FR2995797A1 - Melange adsorbant comprenant des particules d'adsorbant et des particules de materiau a changement de phase - Google Patents
Melange adsorbant comprenant des particules d'adsorbant et des particules de materiau a changement de phase Download PDFInfo
- Publication number
- FR2995797A1 FR2995797A1 FR1258890A FR1258890A FR2995797A1 FR 2995797 A1 FR2995797 A1 FR 2995797A1 FR 1258890 A FR1258890 A FR 1258890A FR 1258890 A FR1258890 A FR 1258890A FR 2995797 A1 FR2995797 A1 FR 2995797A1
- Authority
- FR
- France
- Prior art keywords
- mcp
- particles
- adsorbent
- psa
- ads
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000003463 adsorbent Substances 0.000 title claims abstract description 79
- 239000002245 particle Substances 0.000 title claims abstract description 75
- 239000000203 mixture Substances 0.000 title claims abstract description 51
- 239000012782 phase change material Substances 0.000 title claims abstract description 28
- 238000001179 sorption measurement Methods 0.000 claims description 29
- 238000001125 extrusion Methods 0.000 claims description 22
- 238000004519 manufacturing process Methods 0.000 claims description 11
- 238000005563 spheronization Methods 0.000 claims description 5
- 239000001307 helium Substances 0.000 claims description 3
- 229910052734 helium Inorganic materials 0.000 claims description 3
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 claims description 3
- 101710121996 Hexon protein p72 Proteins 0.000 description 52
- 101710125418 Major capsid protein Proteins 0.000 description 52
- 102100039373 Membrane cofactor protein Human genes 0.000 description 51
- 238000000034 method Methods 0.000 description 31
- 230000008569 process Effects 0.000 description 25
- 239000007789 gas Substances 0.000 description 17
- 239000011324 bead Substances 0.000 description 13
- 239000011230 binding agent Substances 0.000 description 13
- 238000000926 separation method Methods 0.000 description 10
- 239000000243 solution Substances 0.000 description 10
- 238000012360 testing method Methods 0.000 description 10
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 8
- 239000000654 additive Substances 0.000 description 8
- 230000008859 change Effects 0.000 description 7
- 229930195733 hydrocarbon Natural products 0.000 description 7
- 150000002430 hydrocarbons Chemical class 0.000 description 7
- 238000005259 measurement Methods 0.000 description 7
- 239000011859 microparticle Substances 0.000 description 7
- 239000007787 solid Substances 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 238000001035 drying Methods 0.000 description 6
- 229920000642 polymer Polymers 0.000 description 6
- 239000000843 powder Substances 0.000 description 6
- 239000004215 Carbon black (E152) Substances 0.000 description 5
- 238000009826 distribution Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 238000007873 sieving Methods 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- 239000011800 void material Substances 0.000 description 5
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 4
- 229910021536 Zeolite Inorganic materials 0.000 description 4
- 230000000996 additive effect Effects 0.000 description 4
- 238000005054 agglomeration Methods 0.000 description 4
- 230000002776 aggregation Effects 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 238000003795 desorption Methods 0.000 description 4
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000012530 fluid Substances 0.000 description 4
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 4
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- 239000003094 microcapsule Substances 0.000 description 4
- 239000002808 molecular sieve Substances 0.000 description 4
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 4
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 4
- 239000010457 zeolite Substances 0.000 description 4
- 229920002125 Sokalan® Polymers 0.000 description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 125000004432 carbon atom Chemical group C* 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 125000004122 cyclic group Chemical group 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 239000010439 graphite Substances 0.000 description 3
- 229910002804 graphite Inorganic materials 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 3
- 229920002554 vinyl polymer Polymers 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 239000004115 Sodium Silicate Substances 0.000 description 2
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229920003123 carboxymethyl cellulose sodium Polymers 0.000 description 2
- 229940063834 carboxymethylcellulose sodium Drugs 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 230000001351 cycling effect Effects 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- 239000008240 homogeneous mixture Substances 0.000 description 2
- 150000004679 hydroxides Chemical class 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- 229920002689 polyvinyl acetate Polymers 0.000 description 2
- 239000011118 polyvinyl acetate Substances 0.000 description 2
- 235000019353 potassium silicate Nutrition 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 239000000741 silica gel Substances 0.000 description 2
- 229910002027 silica gel Inorganic materials 0.000 description 2
- 229910052911 sodium silicate Inorganic materials 0.000 description 2
- 230000008961 swelling Effects 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 102100027271 40S ribosomal protein SA Human genes 0.000 description 1
- 102100021943 C-C motif chemokine 2 Human genes 0.000 description 1
- 102100034871 C-C motif chemokine 8 Human genes 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 101000694288 Homo sapiens 40S ribosomal protein SA Proteins 0.000 description 1
- 102100024573 Macrophage-capping protein Human genes 0.000 description 1
- 101710091439 Major capsid protein 1 Proteins 0.000 description 1
- 101710091437 Major capsid protein 2 Proteins 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- 229920001030 Polyethylene Glycol 4000 Polymers 0.000 description 1
- 239000004820 Pressure-sensitive adhesive Substances 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical group [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 229920006243 acrylic copolymer Polymers 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 150000001335 aliphatic alkanes Chemical class 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 229960000892 attapulgite Drugs 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 239000003637 basic solution Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920003174 cellulose-based polymer Polymers 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000008139 complexing agent Substances 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 230000005294 ferromagnetic effect Effects 0.000 description 1
- 239000003302 ferromagnetic material Substances 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- IVJISJACKSSFGE-UHFFFAOYSA-N formaldehyde;1,3,5-triazine-2,4,6-triamine Chemical compound O=C.NC1=NC(N)=NC(N)=N1 IVJISJACKSSFGE-UHFFFAOYSA-N 0.000 description 1
- 238000005194 fractionation Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 239000011872 intimate mixture Substances 0.000 description 1
- CYPPCCJJKNISFK-UHFFFAOYSA-J kaolinite Chemical compound [OH-].[OH-].[OH-].[OH-].[Al+3].[Al+3].[O-][Si](=O)O[Si]([O-])=O CYPPCCJJKNISFK-UHFFFAOYSA-J 0.000 description 1
- 229910052622 kaolinite Inorganic materials 0.000 description 1
- 230000002045 lasting effect Effects 0.000 description 1
- 239000004816 latex Substances 0.000 description 1
- 229920000126 latex Polymers 0.000 description 1
- 230000005415 magnetization Effects 0.000 description 1
- AEUKDPKXTPNBNY-XEYRWQBLSA-N mcp 2 Chemical compound C([C@@H](C(=O)N[C@@H](CS)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CCCNC(N)=N)C(=O)NCC(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CS)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O)NC(=O)CNC(=O)[C@H](C)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CC(C)C)NC(=O)[C@H](CS)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](C)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CS)NC(=O)[C@H](C)NC(=O)[C@H](CS)NC(=O)[C@@H](NC(=O)[C@@H](N)C(C)C)C(C)C)C1=CC=CC=C1 AEUKDPKXTPNBNY-XEYRWQBLSA-N 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 229910000000 metal hydroxide Inorganic materials 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000011325 microbead Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 229910017464 nitrogen compound Inorganic materials 0.000 description 1
- 150000002830 nitrogen compounds Chemical class 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 229910052625 palygorskite Inorganic materials 0.000 description 1
- 239000011236 particulate material Substances 0.000 description 1
- 238000005453 pelletization Methods 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 229940057838 polyethylene glycol 4000 Drugs 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000000518 rheometry Methods 0.000 description 1
- 229930195734 saturated hydrocarbon Natural products 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 235000019795 sodium metasilicate Nutrition 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000008719 thickening Effects 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/02—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/02—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
- B01D53/04—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
- B01D53/047—Pressure swing adsorption
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28002—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
- B01J20/28004—Sorbent size or size distribution, e.g. particle size
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28002—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
- B01J20/28011—Other properties, e.g. density, crush strength
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28014—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
- B01J20/28016—Particle form
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28014—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
- B01J20/28016—Particle form
- B01J20/28019—Spherical, ellipsoidal or cylindrical
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28014—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
- B01J20/28042—Shaped bodies; Monolithic structures
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K5/00—Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
- C09K5/02—Materials undergoing a change of physical state when used
- C09K5/06—Materials undergoing a change of physical state when used the change of state being from liquid to solid or vice versa
- C09K5/063—Materials absorbing or liberating heat during crystallisation; Heat storage materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2253/00—Adsorbents used in seperation treatment of gases and vapours
- B01D2253/10—Inorganic adsorbents
- B01D2253/102—Carbon
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2253/00—Adsorbents used in seperation treatment of gases and vapours
- B01D2253/10—Inorganic adsorbents
- B01D2253/104—Alumina
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2253/00—Adsorbents used in seperation treatment of gases and vapours
- B01D2253/10—Inorganic adsorbents
- B01D2253/106—Silica or silicates
- B01D2253/108—Zeolites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2253/00—Adsorbents used in seperation treatment of gases and vapours
- B01D2253/10—Inorganic adsorbents
- B01D2253/106—Silica or silicates
- B01D2253/11—Clays
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2253/00—Adsorbents used in seperation treatment of gases and vapours
- B01D2253/10—Inorganic adsorbents
- B01D2253/116—Molecular sieves other than zeolites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2253/00—Adsorbents used in seperation treatment of gases and vapours
- B01D2253/30—Physical properties of adsorbents
- B01D2253/302—Dimensions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2253/00—Adsorbents used in seperation treatment of gases and vapours
- B01D2253/30—Physical properties of adsorbents
- B01D2253/302—Dimensions
- B01D2253/304—Linear dimensions, e.g. particle shape, diameter
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2253/00—Adsorbents used in seperation treatment of gases and vapours
- B01D2253/30—Physical properties of adsorbents
- B01D2253/34—Specific shapes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2256/00—Main component in the product gas stream after treatment
- B01D2256/12—Oxygen
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2256/00—Main component in the product gas stream after treatment
- B01D2256/16—Hydrogen
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2256/00—Main component in the product gas stream after treatment
- B01D2256/18—Noble gases
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2256/00—Main component in the product gas stream after treatment
- B01D2256/20—Carbon monoxide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2256/00—Main component in the product gas stream after treatment
- B01D2256/22—Carbon dioxide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2256/00—Main component in the product gas stream after treatment
- B01D2256/24—Hydrocarbons
- B01D2256/245—Methane
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/10—Single element gases other than halogens
- B01D2257/102—Nitrogen
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/10—Single element gases other than halogens
- B01D2257/104—Oxygen
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/10—Single element gases other than halogens
- B01D2257/108—Hydrogen
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/50—Carbon oxides
- B01D2257/502—Carbon monoxide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/50—Carbon oxides
- B01D2257/504—Carbon dioxide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/70—Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
- B01D2257/702—Hydrocarbons
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/70—Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
- B01D2257/702—Hydrocarbons
- B01D2257/7022—Aliphatic hydrocarbons
- B01D2257/7025—Methane
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2220/00—Aspects relating to sorbent materials
- B01J2220/40—Aspects relating to the composition of sorbent or filter aid materials
- B01J2220/46—Materials comprising a mixture of inorganic and organic materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2220/00—Aspects relating to sorbent materials
- B01J2220/50—Aspects relating to the use of sorbent or filter aid materials
- B01J2220/56—Use in the form of a bed
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02C—CAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
- Y02C20/00—Capture or disposal of greenhouse gases
- Y02C20/20—Capture or disposal of greenhouse gases of methane
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02C—CAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
- Y02C20/00—Capture or disposal of greenhouse gases
- Y02C20/40—Capture or disposal of greenhouse gases of CO2
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/29—Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
- Y10T428/2982—Particulate matter [e.g., sphere, flake, etc.]
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Analytical Chemistry (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Physics & Mathematics (AREA)
- Combustion & Propulsion (AREA)
- Thermal Sciences (AREA)
- Materials Engineering (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Abstract
Mélange adsorbant comprenant : - des particules d'adsorbant présentant une longueur moyenne DM(ads), une section moyenne Sm de diamètre moyen Dm(ads) et un rapport de forme RF1 avec RF1 = DM(ads)/Dm(ads), et - des particules de matériau à changement de phase (MCP) présentant une longueur moyenne DM(mcp), une section moyenne Sm de diamètre moyen Dm(mcp) et un rapport de forme RF2 avec RF2 = DM(mcp)/Dm(mcp), caractérisé en ce que : Dm(mcp) < Dm(ads), et RF1 >1,5 et/ou RF2 > 1,5.
Description
L'invention concerne un mélange adsorbant composé d'une part de particules d'un matériau à changement de phase (MCP) et d'autre part de particules d'adsorbant, mélange destiné à être utilisé dans un procédé thermo-cyclique de séparation par adsorption. De manière générale, on considérera dans l'ensemble du document que par « mélange adsorbant » on entend tout mélange d'un matériau adsorbant et un matériau additif mise en forme ou pas et dans des proportions variables. On appelle procédé thermo-cyclique tout procédé cyclique au cours duquel certaines étapes sont exothermiques, c'est-à-dire s'accompagnant d'un dégagement de chaleur, alors que certaines autre étapes sont endothermiques, c'est-à-dire s'accompagnant d'une consommation de chaleur.
Il est connu que les matériaux à changement de phase (MCP) agissent comme des puits thermiques à leur température de changement de phase. Des exemples typiques de procédés thermo cycliques pour lesquels l'invention peut être mise en oeuvre avec bénéfice incluent des procédés ayant un temps de cycle relativement réduit pour lequel le transfert de chaleur entre le lit d'adsorbant et les agglomérats MCP doit s'effectuer en seulement une fraction de ce temps de cycle. Ce sont en particulier - les procédés de séparation de gaz par adsorption modulée en pression, comme le PSA (Pressure swing adsorption = adsorption avec variation de pression), le VSA (Vacuum Swing Adsorption = adsorption sous oscillation de vide), le VPSA (Vacuum Pressure Swing Adsorption= adsorption avec variation de pression et mise sous vide) et le MPSA (Mixed Pressure Swing Adsorption). - tout procédé mettant en oeuvre une conversion chimique couplée à des cycles d'adsorption modulée en pression, tels que mentionnés ci-dessus, permettant de déplacer l'équilibre des réactions chimiques.
Les procédés de séparation par adsorption modulée en pression reposent sur le phénomène d'adsorption physique et permettent de séparer ou de purifier des gaz par cyclage en pression du gaz à traiter à travers un ou plusieurs lit adsorbant, tel un lit de zéolite, de charbon actif, d'alumine activée, de gel de silice, de tamis moléculaire ou analogues.
Dans le cadre de la présente invention, on désigne, sauf stipulation autre, par les termes « procédé PSA », tout procédé de séparation de gaz par adsorption modulée en pression, mettant en oeuvre une variation cyclique de la pression entre une pression haute, dite pression d'adsorption, et une pression basse, dite pression de régénération. Par conséquent, l'appellation générique procédé PSA est employée indifféremment pour désigner les procédés cycliques suivants : - les procédés VSA dans lesquels l'adsorption s'effectue sensiblement à la pression atmosphérique, dite « pression haute », c'est-à-dire entre 1 bara et 1,6 bara (bara = bar absolu), préférentiellement entre 1,1 et 1,5 bara, et la pression de désorption, dite « pression basse », est inférieure à la pression atmosphérique, typiquement entre 30 et 800 mbara, de préférence entre 100 et 600 mbara. - les procédés VPSA ou MPSA dans lesquels l'adsorption s'effectue à une pression haute sensiblement supérieure à la pression atmosphérique, généralement entre 1,6 et 8 bara, préférentiellement entre 2 et 6 bara, et la pression basse est inférieure à la pression atmosphérique, typiquement entre 30 et 800 mbara, de préférence entre 100 et 600 mbara. - les procédés PSA dans lesquels l'adsorption s'effectue à une pression haute nettement supérieure à la pression atmosphérique, typiquement entre 1,6 et 50 bara, préférentiellement entre 2 et 35 bara, et la pression basse est supérieure ou sensiblement égale à la pression atmosphérique, donc entre 1 et 9 bara, de préférence entre 1,2 et 2,5 bara. - Les procédés RPSA (Rapide PSA) qui désignent des procédés PSA de cycle très rapide, en général inférieur à la minute. De manière générale, un procédé PSA permet de séparer une ou plusieurs molécules de gaz d'un mélange gazeux les contenant, en exploitant la différence d'affinité d'un adsorbant donné ou, le cas échéant, de plusieurs adsorbants pour ces différentes molécules de gaz. L'affinité d'un adsorbant pour une molécule gazeuse dépend de la structure et de la composition de l'adsorbant, ainsi que des propriétés de la molécule, notamment sa taille, sa structure électronique et ses moments multipolaires. Un adsorbant peut être par exemple une zéolite, un charbon actif, une alumine activée, un gel de silice, un tamis moléculaire carboné ou non, une structure métallo-organique, un ou des oxydes ou des hydroxydes de métaux alcalins ou alcalino terreux, ou une structure poreuse contenant une substance capable de réagir réversiblement avec une ou plusieurs molécules de gaz, telle que amines, solvants physiques, complexants métalliques, oxydes ou hydroxydes métalliques par exemple. Les effets thermiques qui résultent de l'enthalpie d'adsorption ou de l'enthalpie de réaction conduisent, d'une manière générale, à la propagation, à chaque cycle, d'une onde de chaleur à l'adsorption limitant les capacités d'adsorption et d'une onde de froid à la désorption limitant la désorption. Ce phénomène cyclique local de battements en température a un impact non-négligeable sur les performances de séparation et l'énergie spécifique de séparation comme le rappelle le document EP-A-1188470.
Un cas particulier couvert dans le cadre du présent brevet est le stockage/ déstockage de gaz dans un réacteur ou adsorbeur contenant au moins en partie un ou des adsorbants. Il s'agit là également d'un procédé thermo cyclique mettant en oeuvre un matériau adsorbant avec libération de chaleur lors du stockage (augmentation de pression) et libération de froid lors du déstockage (diminution de pression) Dans tous ces cas, une solution permettant de diminuer l'amplitude des battements thermiques consiste à ajouter dans le lit d'adsorbant un matériau à changement de phase (MCP), comme décrit par le document US-A-4, 971,605. De cette manière, la chaleur d'adsorption et de désorption, ou une partie de cette chaleur, est adsorbée sous forme de chaleur latente par le MCP, à la température, ou dans le domaine de températures, du changement de phase du MCP. Il est alors possible d'opérer l'unité PSA dans un mode plus proche de l'isotherme. Autour de la température ambiante, un hydrocarbure -ou un mélange d'hydrocarbures- peut être avantageusement utilisé.
Quand la température augmente, l'hydrocarbure contenu dans la bille absorbe la chaleur et la stocke. Quand la température diminue, l'hydrocarbure contenu dans la bille restitue la chaleur latente emmagasinée en changeant de phase de liquide au solide. Durant la période de changement de phase, la température demeure approximativement constante (suivant la composition de la cire) et permet de réguler la température à des niveaux bien déterminés par la nature de l'hydrocarbure (ou des hydrocarbures lorsqu'il s'agit de mélange) et en particulier la longueur de la chaine et le nombre d'atomes de carbone. Pour des raisons de transfert thermique à travers le matériau à changement de phase lui-même, celui-ci doit généralement être sous la forme de particules de petite taille, généralement inférieure à 100 microns. On parle par la suite de micro particule ou micro capsule pour désigner cette particule de base. Ces MCP micro encapsulés ne peuvent pas être introduits tels quels dans un lit d'adsorbant car il serait difficile d'en contrôler la répartition. En outre, ils seraient entraînés par les flux de gaz circulant dans l'adsorbeur. Il faut donc réaliser préalablement des « agglomérats ». Par « agglomérat », on entend par la suite, un solide de dimension supérieure à 0,1 mm pouvant revêtir différentes formes, en particulier une forme de bille, de pastille, de concassé obtenu par concassage et tamisage de blocs de dimensions supérieures, ou de plaquette obtenue par découpage de feuilles préalablement compactées, ou autres. Une première solution conduit à faire un mélange intime de l'adsorbant - sous forme de poudre ou de cristaux- et des micro particules de MCP et d'agglomérer le mélange. Les produits obtenus par pression à sec s'avèrent généralement trop fragiles pour une utilisation industrielle. Une agglomération en phase liquide ou humide pose le problème de l'activation de la phase active de l'agglomérat. Il est en effet connu que la majorité des adsorbants doivent être portés à température élevée avant utilisation dans les procédés industriels pour atteindre les performances requises. Le niveau de température nécessaire est généralement supérieur à 200°C, souvent de l'ordre de 300 à 450°C. Ces niveaux de température ne sont pas compatibles avec la tenue mécanique des MCP.
Une deuxième solution consiste à faire des agglomérats uniquement de MCP, sous forme d'une structure facile à manipuler et à introduire dans un adsorbeur. Cependant, les procédés de fabrication des agglomérats selon l'état actuel le plus simple de la technique (en particulier, le pastillage sous pression,) ne permettent pas d'obtenir des agglomérats avec des propriétés mécaniques et/ou thermiques suffisantes pour être utilisés efficacement dans les procédés thermo cycliques. Une des raisons est que les conditions opératoires de fabrication de ces agglomérats par les procédés classiquement utilisés pour la fabrication de pastilles d'adsorbants ou catalyseurs sont limitées par la résistance intrinsèque des MCP eux-mêmes. De par leur nature, ils ne peuvent pas supporter les pressions ou températures qui seraient nécessaires à la formation d'agglomérats résistants. Une autre raison tient à la nature particulière de l'enveloppe la plus classique, de type polymère, et à la déformabilité des capsules qui en résulte et rend peu efficace des procédés tels que l'agglomération sous pression.
De façon plus précise, les agglomérats formés par les moyens traditionnels en respectant les contraintes de pression et de température inhérentes aux MCP présentent un caractère de friabilité trop important pour des applications industrielles, en particulier de type P SA. Une fraction de ceux-ci se brisent , ce qui pose des problèmes de mal distribution du fluide de procédé dans l'adsorbeur, ou de colmatage de filtre par création de fines poussières constituées de MCP. Une troisième voie consiste à intégrer les microparticules de MCP dans une structure solide préexistante telle qu'une structure alvéolaire en « nid d'abeille » ou une mousse, un treillis, une grille.., par exemple par collage sur les parois. De tels matériaux réalisables en laboratoire ne sont pas utilisables à ce jour dans des unités industrielles de grande dimension (de volume supérieur à 1 m3 et plus généralement supérieur à 10m3) non seulement pour des raisons de fabrication ou de coût mais aussi pour des condition d'augmentation de la porosité globale du lit d'adsorbant et des volume morts associés aux espaces non accessibles aux agglomérats d'adsorbants (souvent sous formes de billes, bâtonnets ou concassées) . Dès lors un problème qui se pose est de fournir un mélange adsorbant amélioré respectant les critères de stabilité des mélanges, permettant d'augmenter la surface d'échange et plus généralement d'améliorer la cinétique, tout en n'augmentant pas la perte de charge du lit composite, et en respectant la vitesse d'attrition.
Une solution de la présente invention est un mélange adsorbant comprenant : - des particules d'adsorbant présentant une longueur moyenne DM(ads), une section moyenne Sm de diamètre moyen Dm(ads) et un rapport de forme RF1 avec RF1 = DM(ads)/Dm(ads) , et - des particules de matériau à changement de phase (MCP) présentant une 25 longueur moyenne DM(mcp), une section moyenne Sm de diamètre moyen Dm(mcp) et un rapport de forme RF2 avec RF2 = DM(mcp)/Dm(mcp), caractérisé en ce que : - Dm(mcp) < Dm(ads), et - RF1 >1,5 et/ou RF2 > 1,5. 30 Pour les billes et les concassés les deux paramètres dimensionnels peuvent être généralement considérés comme égaux et sont faciles à mesurer par des moyens simples tels que le tamisage. Le problème se pose de façon un peu plus complexe pour les extrudés. Lors de l'extrusion proprement dite, ils sont caractérisés par la géométrie de la filière qui donne leur section et par leur longueur obtenue par rupture naturelle ou par découpe (cisaille, lame tournante...). Si la section est généralement cylindrique, on peut imaginer des filières de toute forme par exemple de triangle équilatéral, trilobée, ellipse...mais aussi bien qu'à priori plus rare comme rectangulaire avec un côté sensiblement différent de l'autre. Après séchage et traitement éventuel supplémentaire, ces formes peuvent être modifiées avec des angles émoussés. Au niveau des extrémités, il peut y avoir également des modifications de forme. On admet que dans tous les cas l'on peut déterminer la section moyenne des extrudés et calculer le diamètre du cercle ayant même section soit à partir des dimensions de la filière, soit par mesure directe sur un échantillon représentatif de particules. Généralement, la moyenne obtenue à partir de 25 particules est largement suffisante pour être représentative de la population. Ce diamètre représente la première dimension caractéristique Dm.
Dans le cas le plus général d'extrudés cylindriques, Dm est evidemment égal au diamètre moyen du cylindre. Ce diamètre sera très voisin du diamètre de la filière, aux variations près que peut subir l'extrudé au sortir de la filière (allongement ou gonflement de quelques %). Les filières les plus communes correspondent à des cylindres dont les diamètres sont de l'ordre de 5mm, 3mm, 2mm, 1.5mm, 1 mm, 0.75mm ; Ces dimensions s'entendent à 10 / 15% près du fait d'utilisation à la base de dimensions métriques ou anglo-saxonnes (3/16", 1/8", 1/16" etc...) et des petites modifications entre diamètre de la filière et diamètre de l'extrudé. Avec cette approximation tout à fait acceptable, il devient aisé de déterminer la première dimension caractéristique de l'extrudé dès lors que l'on connait la géométrie de la filière, même dans le cas de forme plus complexe. La seconde dimension caractéristique est la longueur moyenne de l'extrudé. La mesure directe sur un échantillon représentatif , à priori de 25 particules, permet de déterminer la longueur moyenne que l'on appellera DM. On définira des valeurs moyennes pour une population présentant une certaine distribution : 1/DM = somme (Xi/DMi) où Xi est la fraction volumique de la classe des particules de dimension DMi. 1/Dm = somme (Xi/Dmi) où Xi est la fraction volumique de la classe des particules de dimension Dmi.
Pour les billes, les concassés et les extrudés de longueur approximativement égale à l'épaisseur, la forme générale peut être représentée par une seule caractéristique. Pour déterminer cette dimension caractéristique, il est généralement admis que le tamisage (multi tamis adaptés à la population) est la solution la plus simple et la plus répandue. Le tamisage permet également de calculer simplement la dimension moyenne d'une population présentant une distribution de taille. Pour rappel, on définit la dimension caractéristique moyenne De d'une population à partir de la relation 1/De = somme (Xi/Di) où Xi est la fraction volumique de la classe des particules de dimension Di.
On définit le rapport de forme pour une particule comme RF= DM/Dm. Pour une bille ou un concassé dont toutes les dimensions sont approximativement égales, on a donc DM=Dm et RF=1. Pour un batonnet, un extrudé cylindrique ou de forme équivalente, RF a une valeur supérieure à 1, généralement supérieure à 2. Ce type de valeur (> 2 par exemple) indique que la particule est anisotropique, avec une dimension supérieure aux autres. Ce sont généralement des particules allongées. Il convient de noter que les dimensions caractéristiques des particules dans le cadre de cette invention sont déterminées simplement : par tamisage pour les particules approximativement isotropiques (billes, concassés..) ; par mesures directes et calcul du diamètre équivalent pour les particules allongées. Selon le cas le mélange adsorbant selon l'invention peut présenter une ou plusieurs des caractéristiques suivantes : - Dm(mcp) < 0,85 Dm(ads), de préférence 0,50 Dm(ads) < Dm(mcp < 0,75 Dm(ads).
RF1 < 1,5 et RF2 > 1,5 ; - RF2 < 1,5 et RF1 > 1,5 ; - 0,9 < RF1 < 1,1 et RF2 > 1,5 ; - 0,9 < RF2 < 1,1 et RF1 > 1,5 ; - RF1 >1,5 et RF2 > 1,5 ; l'adsorbant est sous forme de bâtonnets de diamètres choisis dans le groupe suivant : 5 mm, 3 mm, 2 mm, 1,5 mm et 1 mm, et les particules de MCP sont sous forme de bâtonnets de diamètres choisis dans le groupe suivant : 3 mm, 2 mm, 1,5 mm, 1 mm et 0,75 mm ; - les particules de MCP ont une forme choisie entre le cylindre régulier, les cylindres avec les extrémités arrondies et les formes ellipsoïdes, et la forme obtenue par extrusion suivie ou pas par une étape de sphéronisation ; - le rapport des densités des particules de MCP et des particules d'adsorbants est inférieur ou égal à 2; - les particules de MCP ont une densité de 300 à 1000 kg/m3, de préférence de l'ordre de 500 à 750 kg/m3; - les particules de MCP sont issues d'un procédé de fabrication mettant en oeuvre une étape d'extrusion.
Une méthode de détermination des pourcentages optimums d'adsorbant et de MCP a été utilisée dans le cas d'un PSA CO2 industriel de grande taille. L'essentiel de la charge (80% volume) a consisté en un mélange homogène de 20% à 25% volume de particules de PCM et 80% à 75% d'adsorbant standard déjà testé pour cette même application.
Les particules de PCM ont été obtenues par le procédé d'agglomération en lit fluidisé et se présentaient sous la forme de billes quasi sphériques de diamètre allant de 2 à 3mm, c'est-à-dire voisin de la dimension de l'adsorbant. Ce choix avait été fait pour être franchement dans la zone de stabilité du mélange PCM / adsorbant en se basant sur l'enseignement du brevet FR 2906 160 B1 qui définit des règles entre rapport de densité et rapport de diamètre équivalent. Une campagne d'essais de plusieurs semaines a montré que pour les temps de cycle les plus longs, on obtenait la quasi-totalité des effets bénéfiques attendus mais que pour les temps de cycles les plus courts, on restait en deçà des attentes. Il en a été déduit, après éliminations d'autres hypothèses, que l'efficacité thermique des agglomérats de PCM était moindre dans ces cas. Pour améliorer les performances d'un PSA CO2, la solution de base envisagée avait été d'utiliser des billes de MCP de diamètre minimum vis-à-vis de la stabilité du mélange, c'est-à-dire en pratique de diamètre moitié de celui de l'adsorbant. Compte tenu du ratio en volume 1 MCP / 4 adsorbant, le nombre de billes de MCP est approximativement le double du nombre de billes d'adsorbant alors qu'il était d'un quart dans la configuration testée. De ce fait, on multiplie les points de contact entre billes, on augmente la surface d'échange globale fluide/ MCP et on diminue la dimension caractéristique, tous ces points allant dans le sens d'un meilleur échange thermique.
Malheureusement des mesures comparatives de pertes de charge montrent une augmentation sensible de ces dernières, non seulement parce que le diamètre moyen de la population est plus faible mais aussi et surtout parce que le mélange de ces deux populations, avec leur répartition respective, conduit à un tassement supérieur et donc à une diminution du taux de vide, facteur très sensible sur la perte de charge (variation avec le cube de certains termes). En pratique, cela signifie que les petites particules ont tendance à se loger entre les plus grosses et à bloquer le passage du fluide. Pour remédier à ce problème, cela reviendrait à devoir faire des adsorbeurs de section plus large, ce qui est l'opposé de ce qui est généralement recherché (investissement, transport, implantation, volume des fonds..). Devant ces résultats négatifs, des essais complémentaires ont été effectués avec diverses populations d'extrudés de forme essentiellement cylindrique et de rapport longueur sur diamètre différents, en mélange homogène avec un adsorbant sous forme de billes.
La comparaison a porté sur les pertes de charge et la vitesse d'attrition entre un lit composé uniquement d'adsorbant et les lits composites. La vitesse d'attrition a été définie comme la vitesse du gaz traversant le lit (supposé vide) et provoquant soit un détassement du lit, soit la mise en mouvement d'un nombre représentatif de particules à la surface libre ou au niveau des parois cylindriques.
Il s'agit d'observations visuelles. Le détassement du lit correspond à un déplacement vers le haut de la surface libre et par un nombre représentatif de billes en mouvement, on entend une fraction de l'ordre de 5% de la surface. Les mouvements localisés de quelques particules, en particulier s'il s'agit des plus petites à la surface libre, est noté mais n'est pas pris en compte. Il y a en effet des moyens simples de limiter ou supprimer ces mouvements comme par exemple d'ajouter une couche mince d'adsorbant seul à la surface libre. Des essais ont été menés avec le dispositif expérimental représenté schématiquement sur la Figure 1. En quelques mots, il s'agit d'un cylindre vertical transparent de 150 mm de diamètre équipé d'un poral (distributeur poreux) à sa base et pouvant contenir une hauteur de particules de l'ordre de 0.3 à 0.4 mètre. Le système d'acquisition permet de mesurer pression, débit, température et perte de charge. La pression maximum acceptable est de 5 bars absolus. Le gaz utilisé est de l'azote qualité cryogénique.
L'adsorbant ou le mélange homogène adsorbant/ MCP est introduit via un système de tamis croisés afin d'obtenir un remplissage dense et reproductible. On a observé que contrairement au mélange de deux familles de billes de diamètre différents, certains mélanges au moins constitués de billes d'adsorbant et d'extrudés de petit diamètre conduisent à des pertes de charge égales ou inférieures à celles du lit unique de billes. De façon similaire, la vitesse d'attrition est égale voire supérieure pour ces mélanges à celle correspondant au lit de billes seules. La Figure 2 illustre de façon générale le type de résultats obtenus. Il s'agit de la mesure de la perte de charge d'un flux d'azote pur traversant un même volume de matériau particulaire dans les mêmes conditions de pression et de température. Les différentes courbes ont été arrêtées à la vitesse d'attrition (en pratique, à l'observation du gonflement du lit dans la majorité des cas). La courbe 1 correspond au lit d'adsorbant seul (sous forme de billes, de concassés ou de cylindres de longueur inférieure en moyenne à 2 fois le diamètre). Le débit Q1 correspondant à la vitesse d'attrition est tel que la perte de charge compense le poids du lit, ce qui est une observation générale. La courbe 2 correspond à un mélange de 85% volume environ d'adsorbant (identique à celui correspondant à la courbe 1) et 15% volume environ de particules de MCP de même forme mais de taille environ moitié. Par taille environ moitié, on veut signifier par exemple dans le cas de billes que le diamètre des billes de MCP est la moitié du diamètre des billes d'adsorbant ; dans le cas de concassés, c'est le rapport entre le diamètre déterminé par tamisage comme explicité précédemment; dans le cas des cylindres, il s'agit du rapport des diamètres. S'agissant de production industrielle, on fait référence ici aux dimensions moyennes des populations de particules. On reviendra plus tard sur ces définitions sachant que les formes elles mêmes (cylindre, sphère..) ne sont que des approximations des formes réelles. On constate que le mélange de 2 populations de billes - ou assimilés- dans un facteur de l'ordre de 2 comme défini plus haut conduit à une augmentation très sensible (de 10 à plus de 30%) de la perte de charge à débit et conditions opératoires données. Bien que lit soit plus tassé, le fait que les particules de MCP soient de densité inférieure dans ces essais aux particules d'adsorbant, la vitesse d'attrition telle que définie est généralement obtenue pour une perte de charge un peu inférieure.
Le débit maximum Q2 (ou Q2') reste sensiblement inférieur au débit maximum Ql, généralement inférieur de plus de 15%. Par observation visuelle, on constate que les petites particules se logent préférentiellement dans les espaces laissées par les grosses et tendent à bloquer ainsi le passage du gaz. Ce phénomène de diminution du taux de vide interstitiel était connu mais aucune solution pour y remédier n'avait été apportée jusque là. On a constaté que l'on pouvait supprimer cet effet de bouchage en utilisant des particules de MCP, toujours de petite dimension pour être efficace mais de forme différente, en particulier en utilisant des formes de cylindre allongé. On a pu obtenir ainsi pour le mélange des pertes de charge voisines (courbe 4) ou sensiblement inférieures (courbe 3). Ce dernier mélange conduisant à un taux de vide supérieur au taux de vide de l'adsorbant seul et à une densité plus faible n'est pas dans la majorité des cas, le plus intéressant pour l'application PSA mais peut être utile dans des cas spécifiques (réduction des pertes de charge...). S'agissant dans ce test de mesures de type hydraulique (pertes de charge, débit, vitesse...) et non de performances thermiques ou d'adsorption, ces constatations restent valables que les particules les plus allongées soient des particules de MCP ou des particules d'adsorbant. Ainsi, le rapport de forme à respecter (>1.5) peut s'appliquer avec nos notations à RF1 ou à RF2. L'intérêt d'utiliser des particules de MCP de petites dimensions, c'est-à-dire de volume unitaire inférieur au volume moyen de la particule d'adsorbant a également été mis en évidence en comparant les battements thermiques de divers mélanges adsorbant/ MCP. Les essais consistent ici à faire des essais en cycle PSA avec des mélanges 80% volume adsorbant et 20% volume particules de MCP. Diverses tailles de particules de MCP sont testées alors que l'adsorbant est toujours le même. Le paramètre significatif le plus simple à mesurer est le battement thermique au cours des cycles. Par battement thermique, on entend différence entre les températures maximale et minimale relevées sur un cycle. Un cycle parfaitement isotherme donnerait un battement égal à zéro. En accélérant le cycle, c'est-à-dire en pratique en traitant plus de débit, on observe pour les mélanges comportant les plus grosses particules de MCP que les battements augmentent, indication que les particules de MCP n'ont plus une efficacité suffisante ou tout du moins, ont une efficacité moindre. C'est ce qui avait été observé sur le PSA industriel mentionné plus haut. A l'inverse, avec les particules les plus petites, les battements restent constants montrant que les particules de MCP ont conservé à temps de cycle réduit leur efficacité. Les mesures de productivité entre les différents tests confirment que les mélanges avec des particules de MCP de petite taille sont plus efficaces et ce d'autant plus que le cycle est rapide.
Les essais avec des billes et des bâtonnets montrent que pour améliorer la thermique, il convient d'utiliser de petites particules de MCP, c'est-à-dire des particules de volume et /ou de dimension caractéristique inférieure aux particules d'adsorbant. D'autres essais spécifiques montrent que pour conserver des pertes de charge, une vitesse d'attrition et un taux de vide acceptables, il convient par ailleurs d'utiliser des particules de forme géométrique bien différentes dès lors qu'une population est de dimension sensiblement inférieure à l'autre. En pratique, on observe que des bâtonnets de MCP de diamètre moyen Dm (mcp) inférieur au diamètre de l'adsorbant, par exemple d'un facteur 1.5 à 3 et de longueur moyenne DM (mcp) dans la plage allant de 2 à 8 fois le diamètre moyen Dm (mcp) sont un bon compromis entre les différentes contraintes. De façon industrielle, il convient de noter : que les particules, qu'il s'agisse d'adsorbant ou de MCP ne sont pas toutes de même dimension mais que leurs caractéristiques (diamètre, longueur, épaisseur..) se distribuent statistiquement autour de valeurs moyennes ; que les formes elles-mêmes ne correspondent pas à des figures géométriques simples (sphère, cylindres) mais sont plus complexes. La Figure 3 montre à titre d'exemple quelques une des formes observées effectivement par rapport à la forme cylindrique théorique. Les différentes particules présentent des variations autour d'une forme générale commune. De même, les sphères ne sont pas parfaites mais sont de forme ellipsoïdale, voire patatoidale. Il peut exister aussi un grand nombre de forme pour les particules extrudées suivant la filière (forme géométrique de la section), la façon de segmenter les extrudés (par simple effet de la gravité, par lame...) et le traitement ultérieur (sphéronisation partielle, séchage). Les MCP industriels existants, pouvant être utilisés dans le cadre de la présente invention, se présentent sous la forme de microcapsules qui sont ensuite agglomérées, comme expliqués ci-après. Les matériaux à changement de phase ou MCP en eux-mêmes peuvent être organiques, tels que les paraffines, les acides gras, les composés azotés, les composés oxygénés (alcool ou acides), les phényles et les silicones, ou inorganiques, tels que les sels hydratés et les alliages métalliques. Ils sont généralement micro-encapsulés dans une coquille solide micronique, préférentiellement à base de polymères (mélamine formaldéhyde, acrylique...). Les paraffines en particulier étant relativement faciles à micro encapsuler, elles sont généralement des MCP de choix par rapport aux sels hydratés, même si les paraffines ont une chaleur latente généralement inférieure à celles des sels hydratés. De plus, les paraffines présentent d'autres avantages comme la réversibilité du changement de phase, la stabilité chimique, la température de changement de phase, ou le domaine de températures de changement de phase, définis (pas d'effet de type hystérésis), un faible coût, la toxicité limitée et la large gamme de températures de changement de phase disponibles selon le nombre d'atomes de carbone et la structure de la molécule. Les MCP paraffiniques micro encapsulées se présentent sous la forme d'une poudre, chaque microcapsule constituant cette poudre faisant entre 50 nm et 100 ûrn de diamètre, préférentiellement entre 0,2 et 50 ûrn de diamètre. Pour des raisons décrites dans le brevet d'invention FR 2906 160 Bi les MCP ne peuvent pas être utilisés en tant que tels car, du fait de leur faible dimension, ils seraient irrémédiablement entrainés par le fluide en circulation, c'est-à-dire le gaz à traiter. Afin de conserver l'avantage lié aux performances thermiques des MCP, il convient d'en faire des agglomérats, mécaniquement suffisamment résistants à leur utilisation en 20 procédé PSA tout en utilisant un minimum de liant, inférieur à 30% en volume, préférentiellement inférieur à 10%, encore préférentiellement inférieur à 5% en volume. De façon avantageuse, ce liant, s'il s'avère nécessaire dans l'obtention des agglomérats, est au moins aussi conducteur de la chaleur que le MCP à l'état liquide afin de ne pas limiter sensiblement les échanges thermiques. A titre d'exemple, ce liant peut 25 être une argile (bentonite, attapulgite, kaolinite...) ou un liant hydraulique de type ciment ou encore un polymère, de préférence fondant à basse température (inférieure à 120°C), ou encore une colle ou une résine, éventuellement une colle ou une résine à conductivité thermique améliorée c'est-à-dire contenant par exemple des métaux (Fe) ou du graphite, ou encore de simples fibres ou poudres améliorant la tenue de l'ensemble (fibres de carbone, 30 poudres de métal...). Dans le cadre de l'invention, l'utilisation dans le procédé de fabrication d'une étape d'extrusion qui comprend le passage d'une pâte comprenant les micro-particules de MCP à travers une extrudeuse permet de contrôler de manière assez précise le RF des agglomérats obtenus ainsi que les paramètres définis dans la demande de brevet WO 2008/037904 (diamètre moyen, densité) permettant d'obtenir une mélange homogène et stable de particules de MCP et d'adsorbant (à savoir par exemple un ratio de densité inférieur à 3 et un ratio de diamètre inférieur à 2). Les extrudés composés principalement de MCP sont obtenus principalement sous forme de de bâtonnets réalisés via un procédé d'agglomération utilisant au moins une étape d'extrusion comme celle décrites dans les brevets US 7 575 804 B2 (Basf, LangWittkowski etal. 2009) and PCT WO 02/055280 Al (Rubitherm GMBH, 2002) bien que d'autres formes soient possibles. Pour réaliser la mise en forme de MCP respectant toutes les contraintes mentionnées plus haut une ou plusieurs étapes suivantes d'un procédé de fabrication sont utilisées : - les micro-particules sont de forme sphéroïde et de diamètre moyen compris entre 1 et 25 microns ; - on récupère à l'issu de l'étape d'extrusion des extrudés sous forme générale de bâtonnets et de diamètre moyen compris entre 0,1 et 10 mm, préférentiellement entre 0,3 et 5 mm ; - à l'étape d'extrusion, on met en oeuvre une pression d'extrusion inférieure à 10 Mpa, de préférence comprise entre 5 Mpa et 8 Mpa, encore préférentiellement inférieure à 5 Mpa ; - la pâte comprenant les particules de MCP demeure à une température inférieure à 100°C, préférentiellement inférieure à 80°C au cours de l'étape d'extrusion ; - ledit procédé comprend en aval de l'étape d'extrusion une étape de séchage des extrudés récupérés à l'issu de l'étape d'extrusion ; - ledit procédé comprend, en amont ou simultanément à l'étape de séchage, une étape de sphéronisation des extrudés récupérés à l'issu de l'étape d'extrusion ; L'agglomérat final sera de préférence sous forme sphéroïde de diamètre moyen compris entre 0,1 mm et 10 mm, préférentiellement compris entre 0,3 et 5 mm ; ledit procédé comprend, en amont ou simultanément à l'étape de séchage, une étape d'enrobage des extrudés récupérés à l'issu de l'étape d'extrusion ; - l'étape d'enrobage est telle que l'épaisseur de l'enrobage formé autour des extrudés est comprise entre 0,001 et 10% du diamètre de l'agglomérat récupéré en fin de procédé ; - les étapes de sphéronisation, séchage et enrobage sont de préférence effectuées en lit fluidisé. le liant est choisi parmi les polymères cellulosiques, les copolymères vinyle acryliques, les carboxyvinyl polymères, le water glass (sodium silicate, plus précisément sodium metasilicate), les polyéthylènes glycol 4000, les poly(acétate de vinyle) ; le liant est choisi préférentiellement parmi les hydroxypropyl cellulose (HPC) et/ou les carboxymethyl cellulose-sodium (CMC-Na). Notons que la pâte peut également comprendre des additifs solides. Ces additifs peuvent être organiques et/ou inorganiques. Il peut s'agir d'un matériau de conductivité thermique supérieure à 1 W/m/K, capable d'augmenter la conductibilité thermique de l'agglomérat, préférentiellement un composé métallique ou du graphite sous forme de poudre ou de filaments. Notons que la pâte peut également comprendre des additifs solides ayant des propriétés Ferro magnétiques permettant une séparation par aimantation d'agglomérats MCP des particules d'adsorbants avec lesquelles ces agglomérats de MCP seraient mélangés. Les matériaux ferromagnétiques (en particulier poudre de fer) permettent en même temps de modifier la densité de l'extrudé et assurer la stabilité de la mélange MCP- adsorbant lors de fonctionnement de l'unité de séparation par adsorption. Les additifs sont de dimension maximale (diamètre ou longueur) comprise entre 1 et 100 microns, de préférence entre 10 et 50 microns. Selon des caractéristiques complémentaires, l'agglomérat contiendra en poids entre 20 50 et 99% de micro capsules de MCP. De préférence, les microparticules de MCP représentent de 50 à 99,5% en poids de la particule finale séchée, l'additif solide de 0 à 50% poids et le liant moins de 5% poids. En plus de devoir obtenir des particules de MCP de diamètre et de densité permettant un mélange homogène et stable (à savoir par exemple un ratio de densité 25 inférieur à 3 et un ratio de diamètre inférieur à 2 suivant l'enseignement de la demande de brevet WO 2008/037904), la résistance à l'attrition, la résistance à l'écrasement ...ne doivent pas constituer le point faible du mélange. A titre d'exemple, on pourra ainsi dire que la résistance à l'attrition ne devra pas être inférieure d'un facteur supérieur à 2 à celle de l'adsorbant utilisé conjointement. Il en est de même pour la résistance à l'écrasement. Il 30 n'est pas possible de donner de valeur cible dans l'absolu pour ces caractéristiques sachant qu'elles dépendent complètement de l'adsorbant (alumine activée, zéolite..), de ses dimensions, de son état (taux d'humidité par exemple) mais aussi de la manière dont sont mesurées ces caractéristiques. On trouve les valeurs « fournisseurs » de ces propriétés dans les caractéristiques techniques qu'ils publient. On notera enfin que la géométrie du contenant de ces particules (adsorbeur, réacteur) et les conditions opératoires participent à fixer les propriétés minimales requises. Une autre contrainte provient du fait qu'il faut conserver l'intégrité des particules de MCP lors du procédé de fabrication. Lesdites micro particules doivent comme expliqué plus haut pouvoir supporter la pression nécessaire à l'extrusion, la température atteinte dans la filière. Elles doivent également être insolubles dans la solution contenant le liant qui doit en outre donner au mélange une consistance et plasticité suffisante. Ceci a pu être obtenu en sélectionnant des MCP présentant un certain nombre de caractéristiques de dimensions, de résistance mécanique à la température et à la pression et d'état de surface. Les MCP retenus se présentent sous la forme de microbilles enrobées par un polymère formant une enveloppe imperméable, insoluble dans l'eau (hydrophobe). La dite micro encapsulation est généralement obtenue par inversion de phase d'une émulsion selon des procédés connus par l'homme de l'art.
La coque doit de préférence garder plus de 50% de ses propriétés mécaniques mesurées à l'ambiante jusqu'à une température de 80, voire 100°C Le matériau à changement de phase retenu, qui dépend de l'application à laquelle sont destinés les MCP, est un mélange d'hydrocarbures saturés linéaires avec le nombre d'atomes de carbone variant entre 14 et 24.
La résistance à l'écrasement estimée est supérieure à quelques MPa, ce qui plaçait ce produit dans la plage des pressions potentielles d'extrusion. Un exemple commercial de MCP correspondant à cette description est le produit Micronale de BASF. Une pâte de caractéristique rhéologique permettant l'extrusion a été obtenue en utilisant une solution constituée d'un solvant, d'un liant et suivant les teneurs respectives de ces derniers un additif du type épaississant et/ou un surfactant. Plus généralement, on sélectionnera le « liant » parmi les polymères cellulosique (cellulose-based polymer), en particulier les hydroxypropyl cellulose (HPC) ou les carboxymethyl cellulose-sodium (CMC-Na), les co-polymères vinyl acrilique (vinyl acrilic co-polymer), les carboxyvinyl polymères (CLPs), le water glass, les PEG 4000, les PVA. Le solvant est préférentiellement de l'eau pure mais il n'est pas nécessaire de totalement la déminéraliser. Une émulsion de polyvinyl acetate latex comme additif facilite l'extrusion dans certain cas en améliorant la rhéologie de la solution (viscosité, plasticité...) La teneur du liant dans la solution de solvant peut aller en général de 1 à 50% poids, plus particulièrement de 1 à 20% poids, cela dépendant des produits utilisés. Sur une base sèche, il a été possible d'obtenir des particules extrudées comportant plus de 99% poids de MCP et par conséquent moins de 1% de liant.
Ces valeurs ont été obtenues à partir d'une pâte contenant moins de 10% poids de solvant dans lesquels il y avait également moins de 10% poids de liant. Des extrudés ont également réalisés à partir de 2 échantillons différents de MCP, MCP1 et MCP2 (différence en diamètre respectivement centrés sur 5 et 10/15 microns...) (cf tableau 1).
Suivant les modes de fabrication, il a été rajouté jusqu'à 40% poids de graphite et 10% poids de poudre de fer. La présente invention a également pour objet un adsorbeur comprenant au moins un lit adsorbant composé d'un mélange adsorbant selon l'invention et une unité d'adsorption comprenant au moins un tel adsorbeur.
L'unité d'adsorption peut être un PSA H2, un PSA CO2, un PSA 02, un PSA N2, un PSA CH4, un PSA Hélium... (On appelle PSA "constituant X" un PSA dont l'objet est de produire ou d'extraire du gaz d'alimentation le dit constituant.) Notons que si l'unité d'adsorption comprend un lit fixe, ce lit peut comprendre une ou plusieurs couches d'adsorbant couramment appelé multi-lit dans le langage technique.
L'invention concerne donc la majorité des procédés PSA et plus particulièrement de façon non limitative, outre les PSA H2, 02, N2, CO et CO2, les PSA de fractionnement du syngas en deux fractions au moins, les PSA sur gaz naturel destinés à retirer l'azote, et les PSA servant à fractionner des mélanges d'hydrocarbures. L'invention peut être mise en oeuvre, en outre, dans un procédé : - PSA Argon tel que décrit notamment dans US-A-6,544,318, US-A-6,432,170, US-A-5,395,427 ou US-A-6,527,831. Le PSA Ar permet de produire de l'oxygène à une pureté supérieure à 93%, en adsorbant préférentiellement soit l'argon, soit l'oxygène, présent dans un flux riche en 02 issu par exemple d'un PSA 02. Les PSA Ar utilisent généralement un tamis moléculaire carboné ou une zéolite échangée à l'argent (US-A- 6,432,170) ; - PSA He qui permet de produire de l'hélium en adsorbant préférentiellement les autres molécules présentes dans le flux d'alimentation ; - tout PSA permettant la séparation entre un alcène et un alcane, typiquement les PSA éthylène/éthane ou propylène/propane, par exemple. Ces séparations reposent sur une différence de cinétique d'adsorption des molécules sur un tamis moléculaire, carboné ou non ; - tout PSA permettant de fractionner un gaz de synthèse (syngas) ; - tout PSA permettant de séparer CH4 de N2.5
Claims (14)
- REVENDICATIONS1. Mélange adsorbant comprenant : - des particules d'adsorbant présentant une longueur moyenne DM(ads), une section moyenne Sm de diamètre moyen Dm(ads) et un rapport de forme RF1 avec RF1 = DM(ads)/Dm(ads) , et - des particules de matériau à changement de phase (MCP) présentant une 10 longueur moyenne DM(mcp), une section moyenne Sm de diamètre moyen Dm(mcp) et un rapport de forme RF2 avec RF2 = DM(mcp)/Dm(mcp), caractérisé en ce que : - Dm(mcp) < Dm(ads), et - RF1 >1,5 et/ou RF2 > 1,5. 15
- 2. Mélange adsorbant selon la revendication 1, caractérisé en ce que Dm(mcp) < 0,85 Dm(ads), de préférence 0,50 Dm(ads) < Dm(mcp < 0,75 Dm(ads).
- 3. Mélange adsorbant selon la revendication 1, caractérisé en ce que RF1 < 1,5 20 et RF2 > 1,5.
- 4. Mélange adsorbant selon la revendication 1, caractérisé en ce que RF2 < 1,5 et RF1 >1,5. 25
- 5. Mélange adsorbant selon la revendication 1, caractérisé en ce que 0,9 < RF1 < 1,1 et RF2 > 1,5.
- 6. Mélange adsorbant selon la revendication 1, caractérisé en ce que 0,9 < RF2 <1,1 et RF1 >1,5. 30
- 7. Mélange adsorbant selon la revendication 1, caractérisé en ce que : - RF1 >1,5 et RF2 > 1,5 ; - l'adsorbant est sous forme de bâtonnets de diamètres choisis dans le groupe suivant : 5 mm, 3 mm, 2 mm, 1,5 mm et 1 mm, etles particules de MCP sont sous forme de bâtonnets de diamètres choisis dans le groupe suivant : 3 mm, 2 mm, 1,5 mm, 1 mm et 0,75 mm.
- 8. Mélange adsorbant selon l'une des revendications 1 à 7, caractérisé en ce que les particules de MCP ont une forme choisie entre le cylindre régulier, les cylindres avec les extrémités arrondies et les formes ellipsoïdes, et la forme obtenue par extrusion suivie ou pas par une étape de sphéronisation.
- 9. Mélange adsorbant selon l'une des revendications 1 à 8, caractérisé en ce que le rapport des densités des particules de MCP et des particules d'adsorbants est inférieur ou égal à 2.
- 10. Mélange adsorbant selon l'une des revendications 1 à 9, caractérisé en ce que les particules de MCP ont une densité de 300 à 1000 kg/m3, de préférence de l'ordre de 500 à 750 kg/m3.
- 11. Mélange adsorbant selon l'une des revendications 1 à 10, caractérisé en ce que les particules de MCP sont issues d'un procédé de fabrication mettant en oeuvre une étape d'extrusion.
- 12. Adsorbeur comprenant au moins un lit adsorbant composé d'un mélange adsorbant selon l'une des revendications 1 à11.
- 13. Unité d'adsorption comprenant au moins un adsorbeur selon la revendication 12.
- 14. Unité d'adsorption selon la revendication 13, caractérisé en ce que ladite unité est choisie parmi un PSA H2, un PSA CO2, un PSA 02, un PSA N2, un PSA CO, un PSA CH4 ou un PSA Hélium.30
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1258890A FR2995797B1 (fr) | 2012-09-21 | 2012-09-21 | Melange adsorbant comprenant des particules d'adsorbant et des particules de materiau a changement de phase |
PCT/FR2013/052145 WO2014044968A1 (fr) | 2012-09-21 | 2013-09-18 | Mélange adsorbant comprenant des particules d'adsorbant et des particules de matériau à changement de phase |
US14/430,049 US20150238892A1 (en) | 2012-09-21 | 2013-09-18 | Adsorbent mixture including adsorbent particles and phase change material particles |
EP13779259.4A EP2897725A1 (fr) | 2012-09-21 | 2013-09-18 | Mélange adsorbant comprenant des particules d'adsorbant et des particules de matériau à changement de phase |
CN201380048796.1A CN104640624A (zh) | 2012-09-21 | 2013-09-18 | 包含吸附剂颗粒和相变材料颗粒的吸附剂混合物 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1258890A FR2995797B1 (fr) | 2012-09-21 | 2012-09-21 | Melange adsorbant comprenant des particules d'adsorbant et des particules de materiau a changement de phase |
Publications (2)
Publication Number | Publication Date |
---|---|
FR2995797A1 true FR2995797A1 (fr) | 2014-03-28 |
FR2995797B1 FR2995797B1 (fr) | 2015-12-18 |
Family
ID=47356111
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
FR1258890A Active FR2995797B1 (fr) | 2012-09-21 | 2012-09-21 | Melange adsorbant comprenant des particules d'adsorbant et des particules de materiau a changement de phase |
Country Status (5)
Country | Link |
---|---|
US (1) | US20150238892A1 (fr) |
EP (1) | EP2897725A1 (fr) |
CN (1) | CN104640624A (fr) |
FR (1) | FR2995797B1 (fr) |
WO (1) | WO2014044968A1 (fr) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3029803B1 (fr) * | 2014-12-11 | 2019-09-27 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Melange adsorbant a capacite thermique amelioree |
US20170015433A1 (en) * | 2015-07-14 | 2017-01-19 | Hamilton Sundstrand Corporation | Protection system for polymeric air separation membrane |
US10315184B2 (en) * | 2017-04-17 | 2019-06-11 | L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Adsorbent-loaded beads for high temperature adsorption processes |
US11643584B2 (en) * | 2017-11-16 | 2023-05-09 | Georgia Tech Research Corporation | Incorporation of microencapsulated phase change materials into wet-spin dry jet polymeric fibers |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2891159A1 (fr) * | 2005-09-26 | 2007-03-30 | Air Liquide | Procede psa a lit d'adsorption composite forme d'un adsorbant et d'agglomerats de mcp |
FR2906160A1 (fr) * | 2006-09-25 | 2008-03-28 | Air Liquide | Procede psa a lit d'adsorption composite forme d'un adsorbant et d'agglomerats de mcp |
WO2012136912A1 (fr) * | 2011-04-08 | 2012-10-11 | L'air Liquide,Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Particule d'un matériau à changement de phase avec couche d'enrobage |
WO2012136913A1 (fr) * | 2011-04-08 | 2012-10-11 | L'air Liquide,Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Mélange d'un adsorbant et d'un matériau à changement de phase à densité adaptée |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4971605A (en) | 1989-09-18 | 1990-11-20 | Institute Of Gas Technology | Isothermal thermo-cyclic processing |
US5395427A (en) | 1994-01-12 | 1995-03-07 | Air Products And Chemicals, Inc. | Two stage pressure swing adsorption process which utilizes an oxygen selective adsorbent to produce high purity oxygen from a feed air stream |
CN1344581A (zh) | 2000-09-15 | 2002-04-17 | 普莱克斯技术有限公司 | 使用混合吸附剂层的压力摆动吸附 |
US6527831B2 (en) | 2000-12-29 | 2003-03-04 | Praxair Technology, Inc. | Argon purification process |
WO2002055280A1 (fr) | 2001-01-11 | 2002-07-18 | Rubitherm Gmbh | Element en matiere plastique et son procede de production |
US6432170B1 (en) | 2001-02-13 | 2002-08-13 | Air Products And Chemicals, Inc. | Argon/oxygen selective X-zeolite |
US6544318B2 (en) | 2001-02-13 | 2003-04-08 | Air Products And Chemicals, Inc. | High purity oxygen production by pressure swing adsorption |
DE102005002411A1 (de) | 2005-01-18 | 2006-07-27 | Basf Ag | Grobteilige Mikrokapselzubereitung |
-
2012
- 2012-09-21 FR FR1258890A patent/FR2995797B1/fr active Active
-
2013
- 2013-09-18 US US14/430,049 patent/US20150238892A1/en not_active Abandoned
- 2013-09-18 CN CN201380048796.1A patent/CN104640624A/zh active Pending
- 2013-09-18 EP EP13779259.4A patent/EP2897725A1/fr not_active Withdrawn
- 2013-09-18 WO PCT/FR2013/052145 patent/WO2014044968A1/fr active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2891159A1 (fr) * | 2005-09-26 | 2007-03-30 | Air Liquide | Procede psa a lit d'adsorption composite forme d'un adsorbant et d'agglomerats de mcp |
FR2906160A1 (fr) * | 2006-09-25 | 2008-03-28 | Air Liquide | Procede psa a lit d'adsorption composite forme d'un adsorbant et d'agglomerats de mcp |
WO2012136912A1 (fr) * | 2011-04-08 | 2012-10-11 | L'air Liquide,Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Particule d'un matériau à changement de phase avec couche d'enrobage |
WO2012136913A1 (fr) * | 2011-04-08 | 2012-10-11 | L'air Liquide,Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Mélange d'un adsorbant et d'un matériau à changement de phase à densité adaptée |
Also Published As
Publication number | Publication date |
---|---|
WO2014044968A1 (fr) | 2014-03-27 |
CN104640624A (zh) | 2015-05-20 |
US20150238892A1 (en) | 2015-08-27 |
EP2897725A1 (fr) | 2015-07-29 |
FR2995797B1 (fr) | 2015-12-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2334419B1 (fr) | Fabrication d'agglomerat compose de materiau a changement phase et presentant des proprietes controlees | |
CA2830170C (fr) | Melange d'un adsorbant et d'un materiau a changement de phase a densite adaptee | |
FR3029803B1 (fr) | Melange adsorbant a capacite thermique amelioree | |
EP2073913B1 (fr) | Procédé psa à lit d'adsorption composite formé d'un adsorbant et d'agglomérats de mcp | |
EP2694187A1 (fr) | Particule d'un matériau à changement de phase avec couche d'enrobage | |
CA2690051C (fr) | Agglomeres spheriques a base de zeolite(s), leur procede d'obtention et leur utilisation dans les procedes d'adsorption ou en catalyse | |
FR2995797A1 (fr) | Melange adsorbant comprenant des particules d'adsorbant et des particules de materiau a changement de phase | |
EP0967176B1 (fr) | Agglomerats à base de charbon actif, leur procédé de préparation et leur utilisation comme agents d'adsorption | |
EP1565539A1 (fr) | Materiau composite, son utilisation pour la gestion des effets thermiques dans un processus physico-chimique | |
Yang et al. | Multi-cycle methane hydrate formation in micro droplets of gelatinous dry solution | |
CN109923066B (zh) | 球状活性炭及其制造方法 | |
FR2891159A1 (fr) | Procede psa a lit d'adsorption composite forme d'un adsorbant et d'agglomerats de mcp | |
WO2018114526A1 (fr) | Particules d'hydroxyde de calcium a fins pores et leur procede de fabrication | |
FR2973719A1 (fr) | Melange d'un materiau adsorbant et d'un materiau a changement de phase separables par aimantation | |
CA2172781A1 (fr) | Composite actif a structure feuilletee et son utilisation comme milieu reactionnel | |
FR2973807A1 (fr) | Melange d'un adsorbant et d'un materiau a changement de phase a densite adaptee | |
WO2009150358A1 (fr) | Materiau solide contenant une charge active et permettant une grande facilite d'acces a cette charge | |
FR2999777A1 (fr) | Utilisation d'un materiau composite specifique pour la decontamination d'un effluent liquide comprenant un ou plusieurs elements radioactifs | |
Suttipat et al. | Sand Waste Utilization for Dehydration Application | |
FR2732243A1 (fr) | Composite actif a structure feuilletee et son utilisation comme milieu reactionnel | |
FR3053324A1 (fr) | Produit solide dont la composition renferme du borazane, sa preparation et son utilisation pour generer de l'hydrogene | |
FR2946893A1 (fr) | Procede de capture,separation et purification de gaz par des oxydes mixtes amorphes. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PLFP | Fee payment |
Year of fee payment: 4 |
|
PLFP | Fee payment |
Year of fee payment: 5 |
|
PLFP | Fee payment |
Year of fee payment: 6 |
|
PLFP | Fee payment |
Year of fee payment: 7 |
|
PLFP | Fee payment |
Year of fee payment: 8 |
|
PLFP | Fee payment |
Year of fee payment: 9 |
|
PLFP | Fee payment |
Year of fee payment: 10 |
|
PLFP | Fee payment |
Year of fee payment: 11 |
|
PLFP | Fee payment |
Year of fee payment: 12 |
|
PLFP | Fee payment |
Year of fee payment: 13 |