WO2012133747A1 - 電池用シール構造、電解液流通型電池用セルフレーム、電解液流通型電池用セルスタック、及び電解液流通型電池 - Google Patents

電池用シール構造、電解液流通型電池用セルフレーム、電解液流通型電池用セルスタック、及び電解液流通型電池 Download PDF

Info

Publication number
WO2012133747A1
WO2012133747A1 PCT/JP2012/058537 JP2012058537W WO2012133747A1 WO 2012133747 A1 WO2012133747 A1 WO 2012133747A1 JP 2012058537 W JP2012058537 W JP 2012058537W WO 2012133747 A1 WO2012133747 A1 WO 2012133747A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
frame
cell
packing
frames
Prior art date
Application number
PCT/JP2012/058537
Other languages
English (en)
French (fr)
Inventor
博之 中石
康充 筒井
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to AU2012233365A priority Critical patent/AU2012233365B2/en
Priority to US13/982,900 priority patent/US9172069B2/en
Priority to EP12765610.6A priority patent/EP2693548B1/en
Priority to CN201280016603.XA priority patent/CN103460477B/zh
Priority to KR1020137024391A priority patent/KR20140018902A/ko
Priority to CA2831850A priority patent/CA2831850A1/en
Priority to IN7207DEN2013 priority patent/IN2013DN07207A/en
Publication of WO2012133747A1 publication Critical patent/WO2012133747A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/186Sealing members characterised by the disposition of the sealing members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0297Arrangements for joining electrodes, reservoir layers, heat exchange units or bipolar separators to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0273Sealing or supporting means around electrodes, matrices or membranes with sealing or supporting means in the form of a frame
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0276Sealing means characterised by their form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/242Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes comprising framed electrodes or intermediary frame-like gaskets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2455Grouping of fuel cells, e.g. stacking of fuel cells with liquid, solid or electrolyte-charged reactants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a battery seal structure excellent in assemblability, and an electrolyte flow type battery cell frame, an electrolyte flow type battery cell stack, and an electrolyte flow type battery including the battery seal structure.
  • a redox flow battery performs charge / discharge by supplying a positive electrode electrolyte and a negative electrode electrolyte to a cell composed of a diaphragm and a positive electrode and a negative electrode facing each other through the diaphragm.
  • the electrolytic solution an aqueous solution containing metal ions whose valence changes by oxidation and reduction is generally used.
  • Redox flow batteries include, for example, iron-chromium redox flow batteries using an aqueous iron ion solution for the positive electrode electrolyte and an aqueous chromium ion solution for the negative electrode electrolyte, and a vanadium system using an aqueous vanadium ion solution for the positive and negative electrode electrolytes.
  • Redox flow batteries are well known (see, for example, Patent Documents 1 to 3).
  • FIG. 8 is a schematic diagram for explaining an electrolyte flow type battery (redox flow battery).
  • the redox flow battery 100 includes a cell 110.
  • the cell 110 is divided into a positive electrode cell 112 and a negative electrode cell 113 by a diaphragm 111 that can transmit ions.
  • the positive electrode cell 112 contains a positive electrode 114, and the negative electrode cell 113 contains a negative electrode 115.
  • the redox flow battery 100 includes an electrolyte tank 120 that stores an electrolyte solution for the positive electrode and the negative electrode, respectively, and an electrolyte solution between the electrolyte tank 120 and the battery cell 110 (the positive electrode cell 112 and the negative electrode cell 113).
  • the circulation path 130 includes an outward piping 131 for sending an electrolytic solution from the electrolytic solution tank 120 to the battery cell 110 (positive electrode 112, negative electrode cell 113), and an electrolytic solution from the battery cell 110 (positive electrode cell 112, negative electrode cell 113). And a return pipe 132 that returns to the tank 120.
  • the case where vanadium ion aqueous solution is used for the electrolyte solution of positive and negative electrodes is mentioned as an example.
  • the solid line arrow in a battery cell in FIG. 8 shows a charging reaction
  • the broken line arrow shows a discharging reaction.
  • a cell of a redox flow battery is generally used in a form called a cell stack in which a plurality of cells each composed of a diaphragm and a positive electrode and a negative electrode facing each other through the diaphragm are stacked.
  • FIG. 9 is a schematic diagram for explaining the cell stack.
  • the cell stack 200 includes a cell frame 210 including a bipolar plate 211 and a frame body 212 that fixes the bipolar plate 211.
  • the cell stack 200 is a cell in which a positive electrode 114, a diaphragm 111, and a negative electrode 115 are stacked. A plurality of layers are stacked with the cell frame 210 interposed therebetween.
  • one cell is formed between the cell frames 210 (bipolar plates 211), and the space formed inside the opening of the cell frame 210 (frame body 212) has the bipolar plate 211 in between.
  • the negative electrode (negative electrode cell) and the positive electrode (positive electrode cell) of adjacent cells are arranged.
  • liquid supply manifolds 213 and 214 and drainage manifolds 215 and 216 that penetrate the front and back surfaces are formed alternately on the front and back surfaces.
  • a guide groove for guiding the electrolytic solution to each electrode is provided.
  • a protective plate made of plastic (not shown) is arranged to cover the guide groove so that the guide groove and the diaphragm 111 are not in direct contact with each other. It can be difficult.
  • a pair of end plates 220 are arranged on both sides of a laminated body in which a plurality of cells each including the positive electrode 114, the diaphragm 111, and the negative electrode 115 are stacked with the cell frame 210 interposed therebetween, and tightened with bolts or the like.
  • the mechanism 230 is configured to fasten both end plates 220 in the stacking direction of the stacked body (for example, paragraphs 0004 to 0005 of FIG. 9 and FIG. 9).
  • a bipolar plate made of plastic carbon (eg, graphite-containing resin) and a frame made of plastic (eg, vinyl chloride) are frequently used.
  • This cell frame is usually assembled by sandwiching a peripheral portion of a bipolar plate between a pair of frames, and welding and integrating the frame and the bipolar plate using an organic solvent (for example, paragraph of Patent Document 3). Etc.).
  • a pair of frames constitute a frame.
  • the seal structure which seals the space isolated by the bipolar plate formed inside the opening of a frame is formed by welding a frame and a bipolar plate with an organic solvent.
  • a seal structure is formed that seals between the pair of frames and the peripheral portion of the battery plate member (bipolar plate) by welding using an organic solvent.
  • the conventional battery seal structure has the following problems.
  • the present invention has been made in view of the above circumstances, and one of its purposes is to provide a battery seal structure with excellent assemblability. Another object is to provide a cell frame for an electrolyte flow type battery, a cell stack for an electrolyte flow type battery, and an electrolyte solution type battery including the battery seal structure.
  • the present invention provides an annular packing made of an elastic material having a pair of legs sandwiching the front and back of the peripheral part of a battery plate member and a base connecting the legs at the outer edge of the battery plate member.
  • the battery sealing structure of the present invention includes a battery plate-like member and a pair of frames sandwiching the peripheral edge of the battery plate-like member, and seals a space formed inside the opening of each frame.
  • the pair of frames are pressed from the front and back, and an annular groove that accommodates the peripheral portion of the battery plate member is formed between the opposing surfaces facing each other in the pressing direction.
  • the annular packing which consists of an elastic material which is arrange
  • This packing has a pair of legs that sandwich the front and back of the peripheral portion of the battery plate member, and a base that connects these legs at the outer edge of the battery plate member.
  • the peripheral portion of the battery plate member is sandwiched between the pair of frames, and the frame and the battery plate member are integrated by pressing the pair of frames from the front and back.
  • the packing is deformed by being pressed between the pair of frames and the peripheral portion of the battery plate member, so that they are in close contact with each other, ensuring high sealing performance. can do.
  • the packing since the packing includes a pair of leg portions and a base portion that couples the leg portions, the packing can be attached by a simple operation of expanding and fitting the peripheral portion of the battery plate member. It can be securely attached without slipping out or coming off.
  • the packing has a substantially V-shaped cross section, and the distance between the tips of the pair of leg portions extending from the base is larger than the distance between the roots (that is, the thickness of the peripheral edge of the battery plate member).
  • the peripheral portion of the battery plate member is easily sandwiched between both leg portions, and the packing is easily fitted.
  • the distance between the tips of both leg portions is preferably at least twice as large as the thickness of the peripheral portion of the battery plate-like member. Is more preferable.
  • the packing is made of an elastic material, so that the packing expands and contracts following the battery plate member even if the battery plate member expands or contracts.
  • the packing is effective to follow and relieve the stress. . Therefore, it is possible to prevent the frame or the battery plate member from being damaged. Therefore, the material of the battery plate member is not limited, and the options for the material of the battery plate member are expanded.
  • the elastic material used for the packing examples include rubbers such as ethylene-propylene-diene rubber (EPDM), fluorine rubber, and silicone rubber, and may be appropriately selected depending on the application.
  • EPDM ethylene-propylene-diene rubber
  • fluorine rubber fluorine rubber
  • silicone rubber examples include silicone rubber, and may be appropriately selected depending on the application.
  • EPDM or fluororubber having excellent electrolyte solution resistance.
  • At least one of the leg portions of the packing may have a protrusion on one or both of the outer surface facing the frame and the inner surface facing the battery plate member. Can be mentioned.
  • Each leg is pressed between the frame and the battery plate member. According to this configuration, by having the protrusions on the legs, the protrusions are crushed and compressed and deformed when pressed, and the sealing performance can be improved. More specifically, when the battery sealing structure is adopted, the protrusions are compressed and deformed, so that a surface pressure is generated at a contact point between the frame and the battery plate member, and a high sealing function is exhibited.
  • the dimensions of the legs and the number of protrusions are not particularly limited, and may be set as appropriate.
  • the leg portion has a thickness (distance from the outer surface to the inner surface) in an uncompressed state.
  • the width (the distance from the tip to the base) is set to 1.0 mm to 10 mm.
  • the protrusions are provided in series in the circumferential direction of the annular packing, the number is 1 to 5 with respect to one surface of the leg portion, and the height is 0.1 mm to 0.5 mm in the uncompressed state. It is done.
  • the contact surface pressure is determined by the compression amount (crushing rate) of the protrusions, and the contact surface pressure increases as the compression amount increases.
  • the height of the protrusion in the above-described range, sufficient contact surface pressure is ensured to improve sealing performance, and damage or deformation of the frame or battery plate member due to excessive contact surface pressure is suppressed. be able to.
  • frame or battery plate-shaped member increases over the width direction of a leg part, and it is possible to improve the reliability of sealing performance.
  • the protrusion on the leg acts as a rib that reinforces the packing (leg part), and also has a function of retaining the shape.
  • the protrusions of the leg portions may be provided on at least one of the pair of leg portions, and may be provided on both or only one. Further, the protrusions of the leg portions may be provided on either one of the outer surface and the inner surface of one leg portion, and may be provided on both surfaces or only on one surface. For example, one leg may have a protrusion on the outer surface, the other leg may have a protrusion on the inner surface, or a protrusion may be provided only on either the outer surface or the inner surface of both legs. Good.
  • the protrusions When protrusions are provided on both the outer surface and the inner surface of one leg, the protrusions may be provided with the outer surface and the inner surface shifted in the width direction of the leg or at the same position in the width direction of the leg. May be. When the protrusions are provided on both legs, the positions of the protrusions may be different between one leg and the other leg, or the positions of the protrusions may be matched.
  • At least one of the leg portions of the packing has a root portion extending linearly from the base portion and at least one bent portion formed from the root portion to the tip. Can be mentioned.
  • Each leg is pressed between the frame and the battery plate member.
  • the bent portion in the leg portion by having the bent portion in the leg portion, the bent state of the bent portion is expanded when pressed, and the plate is elastically deformed flat, thereby improving the sealing performance. More specifically, when the battery seal structure is used, the bending portion is elastically deformed, so that a surface pressure is generated at the contact point between the frame and the battery plate member, and a high sealing function is exhibited.
  • the size / shape of the bent portion and the number of bent portions are not particularly limited, and may be set as appropriate.
  • the leg portion has a thickness (distance from the outer surface to the inner surface) in an uncompressed state.
  • the width (the distance from the tip to the base) is set to 1.0 mm to 10 mm.
  • the bent parts shall be provided in series in the circumferential direction of the annular packing, the number shall be 1 to 5, and the bending angle shall be 80 ° to 150 ° and the bending height shall be 0.3 mm to 3 mm in the uncompressed state. Is mentioned.
  • the shape of the bent portion may be V-shaped or U-shaped (arc-shaped, arc-shaped), and may be formed into a wave shape by forming a plurality of bent portions.
  • the bending angle of the bent portion is an angle formed by two sides (surfaces) forming the bent portion. If the bending angle is too small, the bent portion may buckle when pressed. On the other hand, if the bending angle is too large, it is necessary to increase the width of the leg when the bending height is constant, and the tip of the leg may protrude from the annular groove when pressed.
  • the bending height of the bent portion is a bent portion that is convex toward the outer surface facing the frame with respect to the root portion, and the apex of the bent portion from the inner surface facing the battery plate member at the root portion.
  • the contact surface pressure is determined by the amount of compression of the bent portion (the amount of deformation of the bending height), and the contact surface pressure increases as the amount of compression increases.
  • the bent portion includes those satisfying the following conditions. (1) It is formed of a first side portion that is continuous with the root portion and is inclined with respect to the root portion, and a second side portion that is continuous with the first side portion and is inclined with respect to the first side portion. ing. (2) The tip side of the second side portion extends to at least an extension line of the root portion. (3) The leg portion extends inward in the radial direction of the packing, and is not folded back to the base side (outward in the radial direction of the packing) at the bent portion.
  • the above-mentioned packing that has a bent portion at the leg and exhibits a sealing function by utilizing elastic deformation of the bent portion is a type of packing (for example, an O-ring) that exhibits a sealing function by using compressive deformation.
  • the distance between the frame on which the legs are arranged and the peripheral edge of the battery plate member that determines the amount of compression may vary due to manufacturing tolerances and assembly errors of these members.
  • the change in the contact surface pressure due to the difference in the compression amount (the above-described variation in the distance) is small compared to the O-ring, and a stable contact surface pressure can be obtained.
  • the sealing performance can be secured by the stable contact surface pressure, and the manufacturing tolerance and Since the assembly error can be absorbed, the manufacturing tolerance of each member can be designed large.
  • the battery plate member may move relative to the frame due to stress caused by the difference in thermal expansion coefficient between the frame and the battery plate member.
  • a stable contact surface pressure can be obtained regardless of the above-described variation in distance, and therefore the movement of the battery plate member is hardly hindered.
  • an excessive contact surface pressure may be generated due to the above-described variation in distance, so that the movement of the battery plate member is inhibited, and due to the stress caused by the above-described difference in thermal expansion coefficient, There is a possibility that the battery plate member is damaged.
  • the base of the packing has protrusions on at least one surface of the front and back facing the pair of frames.
  • the base is pressed between a pair of frames. According to this configuration, by having the protrusion at the base, the protrusion is crushed and compressed and deformed when pressed, and the sealing performance can be improved. More specifically, when the battery sealing structure is adopted, the protrusions are compressed and deformed, so that a surface pressure is generated at the contact point with the frame, and a high sealing function is exhibited.
  • the dimensions of the base and the number of protrusions are not particularly limited, and may be set as appropriate.
  • the base portion has a thickness (distance from the front surface to the back surface) of 0.5 in an uncompressed state.
  • the width (the distance from the inner peripheral edge to the outer peripheral edge of the battery plate-like member to the outer peripheral edge) is set to 0.5 mm to 1.5 mm.
  • the protrusions are provided in series in the circumferential direction of the annular packing, the number of protrusions is 1 to 3 with respect to one surface of the leg, and the height is 0.1 mm to 0.5 mm in the uncompressed state. It is done.
  • the contact surface pressure is determined by the compression amount (crushing rate) of the protrusion, and the contact surface pressure increases as the compression amount increases.
  • the height of the protrusion By setting the height of the protrusion in the above-described range, it is possible to secure a sufficient contact surface pressure to improve the sealing performance, and to suppress damage and deformation of the frame due to excessive contact surface pressure. Moreover, when it has a some protrusion, the contact location with a flame
  • the protrusion of the base part acts as a rib for reinforcing the packing (base part) and has a function of retaining the shape.
  • the protrusion of the base may be provided on at least one surface of the front and back, and may be provided on both surfaces or only on one surface.
  • the protrusions may be provided with the front and back surfaces shifted in the width direction of the base, or may be provided at the same position in the width direction of the base.
  • the cell frame for an electrolyte flowing type battery includes a battery plate member and a pair of frames sandwiching the peripheral edge of the battery plate member.
  • the battery plate member is a bipolar plate and includes the battery seal structure of the present invention described above.
  • the packing is made of an elastic material, as described above, the packing can relieve stress concentration at the boundary between the frame and the bipolar plate and prevent the frame or the bipolar plate from being damaged. Therefore, the material of the bipolar plate is not limited, and the choice of the material of the bipolar plate is expanded. For example, in addition to plastic carbon containing about 10% to 50% by mass of graphite, plastic carbon having a high graphite content (for example, 60% by mass or more) or a carbon plate made of only graphite can be easily used for the bipolar plate. is there.
  • the cell stack for an electrolyte flow type battery includes a laminate in which a plurality of cells each including a diaphragm and a positive electrode and a negative electrode facing each other through the diaphragm are stacked with a cell frame interposed therebetween.
  • the cell frame is the above-described cell frame for an electrolyte flow type battery of the present invention.
  • the present invention includes a pair of end plates disposed at both ends of the laminate, and a tightening mechanism for fastening both end plates in the stacking direction of the laminate.
  • the cell frame is the above-described cell frame of the present invention, it is excellent in assemblability and prevents damage due to stress concentration at the boundary between the frame constituting the cell frame and the bipolar plate. be able to. Further, by tightening with the end plate and the tightening mechanism, the pair of frames constituting the cell frame can be pressed from the front and back.
  • the electrolyte flow type battery of the present invention is characterized by including the above-described cell stack for the electrolyte flow type battery of the present invention.
  • a redox flow battery As an embodiment of the electrolyte flow type battery of the present invention, a redox flow battery can be mentioned.
  • the redox flow battery is not particularly limited, and for example, the positive and negative electrode electrolytes are any of the following (1) to (2).
  • Each of the positive and negative electrolyte solutions contains vanadium ions.
  • the positive electrode electrolyte contains iron ions, and the negative electrode electrolyte contains at least one metal ion selected from vanadium ions, chromium ions, zinc ions, and tin ions.
  • the battery sealing structure according to the present invention can ensure high sealing performance while being excellent in assemblability by using an annular packing made of an elastic material having a pair of leg portions and a base portion connecting the leg portions. it can. In addition, damage due to stress concentration at the boundary between the frame and the battery plate member can be prevented, and options for the material of the battery plate member are expanded. Further, the cell frame for the electrolyte flow type battery of the present invention, the cell stack for the electrolyte flow type battery, and the electrolyte flow type battery have the above-described battery seal structure of the present invention, so that the assembly is excellent. Damage due to stress concentration at the boundary between the frame and the bipolar plate can be prevented, and the choice of materials for the bipolar plate is expanded.
  • FIG. 3 is a schematic partially enlarged cross-sectional view for explaining a cell stack including the cell frame according to Embodiment 1.
  • FIG. 4 is a schematic partially enlarged cross-sectional view for explaining packing used in the cell frame according to Embodiment 1.
  • FIG. It is a general
  • FIG. 6 is a schematic partially enlarged cross-sectional view for explaining an example of a state after assembling of a cell frame according to Embodiment 2.
  • FIG. It is a general
  • FIG. 1 is a diagram showing a cell stack including a cell frame 10 according to the first embodiment.
  • a plurality of cells each composed of a diaphragm 111, a positive electrode 114 and a negative electrode 115 facing each other through the diaphragm 111 are stacked with the cell frame 10 interposed therebetween. Since the configuration is the same as that of the cell stack 200 described with reference to FIG. 9, the description thereof is omitted here.
  • the cell frame 10 includes a battery plate member (bipolar plate) 11, a pair of frames 12 a and 12 b, and a packing 20.
  • a battery plate member bipolar plate
  • a pair of frames 12 a and 12 b and a packing 20.
  • the bipolar plate 11 has a rectangular plate shape, for example, plastic carbon or carbon plate is used.
  • the thickness is designed to be 0.6 mm.
  • Each of the frames 12a and 12b has a rectangular frame shape, for example, made of vinyl chloride. In this example, they have the same L-shaped cross section and are arranged symmetrically with the bipolar plate 11 in between.
  • the cross section referred to here is a cross section orthogonal to the circumferential direction of the frames 12a and 12b.
  • the frames 12a and 12b sandwich the peripheral edge of the bipolar plate 11 and are pressed from the front and back sides (here, the upper side is “front side” and the lower side is “back side” in FIG. 1).
  • a step surface 13 is formed on each of the opposing surfaces facing each other in the pressing direction of the frames 12a and 12b so that the thickness of the inner peripheral edge portion is thin, and an annular shape is formed between the opposing surfaces of the frames 12a and 12b.
  • the groove 14 is formed. The peripheral edge of the bipolar plate 11 is accommodated in the annular groove 14.
  • the packing 20 has a rectangular ring shape and is made of, for example, an elastic material such as EPDM or fluororubber.
  • the packing 20 is formed of EPDM.
  • the packing 20 is fitted and attached to the peripheral edge of the bipolar plate 11, is disposed in the annular groove 14, and is in pressure contact between the frames 12a and 12b and the peripheral edge of the bipolar plate 11.
  • the packing 20 has a pair of leg portions 21 that sandwich the front and back of the peripheral edge portion of the bipolar plate 11, and a base portion 22 that connects the leg portions 21 at the outer edge of the bipolar plate 11.
  • the leg portion 21 has an outer surface facing the frame 12a (12b) and an inner surface facing the bipolar plate 11, and the base portion 22 has a front surface facing the frame 12a and a back surface facing the frame 12b.
  • the leg portion 21 and the base portion 22 are integrally formed.
  • FIG. 2 is a view showing the packing before assembling the cell frame.
  • the packing 20 has a substantially V-shaped cross section, and a protrusion 23 is provided on each of the leg portion 21 and the base portion 22.
  • the cross section referred to here is a cross section orthogonal to the circumferential direction of the packing 20.
  • both the leg portions 21 are provided with projections 23, and both leg portions 21 are provided with projections 23 on both the outer surface and the inner surface, and the base portion 21 also has projections 23 on both the front surface and the back surface. Is provided.
  • both the leg portion 21 and the base portion 22 projections 23 are provided on both surfaces at the same position in the width direction.
  • the positions of the protrusions 23 in both the leg portions 21 are the same, and the leg portions 21 are symmetrical with each other.
  • the protrusions 23 of the leg portion 21 and the base portion 22 are formed in series along the circumferential direction of the annular packing 20.
  • the leg portion 21 when the packing 20 is in an uncompressed state, the leg portion 21 is designed with a thickness T1 of 0.3 mm, a width W1 of 3.0 mm, and a height H1 of the projection 23 of the leg portion 21 of 0.3 mm, and the base portion 22 Is designed such that the thickness T2 is 1.0 mm, the width W2 is 1.0 mm, and the height H2 of the protrusion 23 of the base 22 is 0.3 mm. Further, the distance C1 between the bases of the pair of leg portions 21 extending from the inner peripheral edge of the base portion 22 is designed to be 0.6 mm.
  • the assembly procedure of the cell frame 10 shown in FIG. 1 will be described with reference to FIG.
  • the diameter of the packing 20 is increased, and the peripheral portion of the bipolar plate 11 is sandwiched between both leg portions 21, and the packing 20 is attached to the peripheral portion of the bipolar plate 11 (see FIG. 3A).
  • the peripheral portion of the bipolar plate 11 with the packing 20 attached is sandwiched between the pair of frames 12a and 12b, and the frames 12a and 12b are pressed from the front and back (see FIG. 3B. Indicates the pressing direction).
  • the packing 20 is deformed by being pressed between the frames 12a and 12b and the peripheral portion of the bipolar plate 11 and is in close contact with both, and a space (bipolar) formed in the opening of each frame 12a and 12b.
  • a battery sealing structure is formed that seals a space (see FIG. 1) in which the negative electrode 115 and the positive electrode 114 are arranged with the plate 11 interposed therebetween. Further, by having the protrusions 23 on the leg 21 and the base 22, when the packing 20 is pressed, the protrusions 23 on the leg 21 and the base 22 are crushed and the sealing performance can be improved.
  • the width of the entire packing 20 is shorter than the width of the stepped surface 13 (annular groove 14) of the frames 12a and 12b, and when the packing 20 is disposed in the annular groove 14, the outer peripheral surface of the base 22 is The tip of the leg 21 does not protrude from the annular groove 14 without contacting the bottom surface of the annular groove 14. Therefore, when the frames 12a and 12b are pressed in the direction of the white arrow in FIG. 3B and the packing 20 is pressed, the leg 21 and the base 22 are compressed and the width direction (the black arrow in FIG. Even if it extends in the direction), it can escape to the space in the annular groove 14. By securing such a relief allowance, it is easy to prevent abnormal deformation of the packing 20 even if the pressing load is increased.
  • the sealing structure of the cell frame according to the first embodiment described above does not require welding work, can be a battery sealing structure that does not depend on the skill of the operator, and is excellent in assemblability.
  • the packing is deformed by being pressed between the frame and the peripheral edge of the bipolar plate, and is closely adhered to both, ensuring a high sealing property, and having a protrusion on the leg portion or the base portion, thereby improving the sealing property. Can be increased.
  • the protrusion of the leg or base part acts as a rib that reinforces the packing, and also has a function of retaining the shape.
  • the packing can be attached by a simple operation that only fits into the peripheral edge portion of the bipolar plate, and can be reliably attached without being displaced or detached by having the leg portion and the base portion.
  • this seal structure allows the packing to expand and contract following the bipolar plate even if the bipolar plate expands or contracts. For this reason, the packing can relieve stress concentration at the boundary between the frame and the bipolar plate and prevent the frame or the bipolar plate from being damaged. Therefore, the material of the bipolar plate is not limited, and the choice of the material of the bipolar plate is expanded.
  • a cell stack provided with such a cell frame, and an electrolyte flow type battery (redox flow battery) provided with this cell stack are excellent in assemblability and at the boundary between the frame constituting the cell frame and the bipolar plate. Damage due to stress concentration can be prevented. Further, the electrolyte flow type battery (redox flow battery) can operate stably even when installed in an environment where the operating conditions of the battery change rapidly.
  • FIG. 4 shows the packing before assembling the cell frame.
  • the packing 20 has a substantially V-shaped cross section, the leg portion 21 is provided with a bent portion 25, and the base portion 22 is provided with a protrusion 23.
  • the cross section referred to here is a cross section orthogonal to the circumferential direction of the packing 20.
  • both leg portions 21 are provided with bent portions 25, and both leg portions 21 are provided with root portions 26 extending linearly from the base portion 22.
  • the bent portions 25 are formed from the root portions 26 to the tips.
  • the leg portions 21 are symmetrical with each other. Further, one bent portion 25 of the leg portion 21 is provided so as to protrude outward from the root portion 26 as a reference.
  • the protrusions 23 of the base 22 are provided one on each side (two in total on both sides), and the protrusions 23 are provided on both sides of the base 22 at the same position in the width direction.
  • the bent portion 25 of the leg portion 21 and the protrusion 23 of the base portion 22 are formed in series along the circumferential direction of the annular packing 20.
  • the leg portion 21 when the packing 20 is in an uncompressed state, the leg portion 21 is designed to have a thickness T1 of 0.3 mm, a bending angle ⁇ and a bending height H3 at the bending portion 25 of 98 ° and 0.99 mm, respectively, and the base 22 Is designed to have a thickness T2 of 1.0 mm, a width W2 of 1.0 mm, and a height H2 of the protrusion 23 of 0.3 mm. Further, the distance C1 between the bases of the pair of leg portions 21 extending from the inner peripheral edge of the base portion 22 is designed to be 0.6 mm.
  • the assembly procedure of the cell frame will be described with reference to FIG. First, the diameter of the packing 20 is increased, and the peripheral portion of the bipolar plate 11 is sandwiched between both leg portions 21, and the packing 20 is attached to the peripheral portion of the bipolar plate 11 (see FIG. 5A). Next, the peripheral portion of the bipolar plate 11 with the packing 20 attached is sandwiched between the pair of frames 12a and 12b, and the frames 12a and 12b are pressed from the front and back (see FIG. 5B). Indicates the pressing direction).
  • the packing 20 is deformed by being pressed between the frames 12a and 12b and the peripheral portion of the bipolar plate 11 and is in close contact with both, and a space (bipolar) formed in the opening of each frame 12a and 12b.
  • a battery sealing structure is formed that seals a space (see FIG. 1) in which the negative electrode 115 and the positive electrode 114 are arranged with the plate 11 interposed therebetween.
  • the bent portion 25 on the leg portion 21 and the protrusion 23 on the base portion 22 when the packing 20 is pressed, the bent portion 25 of the leg portion 21 is elastically deformed in a straight line, and the protrusion of the base portion 22 Sealing performance can be improved by compressing and deforming 23 by being crushed.
  • the width of the entire packing 20 is shorter than the width of the step surface 13 (annular groove 14) of the frames 12a and 12b, as in the first embodiment.
  • the outer peripheral surface of the base portion 22 does not contact the bottom surface of the annular groove 14, and the tip of the leg portion 21 does not protrude from the annular groove 14. Therefore, when the packing 12 is pressed by pressing the frames 12a and 12b in the direction of the white arrow in FIG. 5B, the leg portion 21 and the base portion 22 are compressed, and the width direction (the black arrow in FIG. 5B). Even if it extends in the direction), it can escape to the space in the annular groove 14. By securing such a relief allowance, it is easy to prevent abnormal deformation of the packing 20 even if the pressing load is increased.
  • the cell frame seal structure according to the second embodiment described above can achieve the same effects as the cell frame seal structure according to the first embodiment, and further has the following effects.
  • the change in the contact surface pressure due to the difference in the compression amount is small, and a stable contact surface pressure can be obtained.
  • the distance d between the frame 12a (12b) on which the leg portion 21 of the packing 20 is disposed and the peripheral edge portion of the bipolar plate 11 due to manufacturing tolerances or assembly errors of the frame 12a (12b) or the bipolar plate 11 However, as shown in FIG. As a specific example, when the design value of the distance d is 0.3 mm, it is assumed that the actual distance d is 0.8 mm due to manufacturing tolerances.
  • the frame 12a (12b) is caused by elastic deformation of the bent portion 25 as shown in FIG. ) And the contact point with the bipolar plate 11, surface pressure is generated, and the sealing function can be exhibited.
  • Table 1 shows the relationship between the distance d and the contact surface pressure in the cell frame seal structure (Test Example 1) according to the second embodiment.
  • the relationship between the distance d and the contact surface pressure in a seal structure (Comparative Example 1) in which an O-ring is disposed between the frame and the peripheral edge of the bipolar plate instead of the packing having the bent portion at the leg portion. Is also shown in Table 1.
  • each contact surface pressure is shown as a relative value where the contact surface pressure is 1 when the distance d in Test Example 1 is 0.3 mm.
  • the thickness of the bent portion was 0.25 mm
  • Comparative Example 1 the diameter of the O-ring was 0.55 mm.
  • the sealing performance can be secured by the stable contact surface pressure, and the manufacturing tolerance and assembly error can be absorbed, so that the manufacturing tolerance of each member can be designed large.
  • the distance d when the distance d is decreased, the contact surface pressure is significantly increased, and an excessive contact surface pressure is generated, so that the frame or the bipolar plate may be damaged or deformed.
  • the distance d when the distance d is 0.55 mm (the diameter of the O-ring) or more, the contact surface pressure becomes 0 and sealability cannot be obtained. That is, in Comparative Example 1, the change in the contact surface pressure with respect to the change in the distance d is large, and it is necessary to strictly manage the distance d.
  • Test Example 1 since it is possible to suppress the occurrence of excessive contact surface pressure due to the variation in the distance d described above, for example, stress is generated due to the difference in thermal expansion coefficient between the frame and the bipolar plate during battery operation. When this is done, the bipolar plate is easy to move relative to the frame. Therefore, it is easy to avoid the bipolar plate from being damaged by the stress resulting from the difference in thermal expansion coefficient. On the other hand, in Comparative Example 1, since an excessive contact surface pressure may occur, the movement of the bipolar plate is hindered, and the bipolar plate may be damaged by the stress caused by the above-described difference in thermal expansion coefficient. Therefore, in Test Example 1, since the risk of damaging the bipolar plate is further reduced, the required strength of the bipolar plate can be further reduced, and the choice of materials for the bipolar plate is further expanded.
  • one frame 12a has a flat frame shape, and the facing surface of the frame 12a facing the frame 12b is a plane.
  • the other frame 12b has a substantially L-shaped cross section, and a step surface 13 is formed on the facing surface of the frame 12b facing the frame 12a so that the inner peripheral edge portion is thin.
  • the width of the frame 12a is substantially equal to the width of the step surface 13 of the frame 12b.
  • An annular groove 14 is formed between the opposed surfaces of the frame 12a and the frame 12b, and the peripheral portion of the bipolar plate 11 with the packing 20 attached is accommodated in the annular groove 14.
  • one frame 12a has a flat frame shape, and the facing surface of the frame 12a facing the frame 12b is a plane. Further, the other frame 12b has a substantially L-shaped cross section, and the first surface of the frame 12b facing the frame 12a is gradually reduced in thickness from the outer peripheral edge side toward the inner peripheral edge side. A step surface 13a and a second step surface 13b are formed. Further, the width of the frame 12a is substantially equal to the combined width of the first and second step surfaces 13a and 13b of the frame 12b, and a part of the frame 12a contacts the first step surface 13a of the frame 12b. An annular groove 14 is formed between the opposed surfaces of the frame 12a and the frame 12b, and the peripheral portion of the bipolar plate 11 with the packing 20 attached is accommodated in the annular groove 14.
  • the present invention is not limited to the above-described embodiment, and can be appropriately changed without departing from the gist of the present invention.
  • the materials of the bipolar plate, the frame and the packing constituting the cell frame may be appropriately changed.
  • the dimensions of the leg and base of the packing and the number and position of the protrusions provided on the leg or base may be changed as appropriate.
  • the battery seal structure of the present invention can be used for a seal structure of various batteries such as an electrolyte flow type battery (redox flow battery) and a fuel cell.
  • This battery seal structure can be suitably used for an electrolytic solution flow type battery cell frame, an electrolytic solution flow type battery cell stack, and an electrolytic solution flow type battery.
  • the electrolyte flow type battery of the present invention can be suitably used as a large capacity storage battery for load leveling and output stabilization.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Fuel Cell (AREA)

Abstract

組立性に優れる電池用シール構造、並びにこの電池用シール構造を備える電解液流通型電池用セルフレーム、電解液流通型電池用セルスタック、及び電解液流通型電池を提供する。 セルフレーム10は、電池用板状部材(双極板)11と、双極板11の周縁部を表裏から押圧して挟む一対のフレーム12a,12bと、弾性材料からなる環状のパッキン20とを備える。フレーム12a,12bには、互いの対向面の間に双極板11の周縁部を収容する環状溝14が形成されている。パッキン20は、双極板11の周縁部に取り付けられており、環状溝14内に配置され、フレーム12a,12bと双極板11の周縁部との間で圧接される。パッキン20は、双極板11の周縁部を挟持する一対の脚部21と、これら脚部21を連結する基部22とを有する。上記構成により、各フレーム12a,12bの開口の内部に形成される空間をシールする電池用シール構造が形成される。

Description

電池用シール構造、電解液流通型電池用セルフレーム、電解液流通型電池用セルスタック、及び電解液流通型電池
 本発明は、組立性に優れる電池用シール構造、並びにこの電池用シール構造を備える電解液流通型電池用セルフレーム、電解液流通型電池用セルスタック、及び電解液流通型電池に関する。
 大容量の蓄電池の一つにレドックスフロー電池などの電解液流通型電池がある。レドックスフロー電池は、隔膜と、隔膜を介して対向する正極電極及び負極電極とからなるセルに正極電解液及び負極電解液をそれぞれ供給して充放電を行う。電解液には、酸化還元により価数が変化する金属イオンを含有する水溶液が一般的に使用されている。レドックスフロー電池としては、例えば、正極電解液に鉄イオン水溶液、負極電解液にクロムイオン水溶液を用いた鉄‐クロム系レドックスフロー電池の他、正負極の電解液にバナジウムイオン水溶液を用いたバナジウム系レドックスフロー電池がよく知られている(例えば、特許文献1~3参照)。
 図8は、電解液流通型電池(レドックスフロー電池)を説明するための概要図である。レドックスフロー電池100は、セル110を備える。セル110は、イオンを透過することができる隔膜111で正極セル112と負極セル113とに区画され、正極セル112には正極電極114が、負極セル113には負極電極115がそれぞれ収容されている。また、レドックスフロー電池100は、正極用及び負極用にそれぞれ、電解液を貯蔵する電解液タンク120と、電解液を電解液タンク120と電池セル110(正極セル112、負極セル113)との間で循環させるための循環経路130と、循環経路130に電解液を循環させる循環ポンプ140と、を備える。循環経路130は、電解液を電解液タンク120から電池セル110(正極セル112、負極セル113)に送る往路配管131と、電解液を電池セル110(正極セル112、負極セル113)から電解液タンク120に戻す復路配管132とを有する。なお、図8に示すレドックスフロー電池100では、正負極の電解液にバナジウムイオン水溶液を用いた場合を例に挙げている。また、図8中の電池セル内の実線矢印は充電反応を、破線矢印は放電反応をそれぞれ示す。
 レドックスフロー電池のセルは、一般に、隔膜と、隔膜を介して対向する正極電極及び負極電極とからなるセルを複数積層させたセルスタックと呼ばれる形態で利用される。図9は、セルスタックを説明するための概要図である。セルスタック200には、双極板211と双極板211を固定する枠体212とを備えるセルフレーム210が用いられており、セルスタック200は、正極電極114、隔膜111、負極電極115を重ねたセルを、セルフレーム210を挟んで複数積層した構造となっている。つまり、セルフレーム210(双極板211)間に1つのセルが形成されることになり、セルフレーム210(枠体212)の開口の内部に形成される空間には、双極板211を挟んで表裏に、隣り合うセルの負極電極(負極セル)と正極電極(正極セル)とが配置されることになる。このセルフレーム210の枠体212には、各電極に電解液を供給・排出するため、表裏に貫通する給液用マニホールド213,214及び排液用マニホールド215,216と、表裏面に互い違いに形成され、各マニホールドから各電極に電解液を案内するガイド溝とが設けられている。また、場合によっては、ガイド溝を覆うようにプラスチック製の保護板(図示せず)を配置し、ガイド溝と隔膜111とが直接接触しないようにして、積層した際、隔膜111に破れを生じ難くすることもある。そして、セルスタック200は、正極電極114、隔膜111、負極電極115からなるセルがセルフレーム210を挟んで複数積層された積層体の両側に一対のエンドプレート220を配置し、ボルトなどの締付機構230により両エンドプレート220を積層体の積層方向に締め付けることで構成されている(例えば、特許文献1の段落0004~0005、図9など)。
 上記したセルフレームには、プラスチックカーボン(例、黒鉛含有樹脂)製の双極板と、プラスチック(例、塩化ビニル)製の枠体が多用されている。このセルフレームは、通常、一対のフレームの間に双極板の周縁部を挟み、有機溶剤を用いてフレームと双極板とを溶着して一体化することで組み立てられる(例えば、特許文献3の段落0028など)。この場合、一対のフレームが枠体を構成することになる。そして、フレームと双極板とを有機溶剤で溶着することで、枠体の開口の内部に形成される双極板により隔離された空間をシールするシール構造を形成している。
特開2002‐367659号公報 特開2002‐367660号公報 特開2001‐189156号公報
 上記した従来技術では、有機溶剤を用いて溶着することで、一対のフレームと電池用板状部材(双極板)の周縁部との間をシールするシール構造としている。しかし、従来の電池用シール構造では、次のような課題がある。
 溶着作業は作業者のスキルに依存するため、品質にばらつきが生じ易く、組立性に課題がある。
 また、一対のフレームと電池用板状部材の周縁部とを有機溶剤で溶着する電池用シール構造の場合、フレームと電池用板状部材との境界部に応力が集中し易く、内部損傷を受け易いという課題がある。
 本発明は、上記の事情に鑑みてなされたものであり、その目的の一つは、組立性に優れる電池用シール構造を提供することにある。また、別の目的は、この電池用シール構造を備える電解液流通型電池用セルフレーム、電解液流通型電池用セルスタック、及び電解液流通型電池を提供することにある。
 本発明は、電池用板状部材の周縁部の表裏を挟持する一対の脚部と、電池用板状部材の外縁でこれら脚部を連結する基部と、を有する弾性材料からなる環状のパッキンを用いることで、上記課題を解決する。
 本発明の電池用シール構造は、電池用板状部材と、電池用板状部材の周縁部を挟む一対のフレームとを備え、各フレームの開口の内部に形成される空間をシールする。一対のフレームは表裏から押圧され、一対のフレームには、押圧方向に互いに対向する対向面の間に、電池用板状部材の周縁部を収容する環状の溝が形成されている。そして、この環状溝内に配置され、一対のフレームと電池用板状部材の周縁部との間で圧接される弾性材料からなる環状のパッキンを備える。このパッキンは、電池用板状部材の周縁部の表裏を挟持する一対の脚部と、電池用板状部材の外縁でこれら脚部を連結する基部とを有することを特徴とする。
 この構成によれば、一対のフレームの間に電池用板状部材の周縁部を挟み、一対のフレームを表裏から押圧することで、フレームと電池用板状部材とを一体化している。そのため、溶着作業が不要となり、作業者のスキルに依存することのない電池用シール構造とすることができ、組立性に優れる。また、弾性材料からなる環状のパッキンを備えることで、パッキンが一対のフレームと電池用板状部材の周縁部との間で圧接されることで変形して両者に密着し、高いシール性を確保することができる。さらに、パッキンが一対の脚部とこれら脚部を連結する基部とを有することで、パッキンを拡げて電池用板状部材の周縁部に嵌め込むだけの簡単な作業で取り付けることができながら、パッキンがずれたり外れたりすることなく確実に取り付けることができる。
 ここで、パッキンが断面略V字状で、基部から延びる一対の脚部の先端同士の間隔が根元同士の間隔(即ち、電池用板状部材の周縁部の厚さ)より広くなるように形成されていると、電池用板状部材の周縁部にパッキンを取り付ける際に、両脚部の間に電池用板状部材の周縁部を挟み込み易く、パッキンの嵌め込み作業が行い易い。例えば、電池用板状部材の周縁部への取り付け前の状態において、両脚部の先端同士の間隔が、電池用板状部材の周縁部の厚さに比べて2倍以上が好ましく、3倍以上がより好ましい。
 パッキンが弾性材料からなることで、電池用板状部材が膨張・収縮変形する事態が生じても、パッキンが電池用板状部材に追従して伸縮する。また、例えば電解液流通型電池のように電解液の流通に伴い、電池用板状部材が変形したり応力を受けたりすることがあっても、パッキンが追従して応力を緩和する効果がある。そのため、フレーム又は電池用板状部材が損傷することを防止することができる。よって、電池用板状部材の材料が限定されることがなく、電池用板状部材の材料の選択肢が拡大する。
 パッキンに用いる弾性材料としては、例えば、エチレン‐プロピレン‐ジエンゴム(EPDM)、フッ素ゴム、シリコーンゴムなどのゴムが挙げられ、用途に応じて適宜選択すればよい。例えば、本発明の電池用シール構造を上記した電解液流通型電池(レドックスフロー電池)のセルフレームに適用する場合、耐電解液性に優れるEPDMやフッ素ゴムを選択することが好ましい。
 本発明の電池用シール構造の一形態としては、パッキンの脚部の少なくとも一方が、フレームに対向する外面又は電池用板状部材に対向する内面のいずれか一方若しくは両方に、突起を有することが挙げられる。
 各脚部は、フレームと電池用板状部材との間で圧接される。この構成によれば、脚部に突起を有することで、圧接されたときに突起が押し潰され圧縮変形し、シール性を高めることができる。より具体的には、電池用シール構造としたとき、突起が圧縮変形することによって、フレーム及び電池用板状部材との接触箇所で面圧が生じて、高いシール機能を発揮する。脚部の寸法や突起の個数は、特に限定されるものではなく、適宜設定すればよい。例えば、本発明の電池用シール構造を上記した電解液流通型電池(レドックスフロー電池)のセルフレームに適用する場合、脚部は、非圧縮状態において、厚さ(外面から内面までの距離)を0.2mm~0.5mmとし、幅(先端から基部までの距離)を1.0mm~10mmとすることが挙げられる。また、突起は、環状のパッキンの周方向に一連に設け、個数を脚部の一方の面に対し1~5個とし、非圧縮状態において、高さを0.1mm~0.5mmとすることが挙げられる。脚部に突起を有するパッキンでは、突起の圧縮量(つぶし率)によって接触面圧が決まり、圧縮量が大きくなるほど接触面圧が高くなる。突起の高さを上記した範囲とすることで、十分な接触面圧を確保してシール性を高めると共に、過大な接触面圧が生じることによるフレーム又は電池用板状部材の損傷や変形を抑えることができる。また、複数の突起を有する場合、脚部の幅方向にわたってフレーム又は電池用板状部材との接触箇所が増え、シール性の信頼性を高めることが可能である。脚部の突起は、パッキン(脚部)を補強するリブとして作用し、保形する機能も兼ね備える。
 ここで、脚部の突起は、一対の脚部の少なくとも一方に有すればよく、両方に設けてもよいし、一方にのみ設けてもよい。また、脚部の突起は、一方の脚部において外面と内面のいずれか一方に有すればよく、両面に設けてもよいし、一方の面にのみ設けてもよい。例えば、一方の脚部には外面に突起を設け、他方の脚部には内面に突起を設けたり、両方の脚部の外面又は内面のいずれか一方の面にのみ突起を設けたりしてもよい。一方の脚部において外面と内面の両面に突起を設ける場合、突起は、外面と内面とで脚部の幅方向に位置をずらして設けてもよいし、脚部の幅方向の同じ位置に設けてもよい。両方の脚部に突起を設ける場合、一方の脚部と他方の脚部とで突起の位置を異ならせてもよいし、突起の位置を一致させてもよい。
 本発明の電池用シール構造の一形態としては、パッキンの脚部の少なくとも一方が、基部から直線状に延びる根元部と、この根元部から先端にかけて形成された少なくとも1つの屈曲部を有することが挙げられる。
 各脚部は、フレームと電池用板状部材との間で圧接される。この構成によれば、脚部に屈曲部を有することで、圧接されたときに屈曲部の折り曲げ状態が広げられて扁平に弾性変形し、シール性を高めることができる。より具体的には、電池用シール構造としたとき、屈曲部が弾性変形することによって、フレーム及び電池用板状部材との接触箇所で面圧が生じて、高いシール機能を発揮する。屈曲部の寸法・形状や屈曲部の個数は、特に限定されるものではなく、適宜設定すればよい。例えば、本発明の電池用シール構造を上記した電解液流通型電池(レドックスフロー電池)のセルフレームに適用する場合、脚部は、非圧縮状態において、厚さ(外面から内面までの距離)を0.2mm~0.5mmとし、幅(先端から基部までの距離)を1.0mm~10mmとすることが挙げられる。また、屈曲部は、環状のパッキンの周方向に一連に設け、個数を1~5個とし、非圧縮状態において、屈曲角度を80°~150°、屈曲高さを0.3mm~3mmとすることが挙げられる。屈曲部の形状は、V字状でもU字状(円弧状、弓状)でもよく、複数の屈曲部を形成して波形状としてもよい。複数の屈曲部を有することで、脚部の幅方向にわたってフレーム又は電池用板状部材との接触箇所が増え、シール性の信頼性を高めることが可能である。
 なお、屈曲部の屈曲角度とは、屈曲部を形成する2辺(面)のなす角度のことである。この屈曲角度が小さ過ぎると、圧接されたときに屈曲部が座屈する虞がある。一方、屈曲角度が大き過ぎると、屈曲高さを一定とした場合、脚部の幅を長くとる必要があり、圧接されたときに脚部の先端が環状溝からはみ出る虞がある。また、屈曲部の屈曲高さとは、根元部を基準として、フレームに対向する外面側に凸となる屈曲部である場合は、根元部における電池用板状部材に対向する内面から屈曲部の頂点までの距離のことであり、内面側に凸となる屈曲部である場合は、根元部における外面から屈曲部の頂点までの距離のことである。脚部に屈曲部を有するパッキンでは、屈曲部の圧縮量(屈曲高さの変形量)によって接触面圧が決まり、圧縮量が大きくなるほど接触面圧が高くなる。屈曲部の屈曲高さを上記した範囲とすることで、十分な接触面圧を確保してシール性を高めることができる。この屈曲高さが高過ぎると、脚部の幅が長くなり、圧接されたときに脚部の先端が環状溝からはみ出る虞がある。
 ここで、屈曲部は、次の条件を満たすものが含まれる。
 (1)根元部に連続し、かつ根元部に対して傾斜する第1辺部と、この第1辺部に連続し、かつ第1辺部に対して傾斜する第2辺部とから形成されている。
 (2)上記第2辺部の先端側が根元部の少なくとも延長線上まで延びている。
 (3)脚部はパッキンの径方向内方に向かって延び、屈曲部で基部側(パッキンの径方向外方)に折り返されない。
 脚部に屈曲部を有し、屈曲部の弾性変形を利用してシール機能を発揮するタイプの上記したパッキンは、圧縮変形を利用してシール機能を発揮するタイプのパッキン(例えばOリング)に比較して、更に次のような利点がある。圧縮量を決定する、脚部が配置されるフレームと電池用板状部材の周縁部との間の距離は、これら部材の製造公差や組み付け誤差に起因したばらつきが生じることがある。脚部に屈曲部を有するパッキンの場合、Oリングに比較して、圧縮量の差(上記した距離のばらつき)による接触面圧の変化が小さく、安定した接触面圧が得られる。そのため、屈曲部の屈曲高さを上記した距離の設計値より十分に高くすることで、上記した距離にばらつきがあっても、安定した接触面圧によってシール性を確保でき、また、製造公差や組み付け誤差を吸収できるため、各部材の製造公差を大きく設計できる。さらに、例えば電池運転時に、フレームと電池用板状部材との熱膨張係数の差に起因する応力によって、フレームに対して電池用板状部材が相対的に移動する事態が生じることがある。脚部に屈曲部を有するパッキンの場合、上記した距離のばらつきによらず、安定した接触面圧が得られるため、電池用板状部材の移動が阻害されることが少ない。その結果、上記した熱膨張係数差に起因する応力によって、電池用板状部材が損傷することを抑えることができる。これに対し、Oリングの場合、上記した距離にばらつきがあると、接触面圧が過小になったり過大になったりして、接触面圧の変化が大きく、安定した接触面圧が得られない。そのため、製造公差や組み付け誤差を考慮して、Oリングの直径(高さ)を上記した距離の設計値より大きくした場合、過大な接触面圧が生じ、フレーム又は電池用板状部材が損傷や変形する虞がある。さらに、Oリングの場合、上記した距離のばらつきによって、過大な接触面圧が生じることがあることから、電池用板状部材の移動が阻害され、上記した熱膨張係数差に起因する応力によって、電池用板状部材が損傷する虞がある。
 このように、脚部に屈曲部を有するパッキンを用いることで、(1)安定した接触面圧が得られる。(2)シール性を確保しながら、フレームや電池用板状部材の製造公差や組み付け誤差を吸収できる。(3)過大な接触面圧が生じることを抑え、電池用板状部材の移動をスムーズにできる。といった有利な効果が期待できる。そして、各部材の製造公差を大きくすることが可能であるので、電池用シール構造の低コスト化を図ることができる。また、電池用板状部材が損傷するリスクがより軽減されることから、電池用板状部材の要求強度を更に低減でき、電池用板状部材の材料の選択肢がより拡大する。
 本発明の電池用シール構造の一形態としては、パッキンの基部が、一対のフレームに対向する表裏の少なくとも一方の面に、突起を有することが挙げられる。
 基部は、一対のフレーム間で圧接される。この構成によれば、基部に突起を有することで、圧接されたときに突起が押し潰され圧縮変形し、シール性を高めることができる。より具体的には、電池用シール構造としたとき、突起が圧縮変形することによって、フレームとの接触箇所で面圧が生じて、高いシール機能を発揮する。基部の寸法や突起の個数は、特に限定されるものではなく、適宜設定すればよい。例えば、本発明の電池用シール構造を上記した電解液流通型電池(レドックスフロー電池)のセルフレームに適用する場合、基部は、非圧縮状態において、厚さ(表面から裏面までの距離)を0.5mm~1.2mmとし、幅(電池用板状部材の外縁に接する内周縁から外周縁までの距離)を0.5mm~1.5mmとすることが挙げられる。また、突起は、環状のパッキンの周方向に一連に設け、個数を脚部の一方の面に対し1~3個とし、非圧縮状態において、高さを0.1mm~0.5mmとすることが挙げられる。この突起の圧縮量(つぶし率)によって接触面圧が決まり、圧縮量が大きくなるほど接触面圧が高くなる。突起の高さを上記した範囲とすることで、十分な接触面圧を確保してシール性を高めると共に、過大な接触面圧が生じることによるフレームの損傷や変形を抑えることができる。また、複数の突起を有する場合、基部の幅方向にわたってフレームとの接触箇所が増え、シール性の信頼性を高めることが可能である。基部の突起は、パッキン(基部)を補強するリブとして作用し、保形する機能も兼ね備える。
 ここで、基部の突起は、表裏の少なくとも一方の面に有すればよく、両面に設けてもよいし、一方の面にのみ設けてもよい。基部において表裏の両面に突起を設ける場合、突起は、表面と裏面とで基部の幅方向に位置をずらして設けてもよいし、基部の幅方向の同じ位置に設けてもよい。
 本発明の電解液流通型電池用セルフレームは、電池用板状部材と、電池用板状部材の周縁部を挟む一対のフレームとを備える。そして、電池用板状部材が双極板であり、上記した本発明の電池用シール構造を備えることを特徴とする。
 この構成によれば、上記した本発明の電池用シール構造を備えることで、上述したように、組立性に優れる。また、パッキンが弾性材料からなることで、上述したように、パッキンがフレームと双極板との境界部での応力集中を緩和して、フレーム又は双極板が損傷することを防止することができる。よって、双極板の材料が限定されることがなく、双極板の材料の選択肢が拡大する。例えば、黒鉛を10質量%~50質量%程度含有するプラスチックカーボンの他、黒鉛含有量が高い(例えば60質量%以上)プラスチックカーボン、或いは黒鉛のみからなるカーボン板を双極板に用いることも容易である。
 本発明の電解液流通型電池用セルスタックは、隔膜と、隔膜を介して対向する正極電極及び負極電極とからなるセルがセルフレームを挟んで複数積層された積層体を備える。そして、セルフレームが上記した本発明の電解液流通型電池用セルフレームである。また、積層体の両端に配置される一対のエンドプレートと、両エンドプレートを積層体の積層方向に締め付ける締付機構とを備えることを特徴とする。
 この構成によれば、セルフレームが上記した本発明のセルフレームであることで、組立性に優れ、セルフレームを構成するフレームと双極板との境界部での応力集中に起因する損傷を防止することができる。また、エンドプレートと締付機構とにより締め付けることで、セルフレームを構成する一対のフレームを表裏から押圧することができる。
 本発明の電解液流通型電池は、上記した本発明の電解液流通型電池用セルスタックを備えることを特徴とする。
 この構成によれば、上記した本発明の電解液流通型電池用セルスタックを備えることで、組立性に優れる。また、セルフレームを構成するフレームと双極板との境界部での応力集中に起因する損傷を防止することができるので、電池の運転条件や保管条件が急激に変化する環境に設置しても安定して動作することができる。
 本発明の電解液流通型電池の一形態としては、レドックスフロー電池であることが挙げられる。
 レドックスフロー電池としては、特に限定されるものではなく、例えば、正負極の電解液が以下の(1)~(2)のいずれかであることが挙げられる。
 (1)正負極の電解液はそれぞれ、バナジウムイオンを含有する。
 (2)正極電解液は、鉄イオンを含有し、負極電解液は、バナジウムイオン、クロムイオン、亜鉛イオン、及びスズイオンから選択される少なくとも一種の金属イオンを含有する。
 本発明の電池用シール構造は、一対の脚部とこれら脚部を連結する基部とを有する弾性材料からなる環状のパッキンを用いることで、組立性に優れながら、高いシール性を確保することができる。また、フレームと電池用板状部材との境界部での応力集中に起因する損傷を防止することができ、電池用板状部材の材料の選択肢が拡大する。また、本発明の電解液流通型電池用セルフレーム、電解液流通型電池用セルスタック、及び電解液流通型電池は、上記した本発明の電池用シール構造を備えることで、組立性に優れ、フレームと双極板との境界部での応力集中に起因する損傷を防止することができ、双極板の材料の選択肢が拡大する。
実施の形態1に係るセルフレームを備えるセルスタックを説明するための概略一部拡大断面図である。 実施の形態1に係るセルフレームに用いたパッキンを説明するための概略一部拡大断面図である。 実施の形態1に係るセルフレームの組立手順を説明するための概略一部拡大断面図であり、(A)は組立前の状態を示し、(B)は組立後の状態を示す。 実施の形態2に係るセルフレームに用いたパッキンを説明するための概略一部拡大断面図である。 実施の形態2に係るセルフレームの組立手順を説明するための概略一部拡大断面図であり、(A)は組立前の状態を示し、(B)は組立後の状態を示す。 実施の形態2に係るセルフレームの組立後の状態の一例を説明するための概略一部拡大断面図である。 フレームの変形例を説明するための概略一部拡大断面図であり、(A)はその一例を示し、(B)は別の一例を示す。 レドックスフロー電池を説明するための概要図である。 セルスタックを説明するための概要図である。
 本発明の実施の形態を、図を用いて説明する。なお、以下に説明する実施の形態では、電解液流通型電池(レドックスフロー電池)のセルフレームを例に挙げて説明する。図中、同一符号は同一又は相当部分を示す。
 (実施の形態1)
 図1は、実施の形態1に係るセルフレーム10を備えるセルスタックを示す図である。このセルスタックは、隔膜111、隔膜111を介して対向する正極電極114及び負極電極115とからなるセルを、セルフレーム10を挟んで複数積層しており、セルフレーム10を除いてその他の構成は、図9を用いて説明したセルスタック200と同様の構成であるので、ここでは説明を省略する。
 セルフレーム10は、電池用板状部材(双極板)11と、一対のフレーム12a,12bと、パッキン20とを備える。以下、各構成部材について詳しく説明する。
 双極板11は、矩形板状であり、例えば、プラスチックカーボンやカーボン板が用いられている。この例では、厚さを0.6mmに設計している。
 フレーム12a,12bはそれぞれ、矩形枠状であり、例えば、塩化ビニル製のものである。この例では、断面略L字状の同一形状とし、且つ、双極板11を挟んで対称配置されている。なお、ここでいう断面は、フレーム12a,12bの周方向に直交する断面である。フレーム12a,12bは、双極板11の周縁部を挟み、表裏から押圧されている(ここでは、図1中、上側を「表側」、下側を「裏側」とする)。フレーム12a,12bの押圧方向に互いに対向する対向面にはそれぞれ、内周縁部の厚さが薄くなるように段差面13が形成されており、フレーム12aとフレーム12bとの対向面の間に環状の溝14が形成されている。そして、この環状溝14内に双極板11の周縁部が収容される。
 パッキン20は、矩形環状であり、例えば、EPDMやフッ素ゴムといった弾性材料からなり、この例では、EPDMで形成されている。パッキン20は、双極板11の周縁部に嵌め込まれて取り付けられており、環状溝14内に配置され、フレーム12a,12bと双極板11の周縁部との間で圧接されている。このパッキン20は、双極板11の周縁部の表裏を挟持する一対の脚部21と、双極板11の外縁でこれら脚部21を連結する基部22とを有する。脚部21は、フレーム12a(12b)に対向する外面と双極板11に対向する内面とを有し、基部22は、フレーム12aに対向する表面とフレーム12bに対向する裏面とを有する。脚部21と基部22とは一体に形成されている。
 図2は、セルフレームを組み立てる前のパッキンを示す図である。パッキン20は、図2に示すように、断面略V字状であり、脚部21と基部22のそれぞれには突起23が設けられている。なお、ここでいう断面は、パッキン20の周方向に直交する断面である。この例では、両方の脚部21に突起23が設けられると共に、両方の脚部21において外面と内面の両面に突起23が設けられており、基部21においても表面と裏面の両面に突起23が設けられている。また、脚部21の突起23は片面に対して3個ずつ(両面で計6個)、基部22の突起23は片面に対して2個ずつ(両面で計4個)、それぞれ設けられており、脚部21と基部22のいずれにおいても、その幅方向の同じ位置に両面に突起23が設けられている。両方の脚部21において突起23の位置は一致し、各脚部21同士は対称形状である。なお、脚部21及び基部22の突起23は、環状のパッキン20の周方向に沿って一連に形成されている。
 この例では、パッキン20が非圧縮状態のとき、脚部21は、厚さT1を0.3mm、幅W1を3.0mm、脚部21の突起23の高さH1を0.3mmに設計し、基部22は、厚さT2を1.0mm、幅W2を1.0mm、基部22の突起23の高さH2を0.3mmに設計している。また、基部22の内周縁から延びる一対の脚部21の根元同士の間隔C1を0.6mmに設計している。
 次に、図1に示すセルフレーム10の組立手順を、図3を用いて説明する。まず、パッキン20を拡径すると共に、両脚部21の間に双極板11の周縁部を挟み込んで、双極板11の周縁部にパッキン20を取り付ける(図3(A)参照)。次に、一対のフレーム12a,12bの間にパッキン20を装着した双極板11の周縁部を挟み、フレーム12a,12bを表裏から押圧する(図3(B)参照。図中、白抜き矢印は押圧方向を示す)。これにより、パッキン20がフレーム12a,12bと双極板11の周縁部との間で圧接されることで変形して両者に密着し、各フレーム12a,12bの開口の内部に形成される空間(双極板11を挟んで負極電極115と正極電極114とが配置される空間(図1参照))をシールする電池用シール構造が形成される。また、脚部21及び基部22に突起23を有することで、パッキン20が圧接されたとき、脚部21及び基部22の突起23が押し潰され、シール性を高めることができる。
 この例では、フレーム12a,12bの段差面13(環状溝14)の幅に対してパッキン20全体の幅が短く、環状溝14内にパッキン20が配置されたとき、基部22の外周縁面が環状溝14の底面に接さず、また、脚部21の先端が環状溝14から突出しない。そのため、フレーム12a,12bを図3(B)の白抜き矢印方向に押圧してパッキン20が圧接されたとき、脚部21及び基部22が圧縮され幅方向(図3(B)中、黒矢印方向)に伸びても、環状溝14内の空間に逃がすことができる。このような逃がし代を確保することで、押圧荷重を高くしても、パッキン20の異常変形を防止し易い。
 以上説明した実施の形態1に係るセルフレームのシール構造は、溶着作業が不要であり、作業者のスキルに依存することのない電池用シール構造とすることができ、組立性に優れる。また、パッキンがフレームと双極板の周縁部との間で圧接されることで変形して両者に密着し、高いシール性を確保しながら、脚部又は基部に突起を有することで、シール性を高めることができる。脚部又は基部の突起は、パッキンを補強するリブとして作用し、保形する機能も兼ね備える。さらに、パッキンは、双極板の周縁部に嵌め込むだけの簡単な作業で取り付けることができ、脚部と基部とを有することで、ずれたり外れたりすることなく確実に取り付けることができる。
 その他、このシール構造は、双極板が膨張・収縮変形する事態が生じても、パッキンが双極板に追従して伸縮する。そのため、パッキンがフレームと双極板との境界部での応力集中を緩和して、フレーム又は双極板が損傷することを防止することができる。よって、双極板の材料が限定されることがなく、双極板の材料の選択肢が拡大する。
 そして、このようなセルフレームを備えるセルスタック、並びにこのセルスタックを備える電解液流通型電池(レドックスフロー電池)は、組立性に優れ、セルフレームを構成するフレームと双極板との境界部での応力集中に起因する損傷を防止することができる。また、この電解液流通型電池(レドックスフロー電池)は、電池の運転条件などが急激に変化する環境に設置しても安定して動作することができる。
 (実施の形態2)
 実施の形態1では、図1~3を用いて、脚部に突起を有するパッキンを用いたセルフレームのシール構造について説明した。この実施の形態2では、図4~6を用いて、脚部に屈曲部を有するパッキンを用いたセルフレームのシール構造について説明する。なお、実施の形態2において、セルスタック(セルフレーム)の概略構成や、セルフレームの構成部材である双極板、一対のフレーム及びパッキンの基本構成は、実施の形態1と同様であるので、説明を省略する。
 図4は、セルフレームを組み立てる前のパッキンを示す図である。パッキン20は、図4に示すように、断面略V字状であり、脚部21には屈曲部25が設けられ、基部22には突起23が設けられている。なお、ここでいう断面は、パッキン20の周方向に直交する断面である。この例では、両方の脚部21に屈曲部25が設けられると共に、両方の脚部21において基部22から直線状に延びる根元部26が設けられ、この根元部26から先端にかけて屈曲部25が形成されており、各脚部21同士は対称形状である。また、脚部21の屈曲部25は、根元部26を基準として外面側に凸となるように1個設けられている。一方、基部22の突起23は、片面に対して1個ずつ(両面で計2個)設けられており、基部22において、その幅方向の同じ位置に両面に突起23が設けられている。なお、脚部21の屈曲部25及び基部22の突起23は、環状のパッキン20の周方向に沿って一連に形成されている。
 この例では、パッキン20が非圧縮状態のとき、脚部21は、厚さT1を0.3mm、屈曲部25における屈曲角度θ及び屈曲高さH3をそれぞれ98°、0.99mmに設計し、基部22は、厚さT2を1.0mm、幅W2を1.0mm、突起23の高さH2を0.3mmに設計している。また、基部22の内周縁から延びる一対の脚部21の根元同士の間隔C1を0.6mmに設計している。
 次に、セルフレームの組立手順を、図5を用いて説明する。まず、パッキン20を拡径すると共に、両脚部21の間に双極板11の周縁部を挟み込んで、双極板11の周縁部にパッキン20を取り付ける(図5(A)参照)。次に、一対のフレーム12a,12bの間にパッキン20を装着した双極板11の周縁部を挟み、フレーム12a,12bを表裏から押圧する(図5(B)参照。図中、白抜き矢印は押圧方向を示す)。これにより、パッキン20がフレーム12a,12bと双極板11の周縁部との間で圧接されることで変形して両者に密着し、各フレーム12a,12bの開口の内部に形成される空間(双極板11を挟んで負極電極115と正極電極114とが配置される空間(図1参照))をシールする電池用シール構造が形成される。また、脚部21に屈曲部25及び基部22に突起23を有することで、パッキン20が圧接されたとき、脚部21の屈曲部25が直線状に扁平に弾性変形すると共に、基部22の突起23が押し潰されて圧縮変形することで、シール性を高めることができる。
 この例でも、実施の形態1と同様に、フレーム12a,12bの段差面13(環状溝14)の幅に対してパッキン20全体の幅が短い。そして、環状溝14内にパッキン20が配置されたとき、基部22の外周縁面が環状溝14の底面に接さず、また、脚部21の先端が環状溝14から突出しない。そのため、フレーム12a,12bを図5(B)の白抜き矢印方向に押圧してパッキン20が圧接されたとき、脚部21及び基部22が圧縮され幅方向(図5(B)中、黒矢印方向)に伸びても、環状溝14内の空間に逃がすことができる。このような逃がし代を確保することで、押圧荷重を高くしても、パッキン20の異常変形を防止し易い。
 以上説明した実施の形態2に係るセルフレームのシール構造は、実施の形態1のセルフレームのシール構造と同様の効果を得ることができ、更に次の効果を奏する。脚部21に屈曲部25を有するパッキン20の場合、圧縮量の差による接触面圧の変化が小さく、安定した接触面圧が得られる。例えば、フレーム12a(12b)又は双極板11の製造公差や組み付け誤差に起因して、パッキン20の脚部21が配置されるフレーム12a(12b)と双極板11の周縁部との間の距離dが、図6に示すように、設計値よりも大きくなったとする。具体例としては、距離dの設計値が0.3mmのとき、製造公差などに起因して実際の距離dが0.8mmであったとする。このとき、屈曲部25の高さを距離dの設計値よりも高く(例えば0.9mm以上)設計しておくことで、図6に示すように、屈曲部25の弾性変形によって、フレーム12a(12b)及び双極板11との接触箇所で面圧が生じて、シール機能を発揮できる。
 ここで、実施の形態2に係るセルフレームのシール構造(試験例1)における上記した距離dと接触面圧との関係を表1に示す。また、比較として、脚部に屈曲部を有するパッキンに代えて、フレームと双極板の周縁部との間にOリングを配置したシール構造(比較例1)における距離dと接触面圧との関係を表1に併せて示す。なお、表1中、各接触面圧は、試験例1での距離d=0.3mmのときの接触面圧を1とする相対値で示す。また、試験例1において、屈曲部の厚さは0.25mmとし、比較例1において、Oリングの直径は0.55mmとした。
Figure JPOXMLDOC01-appb-T000001
 表1の結果から、脚部に屈曲部を有するパッキンを用いた試験例1は、Oリングを用いた比較例1に比較して、距離dが変化しても接触面圧の変化が小さく、安定した接触面圧が得られることが分かる。具体的には、試験例1の場合、距離dが0.25mmのときの接触面圧の増加率は50%程度、距離dが0.8mmのときの接触面圧の低下率は50%程度であり、距離dが小さくなっても過大な接触面圧が生じることを抑えることができ、一方、距離dが大きくなってもある程度の接触面圧を確保できる。そのため、距離dに多少のばらつきがあっても、安定した接触面圧によってシール性を確保でき、また、製造公差や組み付け誤差を吸収できるため、各部材の製造公差を大きく設計できる。これに対し、比較例1の場合、距離dが小さくなると接触面圧が大幅に増加し、過大な接触面圧が生じることによって、フレーム又は双極板に損傷や変形が起こる可能性がある。一方、距離dが0.55mm(Oリングの直径)以上になると接触面圧が0になり、シール性が得られない。つまり、比較例1では、距離dの変化に対する接触面圧の変化が大きく、距離dを厳密に管理する必要がある。
 さらに、試験例1では、上記した距離dのばらつきによる過大な接触面圧が生じることを抑えることができるため、例えば電池運転時にフレームと双極板との熱膨張係数の差に起因する応力が発生したときに、双極板がフレームに対して相対的に移動し易い。そのため、上記した熱膨張係数差に起因する応力によって、双極板が損傷することを回避し易い。一方、比較例1では、過大な接触面圧が生じることがあることから、双極板の移動が阻害され、上記した熱膨張係数差に起因する応力によって、双極板が損傷する可能性がある。よって、試験例1では、双極板が損傷するリスクがより軽減されることから、双極板の要求強度をより低減でき、双極板の材料の選択肢がより拡大する。
 (変形例1)
 上記した実施の形態に係るセルフレーム10では、一対のフレーム12a,12bが段差面13を有する同一形状とし、且つ、対称配置されている場合を例に説明したが、一対のフレームの形状は互いに異なる形状としてもよい。
 図7(A)に示す一対のフレーム12a,12bは、一方のフレーム12aが平板枠状であり、このフレーム12aのフレーム12bに対向する対向面が平面である。また、他方のフレーム12bが断面略L字状であり、このフレーム12bのフレーム12aに対向する対向面には、内周縁部の厚さが薄くなるように、段差面13が形成されている。さらに、フレーム12aの幅は、フレーム12bの段差面13の幅とほぼ等しい。そして、フレーム12aとフレーム12bとの対向面の間に環状溝14が形成され、この環状溝14内にパッキン20を装着した双極板11の周縁部が収容される。
 図7(B)に示す一対のフレーム12a,12bは、一方のフレーム12aが平板枠状であり、このフレーム12aのフレーム12bに対向する対向面が平面である。また、他方のフレーム12bが断面略L字状であり、このフレーム12bのフレーム12aに対向する対向面には、外周縁側から内周縁側に向かって段階的に厚さが薄くなるように第1段差面13a及び第2段差面13bが形成されている。さらに、フレーム12aの幅は、フレーム12bの第1及び第2の段差面13a,13bを合わせた幅とほぼ等しく、フレーム12aの一部がフレーム12bの第1段差面13aに当接する。そして、フレーム12aとフレーム12bとの対向面の間に環状溝14が形成され、この環状溝14内にパッキン20を装着した双極板11の周縁部が収容される。
 なお、本発明は、上述した実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で適宜変更することが可能である。例えば、セルフレームを構成する双極板、フレーム及びパッキンの材質を適宜変更してもよい。また、パッキンの脚部及び基部の寸法や、脚部又は基部に設ける突起の個数・位置を適宜変更してもよい。
 本発明の電池用シール構造は、電解液流通型電池(レドックスフロー電池)、燃料電池などの各種電池のシール構造に利用できる。この電池用シール構造は、電解液流通型電池用セルフレーム、電解液流通型電池用セルスタック、電解液流通型電池に好適に利用できる。本発明の電解液流通型電池は、負荷平準化、出力安定化用の大容量蓄電池として好適に利用できる。
 10 セルフレーム
  11 電池用板状部材(双極板)  12a,12b フレーム
  13 段差面  13a 第1段差面  13b 第2段差面
  14 環状溝
 20 パッキン
  21 脚部  22 基部  23 突起
  25 屈曲部  26 根元部
 100 電解液流通型電池(レドックスフロー電池)
 110 セル
  111 隔膜  112 正極セル  113 負極セル
  114 正極電極  115  負極電極
 120 電解液タンク
 130 循環経路  131 往路配管  132 復路配管
 140 循環ポンプ
 200 セルスタック
  210 セルフレーム
  211 双極板  212 枠体
  213,214 給液用マニホールド
  215,216 排液用マニホールド
  220 エンドプレート
  230 締結機構

Claims (8)

  1.  電池用板状部材と、前記電池用板状部材の周縁部を挟む一対のフレームと、を備え、前記各フレームの開口の内部に形成される空間をシールする電池用シール構造であって、
     前記一対のフレームは、表裏から押圧され、
     前記一対のフレームには、押圧方向に互いに対向する対向面の間に、前記電池用板状部材の周縁部を収容する環状の溝が形成されており、
     前記環状溝内に配置され、前記一対のフレームと前記電池用板状部材の周縁部との間で圧接される弾性材料からなる環状のパッキンを備え、
     このパッキンは、
      前記電池用板状部材の周縁部の表裏を挟持する一対の脚部と、
      前記電池用板状部材の外縁でこれら脚部を連結する基部と、を有することを特徴とする電池用シール構造。
  2.  前記パッキンの前記脚部の少なくとも一方が、前記フレームに対向する外面又は前記電池用板状部材に対向する内面のいずれか一方若しくは両方に、突起を有することを特徴とする請求項1に記載の電池用シール構造。
  3.  前記パッキンの前記脚部の少なくとも一方が、前記基部から直線状に延びる根元部と、この根元部から先端にかけて形成された少なくとも1つの屈曲部を有することを特徴とする請求項1に記載の電池用シール構造。
  4.  前記パッキンの前記基部が、前記一対のフレームに対向する表裏の少なくとも一方の面に、突起を有することを特徴とする請求項1~3のいずれか一項に記載の電池用シール構造。
  5.  電池用板状部材と、前記電池用板状部材の周縁部を挟む一対のフレームと、を備える電解液流通型電池用セルフレームであって、
     前記電池用板状部材が、双極板であり、
     請求項1~4のいずれか一項に記載の電池用シール構造を備えることを特徴とする電解液流通型電池用セルフレーム。
  6.  隔膜と、隔膜を介して対向する正極電極及び負極電極とからなるセルがセルフレームを挟んで複数積層された積層体を備える電解液流通型電池用セルスタックであって、
     前記セルフレームが請求項5に記載の電解液流通型電池用セルフレームであり、
     前記積層体の両端に配置される一対のエンドプレートと、
     前記両エンドプレートを前記積層体の積層方向に締め付ける締付機構と、を備えることを特徴とする電解液流通型電池用セルスタック。
  7.  請求項6に記載の電解液流通型電池用セルスタックを備えることを特徴とする電解液流通型電池。
  8.  レドックスフロー電池であることを特徴とする請求項7に記載の電解液流通型電池。
PCT/JP2012/058537 2011-03-31 2012-03-30 電池用シール構造、電解液流通型電池用セルフレーム、電解液流通型電池用セルスタック、及び電解液流通型電池 WO2012133747A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
AU2012233365A AU2012233365B2 (en) 2011-03-31 2012-03-30 Battery Sealing Structure, Electrolyte Circulation Type Battery Cell Frame, Electrolyte Circulation Type Battery Cell Stack, and Electrolyte Circulation Type Battery
US13/982,900 US9172069B2 (en) 2011-03-31 2012-03-30 Battery sealing structure, electrolyte circulation type battery cell frame, electrolyte circulation type battery cell stack, and electrolyte circulation type battery
EP12765610.6A EP2693548B1 (en) 2011-03-31 2012-03-30 Battery sealing structure, cell frame for redox flow battery, cell stack for redox flow battery, and redox flow battery
CN201280016603.XA CN103460477B (zh) 2011-03-31 2012-03-30 电池密封结构、电解液循环型电池单元框架、电解液循环型电池单元堆及电解液循环型电池
KR1020137024391A KR20140018902A (ko) 2011-03-31 2012-03-30 전지용 시일 구조, 전해액 유통형 전지용 셀 프레임, 전해액 유통형 전지용 셀 스택, 및 전해액 유통형 전지
CA2831850A CA2831850A1 (en) 2011-03-31 2012-03-30 Battery sealing structure, electrolyte circulation type battery cell frame, electrolyte circulation type battery cell stack, and electrolyte circulation type battery
IN7207DEN2013 IN2013DN07207A (ja) 2011-03-31 2012-03-30

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011077017 2011-03-31
JP2011-077017 2011-03-31
JP2012057244A JP5477672B2 (ja) 2011-03-31 2012-03-14 電解液流通型電池用セルフレーム、電解液流通型電池用セルスタック、及び電解液流通型電池
JP2012-057244 2012-03-14

Publications (1)

Publication Number Publication Date
WO2012133747A1 true WO2012133747A1 (ja) 2012-10-04

Family

ID=46931444

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/058537 WO2012133747A1 (ja) 2011-03-31 2012-03-30 電池用シール構造、電解液流通型電池用セルフレーム、電解液流通型電池用セルスタック、及び電解液流通型電池

Country Status (10)

Country Link
US (1) US9172069B2 (ja)
EP (1) EP2693548B1 (ja)
JP (1) JP5477672B2 (ja)
KR (1) KR20140018902A (ja)
CN (1) CN103460477B (ja)
AU (1) AU2012233365B2 (ja)
CA (1) CA2831850A1 (ja)
IN (1) IN2013DN07207A (ja)
TW (1) TWI517480B (ja)
WO (1) WO2012133747A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014202320A1 (de) 2013-06-20 2014-12-24 Cellstrom Gmbh Laminierte bipolare platte
CN105531862A (zh) * 2013-09-12 2016-04-27 住友电气工业株式会社 电池单元堆和氧化还原液流电池
CN105742645A (zh) * 2014-12-08 2016-07-06 中国科学院大连化学物理研究所 一种适用于液流电池圆形电堆的电极框结构
EP3062377A1 (en) * 2013-10-23 2016-08-31 Sumitomo Electric Industries, Ltd. Redox flow battery and redox flow battery supply-exhaust plate
JP2017134954A (ja) * 2016-01-26 2017-08-03 住友電気工業株式会社 電池、及びシール材
WO2017134780A1 (ja) * 2016-02-03 2017-08-10 住友電気工業株式会社 レドックスフロー電池
WO2018105178A1 (ja) * 2016-12-07 2018-06-14 日本碍子株式会社 電極/セパレータ積層体及びそれを備えたニッケル亜鉛電池

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013009629B4 (de) * 2013-06-10 2019-09-12 Carl Freudenberg Kg Elektrodenmodul und Anordnung mit Elektrodenmodulen
TWI481092B (zh) * 2013-12-26 2015-04-11 Ind Tech Res Inst 電解質迴流電池
CN104795577B (zh) * 2014-01-17 2017-09-15 上海神力科技有限公司 一种用于大功率液流电池堆的双极板板框结构
JP6410127B2 (ja) * 2014-03-11 2018-10-24 住友電気工業株式会社 電解液循環型電池、熱交換器、及び配管
US10566644B2 (en) * 2014-11-06 2020-02-18 Sumitomo Electric Industries, Ltd. Battery cell and redox flow battery
US10790530B2 (en) 2014-11-06 2020-09-29 Sumitomo Electric Industries, Ltd. Cell frame and redox flow battery
AU2015344623B2 (en) * 2014-11-06 2020-06-18 Sumitomo Electric Industries, Ltd. Battery cell and redox flow battery
PT3378116T (pt) * 2015-11-18 2021-09-22 Invinity Energy Systems Canada Corp Montagem de elétrodo e bateria de fluxo com melhor distribuição de eletrólito
EP3446352B1 (en) * 2016-04-18 2020-07-01 Robert Bosch GmbH Electrochemical cell including electrode isolation frame
AU2016420290B2 (en) * 2016-10-05 2022-06-02 Sumitomo Electric Industries, Ltd. Frame body, cell frame, cell stack, and redox flow battery
KR20190060723A (ko) * 2016-10-05 2019-06-03 스미토모덴키고교가부시키가이샤 프레임 바디, 셀프레임, 셀스택 및 레독스 플로우 전지
US20190221863A1 (en) * 2017-01-18 2019-07-18 Sumitomo Electric Industries, Ltd. Bipolar plate, cell frame, cell stack, and redox flow battery
US20180331383A1 (en) * 2017-05-09 2018-11-15 Jinfeng Wu Gasket assemblies for redox flow batteries
CN108232268A (zh) * 2018-02-28 2018-06-29 浙江裕源储能科技有限公司 一种搅动溶液的锌镍液流电池
CN112154561A (zh) * 2018-05-30 2020-12-29 罗伯特·博世有限公司 包括具有由支撑框架支撑的边缘绝缘装置的双极电池单元的电池
CN109103484A (zh) * 2018-08-29 2018-12-28 深圳大学 一种液流电池及其制备方法
JP7196773B2 (ja) * 2019-05-31 2022-12-27 トヨタ自動車株式会社 燃料電池
CN112151827A (zh) * 2019-11-25 2020-12-29 国家电投集团科学技术研究院有限公司 液流电池的电池单元和具有其的液流电池
WO2021104606A1 (de) * 2019-11-25 2021-06-03 Hoeller Electrolyzer Gmbh Dichtungsanordnung für elektrochemische zellen der pem-bauart
DE102020206902A1 (de) * 2020-06-03 2021-12-09 Robert Bosch Gesellschaft mit beschränkter Haftung Stapelanordnung für einen Brennstoffzellenstack

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07135008A (ja) * 1993-11-09 1995-05-23 Sumitomo Electric Ind Ltd 電池セル構造
JP2001155758A (ja) * 1999-11-25 2001-06-08 Sumitomo Electric Ind Ltd レドックスフロー2次電池のセルスタック
JP2001189156A (ja) 2000-01-06 2001-07-10 Sumitomo Electric Ind Ltd 電池用電極および電池
JP2002367660A (ja) 2001-06-12 2002-12-20 Sumitomo Electric Ind Ltd レドックスフロー電池用セルスタック
JP2002367659A (ja) 2001-06-12 2002-12-20 Sumitomo Electric Ind Ltd レドックスフロー電池用セルフレーム及びレドックスフロー電池
JP2004311254A (ja) * 2003-04-08 2004-11-04 Matsushita Electric Ind Co Ltd 燃料電池のガスシール構造
JP2010198818A (ja) * 2009-02-24 2010-09-09 Gs Yuasa Corp 電気化学デバイス及び積層型電気化学デバイス

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH076578B2 (ja) * 1989-09-21 1995-01-30 日本バルカー工業株式会社 フッ素樹脂被覆ガスケットとその製造方法
US5332633A (en) 1993-03-16 1994-07-26 Duracell Inc. Cell sealant
US5411818A (en) * 1993-10-18 1995-05-02 Westinghouse Electric Corporation Perimeter seal on bipolar walls for use in high temperature molten electrolyte batteries
JP4424773B2 (ja) 1999-03-19 2010-03-03 三洋電機株式会社 密閉式電池
TWI318016B (en) 2003-12-09 2009-12-01 Hon Hai Prec Ind Co Ltd Cap assembly for nonaqueous electrolyte battery
TWI247445B (en) 2003-12-19 2006-01-11 Hon Hai Prec Ind Co Ltd Cap assembly for nonaqueous electrolyte battery
US7851100B2 (en) * 2004-10-08 2010-12-14 Panasonic Corporation MEA-gasket assembly and polymer electrolyte fuel cell using same
JP5427263B2 (ja) * 2011-03-31 2014-02-26 日本バルカー工業株式会社 薄板部材用シール材

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07135008A (ja) * 1993-11-09 1995-05-23 Sumitomo Electric Ind Ltd 電池セル構造
JP2001155758A (ja) * 1999-11-25 2001-06-08 Sumitomo Electric Ind Ltd レドックスフロー2次電池のセルスタック
JP2001189156A (ja) 2000-01-06 2001-07-10 Sumitomo Electric Ind Ltd 電池用電極および電池
JP2002367660A (ja) 2001-06-12 2002-12-20 Sumitomo Electric Ind Ltd レドックスフロー電池用セルスタック
JP2002367659A (ja) 2001-06-12 2002-12-20 Sumitomo Electric Ind Ltd レドックスフロー電池用セルフレーム及びレドックスフロー電池
JP2004311254A (ja) * 2003-04-08 2004-11-04 Matsushita Electric Ind Co Ltd 燃料電池のガスシール構造
JP2010198818A (ja) * 2009-02-24 2010-09-09 Gs Yuasa Corp 電気化学デバイス及び積層型電気化学デバイス

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2693548A4

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014202320A1 (de) 2013-06-20 2014-12-24 Cellstrom Gmbh Laminierte bipolare platte
CN105531862B (zh) * 2013-09-12 2017-09-12 住友电气工业株式会社 电池单元堆和氧化还原液流电池
CN105531862A (zh) * 2013-09-12 2016-04-27 住友电气工业株式会社 电池单元堆和氧化还原液流电池
EP3062377A1 (en) * 2013-10-23 2016-08-31 Sumitomo Electric Industries, Ltd. Redox flow battery and redox flow battery supply-exhaust plate
EP3062377A4 (en) * 2013-10-23 2016-09-07 Sumitomo Electric Industries REDOX BATTERY AND REDOX BATTERY SUPPLY / EXHAUST PLATE
US10033053B2 (en) 2013-10-23 2018-07-24 Sumitomo Electric Industries, Ltd. Flow battery and supply/discharge plate of flow battery
CN105742645A (zh) * 2014-12-08 2016-07-06 中国科学院大连化学物理研究所 一种适用于液流电池圆形电堆的电极框结构
WO2017130697A1 (ja) * 2016-01-26 2017-08-03 住友電気工業株式会社 電池、及びシール材
JP2017134954A (ja) * 2016-01-26 2017-08-03 住友電気工業株式会社 電池、及びシール材
WO2017134780A1 (ja) * 2016-02-03 2017-08-10 住友電気工業株式会社 レドックスフロー電池
WO2018105178A1 (ja) * 2016-12-07 2018-06-14 日本碍子株式会社 電極/セパレータ積層体及びそれを備えたニッケル亜鉛電池
JPWO2018105178A1 (ja) * 2016-12-07 2019-06-24 日本碍子株式会社 電極/セパレータ積層体及びそれを備えたニッケル亜鉛電池
US11404748B2 (en) 2016-12-07 2022-08-02 Ngk Insulators, Ltd. Electrode/separator layered body and nickel zinc battery equipped therewith

Also Published As

Publication number Publication date
TWI517480B (zh) 2016-01-11
AU2012233365A1 (en) 2013-09-05
AU2012233365B2 (en) 2016-09-22
CN103460477B (zh) 2016-08-24
EP2693548A1 (en) 2014-02-05
IN2013DN07207A (ja) 2015-05-15
KR20140018902A (ko) 2014-02-13
EP2693548B1 (en) 2018-05-23
US20130309540A1 (en) 2013-11-21
US9172069B2 (en) 2015-10-27
JP2012216510A (ja) 2012-11-08
TW201246660A (en) 2012-11-16
EP2693548A4 (en) 2014-12-24
CN103460477A (zh) 2013-12-18
CA2831850A1 (en) 2012-10-04
JP5477672B2 (ja) 2014-04-23

Similar Documents

Publication Publication Date Title
JP5477672B2 (ja) 電解液流通型電池用セルフレーム、電解液流通型電池用セルスタック、及び電解液流通型電池
CN106463738B (zh) 具有弹性密封组件的金属双极板和电化学系统
US10141592B2 (en) Resin-framed membrane electrode assembly for fuel cell
KR101859248B1 (ko) 박판 부재용 실링재
US20050249997A1 (en) Fuel cell
US20140227622A1 (en) Fuel cell
US10033053B2 (en) Flow battery and supply/discharge plate of flow battery
WO2017130697A1 (ja) 電池、及びシール材
JP6082362B2 (ja) 燃料電池
US9780400B2 (en) Fuel cell having an empty space gap between the separator and electrode
CN113097526B (zh) 燃料电池用接合隔板
CN112397739B (zh) 燃料电池用金属隔板、接合隔板以及发电单电池
CN110571452B (zh) 燃料电池用密封垫
JP7033098B2 (ja) 燃料電池スタック
US20230317978A1 (en) Gasket For Fuel Cell
US10056619B2 (en) Fuel cell having a recess in the separator
US20140322627A1 (en) Fuel cell
JP7111661B2 (ja) 燃料電池用金属セパレータ、接合セパレータ及び発電セル
JP7075320B2 (ja) 燃料電池用ガスケット
JP5643738B2 (ja) 燃料電池
CN112563527A (zh) 燃料电池用隔板构件和燃料电池堆
JP2020047472A (ja) 燃料電池用ガスケット

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12765610

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13982900

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012765610

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2012233365

Country of ref document: AU

Date of ref document: 20120330

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137024391

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2831850

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE