'on cherche à définir ce ratio plus précisément, on peut utiliser un plus grand nombre de particules (mettons 25).
En pratique, pour définir l'épaisseur moyenne de la couche de protection, on mesure le diamètre d'un échantillon d'agglomérats non revêtus et le diamètre d'un second échantillon de la même population (même fabrication) revêtu. Par différence des diamètres, on remonte facilement à l'épaisseur du revêtement.
Notons que la capacité d'absorption de chaleur d'un MCP est d'autant plus grande que sa chaleur latente est élevée. Généralement, les MCP sont exploités pour leur changement de phase solide-liquide.
Pour pouvoir les manipuler, qu'ils soient à l'état solide ou liquide, les MCP sont en pratique généralement micro encapsulés dans une coquille solide micronique, préférentiellement à base de polymères (mélamine formaldéhyde, acrylique...).
Les paraffines en particulier étant relativement faciles à micro encapsuler, elles sont généralement des MCP de choix par rapport aux sels hydratés, même si les paraffines ont une chaleur latente généralement inférieure à celles des sels hydratés.
De plus, les paraffines présentent d'autres avantages comme la réversibilité du changement de phase, la stabilité chimique, la température définie de changement de phase ou les températures inférieures et supérieures définies de changement de phase (c'est-à-dire qu'il n'y a pas d'effet d'hystérésis), un faible coût, la toxicité limitée et le large choix de températures de changement de phase selon le nombre d'atomes de carbone et la structure de la molécule.
Les MCP paraffïniques micro encapsulées se présentent sous la forme d'une poudre, chaque micro capsule constituant cette poudre faisant entre 50 nm et 100 μιη de diamètre, préférentiellement entre 0,2 et 50 μιη de diamètre. Chaque micro capsule a une conductivité thermique de l'ordre de 0,1 à 0,2 W/m/K, selon que la paraffine est à l'état solide ou liquide à l'intérieur de la micro capsule.
Les MCP micro encapsulés, disponibles sous forme de poudre, ne peuvent pas être introduits tels quels dans un lit d'adsorbant car ils seraient entraînés par les flux de gaz circulant dans l'adsorbeur.
Dans le cadre de l'invention, ces micro-capsules sont donc agglomérées. Par agglomérat de micro capsules, on entend un solide de dimension supérieure à 0,1 mm fabriqué selon l'une des techniques connues d'agglomération de poudre (granulation, extrusion, atomisation, lit fluidisé,...) et pouvant revêtir différentes formes, en particulier une forme de bille, d'extrudé, de pastille, de concassé obtenu par concassage et tamisage de blocs de dimensions supérieures, ou de plaquette obtenue par découpage de feuilles préalablement compactées, ou autres.
L'agglomérat de micro capsules de MCP est formé par un procédé de granulation en voie humide en lit fluidisé (spray coating) ou par un procédé d'extrusion- suivi éventuellement d'une mise en forme dans un procédé de granulation en lit fluidisé.
Le procédé de granulation en voie humide en lit fluidisé (spray coating) consiste en l'enrobage progressif des micro capsules par pulvérisation d'une suspension contenant ces MCP, selon la technique appelée spray-coating, sur les agglomérats en cours de formation et avantageusement simultanément séchés. Les particules sont maintenues en suspension dans un courant d'air chaud alors que la suspension d'enrobage composé d'un solvant (de préférence eau, de MCP dont la concentration dans ladite suspension varie entre 10% et 50% en poids ainsi que des liants et si besoin des surfactants) est pulvérisée. Le passage à plusieurs reprises dans le cycle d'enrobage permet de recouvrir uniformément la surface des particules. La température et le débit de l'air, ainsi que le débit et la pression de pulvérisation sont choisis de manière à former une couche homogène et à éviter la formation d'écaillés. On obtient de la sorte une population de particules sphéroïdes de diamètre essentiellement identique.
Un autre procédé bien adapté à l'agglomération de micro-capsules MCP est l'agglomération par extrusion. L'extrusion est un procédé de fabrication/agglomération (thermo)mécanique par lequel le matériau sous forme de poudre est compressé (mélangé ou pas avec des liants appropriés) et contraint de traverser une filière ayant la section des objets agglomères à obtenir. L'extrusion s'applique dans différentes branches de l'industrie, avec des matériaux tels que les métaux , les matières plastiques, les caoutchoucs, les matériaux composites, les adsorbants ,1'argile pour la fabrication des briques alvéolaires, les pâtes alimentaires.
Ce sont ces particules obtenus par ces deux procédés ou d'autres procédés permettant l'agglomération de micro-capsules MCP en particules-agglomérats MCP qui sont alors enrobées par une couche finale améliorant leurs propriétés physiques. Cet enrobage peut être réalisé:
- soit par un procédé par voie liquide (ou humide) dans lequel les composantes du dit revêtement sont apportés sous forme d'une solution, émulsion ou dispersion contenant le solvant (de préférence l'eau) ainsi que les composées nécessaires pour la formation du revêtement qui peut être obtenu par polymérisation ou copolymérisation ou réticulation sous l'effet de un ou plusieurs facteurs parmi les suivants : augmentation de la température, augmentation de leur concentration, génération de radicaux libres ou par réaction chimique en surface ; On parle de procédé par trempage, pulvérisation, enduction...
-soit par un procédé dit par voie sèche ou les composantes du dit revêtement sont apportés sous forme de molécules en phase gazeuse comme par exemple les procédés PVD (dépôt physique en phase vapeur) ou CVD (dépôt chimique en phase vapeur).
Les procédés où l'enrobage est réalisé par la voie humide peuvent être réalisés
- soit en lit fluidisé (le dépôt de la couche mince est effectué par atomisation et par séchage d'une solution sur la surface de chaque particule MCP)
- soit par un procédé de dépôt par voie chimique comme par exemple les revêtements galvaniques.
Les procédés dans lesquels l'enrobage est réalisé par voie sèche sont généralement réalisés soit en lit fluidisé, soit sous vide, soit dans une chambre rotative permettant la mise en mouvement de particules ou extrudés MCP.
Dans le cas des revêtements réalisés par voie humide, en particulier en lit fluidisé la nature de la solution utilisée pour faire cet enrobage final va dépendre de la ou des propriétés que l'on souhaite améliorer ainsi que de la nature de l'agglomérat de MCP qui sert de support.
Le composé principal de cette solution pourra être une dispersion aqueuse de polymères choisis parmi les classes de polymères suivantes :
- Une dispersion aqueuse de polyuréthanne (DPU, en anglais PDU= Polyurethane aqueous dispersion) qui comprend un milieu aqueux avec des particules de polyuréthane acrylique dispersées, comportant un produit réactionnel obtenu par la polymérisation d'une pré-émulsion formée à partir de monomères hydrophobes polymérisables à insaturation éthylénique, d'un monomère de réticulation, et d'un prépolymère actif de polyuréthanne acrylique hydrogéné, qui est un produit réactionnel obtenu par la réaction d'un polyol, d'un monomère polymérisable à insaturation éthylénique contenant au moins un groupe hydroxyle et éventuellement un groupe d'acide carboxylique, et un polyisocyanate. Les dispersions aqueuses de polyuréthane (PUD), soit en tant que composant unique, soit combinées à d'autres polymères, sont de plus en plus utilisées dans le domaine des enductions (peintures, revêtements, encres, vernis...), notamment à cause des pressions législatives pour la réduction des émissions de C.O.V. (Composés Organiques Volatiles), mais aussi parce qu'elles présentent d'excellentes propriétés, difficiles à obtenir avec d'autres polymères.
Les principaux avantages des PUD sont une grande variété dans la composition macro moléculaire et donc un large choix de caractéristiques de performance ; de bonnes propriétés physiques (élasticité, allongement à la rupture...), une bonne résistance aux chocs et à l'abrasion ; des températures minimales de formation de film et de transition vitreuse basses, ce qui a pour conséquence de pouvoir réduire le taux de coalescents et l'ajout éventuel de plastifiants ; On peut noter également une bonne compatibilité avec les pigments, même métalliques ; une bonne adhérence sur les métaux et les plastiques ; une bonne compatibilité avec d'autres polymères, en particulier les polymères acryliques.
Les PUD sont essentiellement des polyuréthanes/urées linéaires de haut poids moléculaire stabilisés dans l'eau en particules sphériques de diamètre inférieur à 1 μιη. La dispersibilité du polyuréthane dans l'eau est facilitée par la présence de fonctions ioniques au sein des chaînes polymères. La viscosité des PUD est assez basse (50 à 500 mPa.s), et il est parfois nécessaire de rajouter un épaississant afin d'obtenir les propriétés rhéologiques souhaitées pendant l'étape d'injectée dans le lit fluidisé de MCP pendant la formation de film revêtant chaque particule MCP.
Le taux de matière sèche peut varier de 30% pour des produits rigides à 50% pour des produits souples, voire 60%> pour des enductions sur textiles. Les polymères souples sont généralement sans solvant, alors que les polymères rigides contiennent des cosolvants polaires et miscibles avec l'eau (comme le tétrahydrofurane, le diméthyl formamide ou la N-méthyl pyrrolidone) pour aider à la coalescence des particules. Les produits finaux (polymères issus des dispersions) peuvent allier des polymères souples, extrêmement flexibles (utilisés dans les textiles), à des polymères rigides, résistants à l'abrasion et aux chocs, utilisés dans la conception de vernis pour protéger bois, métal ou les plastique. Dans notre cas une des propriétés recherchées était l'amélioration de la résistance mécanique des particules MCP le choix des PUD a été fait pour maximiser cette propriété. De plus, les groupements isocyanates résiduels étant rapidement consommés dans le milieu aqueux, les PUD sont beaucoup moins dangereux que leurs équivalents à base de solvant. Enfin, contrairement à d'autres polymères en dispersion aqueuse utilisés dans des applications d'impression, les produits obtenus à partir des PUD ne se redissolvent pas après séchage en milieu aqueux ou alcalin - Une dispersion aqueuse d'un polymère du groupe des résines thermodurcissables constitué par les résines à base de phénol, urée, mélamine, xylène, diallylphthalate, époxy, aniline, furane, polyuréthane.
- Une dispersion aqueuse d'un polymère du groupe des résines suivantes de i. polystyrène, polyméthyl-méthacrylate, acétate de cellulose, polyamide, polyester, polyacrylonitrile, polycarbonate, polyphénylèneoxide, polycétone, polysulphone, polyphénylènesulfîde ;
- Une dispersion aqueuse du groupe des élastomères thermoplastiques constitué des élastomères de type styrène comme les co-polymères bloc styrène-butadiène-styrène ou co- polymères bloc styrène-isoprène-styrène ou leur forme hydrogénée, les élastomères de type PVC, uréthane, polyester, polyamide, les élastomères thermoplastiques de type polybutadiène comme les résines 1 ,2-polybutadiène ou trans-l,4-polybutadiène; les polyéthylène chlorés ;
- Une dispersion aqueuse d'un polymère du groupe des polymères solubles dans l'eau constitué des polymères cellulosiques, les polyélectrolytes, les polymères ioniques, les polymères acrylates, les polymères d' acide acrylique, la gomme arabique, les poly (vinyl pyrrolidone), poly (vinyl-alcool), poly (acide acrylique), poly(acide méthacrylique), sodium polyacrylate, polyacrylamide, poly (éthylène oxide), polyéthylène glycol, poly (éthylène formamide), polyhydroxyéther, poly (vinyl oxazolidinone), méthyl cellulose, éthyl cellulose, carboxyméthyl cellulose, éthyl (hydroxyéthyl) cellulose, sodium polyacrylate, leurs copolymères, et des mélanges de ceux-ci .
II pourra également s'agir d'une solution d'oligomères de polymères en solvant réticulant. Cette approche représente un désavantage lié a la génération des quantités importantes de COV (Composées organo volatile) nécessitant un post traitement dédie aux flux en sortie de lit fluidisé.
D'autre part, la formation du revêtement pourra être accélérée par photo réticulation in situ pendant la formation du revêtement dans le lit fluidisé. La réticulation renforcée par irradiation UV est une réaction de polymérisation, initiée par du rayonnement UV, qui transforme, en une fraction de seconde, un film liquide enduit appliqué à un substrat en un matériau polymère solide tridimensionnel. La formulation typique d'une résine photo- réticulable contient trois ingrédients de base: un photo -initiateur, un monomère et un oligomère, les deux derniers étant pourvus de fonctions chimiques réactives. La photoréticulation sous UV est une technique qui fait appel à la lumière UV pour démarrer la réticulation d'une formulation liquide (ou d'une poudre) et obtenir un revêtement sec, solide et bien réticulé. L'emploi des revêtements réticulables sous UV en lit fluidisé est une des techniques qui permet d'obtenir d'excellents revêtements de particules MCP ayant de hautes performances pour une couche relativement mince. La réticulation correspond à la formation d'un ou de plusieurs réseaux tridimensionnels, par voie chimique ou physique. Les structures réticulées sont le plus souvent préparées à partir de prépolymères linéaires ou ramifiés de faible masse molaire (issus d'une polymérisation partielle), réticulés sous l'effet de la chaleur en présence d'un catalyseur/durcisseur.
La photopolymérisation offre sur les procédés thermiques conventionnels des avantages particulièrement intéressants :
- la polymérisation est quasi instantanée, le passage de la molécule au matériau polymère s 'effectuant en quelques dixièmes de seconde sous irradiation intense ; elle ne nécessite, de ce fait, qu'une faible dépense énergétique ;
- la réticulation intervient uniquement dans des zones spatialement bien définies, celles qui sont exposées au rayonnement lumineux, ce qui permet de réaliser des images en relief à haute résolution ;
- la réaction peut être déclenchée à un instant précis même à l'intérieur du lit fluidisé et être arrêtée à tout moment, grâce à un contrôle temporel de l'irradiation ;
- l'intensité de la source lumineuse est modulable dans une très large gamme, ce qui permet de contrôler la vitesse d'amorçage ;
- en agissant sur la longueur d'onde du rayonnement lumineux et/ou sur la concentration en photoamorceur, on peut régler la profondeur de pénétration de la lumière et, donc, l'épaisseur de la couche polymère formée, qui peut varier de quelques micromètres à plusieurs millimètres ;
- les polymérisations photoamorcées sont habituellement réalisées à température ambiante, avec des résines ne contenant pas de solvant, ce qui réduit l'émission de vapeurs polluantes ;
- les substances polymères fabriquées par ce procédé ont des caractéristiques techniques qui se comparent très favorablement avec celles des produits polymérisation en film ou par l'utilisation de dispersions aqueuses et les caractéristiques obtenues montrent une bonne résistance aux solvants et à l'abrasion, qualité de surface excellente, degré de conversion très élevé, absence d'odeur. Différents mécanismes de réticulation sont possibles pour l'initiation de la polymérisation. Le mécanisme de réticulation par initiation radicalaire est particulièrement adapté aux acrylates méthacrylates, poly-fumarates les polyesters insaturés, les polyvinils, les polycarbonates, les vinyléthers ainsi qu'aux uréthanes. Le mécanisme de réticulation par initiation cationique est adapté aux époxy cyclo aliphatiques, les éthers de glucides ainsi qu'aux systèmes époxy s/oxétannes et aux vinyléthers.
La dureté de la surface d'un revêtement obtenue par une de ces méthodes de dépôt par voie humide dans un lit fluidisé, mesurée par des techniques d'indentation, peut varier de 10 N/mm2 à 1000 N/mm2 environ mais elle est généralement cependant inférieure à 500 N/mm2.
Comme décrit plus haut, cet enrobage des agglomérats de micro capsules de MCP peut se faire par divers procédés d'enrobage : en voie liquide ou en voie sèche: pulvérisation, immersion, nappage, mise en contact avec des vapeurs et ce dans des équipements spécifiques (de type réacteur) ou en cours de transfert (tapis mobile, tapis vibrant...).... mais préférentiellement cet enrobage sera effectué dans un lit fluidisé vertical, continu ou discontinu.
Encore préférentiellement, l'étape d'enrobage se fera dans le même dispositif que l'étape d'agglomération des particules de MCP en modifiant le moment venu la composition de la suspension injectée dans le réacteur.
En effet, lorsque la population d'agglomérats de MCP atteint les dimensions (diamètre) requises, la solution injectée est modifiée afin de procéder à l'étape d'enrobage. Cette modification peut consister à ne pulvériser que du produit de revêtement sans micro capsules de MCP (ou avec un pourcentage sensiblement plus faible que lors de l'étape précédente d'agglomération, mettons moins de 50% de la quantité précédente, préférentiellement moins de 10%).
Elle peut consister à injecter une solution comportant un ou des constituants différents de ceux utilisés précédemment.
La présente invention a également pour objet un mélange de particules de MCP selon l'invention et de particules d'adsorbants.
La Figure 2 représente une particule de MCP fabriquée selon ce procédé et comportant en outre au centre un noyau, par exemple un noyau de fer. L'épaisseur de la couche d'enrobage 13 est faible devant le diamètre de la particule produite 10. En pratique, l'épaisseur de l'enrobage sera de quelques microns à quelques dizaines de microns pour des particules de diamètre généralement comprises entre 0.5 et 5 millimètres. Le ratio épaisseur sur diamètre ira d'environ 5/5000 à 50 sur 500 (en microns) soit de 0.1% à 10%.
Les Figures 3 à 6 représentent des agrandissements de la zone d'enrobage. La Figure 3 représente un enrobage 23 contenant des particules solides 22. Ces particules solides peuvent être ferro magnétiques pour permettre une séparation particules de MCP / particules d'adsorbant par aimantation ; elles peuvent être conductrices de la chaleur et améliorer le transfert thermique de la paroi vers les micro capsules 21 ; elles peuvent constituées des sortes d'ailettes à la surface de la particule afin d'augmenter le transfert thermique du fluide vers les MCP. La figure 4 montre l'enrobage le plus simple 32. Cette couche peut contenir un certain nombre de micro capsules de MCP encore libres lors du début de l'enrobage. L'enrobage de la Figure 4 peut être étanche au fluide, en particulier à un gaz de sorte que la porosité apparente de la particule de MCP enrobée peut être quasi nulle, mettons statistiquement inférieure à 5% pour un lit présentant un grand nombre d'individus.
L'enrobage peut effectivement rendre étanche l'agglomérat au fluide traité dans l'adsorbeur renfermant le mélange adsorbant/ MCP.
Cela peut augmenter directement les performances de la séparation dès lors que la présence de gaz dans le lit d'adsorbant (gaz interstitiel ou dans les macro pores des particules) a un effet négatif. Ceci est souvent le cas dans les séparations par PSA, par exemple dans les PSA H2. Les Figures 5. a et 5.b illustre un enrobage très mince 41 dont le but est de renforcer l'adhésion des micro capsules 40 à la surface et de limiter l'attrition.
La Figure 6 montre un enrobage 50 emprisonnant des tiges -ou filaments- de graphite 52 qui peuvent pénétrer l'agglomérat interne de MCP 51 et/ou sortir vers l'extérieur.
Un intérêt supplémentaire de tels agglomérats enrobés d'un film mince est que la particule du fait de la moindre quantité de liant -ou de la possibilité d'utiliser d'autres types de liants- peut être plus élastique que la particule non recouverte.
Par élastique, on signifie ici que soumise à une pression unidirectionnelle, la forme de la particule se modifie sans qu'il y ait destruction de la dite particule. Une particule essentiellement sphérique initialement va ainsi prendre la forme d'un ellipsoïde avant de se briser. Le contact ponctuel dans le cas de deux sphères rigides va pouvoir s'étendre dans un tel cas à une surface sensiblement plus importante...
Cette possibilité de se déformer tout en gardant des propriétés mécaniques suffisantes peut être intéressante à plusieurs points de vue.
Le mélange adsorbant/ MCP présente lui aussi une plus grande élasticité ce qui conduit à diminuer les contraintes entre particules et entre particules et paroi de l'adsorbeur au cours des opérations.
La possibilité des particules de MCP enrobées de se déformer légèrement tout en conservant leur intégrité physique permet également d'accroître la surface de contact entre les particules d' adsorbant et les particules de MCP améliorant ainsi le transfert thermique direct par conduction adsorbant/ MCP. Dans ce cas, on a une « surface de contact » entre adsorbant et MCP au lieu du simple « contact ponctuel » entre billes supposées rigides.
Les Figures 7. a et 7.b illustrent respectivement les contacts de type quasi ponctuel entre adsorbant 60 et MCP 61 dans le cas de particules rigides et les contacts mettant en jeu une surface non négligeable entre adsorbant rigide 62 et MCP relativement élastique 63.
La présente invention a donc également pour objet les mélanges en toute proportion de particules de MCP enrobées et d'adsorbant tel qu'alumine activée, gel de silice, zéolite, MOF, adsorbant échangé ou dopé, adsorbant « greffé » c'est-à-dire auquel on rajoute une fonction, telle qu'une fonction aminé...
La présente invention a également pour objet une unité d'adsorption comprenant un lit fixe ou un lit mobile dans lequel est mis en œuvre un mélange selon l'invention.
Selon le cas, l'unité d'adsorption peut présenter une ou plusieurs des caractéristiques suivantes :
- l'unité d'adsorption comprend un lit fixe et la proportion de particules de MCP est sensiblement constante dans tout le volume du lit ;
- ladite unité est un PSA H2, un PSA C02, un PSA 02 ou un PSA N2.
Notons que si l'unité d'adsorption comprend un lit fixe, ce lit peut comprendre une ou plusieurs couches d'adsorbant couramment appelé multi-lit dans le langage technique.
L'invention concerne donc la majorité des procédés PSA et plus particulièrement de façon non limitative, outre les PSA H2, 02, N2, CO et C02, les PSA de fractionnement du syngas en deux fractions au moins, les PSA sur gaz naturel destinés à retirer l'azote, et les PSA servant à fractionner des mélanges d'hydrocarbures.
L'invention peut être mise en œuvre, en outre, dans un procédé :
- PSA Argon tel que décrit notamment dans US-A-6,544,318, US-A-6,432,170, US-A- 5,395,427 ou US-A-6,527,831. Le PSA Ar permet de produire de l'oxygène à une pureté supérieure à 93%, en adsorbant préférentiellement soit l'argon, soit l'oxygène, présent dans un flux riche en 02 issu par exemple d'un PSA 02. Les PSA Ar utilisent généralement un tamis moléculaire carboné ou une zéolite échangée à l'argent (US-A-6,432,170).
- PSA He qui permet de produire de l'hélium en adsorbant préférentiellement les autres molécules présentes dans le flux d'alimentation.
- tout PSA permettant la séparation entre un alcène et un alcane, typiquement les PSA éthylène/éthane ou propylène/propane, par exemple. Ces séparations reposent sur une différence de cinétique d'adsorption des molécules sur un tamis moléculaire, carboné ou non.
- tout PSA permettant de fractionner un gaz de synthèse (syngas).
- tout PSA permettant de séparer CH4 de N2.

Claims

Revendications
1. Particule de MCP constituée :
- d'un agglomérat de micro-capsules d'un matériau à changement de phase (MCP) agglomérées par un liant ; et
- d'une couche d'enrobage de composition différente de celle de l'agglomérat.
2. Particule de MCP selon la revendication 1, caractérisé en ce que l'épaisseur de la couche d'enrobage représente entre 0,001 et 10% du diamètre de la particule, de préférence entre 0,01% et P/o du diamètre de la particule.
3. Particule de MCP selon l'une des revendications 1 ou 2, caractérisé en ce que la couche d'enrobage comprend un matériau organique ou inorganique.
4. Particule de MCP selon la revendication 3, caractérisé en ce que la teneur en matériau organique ou inorganique est supérieure à la teneur en matériau organique ou inorganique de l'agglomérat.
5. Particule de MCP selon l'une des revendications 3 ou 4, caractérisé en ce que le matériau organique est au moins un polymère.
6. Particule de MCP selon la revendication 5, caractérisé en ce que la couche d'enrobage comprend des particules solides de conductibilité thermique supérieure à 0,5 W/m/K.
7. Particule de MCP selon la revendication 5, caractérisé en ce que la couche d'enrobage comprend au moins 0,5%> de polymère et est étanche.
8. Particule de MCP selon l'une des revendications 3 ou 4, caractérisé en ce que le matériau inorganique est un composé métallique, un métal ou un alliage métallique, ou un mélange de ces composés.
9. Particule de MCP selon l'une des revendications 1 à 8, caractérisé en ce que la teneur en matériau à changement de phase de la couche d'enrobage est inférieure à la teneur en matériau à changement de phase de l'agglomérat.
10. Particules de MCP selon l'une des revendications 1 à 9, caractérisé en ce que la couche d'enrobage comprend des tiges de graphite.
11. Particule de MCP selon l'une des revendications 1 à 8, caractérisé en ce que le matériau à changement de phase est choisi parmi les paraffines, les acides gras, les composés azotés, les composés oxygénés, les phényles et les sels hydratés ou un mélange de ces composés.
12. Mélange de particules de MCP telles que définies dans l'une des revendications 1 à 9 et de particules d'adsorbants.
13. Unité d'adsorption comprenant un lit fixe ou un lit mobile dans lequel est mis en œuvre un mélange selon la revendication 12.
14. Unité d'adsorption selon la revendication 13, caractérisé en ce que l'unité d'adsorption comprend un lit fixe et la proportion de particules de MCP est sensiblement constante dans tout le volume du lit.
15. Unité d'adsorption selon l'une des revendications 13 ou 14, caractérisé en ce que ladite unité est un PSA H2, un PSA C02, un PSA 02 ou un PSA N2.
PCT/FR2012/050514 2011-04-08 2012-03-13 Particule d'un matériau à changement de phase avec couche d'enrobage WO2012136912A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP12713227.2A EP2694187A1 (fr) 2011-04-08 2012-03-13 Particule d'un matériau à changement de phase avec couche d'enrobage
US14/009,799 US20140023853A1 (en) 2011-04-08 2012-03-13 Particle of a phase change material with coating layer
CN2012800145387A CN103476479A (zh) 2011-04-08 2012-03-13 具有涂层的相变材料颗粒

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1153057A FR2973806B1 (fr) 2011-04-08 2011-04-08 Particule d'un materiau a changement de phase avec couche d'enrobage
FR1153057 2011-04-08

Publications (1)

Publication Number Publication Date
WO2012136912A1 true WO2012136912A1 (fr) 2012-10-11

Family

ID=45937425

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2012/050514 WO2012136912A1 (fr) 2011-04-08 2012-03-13 Particule d'un matériau à changement de phase avec couche d'enrobage

Country Status (5)

Country Link
US (1) US20140023853A1 (fr)
EP (1) EP2694187A1 (fr)
CN (1) CN103476479A (fr)
FR (1) FR2973806B1 (fr)
WO (1) WO2012136912A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2995797A1 (fr) * 2012-09-21 2014-03-28 Air Liquide Melange adsorbant comprenant des particules d'adsorbant et des particules de materiau a changement de phase

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140141233A1 (en) * 2012-07-03 2014-05-22 Peterson Chemical Technology, Inc. Surface Infusion of Flexible Cellular Foams With Novel Liquid Gel Mixture
FR3005960B1 (fr) * 2013-05-21 2017-03-10 Commissariat Energie Atomique Capsules conductrices thermiquement comprenant un materiau a changement de phase
US20150107246A1 (en) * 2013-10-18 2015-04-23 Krishna Kumar Bindingnavale Ranga System and method for heat storage in solar thermal power plants
WO2015095271A1 (fr) 2013-12-17 2015-06-25 All Cell Technologies, Llc Composite à base d'un matériau à changement de phase flexible pour systèmes de gestion thermique
US10890383B2 (en) 2014-01-21 2021-01-12 Drexel University Systems and methods of using phase change material in power plants
US9476648B2 (en) * 2014-01-21 2016-10-25 Drexel University Systems and methods of using phase change material in power plants
US10221323B2 (en) * 2016-07-11 2019-03-05 Microtek Laboratories, Inc. Microcapsules having dual reagents separated by the capsule wall and methods for making same
CN107218832B (zh) * 2017-07-18 2023-06-27 西安中原机械有限公司 有碳素导热表层的砂石储热方法及其装置
WO2019099086A1 (fr) * 2017-11-16 2019-05-23 Georgia Tech Research Corporation Incorporation de matériaux à changement de phase microencapsulés dans des fibres polymères filées au mouillé et au jet d'air sec
US11796229B2 (en) 2019-03-22 2023-10-24 Solvcor Technologies. Llc Systems and methods for high energy density heat transfer
US11788798B2 (en) * 2019-03-22 2023-10-17 Solvcor Technologies, Llc Systems and adjustable and high energy density thermal storage
BR112021019768A2 (pt) * 2019-04-03 2022-02-15 Alexium Inc Composições e métodos para o gerenciamento térmico de têxteis e espumas
US11599166B2 (en) * 2020-07-16 2023-03-07 Lenovo (Singapore) Pte. Ltd. Shape-memory heat absorbers
CN113004658B (zh) * 2021-02-25 2022-11-25 西北工业大学 具有可磁控转换导电导热特性的热固性复合材料及制备方法
CN115058231B (zh) * 2022-07-14 2023-08-18 塔里木大学 一种MOFs为载体的相变材料及其制备方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4505953A (en) * 1983-02-16 1985-03-19 Pennwalt Corporation Method for preparing encapsulated phase change materials
US4971605A (en) 1989-09-18 1990-11-20 Institute Of Gas Technology Isothermal thermo-cyclic processing
US5395427A (en) 1994-01-12 1995-03-07 Air Products And Chemicals, Inc. Two stage pressure swing adsorption process which utilizes an oxygen selective adsorbent to produce high purity oxygen from a feed air stream
EP1188470A2 (fr) 2000-09-15 2002-03-20 Praxair Technology, Inc. Procédé d'adsorption à pression alternée comprenant une couche d'adsorbant mixte
US6432170B1 (en) 2001-02-13 2002-08-13 Air Products And Chemicals, Inc. Argon/oxygen selective X-zeolite
US6527831B2 (en) 2000-12-29 2003-03-04 Praxair Technology, Inc. Argon purification process
US6544318B2 (en) 2001-02-13 2003-04-08 Air Products And Chemicals, Inc. High purity oxygen production by pressure swing adsorption
FR2847586A1 (fr) * 2002-11-27 2004-05-28 Centre Nat Rech Scient Materiau composite, son utilisation pour la gestion des effets thermiques dans un processus physico-chimique
FR2891160A1 (fr) * 2005-09-26 2007-03-30 Air Liquide Procede psa a lit d'adsorption composite forme d'un adsorbant et d'agglomerats de mcp a conductivite thermique elevee
FR2906160A1 (fr) * 2006-09-25 2008-03-28 Air Liquide Procede psa a lit d'adsorption composite forme d'un adsorbant et d'agglomerats de mcp
FR2936168A1 (fr) * 2008-09-25 2010-03-26 Air Liquide Fabrication d'agglomerat compose de materiau a changement de phase et presentant des proprietes controlees

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070241303A1 (en) * 1999-08-31 2007-10-18 General Electric Company Thermally conductive composition and method for preparing the same
US20030168731A1 (en) * 2002-03-11 2003-09-11 Matayabas James Christopher Thermal interface material and method of fabricating the same
US7018446B2 (en) * 2003-09-24 2006-03-28 Siemens Westinghouse Power Corporation Metal gas separation membrane
TW201000616A (en) * 2008-04-16 2010-01-01 Morishita Jintan Co Thermal storage seamless capsule and production method thereof
CN101802127B (zh) * 2008-05-27 2013-10-30 大阪煤气化学株式会社 蓄热材料的制造方法、蓄热材料、带蓄热功能的吸附材料、容器

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4505953A (en) * 1983-02-16 1985-03-19 Pennwalt Corporation Method for preparing encapsulated phase change materials
US4971605A (en) 1989-09-18 1990-11-20 Institute Of Gas Technology Isothermal thermo-cyclic processing
US5395427A (en) 1994-01-12 1995-03-07 Air Products And Chemicals, Inc. Two stage pressure swing adsorption process which utilizes an oxygen selective adsorbent to produce high purity oxygen from a feed air stream
EP1188470A2 (fr) 2000-09-15 2002-03-20 Praxair Technology, Inc. Procédé d'adsorption à pression alternée comprenant une couche d'adsorbant mixte
US6527831B2 (en) 2000-12-29 2003-03-04 Praxair Technology, Inc. Argon purification process
US6432170B1 (en) 2001-02-13 2002-08-13 Air Products And Chemicals, Inc. Argon/oxygen selective X-zeolite
US6544318B2 (en) 2001-02-13 2003-04-08 Air Products And Chemicals, Inc. High purity oxygen production by pressure swing adsorption
FR2847586A1 (fr) * 2002-11-27 2004-05-28 Centre Nat Rech Scient Materiau composite, son utilisation pour la gestion des effets thermiques dans un processus physico-chimique
FR2891160A1 (fr) * 2005-09-26 2007-03-30 Air Liquide Procede psa a lit d'adsorption composite forme d'un adsorbant et d'agglomerats de mcp a conductivite thermique elevee
FR2906160A1 (fr) * 2006-09-25 2008-03-28 Air Liquide Procede psa a lit d'adsorption composite forme d'un adsorbant et d'agglomerats de mcp
WO2008037904A1 (fr) 2006-09-25 2008-04-03 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procédé psa à lit d'adsorption composite formé d'un adsorbant et d'agglomérats de mcp
FR2936168A1 (fr) * 2008-09-25 2010-03-26 Air Liquide Fabrication d'agglomerat compose de materiau a changement de phase et presentant des proprietes controlees

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2694187A1

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2995797A1 (fr) * 2012-09-21 2014-03-28 Air Liquide Melange adsorbant comprenant des particules d'adsorbant et des particules de materiau a changement de phase

Also Published As

Publication number Publication date
FR2973806B1 (fr) 2015-11-13
US20140023853A1 (en) 2014-01-23
FR2973806A1 (fr) 2012-10-12
EP2694187A1 (fr) 2014-02-12
CN103476479A (zh) 2013-12-25

Similar Documents

Publication Publication Date Title
WO2012136912A1 (fr) Particule d'un matériau à changement de phase avec couche d'enrobage
EP2073913B1 (fr) Procédé psa à lit d'adsorption composite formé d'un adsorbant et d'agglomérats de mcp
EP2694188B1 (fr) Mélange d'un adsorbant et d'un matériau à changement de phase à densité adaptée
CA2735969C (fr) Fabrication d'agglomerat compose de materiau a changement phase et presentant des proprietes controlees
FR3029803B1 (fr) Melange adsorbant a capacite thermique amelioree
EP2167569B1 (fr) Procédé de préparation de matières pulvérulentes de polymère fluoré
Sun et al. Preparation and characterization of C60‐filled ethyl cellulose mixed‐matrix membranes for gas separation of propylene/propane
FR3038240A1 (fr)
FR2891159A1 (fr) Procede psa a lit d'adsorption composite forme d'un adsorbant et d'agglomerats de mcp
FR2837493A1 (fr) Aerogel a base d'un polymere ou copolymere hydrocarbone et leur procede de preparation
FR2891160A1 (fr) Procede psa a lit d'adsorption composite forme d'un adsorbant et d'agglomerats de mcp a conductivite thermique elevee
TW200528495A (en) Method of production of shaped bodies with regular-arranged cavities
EP2897725A1 (fr) Mélange adsorbant comprenant des particules d'adsorbant et des particules de matériau à changement de phase
Verma et al. Synthesis, characterization and in vitro drug release studies of sonolytically intercalated poly (o-anisidine)/montmorillonite nanocomposites
EP4291599B1 (fr) Matériau hybride polymère à propriétés photothermiques et son procédé de production
CN115180949A (zh) 一种具有双层结构苯并噁嗪/硅橡胶陶瓷微球制备方法
FR2973807A1 (fr) Melange d'un adsorbant et d'un materiau a changement de phase a densite adaptee
FR2973719A1 (fr) Melange d'un materiau adsorbant et d'un materiau a changement de phase separables par aimantation
FR2931157A1 (fr) Materiau solide contenant une charge active et permettant une grande facilite d'acces a cette charge
Gallyamov et al. Ultrafine Poly (Tetrafluoroethylene) as a Stabilising Agent for Paraffin Emulsification in Supercritical Carbon Dioxide and Formation of Composite Core-Shell Microparticles
Chen et al. Preparation of colloid microspheres of SiO 2/Polystyrene without a coupling agent via soap-free emulsion polymerization
CN101372559A (zh) 一种14纳米级以下酯化碳酸钙及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12713227

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14009799

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE