EP2897725A1 - Mélange adsorbant comprenant des particules d'adsorbant et des particules de matériau à changement de phase - Google Patents

Mélange adsorbant comprenant des particules d'adsorbant et des particules de matériau à changement de phase

Info

Publication number
EP2897725A1
EP2897725A1 EP13779259.4A EP13779259A EP2897725A1 EP 2897725 A1 EP2897725 A1 EP 2897725A1 EP 13779259 A EP13779259 A EP 13779259A EP 2897725 A1 EP2897725 A1 EP 2897725A1
Authority
EP
European Patent Office
Prior art keywords
adsorbent
mcp
particles
psa
ads
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP13779259.4A
Other languages
German (de)
English (en)
Inventor
Christian Monereau
Pluton Pullumbi
Vincent Gueret
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Publication of EP2897725A1 publication Critical patent/EP2897725A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28011Other properties, e.g. density, crush strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28016Particle form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28016Particle form
    • B01J20/28019Spherical, ellipsoidal or cylindrical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28042Shaped bodies; Monolithic structures
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/06Materials undergoing a change of physical state when used the change of state being from liquid to solid or vice versa
    • C09K5/063Materials absorbing or liberating heat during crystallisation; Heat storage materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/102Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/104Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • B01D2253/108Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • B01D2253/11Clays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/116Molecular sieves other than zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/30Physical properties of adsorbents
    • B01D2253/302Dimensions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/30Physical properties of adsorbents
    • B01D2253/302Dimensions
    • B01D2253/304Linear dimensions, e.g. particle shape, diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/30Physical properties of adsorbents
    • B01D2253/34Specific shapes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/12Oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/16Hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/18Noble gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/20Carbon monoxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/22Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/24Hydrocarbons
    • B01D2256/245Methane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/10Single element gases other than halogens
    • B01D2257/102Nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/10Single element gases other than halogens
    • B01D2257/104Oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/10Single element gases other than halogens
    • B01D2257/108Hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/502Carbon monoxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/702Hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/702Hydrocarbons
    • B01D2257/7022Aliphatic hydrocarbons
    • B01D2257/7025Methane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/46Materials comprising a mixture of inorganic and organic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/50Aspects relating to the use of sorbent or filter aid materials
    • B01J2220/56Use in the form of a bed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/20Capture or disposal of greenhouse gases of methane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]

Definitions

  • Adsorbent mixture comprising adsorbent particles and particles of phase-change material
  • the invention relates to an adsorbent mixture consisting on the one hand of particles of a phase change material (PCM) and on the other hand of adsorbent particles, a mixture for use in a thermocyclic separation process. adsorption.
  • PCM phase change material
  • adsorbent mixture means any mixture of an adsorbent material and an additive material shaped or not and in variable proportions.
  • thermocyclic process is any cyclic process in which certain stages are exothermic, that is to say accompanied by a release of heat, while certain other stages are endothermic, that is to say accompanied by a consumption of heat.
  • phase change materials act as heat sinks at their phase change temperature.
  • Typical examples of thermocyclic processes for which the invention can be beneficially implemented include processes having a relatively reduced cycle time for which heat transfer between the adsorbent bed and the MCP agglomerates must be carried out. only a fraction of this cycle time.
  • PSA Pressure swing adsorption
  • MPSA Mated Pressure Swing Adsorption
  • the pressure swing adsorption separation processes are based on the physical adsorption phenomenon and make it possible to separate or purify gases by pressure cycling the gas to be treated through one or more adsorbent beds, such as a bed of zeolite or coal. active, activated alumina, silica gel, molecular sieve or the like.
  • adsorbent beds such as a bed of zeolite or coal. active, activated alumina, silica gel, molecular sieve or the like.
  • PSA process designates, unless otherwise stipulated otherwise, any pressure-swing adsorption gas separation process, implementing a cyclic variation of the pressure between a high pressure, so-called adsorption pressure, and a low pressure, called regeneration pressure. Therefore, the generic name PSA process is used interchangeably to designate the following cyclic processes:
  • VSA processes in which the adsorption is carried out substantially at atmospheric pressure, called “high pressure”, that is to say between 1 bara and 1.6 bara (bara absolute bar), preferably between 1.1 and 1.5 bara, and the desorption pressure, called “low pressure”, is less than atmospheric pressure, typically between 30 and 800 mbar, preferably between 100 and 600 mbar.
  • the VPSA or MPSA processes in which the adsorption is carried out at a high pressure substantially greater than atmospheric pressure, generally between 1.6 and 8 bara, preferably between 2 and 6 bara, and the low pressure is below atmospheric pressure typically between 30 and 800 mbara, preferably between 100 and 600 mbara.
  • PSA processes in which the adsorption is carried out at a high pressure substantially above atmospheric pressure, typically between 1.6 and 50 bara, preferably between 2 and 35 bara, and the low pressure is greater than or substantially equal to the pressure atmospheric, therefore between 1 and 9 bara, preferably between 1.2 and 2.5 bara.
  • the RPSA (Rapid PSA) processes designate very fast cycle PSA processes, generally less than one minute.
  • a PSA process makes it possible to separate one or more gas molecules from a gaseous mixture containing them, by exploiting the difference in affinity of a given adsorbent or, where appropriate, of several adsorbents for these different molecules of gas.
  • the affinity of an adsorbent for a gaseous molecule depends on the structure and composition of the adsorbent, as well as the properties of the molecule, including its size, electronic structure and multipolar moments.
  • An adsorbent may be, for example, a zeolite, an activated carbon, an activated alumina, a silica gel, a carbon-based or non-carbon molecular sieve, a metallo-organic structure, an alkali or alkaline-earth metal oxides or hydroxides, or a porous structure containing a substance capable of reacting reversibly with a or a plurality of gas molecules, such as amines, physical solvents, metal complexing agents, metal oxides or hydroxides for example.
  • the thermal effects resulting from the adsorption enthalpy or the reaction enthalpy generally lead to the propagation, at each cycle, of a heat wave at the adsorption which limits the capacitances of adsorption and a desorption cold wave limiting desorption.
  • a particular case covered in the context of the present patent is the storage / removal of gas in a reactor or adsorber containing at least partly one or more adsorbents.
  • thermo-cyclic process using an adsorbent material with release of heat during storage (pressure increase) and release of cold during destocking (pressure decrease)
  • a solution for decreasing the amplitude of the thermal beats is to add a phase change material (PCM) to the adsorbent bed as described in US-A-4,971,605.
  • PCM phase change material
  • the heat of adsorption and desorption, or a part of this heat is adsorbed as latent heat by the MCP, at the temperature, or in the temperature range, of the phase change of the PCM. It is then possible to operate the PSA unit in a mode closer to the isotherm.
  • a hydrocarbon or a mixture of hydrocarbons can be advantageously used.
  • the hydrocarbon contained in the ball absorbs heat and stores it.
  • the hydrocarbon contained in the ball restores the latent heat stored by changing the liquid phase to the solid.
  • the temperature remains approximately constant (according to the composition of the wax) and allows the temperature to be regulated at levels well determined by the nature of the hydrocarbon (or hydrocarbons when it comes to mixture) and in particular the length of the chain and the number of carbon atoms.
  • phase change material For reasons of heat transfer through the phase change material itself, it should generally be in the form of small particles, generally less than 100 microns. Subsequently, we speak of micro particle or micro capsule to designate this basic particle.
  • micro encapsulated MCPs can not be introduced as such into an adsorbent bed because it would be difficult to control the distribution. In addition, they would be driven by the flow of gas flowing in the adsorber. It is therefore necessary to previously produce “agglomerates”.
  • agglomerate hereinafter is understood to mean a solid of dimension greater than 0.1 mm which may take various forms, in particular a form of ball, pellet, crushed cheese obtained by crushing and sieving blocks of larger dimensions, or wafer obtained by cutting previously compacted leaves, or others.
  • a first solution leads to an intimate mixture of the adsorbent - in the form of powder or crystals - and micro particles of MCP and to agglomerate the mixture.
  • Products obtained by dry pressing are generally too fragile for industrial use. Agglomeration in liquid or wet phase poses the problem of activation of the active phase of the agglomerate.
  • the required temperature level is generally above 200 ° C, often in the range of 300 to 450 ° C. These temperature levels are not compatible with the mechanical strength of MCPs.
  • a second solution consists in making agglomerates solely of MCP, in the form of a structure that is easy to handle and to introduce into an adsorber.
  • the processes for manufacturing agglomerates according to the simplest state of the art do not make it possible to obtain agglomerates with sufficient mechanical and / or thermal properties to be used effectively. in thermocyclic processes.
  • a third way consists in integrating the MCP microparticles into a preexisting solid structure such as a "honeycomb" honeycomb structure or a foam, a lattice, a grid, for example by bonding to the walls.
  • a preexisting solid structure such as a "honeycomb" honeycomb structure or a foam, a lattice, a grid, for example by bonding to the walls.
  • Such materials that can be made in the laboratory can not be used today in large-scale industrial units (with a volume greater than 1 m 3 and more generally greater than 10 m 3 ) not only for reasons of manufacture or cost but also for condition of increasing the overall porosity of the adsorbent bed and the dead volume associated with the spaces that are not accessible to the agglomerates of adsorbents (often in the form of beads, rods or crushed particles).
  • a problem that arises is to provide an improved adsorbent mixture meeting the criteria of stability of the mixtures, making it possible to increase the exchange surface and more generally to improve the kinetics, while not increasing the pressure drop. composite bed, and respecting the speed of attrition.
  • a solution of the present invention is an adsorbent mixture comprising:
  • PCM phase change material
  • the two dimensional parameters can be generally considered equal and are easy to measure by simple means such as sieving.
  • the section is generally cylindrical, one can imagine dies of any shape for example equilateral triangle, trilobed, ellipse ... but as a priori rarer as rectangular with a side significantly different from the other.
  • these shapes can be modified with blunt angles. At the ends, there may also be changes in shape.
  • Dm is obviously equal to the average diameter of the cylinder. This diameter will be very close to the diameter of the die, with the variations that can undergo the extruded out of the die (elongation or swelling of a few%).
  • the most common dies correspond to cylinders whose diameters are of the order of 5mm, 3mm, 2mm, 1.5mm, 1mm, 0.75mm; These dimensions are 10/15% close to the fact of basic use of metric or Anglo-Saxon dimensions (3/16 ", 1/8", 1/16 "etc. ..) and small changes between diameter of the die and diameter of the extruded.
  • the second characteristic dimension is the average length of the extrusion.
  • RF has a value greater than 1, generally greater than 2. This type of value (> 2 for example) indicates that the particle is anisotropic, with a dimension greater than the others. These are usually elongated particles.
  • characteristic particle sizes within the scope of this invention are determined simply: by sieving for approximately isotropic particles (beads, crushed, etc.); by direct measurements and calculation of the equivalent diameter for the elongated particles.
  • the adsorbent mixture according to the invention may have one or more of the following characteristics:
  • the adsorbent is in the form of rods of diameters selected from the following group: 5 mm, 3 mm, 2 mm, 1.5 mm and 1 mm
  • the particles of MCP are in the form of rods of diameters selected from the following group 3 mm, 2 mm, 1.5 mm, 1 mm and 0.75 mm
  • the MCP particles have a shape chosen between the regular cylinder, the cylinders with the rounded ends and the ellipsoidal shapes, and the shape obtained by extrusion followed or not by a spheronization step;
  • the ratio of the densities of the MCP particles and the adsorbent particles is less than or equal to 2;
  • the MCP particles have a density of 300 to 1000 kg / m 3 , preferably of the order of 500 to 750 kg / m 3 ;
  • the particles of MCP are derived from a manufacturing process implementing an extrusion step.
  • the PCM particles were obtained by the fluidized bed agglomeration process and were in the form of quasi-spherical beads with a diameter ranging from 2 to 3 mm, that is to say close to the size of the adsorbent.
  • the basic solution envisaged was to use MCP beads of minimum diameter with respect to the stability of the mixture, that is to say in practice of half diameter. from that of the adsorbent.
  • the number of PCM beads is approximately twice the number of adsorbent beads while it was one quarter in the tested configuration.
  • the comparison focused on the pressure drop and the rate of attrition between a bed composed solely of adsorbent and the composite beds.
  • the rate of attrition has been defined as the velocity of the gas passing through the bed (assumed to be empty) and causing either bed disassembly or the setting in motion of a representative number of particles at the free surface or at the level of the cylindrical walls. .
  • Offset of the bed corresponds to an upward movement of the free surface and a representative number of moving balls means a fraction of the order of 5% of the surface.
  • the localized motions of some particles, especially if they are the smallest ones on the free surface, are noted but are not taken into account. There are indeed simple ways to limit or eliminate these movements such as adding a thin layer of adsorbant alone to the free surface.
  • the acquisition system measures pressure, flow, temperature and pressure drop. The maximum acceptable pressure is 5 bar absolute.
  • the gas used is nitrogen cryogenic quality.
  • the adsorbent or the homogeneous adsorbent / MCP mixture is introduced via a cross-sieve system in order to obtain a dense and reproducible filling.
  • Figure 2 illustrates in a general way the type of results obtained. This is the measurement of the pressure drop of a stream of pure nitrogen passing through the same volume of particulate material under the same conditions of pressure and temperature. The different curves were stopped at the speed of attrition (in practice, the observation of swelling of the bed in the majority of cases).
  • Curve 1 corresponds to the adsorbent bed alone (in the form of balls, crushed or cylinders of length less than 2 times the diameter).
  • the flow rate Ql corresponding to the attrition rate is such that the pressure drop compensates for the weight of the bed, which is a general observation.
  • Curve 2 corresponds to a mixture of approximately 85% volume of adsorbent (identical to that corresponding to curve 1) and approximately 15% volume of PCM particles of the same shape but of approximately half size.
  • size about half it is meant for example in the case of beads that the diameter of the PCM beads is half the diameter of the adsorbent beads; in the case of crushed, it is the ratio between the diameter determined by sieving as previously explained; in the case of cylinders, it is the ratio of the diameters.
  • the tests here consist of carrying out PSA cycle tests with 80%> adsorbent volume and 20%> volume particles mixtures of MCP. Various sizes of MCP particles are tested while the adsorbent is still the same.
  • Thermal beat means the difference between the maximum and minimum temperatures recorded on a cycle. A perfectly isothermal cycle would give a beat equal to zero.
  • the mixtures with the larger particles of MCP are observed to increase, indicating that the particles of MCP no longer have sufficient efficacy. or at least, have less efficiency. This is what was observed on the industrial PSA mentioned above.
  • the beats remain constant showing that MCP particles have kept in cycle time reduced their effectiveness. The productivity measures between the different tests confirm that mixtures with small MCP particles are more efficient, especially since the cycle is fast.
  • MCP rods of average diameter Dm (mcp) less than the diameter of the adsorbent, for example by a factor of 1.5 to 3 and of average length DM (mcp) in the range from 2 to 8 times the average diameter Dm (mcp) are a good compromise between the different constraints.
  • particles, whether adsorbent or MCP are not all the same size but their characteristics (diameter, length, thickness ..) are distributed statistically around average values;
  • Figure 3 shows by way of example a few of the shapes actually observed with respect to the theoretical cylindrical shape.
  • the different particles have variations around a common general form.
  • the spheres are not perfect but are ellipsoidal or even patatoidal.
  • the existing industrial PCMs which can be used in the context of the present invention, are in the form of microcapsules which are then agglomerated, as explained below.
  • Phase change materials or PCM in themselves may be organic, such as paraffins, fatty acids, nitrogen compounds, oxygenated compounds (alcohol or acids), phenyls and silicones, or inorganic compounds, such as salts hydrated and metal alloys. They are generally micro-encapsulated in a micronic solid shell, preferably based on polymers (melamine formaldehyde, acrylic, etc.).
  • paraffins are relatively easy to encapsulate, they are generally MCPs of choice over hydrated salts, even though paraffins have a latent heat that is generally lower than those of hydrated salts.
  • paraffins have other advantages such as phase change reversibility, chemical stability, phase change temperature, or phase change temperature range defined (no hysteresis effect), a low cost, limited toxicity and wide range of phase change temperatures available depending on the number of carbon atoms and the structure of the molecule.
  • the micro encapsulated paraffinic PCMs are in the form of a powder, each microcapsule constituting this powder being between 50 nm and 100 ⁇ m in diameter, preferably between 0.2 and 50 ⁇ m in diameter.
  • the MCP can not be used as such because, because of their small size, they would be irretrievably driven by the circulating fluid, that is to say say the gas to be treated.
  • this binder if it is necessary in obtaining the agglomerates, is at least as conductive of the heat as the MCP in the liquid state so as not to substantially limit the heat exchange.
  • this binder may be a clay (bentonite, attapulgite, Kao Imite, etc.) or a cement-type hydraulic binder or a polymer, preferably melting at a low temperature (below 120 ° C.), or still an adhesive or a resin, optionally an adhesive or a resin with improved thermal conductivity, that is to say containing for example metals (Fe) or graphite, or simple fibers or powders improving the performance of the whole (carbon fibers, metal powders ).
  • the use in the manufacturing process of an extrusion step which comprises the passage of a paste comprising the micro-particles of PCM through an extruder makes it possible to control in a fairly precise manner the RF agglomerates obtained and the parameters defined in patent application WO 2008/037904 (average diameter, density) to obtain a homogeneous and stable mixture of particles of MCP and adsorbent (ie for example a density ratio of less than 3 and a diameter ratio of less than 2).
  • extrudates composed mainly of MCP are obtained mainly in the form of rods made via an agglomeration process using at least one extrusion step such as that described in US Pat. No. 7,575,804 B2 (Basf, Lang-Wittkowski et al., 2009). and PCT WO 02/055280 A1 (Rubitherm GMBH, 2002) although other forms are possible.
  • microparticles are spheroidal in shape and have a mean diameter of between 1 and 25 microns;
  • extrudates are recovered in the general form of rods and have a mean diameter of between 0.1 and 10 mm, preferably between 0.3 and 5 mm;
  • an extrusion pressure of less than 10 MPa is used, preferably of between 5 MPa and 8 MPa, more preferably less than 5 MPa;
  • the paste comprising the MCP particles remains at a temperature below 100 ° C., preferably below 80 ° C. during the extrusion step;
  • said method comprises, downstream of the extrusion step, a step of drying the extrudates recovered at the end of the extrusion step;
  • said method comprises, upstream or simultaneously with the drying step, a spheronization step of the extrudates recovered at the end of the extrusion step;
  • the final agglomerate will preferably be in spheroidal form with a mean diameter of between 0.1 mm and 10 mm, preferably between 0.3 and 5 mm;
  • said method comprises, upstream or simultaneously with the drying step, a step of coating the extrudates recovered at the end of the extrusion step;
  • the coating step is such that the thickness of the coating formed around the extrudates is between 0.001 and 10% of the diameter of the agglomerate recovered at the end of the process;
  • the spheronization, drying and coating steps are preferably carried out in a fluidized bed.
  • the binder is chosen from cellulosic polymers, vinyl acrylic copolymers, carboxyvinyl polymers, water glass (sodium silicate, more precisely sodium metasilicate), polyethylene glycol 4000, polyvinyl acetate; the binder is preferably chosen from hydroxypropyl cellulose (HPC) and / or carboxymethyl cellulose-sodium (CMC-Na).
  • the dough may also include solid additives. These additives can be organic and / or inorganic. It may be a material of thermal conductivity greater than 1 W / m / K, capable of increasing the thermal conductivity of the agglomerate, preferably a metal compound or graphite in the form of powder or filaments.
  • the dough may also comprise solid additives having magnetic Ferro properties enabling a magnetization separation of MCP agglomerates from the adsorbent particles with which these agglomerates of MCP would be mixed.
  • the ferromagnetic materials in particular iron powder
  • the additives are of maximum size (diameter or length) of between 1 and 100 microns, preferably between 10 and 50 microns.
  • the agglomerate will contain, by weight, between 50 and 99% of microcapsules of MCP.
  • the MCP microparticles represent from 50 to 99.5% by weight of the dried final particle, the solid additive from 0 to 50% by weight and the binder less than 5% by weight.
  • resistance to attrition, crush resistance ... should not be the weak point of the mixture.
  • the attrition resistance should not be less than a factor of 2 to that of the adsorbent used together. It is the same for the resistance to crushing.
  • micro particles must be preserved during the manufacturing process. Said micro particles must as explained above be able to withstand the pressure necessary for extrusion, the temperature reached in the die. They must also be insoluble in the solution containing the binder which must also give the mixture a consistency and sufficient plasticity.
  • MCPs with a number of dimensional, mechanical strength, temperature, and surface characteristics.
  • the retained MCPs are in the form of microbeads coated with a waterproof, water-insoluble (hydrophobic) shell-forming polymer.
  • Said microencapsulation is generally obtained by phase inversion of an emulsion according to methods known to those skilled in the art.
  • the shell should preferably keep more than 50% of its measured mechanical properties at ambient temperature up to a temperature of 80 or even 100 ° C
  • the selected phase change material which depends on the application for which the PCMs are intended, is a mixture of linear saturated hydrocarbons with the number of carbon atoms varying between 14 and 24.
  • the estimated crush strength is greater than a few MPa, which placed this product in the range of potential extrusion pressures.
  • PCM PCM-based product
  • BASF's Micronal® product A commercial example of PCM corresponding to this description is BASF's Micronal® product.
  • a paste of rheological characteristic permitting extrusion was obtained by using a solution consisting of a solvent, a binder and, depending on the respective contents of the latter, a thickening type additive and / or a surfactant.
  • the "binder” will be selected from cellulosic polymers (cellulose-based polymers), in particular hydroxypropyl cellulose (HPC) or carboxymethyl cellulose-sodium (CMC-Na), vinyl acrilic co-polymers (vinyl acrilic co polymer), carboxyvinyl polymers (CLPs), water glass, PEG 4000, PVA.
  • cellulosic polymers cellulose-based polymers
  • HPC hydroxypropyl cellulose
  • CMC-Na carboxymethyl cellulose-sodium
  • vinyl acrilic co-polymers vinyl acrilic co polymer
  • CLPs carboxyvinyl polymers
  • water glass PEG 4000, PVA.
  • the solvent is preferably pure water but it is not necessary to totally demineralize it.
  • An emulsion of polyvinyl acetate latex as an additive facilitates extrusion in certain cases by improving the rheology of the solution (viscosity, plasticity ).
  • the content of the binder in the solvent solution may range generally from 1 to 50% by weight, more particularly from 1 to 20% by weight, depending on the products used.
  • the present invention also relates to an adsorber comprising at least one adsorbent bed composed of an adsorbent mixture according to the invention and an adsorption unit comprising at least one such adsorber.
  • the adsorption unit may be a PSA H2, a PSA CO2, a PSA 02, a PSA N2, a PSA CH4, a PSA Helium. .. (PSA "constituent X" is a PSA whose object is to produce or extract gas from said constituent.)
  • the adsorption unit comprises a fixed bed
  • this bed may comprise one or more layers of adsorbent commonly called multi-bed in the technical language.
  • the invention therefore relates to the majority of the PSA processes and more particularly in a nonlimiting manner, in addition to the PSA H2, O2, N2, CO and C02, the syngas fractionating PSA in at least two fractions, the PSA on natural gas intended for remove nitrogen, and PSAs used to split hydrocarbon mixtures.
  • the invention can be implemented, moreover, in a method:
  • PSA Ar makes it possible to produce oxygen with a purity greater than 93%>, by preferentially adsorbing either argon or oxygen, present in a flow rich in 02 resulting for example from a PSA 02.
  • PSAs Ar generally use a carbon molecular sieve or a zeolite exchanged with silver (US-A-6,432,170);
  • PSA He which makes it possible to produce helium by preferentially adsorbing the other molecules present in the feed stream;
  • any PSA allowing the separation between an alkene and an alkane typically PSA ethylene / ethane or propylene / propane, for example. These separations are based on a difference in adsorption kinetics of the molecules on a molecular sieve, carbon or not;

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

Mélange adsorbant comprenant: -des particules d'adsorbant présentant une longueur moyenne DM(ads), une section moyenne Sm de diamètre moyen Dm(ads) et un rapport de forme RF1 avec RF1 = DM(ads)/Dm(ads), et -des particules de matériau à changement de phase (MCP) présentant une longueur moyenne DM(mcp), une section moyenne Sm de diamètre moyen Dm(mcp) et un rapport de forme RF2 avec RF2 = DM(mcp)/Dm(mcp), caractérisé en ce que: -Dm(mcp) < Dm(ads), et -RF1 >1,5 et/ou RF2 > 1,5.

Description

Mélange adsorbant comprenant des particules d'adsorbant et des particules de matériau à changement de phase
L'invention concerne un mélange adsorbant composé d'une part de particules d'un matériau à changement de phase (MCP) et d'autre part de particules d'adsorbant, mélange destiné à être utilisé dans un procédé thermo-cyclique de séparation par adsorption.
De manière générale, on considérera dans l'ensemble du document que par « mélange adsorbant » on entend tout mélange d'un matériau adsorbant et un matériau additif mise en forme ou pas et dans des proportions variables.
On appelle procédé thermo-cyclique tout procédé cyclique au cours duquel certaines étapes sont exothermiques, c'est-à-dire s 'accompagnant d'un dégagement de chaleur, alors que certaines autre étapes sont endo thermiques, c'est-à-dire s 'accompagnant d'une consommation de chaleur.
II est connu que les matériaux à changement de phase (MCP) agissent comme des puits thermiques à leur température de changement de phase. Des exemples typiques de procédés thermo cycliques pour lesquels l'invention peut être mise en œuvre avec bénéfice incluent des procédés ayant un temps de cycle relativement réduit pour lequel le transfert de chaleur entre le lit d'adsorbant et les agglomérats MCP doit s'effectuer en seulement une fraction de ce temps de cycle.
Ce sont en particulier
les procédés de séparation de gaz par adsorption modulée en pression, comme le PSA (Pressure swing adsorption = adsorption avec variation de pression), le VSA (Vacuum Swing Adsorption = adsorption sous oscillation de vide), le VPSA (Vacuum Pressure Swing Adsorption= adsorption avec variation de pression et mise sous vide) et le MPSA (Mixed Pressure Swing Adsorption).
tout procédé mettant en œuvre une conversion chimique couplée à des cycles d'adsorption modulée en pression, tels que mentionnés ci-dessus, permettant de déplacer l'équilibre des réactions chimiques.
Les procédés de séparation par adsorption modulée en pression reposent sur le phénomène d'adsorption physique et permettent de séparer ou de purifier des gaz par cyclage en pression du gaz à traiter à travers un ou plusieurs lit adsorbant, tel un lit de zéolite, de charbon actif, d'alumine activée, de gel de silice, de tamis moléculaire ou analogues. Dans le cadre de la présente invention, on désigne, sauf stipulation autre, par les termes « procédé PSA », tout procédé de séparation de gaz par adsorption modulée en pression, mettant en œuvre une variation cyclique de la pression entre une pression haute, dite pression d' adsorption, et une pression basse, dite pression de régénération. Par conséquent, l'appellation générique procédé PSA est employée indifféremment pour désigner les procédés cycliques suivants :
les procédés VSA dans lesquels l'adsorption s'effectue sensiblement à la pression atmosphérique, dite « pression haute », c'est-à-dire entre 1 bara et 1,6 bara (bara = bar absolu), préférentiellement entre 1,1 et 1,5 bara, et la pression de désorption, dite « pression basse », est inférieure à la pression atmosphérique, typiquement entre 30 et 800 mbara, de préférence entre 100 et 600 mbara.
les procédés VPSA ou MPSA dans lesquels l'adsorption s'effectue à une pression haute sensiblement supérieure à la pression atmosphérique, généralement entre 1,6 et 8 bara, préférentiellement entre 2 et 6 bara, et la pression basse est inférieure à la pression atmosphérique, typiquement entre 30 et 800 mbara, de préférence entre 100 et 600 mbara.
les procédés PSA dans lesquels l'adsorption s'effectue à une pression haute nettement supérieure à la pression atmosphérique, typiquement entre 1,6 et 50 bara, préférentiellement entre 2 et 35 bara, et la pression basse est supérieure ou sensiblement égale à la pression atmosphérique, donc entre 1 et 9 bara, de préférence entre 1,2 et 2,5 bara.
Les procédés RPSA (Rapide PSA) qui désignent des procédés PSA de cycle très rapide, en général inférieur à la minute.
De manière générale, un procédé PSA permet de séparer une ou plusieurs molécules de gaz d'un mélange gazeux les contenant, en exploitant la différence d'affinité d'un adsorbant donné ou, le cas échéant, de plusieurs adsorbants pour ces différentes molécules de gaz.
L'affinité d'un adsorbant pour une molécule gazeuse dépend de la structure et de la composition de l'adsorbant, ainsi que des propriétés de la molécule, notamment sa taille, sa structure électronique et ses moments multipolaires.
Un adsorbant peut être par exemple une zéolite, un charbon actif, une alumine activée, un gel de silice, un tamis moléculaire carboné ou non, une structure métallo- organique, un ou des oxydes ou des hydroxydes de métaux alcalins ou alcalino terreux, ou une structure poreuse contenant une substance capable de réagir réversiblement avec une ou plusieurs molécules de gaz, telle que aminés, solvants physiques, complexants métalliques, oxydes ou hydroxydes métalliques par exemple.
Les effets thermiques qui résultent de l'enthalpie d'adsorption ou de l'enthalpie de réaction conduisent, d'une manière générale, à la propagation, à chaque cycle, d'une onde de chaleur à l'adsorption limitant les capacités d'adsorption et d'une onde de froid à la désorption limitant la désorption.
Ce phénomène cyclique local de battements en température a un impact non- négligeable sur les performances de séparation et l'énergie spécifique de séparation comme le rappelle le document EP-A-1188470.
Un cas particulier couvert dans le cadre du présent brevet est le stockage/ déstockage de gaz dans un réacteur ou adsorbeur contenant au moins en partie un ou des adsorbants.
Il s'agit là également d'un procédé thermo cyclique mettant en œuvre un matériau adsorbant avec libération de chaleur lors du stockage (augmentation de pression) et libération de froid lors du déstockage (diminution de pression)
Dans tous ces cas, une solution permettant de diminuer l'amplitude des battements thermiques consiste à ajouter dans le lit d'adsorbant un matériau à changement de phase (MCP), comme décrit par le document US- A-4, 971,605. De cette manière, la chaleur d'adsorption et de désorption, ou une partie de cette chaleur, est adsorbée sous forme de chaleur latente par le MCP, à la température, ou dans le domaine de températures, du changement de phase du MCP. Il est alors possible d'opérer l'unité PSA dans un mode plus proche de l'isotherme.
Autour de la température ambiante, un hydrocarbure -ou un mélange d'hydrocarbures- peut être avantageusement utilisé.
Quand la température augmente, l'hydrocarbure contenu dans la bille absorbe la chaleur et la stocke. Quand la température diminue, l'hydrocarbure contenu dans la bille restitue la chaleur latente emmagasinée en changeant de phase de liquide au solide. Durant la période de changement de phase, la température demeure approximativement constante (suivant la composition de la cire) et permet de réguler la température à des niveaux bien déterminés par la nature de l'hydrocarbure (ou des hydrocarbures lorsqu'il s'agit de mélange) et en particulier la longueur de la chaîne et le nombre d'atomes de carbone.
Pour des raisons de transfert thermique à travers le matériau à changement de phase lui-même, celui-ci doit généralement être sous la forme de particules de petite taille, généralement inférieure à 100 microns. On parle par la suite de micro particule ou micro capsule pour désigner cette particule de base.
Ces MCP micro encapsulés ne peuvent pas être introduits tels quels dans un lit d'adsorbant car il serait difficile d'en contrôler la répartition. En outre, ils seraient entraînés par les flux de gaz circulant dans l'adsorbeur. Il faut donc réaliser préalablement des « agglomérats ». Par « agglomérat », on entend par la suite, un solide de dimension supérieure à 0,1 mm pouvant revêtir différentes formes, en particulier une forme de bille, de pastille, de concassé obtenu par concassage et tamisage de blocs de dimensions supérieures, ou de plaquette obtenue par découpage de feuilles préalablement compactées, ou autres.
Une première solution conduit à faire un mélange intime de l'adsorbant - sous forme de poudre ou de cristaux- et des micro particules de MCP et d'agglomérer le mélange. Les produits obtenus par pression à sec s'avèrent généralement trop fragiles pour une utilisation industrielle. Une agglomération en phase liquide ou humide pose le problème de l'activation de la phase active de l'agglomérat. Il est en effet connu que la majorité des adsorbants doivent être portés à température élevée avant utilisation dans les procédés industriels pour atteindre les performances requises. Le niveau de température nécessaire est généralement supérieur à 200°C, souvent de l'ordre de 300 à 450°C. Ces niveaux de température ne sont pas compatibles avec la tenue mécanique des MCP.
Une deuxième solution consiste à faire des agglomérats uniquement de MCP, sous forme d'une structure facile à manipuler et à introduire dans un adsorbeur. Cependant, les procédés de fabrication des agglomérats selon l'état actuel le plus simple de la technique (en particulier, le pastillage sous pression,) ne permettent pas d'obtenir des agglomérats avec des propriétés mécaniques et/ou thermiques suffisantes pour être utilisés efficacement dans les procédés thermo cycliques.
Une des raisons est que les conditions opératoires de fabrication de ces agglomérats par les procédés classiquement utilisés pour la fabrication de pastilles d'adsorbants ou catalyseurs sont limitées par la résistance intrinsèque des MCP eux-mêmes. De par leur nature, ils ne peuvent pas supporter les pressions ou températures qui seraient nécessaires à la formation d'agglomérats résistants.
Une autre raison tient à la nature particulière de l'enveloppe la plus classique, de type polymère, et à la déformabilité des capsules qui en résulte et rend peu efficace des procédés tels que l'agglomération sous pression. De façon plus précise, les agglomérats formés par les moyens traditionnels en respectant les contraintes de pression et de température inhérentes aux MCP présentent un caractère de friabilité trop important pour des applications industrielles, en particulier de type PSA. Une fraction de ceux-ci se brisent , ce qui pose des problèmes de mal distribution du fluide de procédé dans l'adsorbeur, ou de colmatage de filtre par création de fines poussières constituées de MCP.
Une troisième voie consiste à intégrer les microparticules de MCP dans une structure solide préexistante telle qu'une structure alvéolaire en « nid d'abeille » ou une mousse, un treillis, une grille... par exemple par collage sur les parois. De tels matériaux réalisables en laboratoire ne sont pas utilisables à ce jour dans des unités industrielles de grande dimension (de volume supérieur à 1 m3 et plus généralement supérieur à 10m3) non seulement pour des raisons de fabrication ou de coût mais aussi pour des condition d'augmentation de la porosité globale du lit d'adsorbant et des volume morts associés aux espaces non accessibles aux agglomérats d'adsorbants (souvent sous formes de billes, bâtonnets ou concassées) .
Dès lors un problème qui se pose est de fournir un mélange adsorbant amélioré respectant les critères de stabilité des mélanges, permettant d'augmenter la surface d'échange et plus généralement d'améliorer la cinétique, tout en n'augmentant pas la perte de charge du lit composite, et en respectant la vitesse d'attrition.
Une solution de la présente invention est un mélange adsorbant comprenant :
des particules d'adsorbant présentant une longueur moyenne DM(ads), une section moyenne Sm de diamètre moyen Dm(ads) et un rapport de forme RF1 avec RF1 = DM(ads)/Dm(ads) , et
des particules de matériau à changement de phase (MCP) présentant une longueur moyenne DM(mcp), une section moyenne Sm de diamètre moyen Dm(mcp) et un rapport de forme RF2 avec RF2 = DM(mcp)/Dm(mcp),
caractérisé en ce que :
Dm(mcp) < Dm(ads), et
RF1 >1,5 et/ou RF2 > 1,5.
Pour les billes et les concassés les deux paramètres dimensionnels peuvent être généralement considérés comme égaux et sont faciles à mesurer par des moyens simples tels que le tamisage.
Le problème se pose de façon un peu plus complexe pour les extrudés. Lors de l'extrusion proprement dite, ils sont caractérisés par la géométrie de la filière qui donne leur section et par leur longueur obtenue par rupture naturelle ou par découpe (cisaille, lame tournante...).
Si la section est généralement cylindrique, on peut imaginer des filières de toute forme par exemple de triangle équilatéral, trilobée, ellipse... mais aussi bien qu'à priori plus rare comme rectangulaire avec un côté sensiblement différent de l'autre.
Après séchage et traitement éventuel supplémentaire, ces formes peuvent être modifiées avec des angles émoussés. Au niveau des extrémités, il peut y avoir également des modifications de forme.
On admet que dans tous les cas l'on peut déterminer la section moyenne des extrudés et calculer le diamètre du cercle ayant même section soit à partir des dimensions de la filière, soit par mesure directe sur un échantillon représentatif de particules. Généralement, la moyenne obtenue à partir de 25 particules est largement suffisante pour être représentative de la population. Ce diamètre représente la première dimension caractéristique Dm.
Dans le cas le plus général d'extrudés cylindriques, Dm est évidemment égal au diamètre moyen du cylindre. Ce diamètre sera très voisin du diamètre de la filière, aux variations près que peut subir l'extrudé au sortir de la filière (allongement ou gonflement de quelques %). Les filières les plus communes correspondent à des cylindres dont les diamètres sont de l'ordre de 5mm, 3mm, 2mm, 1.5mm, 1mm, 0.75mm ; Ces dimensions s'entendent à 10 / 15% près du fait d'utilisation à la base de dimensions métriques ou anglo-saxonnes (3/16", 1/8", 1/16" etc ..) et des petites modifications entre diamètre de la filière et diamètre de l'extrudé.
Avec cette approximation tout à fait acceptable, il devient aisé de déterminer la première dimension caractéristique de l'extrudé dès lors que l'on connaît la géométrie de la filière, même dans le cas de forme plus complexe.
La seconde dimension caractéristique est la longueur moyenne de l'extrudé. La mesure directe sur un échantillon représentatif , à priori de 25 particules, permet de déterminer la longueur moyenne que l'on appellera DM.
On définira des valeurs moyennes pour une population présentant une certaine distribution :
1/DM = somme (Xi/DMi) où Xi est la fraction volumique de la classe des particules de dimension DMi.
1/Dm = somme (Xi/Dmi) où Xi est la fraction volumique de la classe des particules de dimension Dmi. Pour les billes, les concassés et les extrudés de longueur approximativement égale à l'épaisseur, la forme générale peut être représentée par une seule caractéristique. Pour déterminer cette dimension caractéristique, il est généralement admis que le tamisage (multi tamis adaptés à la population) est la solution la plus simple et la plus répandue. Le tamisage permet également de calculer simplement la dimension moyenne d'une population présentant une distribution de taille.
Pour rappel, on définit la dimension caractéristique moyenne De d'une population à partir de la relation 1/De = somme (Xi/Di) où Xi est la fraction volumique de la classe des particules de dimension Di.
On définit le rapport de forme pour une particule comme RF= DM/Dm.
Pour une bille ou un concassé dont toutes les dimensions sont approximativement égales, on a donc DM=Dm et RF=1.
Pour un bâtonnet, un extrudé cylindrique ou de forme équivalente, RF a une valeur supérieure à 1, généralement supérieure à 2. Ce type de valeur (> 2 par exemple) indique que la particule est anisotropique, avec une dimension supérieure aux autres. Ce sont généralement des particules allongées.
Il convient de noter que les dimensions caractéristiques des particules dans le cadre de cette invention sont déterminées simplement : par tamisage pour les particules approximativement isotropiques (billes, concassés..) ; par mesures directes et calcul du diamètre équivalent pour les particules allongées.
Selon le cas le mélange adsorbant selon l'invention peut présenter une ou plusieurs des caractéristiques suivantes :
Dm(mcp) < 0,85 Dm(ads), de préférence 0,50 Dm(ads) < Dm(mcp < 0,75
Dm(ads).
- RFK 1,5 et RF2 > 1,5 ;
RF2 < 1,5 et RFl > 1,5 ;
0,9 < RFK 1,1 et RF2 > 1,5 ;
0,9 < RF2 < 1,1 et RFl > 1,5 ;
RF1 >1,5 et RF2 > 1,5 ; l'adsorbant est sous forme de bâtonnets de diamètres choisis dans le groupe suivant : 5 mm, 3 mm, 2 mm, 1,5 mm et 1 mm, et les particules de MCP sont sous forme de bâtonnets de diamètres choisis dans le groupe suivant : 3 mm, 2 mm, 1,5 mm, 1 mm et 0,75 mm ; les particules de MCP ont une forme choisie entre le cylindre régulier, les cylindres avec les extrémités arrondies et les formes ellipsoïdes, et la forme obtenue par extrusion suivie ou pas par une étape de sphéronisation ;
le rapport des densités des particules de MCP et des particules d'adsorbants est inférieur ou égal à 2 ;
les particules de MCP ont une densité de 300 à 1000 kg/m3, de préférence de l'ordre de 500 à 750 kg/m3 ;
les particules de MCP sont issues d'un procédé de fabrication mettant en œuvre une étape d'extrusion.
Une méthode de détermination des pourcentages optimums d'adsorbant et de MCP a été utilisée dans le cas d'un PSA C02 industriel de grande taille.
L'essentiel de la charge (80% volume) a consisté en un mélange homogène de 20%> à 25%o volume de particules de PCM et 80%> à 75% d'adsorbant standard déjà testé pour cette même application.
Les particules de PCM ont été obtenues par le procédé d'agglomération en lit fluidisé et se présentaient sous la forme de billes quasi sphériques de diamètre allant de 2 à 3mm, c'est-à-dire voisin de la dimension de l'adsorbant.
Ce choix avait été fait pour être franchement dans la zone de stabilité du mélange PCM / adsorbant en se basant sur l'enseignement du brevet FR 2906 160 Bl qui définit des règles entre rapport de densité et rapport de diamètre équivalent.
Une campagne d'essais de plusieurs semaines a montré que pour les temps de cycle les plus longs, on obtenait la quasi-totalité des effets bénéfiques attendus mais que pour les temps de cycles les plus courts, on restait en deçà des attentes.
Il en a été déduit, après éliminations d'autres hypothèses, que l'efficacité thermique des agglomérats de PCM était moindre dans ces cas.
Pour améliorer les performances d'un PSA C02, la solution de base envisagée avait été d'utiliser des billes de MCP de diamètre minimum vis-à-vis de la stabilité du mélange, c'est-à-dire en pratique de diamètre moitié de celui de l'adsorbant. Compte tenu du ratio en volume 1 MCP / 4 adsorbant, le nombre de billes de MCP est approximativement le double du nombre de billes d'adsorbant alors qu'il était d'un quart dans la configuration testée.
De ce fait, on multiplie les points de contact entre billes, on augmente la surface d'échange globale fluide/ MCP et on diminue la dimension caractéristique, tous ces points allant dans le sens d'un meilleur échange thermique. Malheureusement des mesures comparatives de pertes de charge montrent une augmentation sensible de ces dernières, non seulement parce que le diamètre moyen de la population est plus faible mais aussi et surtout parce que le mélange de ces deux populations, avec leur répartition respective, conduit à un tassement supérieur et donc à une diminution du taux de vide, facteur très sensible sur la perte de charge (variation avec le cube de certains termes). En pratique, cela signifie que les petites particules ont tendance à se loger entre les plus grosses et à bloquer le passage du fluide.
Pour remédier à ce problème, cela reviendrait à devoir faire des adsorbeurs de section plus large, ce qui est l'opposé de ce qui est généralement recherché (investissement, transport, implantation, volume des fonds..).
Devant ces résultats négatifs, des essais complémentaires ont été effectués avec diverses populations d'extrudés de forme essentiellement cylindrique et de rapport longueur sur diamètre différents, en mélange homogène avec un adsorbant sous forme de billes.
La comparaison a porté sur les pertes de charge et la vitesse d'attrition entre un lit composé uniquement d'adsorbant et les lits composites.
La vitesse d'attrition a été définie comme la vitesse du gaz traversant le lit (supposé vide) et provoquant soit un détassement du lit, soit la mise en mouvement d'un nombre représentatif de particules à la surface libre ou au niveau des parois cylindriques.
II s'agit d'observations visuelles. Le détassement du lit correspond à un déplacement vers le haut de la surface libre et par un nombre représentatif de billes en mouvement, on entend une fraction de l'ordre de 5% de la surface. Les mouvements localisés de quelques particules, en particulier s'il s'agit des plus petites à la surface libre, est noté mais n'est pas pris en compte. Il y a en effet des moyens simples de limiter ou supprimer ces mouvements comme par exemple d'ajouter une couche mince d'adsorbant seul à la surface libre.
Des essais ont été menés avec le dispositif expérimental représenté schématiquement sur la Figure 1.
En quelques mots, il s'agit d'un cylindre vertical transparent de 150 mm de diamètre équipé d'un poral (distributeur poreux) à sa base et pouvant contenir une hauteur de particules de l'ordre de 0.3 à 0.4 mètre. Le système d'acquisition permet de mesurer pression, débit, température et perte de charge. La pression maximum acceptable est de 5 bars absolus. Le gaz utilisé est de l'azote qualité cryogénique. L'adsorbant ou le mélange homogène adsorbant/ MCP est introduit via un système de tamis croisés afin d'obtenir un remplissage dense et reproductible.
On a observé que contrairement au mélange de deux familles de billes de diamètre différents, certains mélanges au moins constitués de billes d'adsorbant et d'extrudés de petit diamètre conduisent à des pertes de charge égales ou inférieures à celles du lit unique de billes. De façon similaire, la vitesse d'attrition est égale voire supérieure pour ces mélanges à celle correspondant au lit de billes seules.
La Figure 2 illustre de façon générale le type de résultats obtenus. Il s'agit de la mesure de la perte de charge d'un flux d'azote pur traversant un même volume de matériau particulaire dans les mêmes conditions de pression et de température. Les différentes courbes ont été arrêtées à la vitesse d'attrition (en pratique, à l'observation du gonflement du lit dans la majorité des cas).
La courbe 1 correspond au lit d'adsorbant seul (sous forme de billes, de concassés ou de cylindres de longueur inférieure en moyenne à 2 fois le diamètre). Le débit Ql correspondant à la vitesse d'attrition est tel que la perte de charge compense le poids du lit, ce qui est une observation générale.
La courbe 2 correspond à un mélange de 85% volume environ d'adsorbant (identique à celui correspondant à la courbe 1) et 15% volume environ de particules de MCP de même forme mais de taille environ moitié. Par taille environ moitié, on veut signifier par exemple dans le cas de billes que le diamètre des billes de MCP est la moitié du diamètre des billes d'adsorbant ; dans le cas de concassés, c'est le rapport entre le diamètre déterminé par tamisage comme explicité précédemment; dans le cas des cylindres, il s'agit du rapport des diamètres.
S 'agissant de production industrielle, on fait référence ici aux dimensions moyennes des populations de particules. On reviendra plus tard sur ces définitions sachant que les formes elles mêmes (cylindre, sphère..) ne sont que des approximations des formes réelles.
On constate que le mélange de 2 populations de billes - ou assimilés- dans un facteur de l'ordre de 2 comme défini plus haut conduit à une augmentation très sensible (de 10 à plus de 30%>) de la perte de charge à débit et conditions opératoires données. Bien que lit soit plus tassé, le fait que les particules de MCP soient de densité inférieure dans ces essais aux particules d'adsorbant, la vitesse d'attrition telle que définie est généralement obtenue pour une perte de charge un peu inférieure. Le débit maximum Q2 (ou Q2') reste sensiblement inférieur au débit maximum Ql, généralement inférieur de plus de 15%.
Par observation visuelle, on constate que les petites particules se logent préférentiellement dans les espaces laissées par les grosses et tendent à bloquer ainsi le passage du gaz.
Ce phénomène de diminution du taux de vide interstitiel était connu mais aucune solution pour y remédier n'avait été apportée jusque là.
On a constaté que l'on pouvait supprimer cet effet de bouchage en utilisant des particules de MCP, toujours de petite dimension pour être efficace mais de forme différente, en particulier en utilisant des formes de cylindre allongé.
On a pu obtenir ainsi pour le mélange des pertes de charge voisines (courbe 4) ou sensiblement inférieures (courbe 3). Ce dernier mélange conduisant à un taux de vide supérieur au taux de vide de l'adsorbant seul et à une densité plus faible n'est pas dans la majorité des cas, le plus intéressant pour l'application PSA mais peut être utile dans des cas spécifiques (réduction des pertes de charge...).
S 'agissant dans ce test de mesures de type hydraulique (pertes de charge, débit, vitesse...) et non de performances thermiques ou d'adsorption, ces constatations restent valables que les particules les plus allongées soient des particules de MCP ou des particules d'adsorbant. Ainsi, le rapport de forme à respecter (>1.5) peut s'appliquer avec nos notations à RF1 ou à RF2.
L'intérêt d'utiliser des particules de MCP de petites dimensions, c'est-à-dire de volume unitaire inférieur au volume moyen de la particule d'adsorbant a également été mis en évidence en comparant les battements thermiques de divers mélanges adsorbant/ MCP.
Les essais consistent ici à faire des essais en cycle PSA avec des mélanges 80%> volume adsorbant et 20%> volume particules de MCP. Diverses tailles de particules de MCP sont testées alors que l'adsorbant est toujours le même.
Le paramètre significatif le plus simple à mesurer est le battement thermique au cours des cycles. Par battement thermique, on entend différence entre les températures maximale et minimale relevées sur un cycle. Un cycle parfaitement isotherme donnerait un battement égal à zéro. En accélérant le cycle, c'est-à-dire en pratique en traitant plus de débit, on observe pour les mélanges comportant les plus grosses particules de MCP que les battements augmentent, indication que les particules de MCP n'ont plus une efficacité suffisante ou tout du moins, ont une efficacité moindre. C'est ce qui avait été observé sur le PSA industriel mentionné plus haut. A l'inverse, avec les particules les plus petites, les battements restent constants montrant que les particules de MCP ont conservé à temps de cycle réduit leur efficacité. Les mesures de productivité entre les différents tests confirment que les mélanges avec des particules de MCP de petite taille sont plus efficaces et ce d'autant plus que le cycle est rapide.
Les essais avec des billes et des bâtonnets montrent que pour améliorer la thermique, il convient d'utiliser de petites particules de MCP, c'est-à-dire des particules de volume et /ou de dimension caractéristique inférieure aux particules d'adsorbant.
D'autres essais spécifiques montrent que pour conserver des pertes de charge, une vitesse d'attrition et un taux de vide acceptables, il convient par ailleurs d'utiliser des particules de forme géométrique bien différentes dès lors qu'une population est de dimension sensiblement inférieure à l'autre.
En pratique, on observe que des bâtonnets de MCP de diamètre moyen Dm (mcp) inférieur au diamètre de l'adsorbant, par exemple d'un facteur 1.5 à 3 et de longueur moyenne DM (mcp) dans la plage allant de 2 à 8 fois le diamètre moyen Dm (mcp) sont un bon compromis entre les différentes contraintes.
De façon industrielle, il convient de noter :
que les particules, qu'il s'agisse d'adsorbant ou de MCP ne sont pas toutes de même dimension mais que leurs caractéristiques (diamètre, longueur, épaisseur..) se distribuent statistiquement autour de valeurs moyennes ;
- que les formes elles-mêmes ne correspondent pas à des figures géométriques simples (sphère, cylindres) mais sont plus complexes. La Figure 3 montre à titre d'exemple quelques une des formes observées effectivement par rapport à la forme cylindrique théorique. Les différentes particules présentent des variations autour d'une forme générale commune. De même, les sphères ne sont pas parfaites mais sont de forme ellipsoïdale, voire patatoidale.
Il peut exister aussi un grand nombre de forme pour les particules extrudées suivant la filière (forme géométrique de la section), la façon de segmenter les extrudés (par simple effet de la gravité, par lame...) et le traitement ultérieur (sphéronisation partielle, séchage).
Les MCP industriels existants, pouvant être utilisés dans le cadre de la présente invention, se présentent sous la forme de microcapsules qui sont ensuite agglomérées, comme expliqués ci-après.
Les matériaux à changement de phase ou MCP en eux-mêmes peuvent être organiques, tels que les paraffines, les acides gras, les composés azotés, les composés oxygénés (alcool ou acides), les phényles et les silicones, ou inorganiques, tels que les sels hydratés et les alliages métalliques. Ils sont généralement micro-encapsulés dans une coquille solide micronique, préférentiellement à base de polymères (mélamine formaldéhyde, acrylique...).
Les paraffines en particulier étant relativement faciles à micro encapsuler, elles sont généralement des MCP de choix par rapport aux sels hydratés, même si les paraffines ont une chaleur latente généralement inférieure à celles des sels hydratés. De plus, les paraffines présentent d'autres avantages comme la réversibilité du changement de phase, la stabilité chimique, la température de changement de phase, ou le domaine de températures de changement de phase, définis (pas d'effet de type hystérésis), un faible coût, la toxicité limitée et la large gamme de températures de changement de phase disponibles selon le nombre d'atomes de carbone et la structure de la molécule. Les MCP paraffîniques micro encapsulées se présentent sous la forme d'une poudre, chaque microcapsule constituant cette poudre faisant entre 50 nm et 100 μιη de diamètre, préférentiellement entre 0,2 et 50 μιη de diamètre. Pour des raisons décrites dans le brevet d'invention FR 2906 160 Bl les MCP ne peuvent pas être utilisés en tant que tels car, du fait de leur faible dimension, ils seraient irrémédiablement entraînés par le fluide en circulation, c'est-à-dire le gaz à traiter.
Afin de conserver l'avantage lié aux performances thermiques des MCP, il convient d'en faire des agglomérats, mécaniquement suffisamment résistants à leur utilisation en procédé PSA tout en utilisant un minimum de liant, inférieur à 30% en volume, préférentiellement inférieur à 10%, encore préférentiellement inférieur à 5% en volume.
De façon avantageuse, ce liant, s'il s'avère nécessaire dans l'obtention des agglomérats, est au moins aussi conducteur de la chaleur que le MCP à l'état liquide afin de ne pas limiter sensiblement les échanges thermiques. A titre d'exemple, ce liant peut être une argile (bentonite, attapulgite, kao Imite...) ou un liant hydraulique de type ciment ou encore un polymère, de préférence fondant à basse température (inférieure à 120°C), ou encore une colle ou une résine, éventuellement une colle ou une résine à conductivité thermique améliorée c'est-à-dire contenant par exemple des métaux (Fe) ou du graphite, ou encore de simples fibres ou poudres améliorant la tenue de l'ensemble (fibres de carbone, poudres de métal...).
Dans le cadre de l'invention, l'utilisation dans le procédé de fabrication d'une étape d'extrusion qui comprend le passage d'une pâte comprenant les micro-particules de MCP à travers une extrudeuse permet de contrôler de manière assez précise le RF des agglomérats obtenus ainsi que les paramètres définis dans la demande de brevet WO 2008/037904 (diamètre moyen, densité) permettant d'obtenir une mélange homogène et stable de particules de MCP et d'adsorbant (à savoir par exemple un ratio de densité inférieur à 3 et un ratio de diamètre inférieur à 2).
Les extrudés composés principalement de MCP sont obtenus principalement sous forme de de bâtonnets réalisés via un procédé d'agglomération utilisant au moins une étape d'extrusion comme celle décrites dans les brevets US 7 575 804 B2 (Basf, Lang- Wittkowski etal. 2009) and PCT WO 02/055280 Al (Rubitherm GMBH, 2002) bien que d'autres formes soient possibles.
Pour réaliser la mise en forme de MCP respectant toutes les contraintes mentionnées plus haut une ou plusieurs étapes suivantes d'un procédé de fabrication sont utilisées :
les micro-particules sont de forme sphéroïde et de diamètre moyen compris entre 1 et 25 microns ;
on récupère à l'issu de l'étape d'extrusion des extrudés sous forme générale de bâtonnets et de diamètre moyen compris entre 0,1 et 10 mm, préférentiellement entre 0,3 et 5 mm ;
à l'étape d'extrusion, on met en œuvre une pression d'extrusion inférieure à 10 Mpa, de préférence comprise entre 5 Mpa et 8 Mpa, encore préférentiellement inférieure à 5 Mpa ;
- la pâte comprenant les particules de MCP demeure à une température inférieure à 100°C, préférentiellement inférieure à 80°C au cours de l'étape d'extrusion ;
ledit procédé comprend en aval de l'étape d'extrusion une étape de séchage des extrudés récupérés à l'issu de l'étape d'extrusion ;
ledit procédé comprend, en amont ou simultanément à l'étape de séchage, une étape de sphéronisation des extrudés récupérés à l'issu de l'étape d'extrusion ; L'agglomérat final sera de préférence sous forme sphéroïde de diamètre moyen compris entre 0,1 mm et 10 mm, préférentiellement compris entre 0,3 et 5 mm ;
ledit procédé comprend, en amont ou simultanément à l'étape de séchage, une étape d'enrobage des extrudés récupérés à l'issu de l'étape d'extrusion ;
- l'étape d'enrobage est telle que l'épaisseur de l'enrobage formé autour des extrudés est comprise entre 0,001 et 10% du diamètre de l'agglomérat récupéré en fin de procédé ;
les étapes de sphéronisation, séchage et enrobage sont de préférence effectuées en lit fluidisé. le liant est choisi parmi les polymères cellulosiques, les copolymères vinyle acryliques, les carboxyvinyl polymères, le water glass (sodium silicate, plus précisément sodium metasilicate), les polyéthylènes glycol 4000, les poly(acétate de vinyle) ; le liant est choisi préférentiellement parmi les hydroxypropyl cellulose (HPC) et/ou les carboxymethyl cellulose-sodium (CMC-Na).
Notons que la pâte peut également comprendre des additifs solides. Ces additifs peuvent être organiques et/ou inorganiques. Il peut s'agir d'un matériau de conductivité thermique supérieure à 1 W/m/K, capable d'augmenter la conductibilité thermique de l'agglomérat, préférentiellement un composé métallique ou du graphite sous forme de poudre ou de filaments.
Notons que la pâte peut également comprendre des additifs solides ayant des propriétés Ferro magnétiques permettant une séparation par aimantation d'agglomérats MCP des particules d'adsorbants avec lesquelles ces agglomérats de MCP seraient mélangés. Les matériaux ferromagnétiques (en particulier poudre de fer) permettent en même temps de modifier la densité de l'extrudé et assurer la stabilité de la mélange MCP- adsorbant lors de fonctionnement de l'unité de séparation par adsorption. Les additifs sont de dimension maximale (diamètre ou longueur) comprise entre 1 et 100 microns, de préférence entre 10 et 50 microns.
Selon des caractéristiques complémentaires, l'agglomérat contiendra en poids entre 50 et 99% de micro capsules de MCP. De préférence, les microparticules de MCP représentent de 50 à 99,5%> en poids de la particule finale séchée, l'additif solide de 0 à 50%) poids et le liant moins de 5%> poids.
En plus de devoir obtenir des particules de MCP de diamètre et de densité permettant un mélange homogène et stable (à savoir par exemple un ratio de densité inférieur à 3 et un ratio de diamètre inférieur à 2 suivant l'enseignement de la demande de brevet WO 2008/037904), la résistance à l'attrition, la résistance à l'écrasement ...ne doivent pas constituer le point faible du mélange. A titre d'exemple, on pourra ainsi dire que la résistance à l'attrition ne devra pas être inférieure d'un facteur supérieur à 2 à celle de l'adsorbant utilisé conjointement. Il en est de même pour la résistance à l'écrasement. Il n'est pas possible de donner de valeur cible dans l'absolu pour ces caractéristiques sachant qu'elles dépendent complètement de l'adsorbant (alumine activée, zéolite..), de ses dimensions, de son état (taux d'humidité par exemple) mais aussi de la manière dont sont mesurées ces caractéristiques. On trouve les valeurs « fournisseurs » de ces propriétés dans les caractéristiques techniques qu'ils publient. On notera enfin que la géométrie du contenant de ces particules (adsorbeur, réacteur) et les conditions opératoires participent à fixer les propriétés minimales requises.
Une autre contrainte provient du fait qu'il faut conserver l'intégrité des particules de MCP lors du procédé de fabrication. Lesdites micro particules doivent comme expliqué plus haut pouvoir supporter la pression nécessaire à l'extrusion, la température atteinte dans la filière. Elles doivent également être insolubles dans la solution contenant le liant qui doit en outre donner au mélange une consistance et plasticité suffisante.
Ceci a pu être obtenu en sélectionnant des MCP présentant un certain nombre de caractéristiques de dimensions, de résistance mécanique à la température et à la pression et d ' état de surface .
Les MCP retenus se présentent sous la forme de microbilles enrobées par un polymère formant une enveloppe imperméable, insoluble dans l'eau (hydrophobe). La dite micro encapsulation est généralement obtenue par inversion de phase d'une émulsion selon des procédés connus par l'homme de l'art.
La coque doit de préférence garder plus de 50% de ses propriétés mécaniques mesurées à l'ambiante jusqu'à une température de 80, voire 100°C
Le matériau à changement de phase retenu, qui dépend de l'application à laquelle sont destinés les MCP, est un mélange d'hydrocarbures saturés linéaires avec le nombre d'atomes de carbone variant entre 14 et 24.
La résistance à l'écrasement estimée est supérieure à quelques MPa, ce qui plaçait ce produit dans la plage des pressions potentielles d'extrusion.
Un exemple commercial de MCP correspondant à cette description est le produit Micronal® de BASF.
Une pâte de caractéristique rhéologique permettant l'extrusion a été obtenue en utilisant une solution constituée d'un solvant, d'un liant et suivant les teneurs respectives de ces derniers un additif du type épaississant et/ou un surfactant.
Plus généralement, on sélectionnera le « liant » parmi les polymères cellulosique (cellulose-based polymer), en particulier les hydroxypropyl cellulose (HPC) ou les carboxymethyl cellulose-sodium (CMC-Na), les co-polymères vinyl acrilique (vinyl acrilic co-polymer), les carboxyvinyl polymères (CLPs), le water glass, les PEG 4000, les PVA.
Le solvant est préférentiellement de l'eau pure mais il n'est pas nécessaire de totalement la déminéraliser.
Une émulsion de polyvinyl acétate latex comme additif facilite l'extrusion dans certain cas en améliorant la rhéologie de la solution (viscosité, plasticité...) La teneur du liant dans la solution de solvant peut aller en général de 1 à 50% poids, plus particulièrement de 1 à 20% poids, cela dépendant des produits utilisés.
Sur une base sèche, il a été possible d'obtenir des particules extrudées comportant plus de 99% poids de MCP et par conséquent moins de 1% de liant.
Ces valeurs ont été obtenues à partir d'une pâte contenant moins de 10%> poids de solvant dans lesquels il y avait également moins de 10%> poids de liant.
Des extrudés ont également réalisés à partir de 2 échantillons différents de MCP, MCP1 et MCP2 (différence en diamètre respectivement centrés sur 5 et 10/15 microns. ..) (cf. tableau 1).
Suivant les modes de fabrication, il a été rajouté jusqu'à 40%> poids de graphite et
10%) poids de poudre de fer.
La présente invention a également pour objet un adsorbeur comprenant au moins un lit adsorbant composé d'un mélange adsorbant selon l'invention et une unité d'adsorption comprenant au moins un tel adsorbeur.
L'unité d'adsorption peut être un PSA H2, un PSA C02, un PSA 02, un PSA N2, un PSA CH4, un PSA Hélium. .. (On appelle PSA "constituant X' ' un PSA dont l'objet est de produire ou d'extraire du gaz d'alimentation le dit constituant.)
Notons que si l'unité d'adsorption comprend un lit fixe, ce lit peut comprendre une ou plusieurs couches d'adsorbant couramment appelé multi-lit dans le langage technique.
L'invention concerne donc la majorité des procédés PSA et plus particulièrement de façon non limitative, outre les PSA H2, 02, N2, CO et C02, les PSA de fractionnement du syngas en deux fractions au moins, les PSA sur gaz naturel destinés à retirer l'azote, et les PSA servant à fractionner des mélanges d'hydrocarbures.
L'invention peut être mise en œuvre, en outre, dans un procédé :
- PSA Argon tel que décrit notamment dans US-A-6,544,318, US-A-6,432, 170,
US-A-5,395,427 ou US-A-6,527,831. Le PSA Ar permet de produire de l'oxygène à une pureté supérieure à 93%>, en adsorbant préférentiellement soit l'argon, soit l'oxygène, présent dans un flux riche en 02 issu par exemple d'un PSA 02. Les PSA Ar utilisent généralement un tamis moléculaire carboné ou une zéolite échangée à l'argent (US-A- 6,432, 170) ;
PSA He qui permet de produire de l'hélium en adsorbant préférentiellement les autres molécules présentes dans le flux d'alimentation ;
tout PSA permettant la séparation entre un alcène et un alcane, typiquement les PSA éthylène/éthane ou propylène/propane, par exemple. Ces séparations reposent sur une différence de cinétique d'adsorption des molécules sur un tamis moléculaire, carboné ou non ;
tout PSA permettant de fractionner un gaz de synthèse (syngas) ; tout PSA permettant de séparer CH4 de N2.

Claims

Revendications
1. Mélange adsorbant comprenant :
des particules d'adsorbant présentant une longueur moyenne DM(ads), une section moyenne Sm de diamètre moyen Dm(ads) et un rapport de forme RFl avec RFl = DM(ads)/Dm(ads) , et
des particules de matériau à changement de phase (MCP) présentant une longueur moyenne DM(mcp), une section moyenne Sm de diamètre moyen Dm(mcp) et un rapport de forme RF2 avec RF2 = DM(mcp)/Dm(mcp),
caractérisé en ce que :
Dm(mcp) < Dm(ads), et
RFl > 1,5 et/ou RF2 > 1,5
les particules d'adsorbant et/ou les particules de MCP étant sous forme de bâtonnets.
2. Mélange adsorbant selon la revendication 1, caractérisé en ce que Dm(mcp) < 0,85 Dm(ads), de préférence 0,50 Dm(ads) < Dm(mcp < 0,75 Dm(ads).
3. Mélange adsorbant selon la revendication 1, caractérisé en ce que RFl < 1,5 et RF2 > 1,5.
4. Mélange adsorbant selon la revendication 1, caractérisé en ce que RF2 < 1,5 et RFl > 1,5.
5. Mélange adsorbant selon la revendication 1, caractérisé en ce que 0,9 < RFl < 1,1 et RF2 > 1,5.
6. Mélange adsorbant selon la revendication 1, caractérisé en ce que 0,9 < RF2 < 1,1 et RFl > 1,5.
7. Mélange adsorbant selon la revendication 1, caractérisé en ce que
RFl >1,5 et RF2 > 1,5 ; l'adsorbant est sous forme de bâtonnets de diamètres choisis dans le groupe suivant : 5 mm, 3 mm, 2 mm, 1,5 mm et 1 mm, et
les particules de MCP sont sous forme de bâtonnets de diamètres choisis dans le groupe suivant : 3 mm, 2 mm, 1,5 mm, 1 mm et 0,75 mm.
8. Mélange adsorbant selon l'une des revendications 1 à 7, caractérisé en ce que les particules de MCP ont une forme choisie entre le cylindre régulier, les cylindres avec les extrémités arrondies et les formes ellipsoïdes, et la forme obtenue par extrusion suivie ou pas par une étape de sphéronisation.
9. Mélange adsorbant selon l'une des revendications 1 à 8, caractérisé en ce que le rapport des densités des particules de MCP et des particules d'adsorbants est inférieur ou égal à 2.
10. Mélange adsorbant selon l'une des revendications 1 à 9, caractérisé en ce que les particules de MCP ont une densité de 300 à 1000 kg/m3, de préférence de l'ordre de 500 à 750 kg/m3.
11. Mélange adsorbant selon l'une des revendications 1 à 10, caractérisé en ce que les particules de MCP sont issues d'un procédé de fabrication mettant en œuvre une étape d'extrusion.
12. Adsorbeur comprenant au moins un lit adsorbant composé d'un mélange adsorbant selon l'une des revendications 1 àl 1.
13. Unité d'adsorption comprenant au moins un adsorbeur selon la revendication 12.
14. Unité d'adsorption selon la revendication 13, caractérisé en ce que ladite unité est choisie parmi un PSA H2, un PSA C02, un PSA 02, un PSA N2, un PSA CO, un PSA
CH4 ou un PSA Hélium.
EP13779259.4A 2012-09-21 2013-09-18 Mélange adsorbant comprenant des particules d'adsorbant et des particules de matériau à changement de phase Withdrawn EP2897725A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1258890A FR2995797B1 (fr) 2012-09-21 2012-09-21 Melange adsorbant comprenant des particules d'adsorbant et des particules de materiau a changement de phase
PCT/FR2013/052145 WO2014044968A1 (fr) 2012-09-21 2013-09-18 Mélange adsorbant comprenant des particules d'adsorbant et des particules de matériau à changement de phase

Publications (1)

Publication Number Publication Date
EP2897725A1 true EP2897725A1 (fr) 2015-07-29

Family

ID=47356111

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13779259.4A Withdrawn EP2897725A1 (fr) 2012-09-21 2013-09-18 Mélange adsorbant comprenant des particules d'adsorbant et des particules de matériau à changement de phase

Country Status (5)

Country Link
US (1) US20150238892A1 (fr)
EP (1) EP2897725A1 (fr)
CN (1) CN104640624A (fr)
FR (1) FR2995797B1 (fr)
WO (1) WO2014044968A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3029803B1 (fr) * 2014-12-11 2019-09-27 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Melange adsorbant a capacite thermique amelioree
US20170015433A1 (en) * 2015-07-14 2017-01-19 Hamilton Sundstrand Corporation Protection system for polymeric air separation membrane
US10315184B2 (en) * 2017-04-17 2019-06-11 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Adsorbent-loaded beads for high temperature adsorption processes
US11643584B2 (en) * 2017-11-16 2023-05-09 Georgia Tech Research Corporation Incorporation of microencapsulated phase change materials into wet-spin dry jet polymeric fibers

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4971605A (en) 1989-09-18 1990-11-20 Institute Of Gas Technology Isothermal thermo-cyclic processing
US5395427A (en) 1994-01-12 1995-03-07 Air Products And Chemicals, Inc. Two stage pressure swing adsorption process which utilizes an oxygen selective adsorbent to produce high purity oxygen from a feed air stream
BR0104080A (pt) 2000-09-15 2002-04-23 Praxair Technology Inc Leito adsorvente para uso na separação de um ou mais componentes de uma mistura dos gases da mistura gasosa, e, aparelhagem para carregamento de múltiplos adsorventes para dentro de um leito
US6527831B2 (en) 2000-12-29 2003-03-04 Praxair Technology, Inc. Argon purification process
DE10200316A1 (de) 2001-01-11 2002-07-18 Rubitherm Gmbh Kunststoffteil und Verfahren zur Herstellung eines Kunststoffteiles
US6544318B2 (en) 2001-02-13 2003-04-08 Air Products And Chemicals, Inc. High purity oxygen production by pressure swing adsorption
US6432170B1 (en) 2001-02-13 2002-08-13 Air Products And Chemicals, Inc. Argon/oxygen selective X-zeolite
DE102005002411A1 (de) 2005-01-18 2006-07-27 Basf Ag Grobteilige Mikrokapselzubereitung
FR2891159A1 (fr) * 2005-09-26 2007-03-30 Air Liquide Procede psa a lit d'adsorption composite forme d'un adsorbant et d'agglomerats de mcp
FR2906160B1 (fr) * 2006-09-25 2009-06-05 Air Liquide Procede psa a lit d'adsorption composite forme d'un adsorbant et d'agglomerats de mcp
FR2973806B1 (fr) * 2011-04-08 2015-11-13 Air Liquide Particule d'un materiau a changement de phase avec couche d'enrobage
CN103442785A (zh) * 2011-04-08 2013-12-11 乔治洛德方法研究和开发液化空气有限公司 吸附剂与具有适应密度的相变材料的混合物

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO2014044968A1 *

Also Published As

Publication number Publication date
US20150238892A1 (en) 2015-08-27
FR2995797A1 (fr) 2014-03-28
WO2014044968A1 (fr) 2014-03-27
CN104640624A (zh) 2015-05-20
FR2995797B1 (fr) 2015-12-18

Similar Documents

Publication Publication Date Title
EP2334419B1 (fr) Fabrication d&#39;agglomerat compose de materiau a changement phase et presentant des proprietes controlees
CA2830170C (fr) Melange d&#39;un adsorbant et d&#39;un materiau a changement de phase a densite adaptee
EP2073913B1 (fr) Procédé psa à lit d&#39;adsorption composite formé d&#39;un adsorbant et d&#39;agglomérats de mcp
FR3029803B1 (fr) Melange adsorbant a capacite thermique amelioree
WO2014044968A1 (fr) Mélange adsorbant comprenant des particules d&#39;adsorbant et des particules de matériau à changement de phase
CA2690051C (fr) Agglomeres spheriques a base de zeolite(s), leur procede d&#39;obtention et leur utilisation dans les procedes d&#39;adsorption ou en catalyse
FR2847586A1 (fr) Materiau composite, son utilisation pour la gestion des effets thermiques dans un processus physico-chimique
WO2001055054A1 (fr) Materiau composite comprenant du charbon actif et du graphite expanse
WO2017009241A1 (fr) Cellulose fibrillée à fonction amine pour l&#39;adsorption de co2 et procédés de fabrication associés
FR2891159A1 (fr) Procede psa a lit d&#39;adsorption composite forme d&#39;un adsorbant et d&#39;agglomerats de mcp
CN109923066B (zh) 球状活性炭及其制造方法
RU2762278C1 (ru) Высокоэффективные углеродные адсорбенты
RU2009139276A (ru) Выделяющие газ композиции, способы их приготовления и применения
FR2891160A1 (fr) Procede psa a lit d&#39;adsorption composite forme d&#39;un adsorbant et d&#39;agglomerats de mcp a conductivite thermique elevee
Puccini et al. Removal of CO2 from flue gas at high temperature using novel porous solids
FR2973719A1 (fr) Melange d&#39;un materiau adsorbant et d&#39;un materiau a changement de phase separables par aimantation
FR2973807A1 (fr) Melange d&#39;un adsorbant et d&#39;un materiau a changement de phase a densite adaptee
EP0735124A1 (fr) Composite actif à structure feuilletée et son utilisation comme milieu réactionnel
Suttipat et al. Sand Waste Utilization for Dehydration Application
FR2972645A1 (fr) Procede de captage du dioxyde de carbone par adsorption avec le solide sim-1
FR2946893A1 (fr) Procede de capture,separation et purification de gaz par des oxydes mixtes amorphes.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150421

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20180613

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20181207