WO2012133652A1 - 電荷輸送材料、有機電界発光素子及び該素子を用いたことを特徴とする発光装置、表示装置または照明装置 - Google Patents

電荷輸送材料、有機電界発光素子及び該素子を用いたことを特徴とする発光装置、表示装置または照明装置 Download PDF

Info

Publication number
WO2012133652A1
WO2012133652A1 PCT/JP2012/058359 JP2012058359W WO2012133652A1 WO 2012133652 A1 WO2012133652 A1 WO 2012133652A1 JP 2012058359 W JP2012058359 W JP 2012058359W WO 2012133652 A1 WO2012133652 A1 WO 2012133652A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
general formula
ring
layer
atom
Prior art date
Application number
PCT/JP2012/058359
Other languages
English (en)
French (fr)
Inventor
北村 哲
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to KR1020137025179A priority Critical patent/KR101964477B1/ko
Publication of WO2012133652A1 publication Critical patent/WO2012133652A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C25/00Compounds containing at least one halogen atom bound to a six-membered aromatic ring
    • C07C25/18Polycyclic aromatic halogenated hydrocarbons
    • C07C25/22Polycyclic aromatic halogenated hydrocarbons with condensed rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C13/00Cyclic hydrocarbons containing rings other than, or in addition to, six-membered aromatic rings
    • C07C13/28Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof
    • C07C13/32Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings
    • C07C13/62Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings with more than three condensed rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/20Polycyclic condensed hydrocarbons
    • C07C15/38Polycyclic condensed hydrocarbons containing four rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/43Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C211/54Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to two or three six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C22/00Cyclic compounds containing halogen atoms bound to an acyclic carbon atom
    • C07C22/02Cyclic compounds containing halogen atoms bound to an acyclic carbon atom having unsaturation in the rings
    • C07C22/04Cyclic compounds containing halogen atoms bound to an acyclic carbon atom having unsaturation in the rings containing six-membered aromatic rings
    • C07C22/08Cyclic compounds containing halogen atoms bound to an acyclic carbon atom having unsaturation in the rings containing six-membered aromatic rings containing fluorine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/06Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom containing only hydrogen and carbon atoms in addition to the ring nitrogen atom
    • C07D213/16Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom containing only hydrogen and carbon atoms in addition to the ring nitrogen atom containing only one pyridine ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D239/00Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
    • C07D239/02Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings
    • C07D239/24Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members
    • C07D239/26Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0803Compounds with Si-C or Si-Si linkages
    • C07F7/0805Compounds with Si-C or Si-Si linkages comprising only Si, C or H atoms
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/622Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing four rings, e.g. pyrene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/40Ortho- or ortho- and peri-condensed systems containing four condensed rings
    • C07C2603/42Ortho- or ortho- and peri-condensed systems containing four condensed rings containing only six-membered rings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom

Definitions

  • the present invention relates to a charge transport material, an organic electroluminescent element, and a light emitting device, a display device, or a lighting device using the element.
  • Organic electroluminescent elements (hereinafter also referred to as “elements” and “organic EL elements”) are actively researched and developed because they can emit light with high luminance when driven at a low voltage.
  • An organic electroluminescent element has an organic layer between a pair of electrodes, and electrons injected from the cathode and holes injected from the anode recombine in the organic layer, and the generated exciton energy is used for light emission. To do.
  • Patent Document 1 discloses an organic electroluminescent device using a compound having a triphenylene structure, and uses a compound in which phenylene having a substituent (non-condensed aryl or heteroaryl) is bonded to the meta position. An organic electroluminescent device is described.
  • the problem to be solved by the present invention is to provide a charge transport material and an organic electroluminescence device having high efficiency after storage at high temperature and high maximum attained luminance.
  • the present invention can be achieved by the following means.
  • a charge transport material comprising a compound represented by the following general formula (1).
  • R 101 and R 102 each independently represents an alkyl group, an aryl group, a heteroaryl group, a fluorine atom or a silyl group, and may be further substituted with these groups or amino groups.
  • aromatic ring aromatic ring monocyclic included in the .R 101 and R 102 which condensed aryl structure and condensed heteroaryl structure in R 101 and R 102 are not included, ring members carbon (Six or six-membered ring composed of atoms or nitrogen atoms) The total number is 5 or more, n 101 represents an integer of 0 to 11, n 102 represents an integer of 0 to 9, and a plurality of R 101 and R 102 are the same A A1 to A A9 each independently represent CH (the hydrogen atom of CH may be substituted with R 102 ) or a nitrogen atom.) [2]
  • the charge transport material according to [1], wherein the compound represented by the general formula (1) is represented by the following general formula (2).
  • each R 111 independently represent an alkyl group, an aryl group, a heteroaryl group, a fluorine atom, or a silyl group, better .R 231 ⁇ be substituted with these groups or amino groups
  • R 234 independently represents an alkyl group, a fluorine atom, a silyl group or an amino group
  • R 235 to R 238 each independently represents an aryl group or a heteroaryl group, provided that R 111 and R 231 to R 238 are Does not include a condensed ring aryl structure or a condensed ring heteroaryl structure, and R 111 and R 231 to R 238 include a monocyclic aromatic ring (the aromatic ring is composed of a carbon atom or a nitrogen atom) A total of 3 to 6.
  • n 111 represents an integer of 0 to 11
  • y31 to y33 and y35 to y37 each independently represents an integer of 0 to 4
  • y34 and y38 are Represents an integer of 0 to 5.
  • a plurality of R 111 and R 231 to R 238 may be the same or different.
  • a B1 to A B17 are each independently CH (the hydrogen atom of CH is substituted by R 231 to R 238) Or a ring member representing a nitrogen atom and constituting a 6-membered aromatic ring.)
  • a B3 in the general formula (2) represents CH
  • a hydrogen atom of A B3 is substituted by at least one of R 235. material.
  • R 101 or R 102 in the general formula (1) represents a fluorine atom, a fluoroalkyl group, a cycloalkyl group, a silyl group, an alkylsilyl group, an arylsilyl group, a cycloalkylene group, or a silicon atom linking group.
  • all the monocyclic aromatic rings included in the general formula (1) are 6-membered rings of a carbon atom skeleton.
  • the charge transport material [7] The charge transport material according to any one of [1] to [6], wherein the compound represented by the general formula (1) is composed of only a carbon atom and a hydrogen atom. [8] The charge transport material according to any one of [1] to [7], wherein the compound represented by the general formula (1) has a molecular weight of 1200 or less. [9] The compound represented by the general formula (1) is a monocyclic aromatic ring (the aromatic ring is a six-membered ring composed of a carbon atom or a nitrogen atom) via a single bond. The number of the monocyclic aromatic rings continuously connected at the para position in the partial structure is 3 or less.
  • x1 and Z 2 are each independently, .A 1 representing a carbon atom or a nitrogen atom represents an atomic group forming a heterocycle of 5 or 6 membered with Z 1 and the nitrogen atom B 1 represents an atomic group that forms a 5- or 6-membered ring with Z 2 and a carbon atom, (XY) represents a monoanionic bidentate ligand, and n E1 represents an integer of 1 to 3.
  • XY represents a monoanionic bidentate ligand
  • n E1 represents an integer of 1 to 3.
  • the organic layer includes a light-emitting layer containing the phosphorescent material and another organic layer, and the light-emitting layer contains a compound represented by the general formula (1) [10] ]
  • the organic electroluminescent element according to any one of [13] to [13].
  • the organic layer includes a light-emitting layer containing the phosphorescent material and another organic layer, and the other organic layer includes a hole block layer disposed between the light-emitting layer and the cathode.
  • the organic electroluminescent device according to any one of [10] to [14], wherein the hole blocking layer contains a compound represented by the general formula (1).
  • R 101 and R 102 each independently represents an alkyl group, an aryl group, a heteroaryl group, a fluorine atom or a silyl group, and may be further substituted with these groups or amino groups.
  • aromatic ring aromatic ring monocyclic into .R 101 and R 102 which condensed aryl structure and condensed heteroaryl structure in R 101 and R 102 are not included, ring member carbon atoms or A total of 5 or more
  • n 101 represents an integer of 0 to 11
  • n 102 represents an integer of 0 to 9
  • a plurality of R 101 and R 102 are the same
  • a A1 to A A9 each independently represent CH (the hydrogen atom of CH may be substituted with R 102 ) or a nitrogen atom.)
  • the charge transport material of the present invention is characterized by comprising a compound represented by the following general formula (1).
  • R 101 and R 102 each independently represents an alkyl group, an aryl group, a heteroaryl group, a fluorine atom or a silyl group, and may be further substituted with these groups or amino groups.
  • the aromatic ring (aromatic ring monocyclic into .R 101 and R 102 which condensed aryl structure and condensed heteroaryl structure in R 101 and R 102 are not included, ring member carbon atoms or A total of 5 or more), n 101 represents an integer of 0 to 11, n 102 represents an integer of 0 to 9, and a plurality of R 101 and R 102 are the same A A1 to A A9 each independently represent CH (the hydrogen atom of CH may be substituted with R 102 ) or a nitrogen atom.)
  • the charge transport material of the present invention has such a configuration, it is not bound by any theory, but the glass transition temperature Tg can be increased without impairing efficiency and driving durability, and further, a molecular excited state, Excited state and charge spread to a wide range of ⁇ -conjugated systems in the molecule when in the radical cation state or radical anion state. However, it can be driven stably. Therefore, the organic electroluminescent element using the charge transporting
  • the charge transport material of the present invention represented by the general formula (1) is preferably used for organic electronic elements such as electrophotography, organic transistors, organic photoelectric conversion elements (energy conversion applications, sensor applications, etc.), organic electroluminescence elements and the like. It is particularly preferable to use it for an organic electroluminescent device.
  • the charge transport material of the present invention can also be used for a thin film containing the compound represented by the general formula (1).
  • the thin film can be formed using the composition by a dry film forming method such as an evaporation method or a sputtering method, or a wet film forming method such as a transfer method or a printing method.
  • the thickness of the thin film may be any thickness depending on the application, but is preferably 0.1 nm to 1 mm, more preferably 0.5 nm to 1 ⁇ m, still more preferably 1 nm to 200 nm, and particularly preferably 1 nm to 100 nm. is there.
  • the hydrogen atom (H) in the description of the general formula (1) includes an isotope (deuterium atom, D), and the atoms constituting the substituent further include the isotope. Represents that.
  • the substituent when referred to as “substituent”, the substituent may be substituted.
  • the term “alkyl group” in the present invention includes an alkyl group substituted with a fluorine atom (for example, trifluoromethyl group) and an alkyl group substituted with an aryl group (for example, triphenylmethyl group).
  • alkyl group having 1 to 6 carbon atoms when used, it means that all groups including substituted ones have 1 to 6 carbon atoms.
  • a substituent containing a fluorine atom, a fluoroalkyl group, a cycloalkyl group, a silyl group, an alkylsilyl group, an arylsilyl group, a cycloalkylene group or a silicon atom linking group is also referred to as a “specific substituent”.
  • a silyl group substituted with an alkyl group and an aryl group is also included in the specific substituent.
  • cycloalkylene group means a generic name such as 1,4-cyclohexanediyl, 1,3-cyclohexanediyl, 1,2-cyclohexanediyl, cyclopentane, etc. It does not mean a ring with one atom removed.
  • R 101 and R 102 each independently represents an alkyl group, an aryl group, a heteroaryl group, a fluorine atom or a silyl group, and may be further substituted with these groups or amino groups.
  • R 101 and R 102 do not include a condensed ring aryl structure or a condensed ring heteroaryl structure.
  • R 101 and R 102 contain a total of 5 or more monocyclic aromatic rings (the aromatic ring is a 6-membered ring composed of a carbon atom or a nitrogen atom).
  • the ring member of the monocyclic aromatic ring (the aromatic ring is a six-membered ring composed of a carbon atom or a nitrogen atom) is the monocyclic aromatic ring.
  • the number of nitrogen atoms is preferably 3 or less, more preferably 2 or less, particularly preferably 1 or less, and particularly preferably 0.
  • R 101 and R 102 include a total of 5 monocyclic aromatic rings (the aromatic ring is a 6-membered ring composed of a carbon atom or a nitrogen atom). By including the above, the effects of the present invention can be achieved.
  • the number of monocyclic aromatic rings contained in R 101 and R 102 is preferably 5 to 8 from the viewpoint of appropriate deposition, more preferably 5 to 7, and 5 to 6 It is particularly preferred.
  • R 101 and R 102 are alkyl groups
  • the alkyl groups may be linear, branched or cyclic, and generally have 1 to 30 carbon atoms, preferably 1 to 20 carbon atoms. More preferably, it is an alkyl group having 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms, and most preferably 1 to 4 carbon atoms.
  • the alkyl group as R 101 and R 102 may further have an alkyl group, aryl group, heteroaryl group, fluorine atom or silyl group as a substituent. Among them, the aryl group, heteroaryl group or fluorine atom is preferable.
  • the alkyl group as R 101 and R 102 is substituted with a fluorine atom, it is more preferable that all hydrogen atoms are substituted with a fluorine atom to form a perfluoroalkyl group, and —CF 2 CF 2 CF 3 It is particularly preferable to form a group or a trifluoromethyl group, and it is more preferable to form a trifluoromethyl group.
  • the alkyl group as R 101 and R 102 is substituted with an aryl group or a heteroaryl group
  • the aryl group or heteroaryl group is a monocyclic aromatic ring (the aromatic ring is a member having a carbon atom Or a 6-membered ring composed of nitrogen atoms).
  • the alkyl group as R 101 and R 102 is substituted with a plurality of monocyclic aromatic rings (the aromatic ring is a 6-membered ring composed of a carbon atom or a nitrogen atom). It is preferable.
  • the alkyl group as R 101 and R 102 is further substituted with an alkyl group
  • the alkyl group as the further substituent is preferably a methyl group.
  • the alkyl group as R 101 and R 102 is more preferably substituted so as to be a quaternary carbon.
  • R 101 and R 102 are silyl groups
  • the silyl group is preferably substituted, and the substituent is preferably an alkyl group or an aryl group.
  • the silyl group as R 101 and R 102 is substituted with an alkyl group or an aryl group, all hydrogen atoms are substituted with an alkyl group or an aryl group to form a trialkylsilyl group or a triarylsilyl group. Is more preferable, and it is particularly preferable to form a trimethylsilyl group or a triphenylsilyl group.
  • the triarylsilyl group may be further substituted on the aryl group portion. In that case, the triarylsilyl group is preferably substituted with an aryl group, and more preferably substituted with a phenyl group.
  • the heteroaryl group is preferably a 5- or 6-membered heterocycle containing a nitrogen atom.
  • the 5- or 6-membered heterocycle containing a nitrogen atom include a pyridine ring, a pyrimidine ring, a pyrazine ring, a triazine ring, an imidazole ring, a pyrazole ring, an oxazole ring, a thiazole ring, a triazole ring, an oxadiazole ring, and a thiadiazole ring. Is mentioned.
  • the charge transport material of the present invention when used in an organic electroluminescent device, it may be a pyridine ring, a pyrazine ring, an imidazole ring, or a pyrazole ring from the viewpoints of complex stability, emission wavelength control, and emission quantum yield. More preferred are pyridine ring, imidazole ring and pyrazine ring, still more preferred are pyridine ring or imidazole ring, and most preferred is pyridine ring.
  • R 101 and R 102 are preferably aryl groups rather than heteroaryl groups.
  • R 101 and R 102 are an aryl group, it preferably has 6 to 30 carbon atoms, more preferably 6 to 20 carbon atoms, particularly preferably 6 to 12 carbon atoms, and examples thereof include phenyl, naphthyl, anthryl and the like. It is done.
  • R 101 and R 102 are preferably a monocyclic aryl group, and more preferably a phenyl group.
  • the aryl group or heteroaryl group as R 101 and R 102 may further have an alkyl group, aryl group, heteroaryl group, fluorine atom, silyl group or amino group as a substituent.
  • the aryl group or heteroaryl group as R 101 and R 102 is substituted with an alkyl group, a fluorine atom or a silyl group
  • the preferred range of the alkyl group, heteroaryl group, fluorine atom or silyl group as the substituent is , R 101 and R 102 are the same as when an alkyl group, a heteroaryl group, a fluorine atom or a silyl group.
  • the number of these substituents is the aryl group as R 101 and R 102 or It is preferably 1 to 3 with respect to the heteroaryl group, more preferably 1 or 2, and particularly preferably 1.
  • the aryl group or heteroaryl group as R 101 and R 102 is substituted with an amino group, the amino group is preferably further substituted with an alkyl group, an aryl group or a heteroaryl group. Is more preferably a tertiary amine.
  • the preferred range of the alkyl group, aryl group or heteroaryl group which further substitutes the amino group is the same as the preferred range of the alkyl group, aryl group or heteroaryl group as R 101 and R 102 described above.
  • the aryl group or heteroaryl group is substituted with respect to the aryl group or heteroaryl group as R 101 and R 102
  • the aryl group and arylene group, or the heteroaryl group and heteroarylene group formed by the substitution are These are preferably monocyclic, more preferably 6-membered monocyclic.
  • an aryl group or heteroaryl group is substituted to form a 6-membered monocyclic aryl group and arylene group, or heteroaryl group and heteroaryl group.
  • the number of monocyclic rings is preferably 2 to 6, more preferably 2 to 5, and particularly preferably 2 to 4.
  • preferred structures in the case where an aryl group and an arylene group which are 6-membered monocycles form a linking substituent include a biphenyl group, a terphenyl group, a quarterphenyl group and a kinkphenyl group.
  • the monovalent substituent in which a plurality of 6-membered monocycles are linked by a single bond is a monocyclic aromatic ring (the aromatic ring is a 6-membered ring composed of carbon atoms or nitrogen atoms)
  • the monovalent substituent in which a plurality of 6-membered monocycles are linked by a single bond does not contain more than 3 para-substituted phenyl rings.
  • the monovalent substituent in which a plurality of 6-membered monocycles are linked by a single bond is preferably a phenyl group, a biphenyl group, a terphenyl group (particularly a p-terphenyl group or 3,5-diphenylphenyl).
  • a p-terphenyl group is more preferred
  • either a biphenyl group or a terphenyl group is more preferred
  • a biphenyl group is most preferred.
  • the above example has the same structure when a heteroaryl group and a heteroarylene group are linked.
  • R 101 is an aryl group or a heteroaryl group
  • R 101 is particularly preferably represented by the following general formula (3).
  • a A11 to A A33 each independently represents CH or a nitrogen atom, and are ring members constituting a 6-membered aromatic ring.
  • R 201 to R 204 each independently represents an alkyl group, a fluorine atom or a silyl group
  • y1 ⁇ y3 are each independently an integer of 0 ⁇ 4
  • y4 each independently .
  • R 205 ⁇ R 208 represents an integer of 0 to 5 represents an aryl group or a heteroaryl group
  • y5 ⁇ y8 independently represents an integer of 0 to 2, provided that the sum of y1 and y5, the sum of y2 and y6, and the sum of y3 and y7 is 4 at the maximum, and the sum of y4 and y8 is 5 at the maximum.
  • X1, x2 and x3 each independently represents 0 or 1, and x1 ⁇ x2 ⁇ x3.
  • the preferred range of R 201 to R 204 is the same as the preferred range of the alkyl group, fluorine atom or silyl group as R 101 and R 102 in the general formula (1).
  • R 201 to R 204 are preferably an alkyl group or a fluorine atom, and more preferably a methyl group, an n-propyl group, or a fluorine atom.
  • the preferred range of R 205 to R 208 is the same as the preferred range of the aryl group or heteroaryl group as R 101 and R 102 in the general formula (1).
  • R 205 to R 208 are preferably aryl groups, and more preferably phenyl groups.
  • the sum of y5 to y8, that is, the number of branches of the 6-membered aromatic ring in R 101 is preferably 0 or 1, particularly preferably 0.
  • R 201 is preferably an alkyl group, preferably an alkyl group having 1 to 3 carbon atoms, and more preferably a methyl group or an n-propyl group.
  • R 201 is preferably an alkyl group, and more preferably a methyl group.
  • R 207 is preferably an aryl group, and more preferably a phenyl group.
  • y1 to y3 are preferably 0, y4 is preferably 0 or 1, and y5 to y8 are preferably 0.
  • R 201 is preferably a fluorine atom.
  • the number of nitrogen-containing rings is preferably 1 or less, and more preferably 0.
  • each 6-membered aromatic ring is preferably connected at the meta position or the para position, and at least a 6-membered aromatic ring represented by x1 , X2 is more preferably linked at the meta position, and all 6-membered aromatic rings are particularly preferably linked at the meta position.
  • R 102 is an aryl group or heteroaryl group
  • R 102 is particularly preferably a substituent represented by the following general formula (4).
  • a A41 to A A69 each independently represent CH or a nitrogen atom, and are ring members constituting a 6-membered aromatic ring.
  • R 211 to R 215 are each independently an alkyl group, a fluorine atom, a silyl group or an amino group
  • y11 ⁇ y14 are each independently represent an integer of 0 to 4
  • y15 is .
  • R 216 ⁇ R 220 represents an integer of 0 to 5 each independently represent an aryl group or a heteroaryl group
  • Y16 to y20 each independently represents an integer of 0 to 2, provided that the sum of y11 and y16, the sum of y12 and y17, the sum of y13 and y18, and the sum of y14 and y19 is a maximum of 4, (The sum of y20 is at most 5.
  • x11, x12, x13 and x14 each independently represent 0 or 1, and x11 ⁇ x12 ⁇ x13
  • the preferred range of R 211 to R 215 is the same as the preferred range of the alkyl group, fluorine atom or silyl group as R 101 and R 102 in the general formula (1). However, it may be a substituted or unsubstituted amino group. Among these, R 211 to R 215 are preferably an alkyl group, a fluorine atom, a silyl group or an amino group, and more preferably an alkyl group, a fluorine atom or a silyl group.
  • the preferred range of R 216 to R 220 is the same as the preferred range of the aryl group or heteroaryl group as R 101 and R 102 in the general formula (1). Among these, R 216 to R 220 are preferably aryl groups, and more preferably phenyl groups.
  • the sum of y16 to y20, that is, the number of branches of the 6-membered aromatic ring in R 102 is preferably 0 to 2, more preferably 0 or 1. Particularly preferred is 0.
  • y11 when x11 to x14 are 1, y11 is preferably 0, y12 is preferably 0 or 1, and y13 to y20 are preferably 0.
  • R 212 is preferably an alkyl group, preferably an alkyl group substituted with a fluorine atom, more preferably a perfluoroalkyl group, and a C 3 perfluoroalkyl group. It is particularly preferred that In the general formula (4), when x11 is 0 and x12 to x14 are 1, y12 is preferably 0 or 1, y13 is preferably 0, and y14 is 0 or 1.
  • R 212 and R 214 are preferably each independently an alkyl group, and more preferably a t-butyl group.
  • R 218 is preferably an aryl group, preferably an aryl group substituted with a fluorine atom, more preferably a perfluoroaryl group, and particularly preferably a C 6 perfluoroaryl group. .
  • R 213 is preferably an alkyl group, a fluorine atom or a silyl group, more preferably an alkyl group substituted with a fluorine atom, a silyl group substituted with a fluorine atom or an alkyl group, and perfluoromethyl.
  • a group, a fluorine atom, or a trimethylsilyl group is particularly preferable.
  • R 215 is preferably an alkyl group, more preferably an isopropyl group.
  • R 218 and R 219 are preferably each independently an aryl group, and more preferably a phenyl group.
  • y14 is preferably 0 to 2
  • y15 is preferably 0 to 2
  • y19 is 0 to 2
  • y20 is preferably 0.
  • R 214 is preferably an alkyl group or a silyl group, more preferably a C 1-3 alkyl group or a silyl group substituted with an alkyl group, a methyl group, an isopropyl group or a dimethylphenylsilyl group.
  • R 215 is preferably an alkyl group, a silyl group or an amino group, and is substituted with a silyl group or an aryl group substituted with a linear or branched alkyl group, cycloalkyl group or aryl group having 1 to 4 carbon atoms. And more preferably a triphenylmethyl group, a methylphenylethyl group, an isopropyl group, an n-propyl group, a t-butyl group, a cyclohexyl group, a triphenylsilyl group, or 3 ′, 5′-dimethyl. Biphenylene substituted amino groups are particularly preferred.
  • R 215 is preferably an aryl group, and more preferably a phenyl group.
  • y15 is preferably 0 to 2
  • y20 is preferably 0.
  • R 215 is preferably an alkyl group, more preferably a methyl group or a t-butyl group.
  • the number of nitrogen-containing rings is preferably 1 or less, and more preferably 0.
  • each 6-membered aromatic ring is not limited, but is preferably connected at the meta or para position, and at least a 6-membered aromatic ring represented by x11 More preferably, the six-membered aromatic ring represented by x12 is linked at the para position. However, the number of 6-membered aromatic rings linked at the para position is preferably 3 or less.
  • R 101 in the general formula (1) is a fluorine atom, a fluoroalkyl group, a cycloalkyl group, a silyl group, an alkylsilyl group, an arylsilyl group, a substituent containing a cycloalkylene group or a silicon atom linking group (the above-mentioned specific substituent). Any of the groups) may be included, but an embodiment not including any of the specific substituents may be used. In the present invention, an embodiment in which R 101 in the general formula (1) includes a fluorine atom, a fluoroalkyl group, or an alkylsilyl group, or an embodiment that does not include any one of the specific substituents is preferable. The aspect which does not contain is more preferable.
  • R 101 in the general formula (1) is preferably an aryl group which may have a substituent among an alkyl group, an aryl group, a heteroaryl group, a fluorine atom or a silyl group, and represented by the general formula (3).
  • An aryl group in which X1 in the general formula (3) is 0, X2 and X3 are 1 is particularly preferable, and y1 to y8 in the general formula (3) are all 0
  • the group is particularly preferred, and unsubstituted m-terphenylene is even more particularly preferred.
  • R 102 in the general formula (1) is a fluorine atom, a fluoroalkyl group, a cycloalkyl group, a silyl group, an alkylsilyl group, an arylsilyl group, a substituent containing a cycloalkylene group or a silicon atom linking group (the above-mentioned specific substituent).
  • R 102 in the general formula (1) includes a fluorine atom, a fluoroalkyl group, a cycloalkyl group, or an alkylsilyl group is preferable.
  • the embodiment containing an alkylsilyl group or an arylsilyl group is more preferred, and the embodiment containing an alkylsilyl group or an arylsilyl group is particularly preferred.
  • R 102 in the general formula (1) is an alkyl group, an aryl group, a heteroaryl group, a fluorine atom or a silyl group, an optionally substituted heteroaryl group or an optionally substituted aryl.
  • Group is preferable, and the aryl group represented by the general formula (4) is particularly preferable.
  • the number of 6-membered monocycles linked at the para position is preferably 3 or less.
  • a 6-membered monocycle is further linked to the end of the p-terphenylene group, it is preferably linked at the meta position or ortho position, more preferably at the meta position.
  • n 101 represents an integer of 0 to 11, preferably an integer of 0 to 2, particularly preferably 0 or 1, and more preferably 0.
  • the position where the R 101 is substituted with the triphenylene ring structure is not particularly limited, but in the general formula (1), the triphenylene ring is connected to the biphenylene structure. It preferably has a substituent R 101 in addition to the ring.
  • n 102 represents an integer of 0 to 7, preferably an integer of 1 to 6, particularly preferably an integer of 1 to 5, and an integer of 1 to 2. More particularly preferred.
  • the position where the R 102 is substituted with the biphenylene structure is not particularly limited, but is bonded to the triphenylene structure in the biphenylene structure of the general formula (1).
  • the ring member is particularly preferably a 6-membered ring composed of a carbon atom or a nitrogen atom).
  • the compound represented by the general formula (1) is preferably represented by the following general formula (2).
  • R 111 each independently represents an alkyl group, an aryl group, a heteroaryl group, a fluorine atom or a silyl group, and may be further substituted with these groups or amino groups.
  • R 231 to R 234 each independently represents an alkyl group, a fluorine atom, a silyl group or an amino group.
  • R 235 to R 238 each independently represents an aryl group or a heteroaryl group.
  • R 111 and R 231 to R 238 do not include a condensed ring aryl structure or a condensed ring heteroaryl structure.
  • R 111 and R 231 to R 238 include a total of 3 to 6 monocyclic aromatic rings (the aromatic ring is a 6-membered ring composed of a carbon atom or a nitrogen atom).
  • n 111 represents an integer of 0 to 11
  • y31 to y33 and y35 to y37 each independently represents an integer of 0 to 4
  • y34 and y38 each represents an integer of 0 to 5.
  • the plurality of R 111 and R 231 to R 238 may be the same or different.
  • a B1 to A B17 each independently represent CH (the hydrogen atom of CH may be substituted with R 231 to R 238 ) or a nitrogen atom, and are ring members constituting a 6-membered aromatic ring.
  • R 111 and n 111 in the general formula (2) are the same as the preferred ranges of R 101 and n 101 in the general formula (1), respectively.
  • each 6-membered monocycle including A B1 to A B17 is the preferred range of the aryl group or heteroaryl group as R 101 and R 102 in the general formula (1). It is the same.
  • a preferred range of R 231 to R 234 is a preferred range of an alkyl group, aryl group, heteroaryl group, fluorine atom or silyl group as R 101 and R 102 in the general formula (1). It is the same.
  • R 231 to R 234 may be a substituted or unsubstituted amino group.
  • R 231 to R 234 are preferably an alkyl group, an aryl group, a fluorine atom or a silyl group, and more preferably a silyl group.
  • the preferred range of R 235 to R 238 is the same as the preferred range of the aryl group or heteroaryl group as R 101 and R 102 in the general formula (1).
  • R 235 to R 238 are preferably aryl groups, and more preferably p-terphenylene groups.
  • the sum of y35 to y38 is preferably 0 to 3, more preferably 0 to 2, and particularly preferably 0 to 1.
  • y31 is preferably 0 or 1.
  • R 231 is preferably an alkyl group or a silyl group, more preferably a methyl group or an aryl group-substituted silyl group, particularly preferably a methyl group or a triphenylsilyl group, and a triphenylsilyl group.
  • a group (however, it is also preferable to further have 1 or 2 phenyl groups as a substituent) is more preferable.
  • y32 is preferably 0 to 3, more preferably 0 or 1.
  • R 232 is preferably an alkyl group, a fluorine atom, a silyl group, or an amino group, and an unsubstituted or substituted alkyl group substituted with a fluorine atom, a fluorine atom, an alkyl group, or an aryl group, or It is more preferably an amino group substituted with a phenyl group, and a methyl group, a fluorine atom, a trifluoromethyl group, a trimethylsilyl group, a triphenylsilyl group or an amino group is a group substituted with two phenyl groups. Particularly preferred is a methyl group, a fluorine atom or a trimethylsilyl group.
  • y33 is preferably 0 or 1.
  • R 233 is preferably a silyl group, more preferably a silyl group substituted with at least one of an alkyl group and an aryl group, and a silyl group substituted with an alkyl group and an aryl group. Particularly preferred is a silyl group substituted with a methyl group and a phenyl group, and more preferred is a silyl group.
  • R 234 is substituted with an alkyl group, preferably a silyl group or an amino group, an alkyl group or an aryl group or a phenyl group
  • the silyl group is more preferably an ethyl group (which may further have a substituent), n-propyl group, isopropyl group, t-butyl group, trimethylsilyl group, triphenylsilyl group or amino group. It is more particularly preferred that it is a group substituted with a number of biphenyls (which may further have a methyl group as a substituent).
  • y35 is preferably 0 or 1.
  • R 235 is preferably an aryl group, more preferably a phenyl group, a biphenyl group, an m-terphenyl group, a p-terphenyl group, or a group in which these groups are further substituted.
  • the further substituent is preferably an alkyl group, a fluorine atom, a silyl group or an aryl group, more preferably a trifluoromethyl group, a triphenylmethyl group, an isopropyl group, a t-butyl group, a trimethylsilyl group or a phenyl group.
  • y36 is preferably 0 or 1.
  • R 236 is preferably an aryl group, more preferably a phenyl group, a dimethylphenyl group, a group in which a biphenyl group is substituted with two phenyl groups, or a p-terphenylene group, a phenyl group, Or it is particularly preferably a p-terphenylene group.
  • y37 is preferably 0.
  • y38 is preferably 0 or 1.
  • R 238 is preferably an aryl group, more preferably a phenyl group, a biphenyl group, or a p-terphenylene group.
  • the number of nitrogen-containing rings is preferably 1 or less, and more preferably 0.
  • connection of each 6-membered aromatic ring is not limited, but is preferably connected at the meta position or the para position.
  • the A B3 in the general formula (2) preferably represents CH, and the hydrogen atom of the A B3 is preferably substituted by at least one of the R 235 .
  • all monocyclic aromatic rings included in the general formula (1) are 6-membered rings of a carbon atom skeleton, and only carbon atoms and hydrogen atoms are included. More preferably, it consists of.
  • the compound represented by the general formula (1) has a monocyclic aromatic ring (the aromatic ring is a six-membered ring composed of a carbon atom or a nitrogen atom) via a single bond. It has at least one partial structure that is continuously connected by 4 or more, and the number of monocyclic aromatic rings continuously connected at the para position in the partial structure is 3 or less. Is preferable from the viewpoint of using a green phosphorescent material. Note that this description does not exclude from the present invention an embodiment in which the number of monocyclic aromatic rings continuously connected at the para position is 4, but the above-mentioned continuously connected at the para position. A compound having four monocyclic aromatic rings is preferred from the viewpoint of using a red phosphorescent material. Furthermore, the compound represented by the general formula (1) includes three aromatic rings continuously connected at the para position including a phenyl ring which is a partial structure of a condensed ring constituting a triphenylene ring. The following is preferable.
  • the T 1 energy in the film state of the compound represented by the general formula (1) is preferably 2.39 eV (55.0 kcal / mol) or more and 3.25 eV (75.0 kcal / mol) or less. It is more preferable that it is 0.47 eV (57.0 kcal / mol) or more and 3.04 eV (70.0 kcal / mol) or less, and 2.52 eV (58.0 kcal / mol) or more and 2.82 eV (65.0 kcal / mol) or less. More preferably.
  • the T 1 energy is preferably in the above range.
  • the T 1 energy can be determined from the short wavelength end of a phosphorescence emission spectrum of a thin film of material. For example, a material is deposited on a cleaned quartz glass substrate to a thickness of about 50 nm by vacuum deposition, and the phosphorescence emission spectrum of the thin film is measured at F-7000 Hitachi Spectrofluorimeter (Hitachi High Technologies) under liquid nitrogen temperature. Use to measure. T 1 energy can be obtained by converting the rising wavelength on the short wavelength side of the obtained emission spectrum into energy units.
  • the molecular weight of the compound represented by the general formula (1) is preferably 1200 or less, more preferably 1000 or less, and further preferably 750 or more and 1000 or less. 750 to 900, particularly preferably 750 to 850. By setting the molecular weight within this range, a material having good film quality and excellent sublimation purification / deposition suitability can be obtained.
  • the glass transition temperature (Tg) of the compound represented by the general formula (1) is 80 ° C. or higher and 400 ° C. or lower from the viewpoint of stably operating the organic electroluminescent device against heat generated during high temperature driving or driving the device.
  • the temperature is 100 ° C. or higher and 400 ° C. or lower, more preferably 120 ° C. or higher and 400 ° C. or lower.
  • the compounds represented by the above general formula (1) are disclosed in JP-A No. 2004-43349, JP-A No. 2004-83481, US 2006/0280965, WO 2009/021107, JP-A 2009-111068, Special Table 2010-535806. It can synthesize
  • the organic electroluminescent element of the present invention has a substrate, a pair of electrodes including an anode and a cathode disposed on the substrate, and an organic layer disposed between the electrodes, and the organic layer emits phosphorescence. It contains the material and the charge transport material of the present invention, that is, the compound represented by the general formula (1).
  • R 101 and R 102 each independently represents an alkyl group, an aryl group, a heteroaryl group, a fluorine atom or a silyl group, and may be further substituted with these groups or amino groups.
  • aromatic ring aromatic ring monocyclic into .R 101 and R 102 which condensed aryl structure and condensed heteroaryl structure in R 101 and R 102 are not included, ring member carbon atoms or A total of 5 or more
  • n 101 represents an integer of 0 to 11
  • n 102 represents an integer of 0 to 9
  • a plurality of R 101 and R 102 are the same
  • a A1 to A A9 each independently represent CH (the hydrogen atom of CH may be substituted with R 102 ) or a nitrogen atom.)
  • the structure of the organic electroluminescent element of the present invention is not particularly limited.
  • FIG. 1 an example of a structure of the organic electroluminescent element of this invention is shown. 1 has an organic layer on a substrate 2 between a pair of electrodes (anode 3 and cathode 9).
  • the element configuration, the substrate, the cathode, and the anode of the organic electroluminescence element are described in detail in, for example, Japanese Patent Application Laid-Open No. 2008-270736, and the matters described in the publication can be applied to the present invention.
  • the preferable aspect of the organic electroluminescent element of this invention is demonstrated in detail in order of a board
  • the organic electroluminescent element of the present invention has a substrate.
  • the substrate used in the present invention is preferably a substrate that does not scatter or attenuate light emitted from the organic layer.
  • the organic electroluminescent element of the present invention is disposed on the substrate and has a pair of electrodes including an anode and a cathode.
  • a pair of electrodes including an anode and a cathode.
  • at least one of the pair of electrodes, the anode and the cathode is preferably transparent or translucent.
  • the anode usually only needs to have a function as an electrode for supplying holes to the organic layer, and there is no particular limitation on the shape, structure, size, etc., depending on the use and purpose of the light-emitting element, It can select suitably from well-known electrode materials.
  • the anode is usually provided as a transparent anode.
  • the cathode need only normally have a function as an electrode for injecting electrons into the organic layer, and there is no particular limitation on the shape, structure, size, etc., depending on the use and purpose of the light-emitting element. Thus, it can be appropriately selected from known electrode materials.
  • the organic electroluminescent element of the present invention has an organic layer disposed between the electrodes, and the organic layer includes a phosphorescent material and a compound represented by the general formula (1).
  • the organic layer includes a phosphorescent material and a compound represented by the general formula (1).
  • the organic layer is formed on the entire surface or one surface of the transparent electrode or the semitransparent electrode.
  • the organic layer is formed on the entire surface or one surface of the transparent electrode or the semitransparent electrode.
  • the configuration of the organic layer, the method for forming the organic layer, preferred embodiments of the layers constituting the organic layer, and materials used for the layers will be described in order.
  • the organic layer preferably includes a charge transport layer.
  • the charge transport layer refers to a layer in which charge transfer occurs when a voltage is applied to the organic electroluminescent element. Specific examples include a hole injection layer, a hole transport layer, an electron block layer, a light emitting layer, a hole block layer, an electron transport layer, and an electron injection layer. If the charge transport layer is a hole injection layer, a hole transport layer, an electron block layer, or a light emitting layer, it is possible to manufacture an organic electroluminescent element with low cost and high efficiency.
  • the organic electroluminescent element of the present invention preferably has a light emitting layer containing the phosphorescent material and another organic layer, and the light emitting layer contains the compound represented by the general formula (1). Furthermore, in the organic electroluminescent element of the present invention, it is more preferable that the organic layer has a light emitting layer containing the phosphorescent material and another organic layer. However, in the organic electroluminescent element of the present invention, even when the organic layer has a light emitting layer and other organic layers, the layers do not necessarily have to be clearly distinguished.
  • the organic layer contains a phosphorescent material and a compound represented by the general formula (1).
  • the said organic layer has the light emitting layer containing the said phosphorescence-emitting material, and another organic layer, and the said light emitting layer contains the compound represented by the said General formula (1).
  • the compound represented by the general formula (1) is used as a host material of the light emitting layer (hereinafter also referred to as a host compound).
  • the compound represented by the general formula (1) may be contained in any organic layer between the cathode and the anode of the organic electroluminescent element.
  • an organic layer which may contain the compound represented by the general formula (1) a light emitting layer, a hole injection layer, a hole transport layer, an electron transport layer, an electron injection layer, an exciton block layer, a charge block Layer (a hole block layer, an electron block layer, etc.), etc., preferably a light emitting layer, an exciton block layer, a charge block layer, an electron transport layer, an electron injection layer, more preferably A light emitting layer, an exciton blocking layer, a charge blocking layer, or an electron transport layer, particularly preferably a light emitting layer, a hole blocking layer, an electron blocking layer, more particularly preferably a light emitting layer or a hole blocking layer, More particularly preferred is a light emitting layer.
  • the compound represented by the general formula (1) is contained in the light emitting layer, it is preferably contained in an amount of 0.1 to 99% by weight, preferably 1 to 95% by weight, based on the total weight of the light emitting layer. Is more preferable, and 10 to 95% by mass is more preferable.
  • the maximum emission wavelength of the light emitting material using the compound represented by the general formula (1) is preferably 400 to 700 nm, more preferably 500 to 700 nm, and particularly preferably 500 to 650 nm. More preferably, it is 500 to 550 nm, and most preferably 520 to 550 nm.
  • the electron transport layer or the hole blocking layer (more preferably, the hole blocking layer) is provided between the pair of electrodes, and the electron transport layer or the hole blocking layer is represented by the general formula (1). It is also preferable to contain a compound to be prepared. When the compound represented by the general formula (1) is contained in an organic layer other than the light emitting layer, it is preferably contained in an amount of 70 to 100% by mass, and 85 to 100% by mass with respect to the total mass of the organic layer. More preferably it is included.
  • These organic layers may be provided in a plurality of layers, and when a plurality of layers are provided, they may be formed of the same material or different materials for each layer.
  • each organic layer is formed by a dry film forming method such as a vapor deposition method or a sputtering method, a wet film forming method such as a transfer method, a printing method, a spin coating method, or a bar coating method (solution coating method). Any of these can be suitably formed.
  • the organic layer disposed between the pair of electrodes includes at least one layer formed by vapor deposition of a composition containing the compound represented by the general formula (1). Is preferred.
  • the light emitting layer receives holes from the anode, hole injection layer or hole transport layer and receives electrons from the cathode, electron injection layer or electron transport layer when an electric field is applied, and provides a field for recombination of holes and electrons. And a layer having a function of emitting light.
  • the light emitting layer in the present invention is not necessarily limited to light emission by such a mechanism.
  • the light emitting layer in the organic electroluminescent element of the present invention preferably contains at least one phosphorescent material.
  • the light emitting layer in the organic electroluminescent device of the present invention may be composed only of the light emitting material, or may be a mixed layer of a host material and the light emitting material.
  • the kind of the light emitting material may be one kind or two kinds or more.
  • the host material is preferably a charge transport material.
  • the host material may be one kind or two or more kinds, and examples thereof include a configuration in which an electron transporting host material and a hole transporting host material are mixed.
  • the light emitting layer may include a material that does not have charge transporting properties and does not emit light.
  • the light emitting layer may be a single layer or a multilayer of two or more layers, and each layer may contain the same light emitting material or host material, or each layer may contain a different material. When there are a plurality of light emitting layers, each of the light emitting layers may emit light with different emission colors.
  • the thickness of the light emitting layer is not particularly limited, but is usually preferably 2 nm to 500 nm, and more preferably 3 nm to 200 nm, and more preferably 5 nm to 100 nm from the viewpoint of external quantum efficiency. More preferably.
  • the light emitting layer contains a compound represented by the general formula (1), and the host material of the light emitting layer is represented by the general formula (1). It is a more preferable embodiment to use a compound.
  • the host material is a compound mainly responsible for charge injection and transport in the light emitting layer, and is a compound that itself does not substantially emit light.
  • substantially does not emit light means that the amount of light emitted from the compound that does not substantially emit light is preferably 5% or less, more preferably 3% or less of the total amount of light emitted from the entire device. Preferably it says 1% or less.
  • the host material other than the light emitting material and the compound represented by the general formula (1) will be described in order.
  • the compound represented by the said General formula (1) may be used other than the said light emitting layer in the organic electroluminescent element of this invention.
  • Luminescent material As the light emitting material in the present invention, any of phosphorescent light emitting materials, fluorescent light emitting materials and the like can be used.
  • the light emitting layer in the present invention can contain two or more kinds of light emitting materials in order to improve the color purity and broaden the light emission wavelength region. At least one of the light emitting materials is preferably a phosphorescent light emitting material.
  • a fluorescent light-emitting material or a phosphorescent light-emitting material different from the phosphorescent light-emitting material contained in the light-emitting layer can be used as the light-emitting material.
  • Examples of phosphorescent light-emitting materials that can be used in the present invention include US Pat. / 19373A2, JP-A No. 2001-247859, JP-A No. 2002-302671, JP-A No. 2002-117978, JP-A No. 2003-133074, JP-A No. 2002-1235076, JP-A No. 2003-123684, JP-A No. 2002-170684, EP No. 121157, JP-A No.
  • luminescent materials include iridium (Ir) complexes, platinum (Pt) complexes, Cu complexes, and Re complexes.
  • iridium (Ir) complex W complexes, Rh complexes, Ru complexes, Pd complexes, Os complexes, Eu complexes, Tb complexes, Gd complexes, Dy complexes, and Ce complexes.
  • an iridium (Ir) complex a platinum (Pt) complex, or a Re complex.
  • at least one coordination mode of a metal-carbon bond, a metal-nitrogen bond, a metal-oxygen bond, or a metal-sulfur bond is used.
  • An iridium (Ir) complex, a platinum (Pt) complex, or a Re complex is preferable.
  • iridium (Ir) complex and platinum (Pt) complex are particularly preferable, and iridium (Ir) complex is most preferable from the viewpoint of luminous efficiency, driving durability, chromaticity and the like.
  • the phosphorescent material contained in the light emitting layer in the present invention includes an iridium (Ir) complex represented by the following general formula (E-1) or platinum represented by the following general formula (C-1) It is preferable to use a (Pt) complex.
  • Z 1 and Z 2 each independently represents a carbon atom or a nitrogen atom.
  • a 1 represents an atomic group that forms a 5- or 6-membered heterocycle with Z 1 and a nitrogen atom.
  • B 1 represents an atomic group that forms a 5- or 6-membered ring with Z 2 and a carbon atom.
  • (XY) represents a monoanionic bidentate ligand.
  • n E1 represents an integer of 1 to 3. When n E1 is 2 or 3, there will be 2 or 3 ligands containing Z 1 , Z 2 , A 1 and B 1 , They may be the same or different from each other.
  • n E1 represents an integer of 1 to 3, preferably 2 or 3, and more preferably 3.
  • Z 1 and Z 2 each independently represents a carbon atom or a nitrogen atom.
  • Z 1 and Z 2 are preferably carbon atoms.
  • a 1 represents an atomic group that forms a 5- or 6-membered heterocycle with Z 1 and a nitrogen atom.
  • Examples of the 5- or 6-membered heterocycle containing A 1 , Z 1 and a nitrogen atom include a pyridine ring, pyrimidine ring, pyrazine ring, triazine ring, imidazole ring, pyrazole ring, oxazole ring, thiazole ring, triazole ring, oxadiazole Ring, thiadiazole ring and the like.
  • the 5- or 6-membered hetero ring formed by A 1 , Z 1 and a nitrogen atom is preferably a pyridine ring, a pyrazine ring, an imidazole ring or a pyrazole.
  • the 5- or 6-membered heterocycle formed by A 1 , Z 1 and a nitrogen atom may have a substituent, and as a substituent on the carbon atom, the following substituent group A is on the nitrogen atom.
  • the following substituent group B can be applied as the substituent.
  • the substituent on carbon is preferably an alkyl group, a perfluoroalkyl group, an aryl group, a heteroaryl group, a dialkylamino group, a diarylamino group, an alkoxy group, a cyano group, or a fluorine atom.
  • Substituent group A An alkyl group (preferably having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 10 carbon atoms, such as methyl, ethyl, isopropyl, t-butyl, n-octyl, n-decyl, n-hexadecyl, cyclopropyl, cyclopentyl, cyclohexyl, etc.), alkenyl groups (preferably having 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, particularly preferably 2 to 10 carbon atoms, such as vinyl , Allyl, 2-butenyl, 3-pentenyl, etc.), alkynyl group (preferably having 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, particularly preferably 2 to 10 carbon atoms such as propargyl , 3-pentynyl, etc.), aryl groups (preferably having 6 to 30 carbon atom
  • Particularly preferably 0 to 10 carbon atoms such as amino, methylamino, dimethylamino, diethylamino, dibenzylamino, diphenylamino, ditolylamino, etc.
  • an alkoxy group preferably having 1 to 30 carbon atoms, Preferably it has 1 to 20 carbon atoms, particularly preferably 1 to 10 carbon atoms, and examples thereof include methoxy, ethoxy, butoxy, 2-ethylhexyloxy, etc.
  • an aryloxy group preferably having 6 to 30 carbon atoms, More preferably, it has 6 to 20 carbon atoms, particularly preferably 6 to 12 carbon atoms.
  • a heterocyclic oxy group (preferably having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, and particularly preferably 1 to 12 carbon atoms).
  • pyridyloxy, pyrazinyloxy, pyrimidinyloxy, quinolyloxy, etc. acyl groups (preferably having 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, particularly preferably 2 to 12 carbon atoms, Acetyl, benzoyl, formyl, pivaloyl, etc.), an alkoxycarbonyl group (preferably having 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, particularly preferably 2 to 12 carbon atoms such as methoxycarbonyl, Ethoxycarbonyl, etc.), aryloxycarbonyl group (preferably carbon It has 7 to 30, more preferably 7 to 20 carbon atoms, particularly preferably 7 to 12 carbon atoms, and examples thereof include phenyloxycarbonyl.
  • acyl groups preferably having 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, particularly preferably 2 to 12 carbon atoms, Acetyl, benzoyl, formyl
  • An acyloxy group (preferably having 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, particularly preferably 2 to 10 carbon atoms, such as acetoxy, benzoyloxy, etc.), an acylamino group (preferably 2-30 carbon atoms, more preferably 2-20 carbon atoms, particularly preferably 2-10 carbon atoms, and examples thereof include acetylamino, benzoylamino and the like, and alkoxycarbonylamino groups (preferably having 2-2 carbon atoms).
  • an aryloxycarbonylamino group preferably having 7 to 30 carbon atoms, more preferably 7 to 20 carbon atoms, particularly preferably 7 to 12 carbon atoms, for example phenyloxycarbonyl And sulfonylamino groups (preferably having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as methanesulfonylamino and benzenesulfonylamino).
  • an aryloxycarbonylamino group preferably having 7 to 30 carbon atoms, more preferably 7 to 20 carbon atoms, particularly preferably 7 to 12 carbon atoms, for example phenyloxycarbonyl And sulfonylamino groups (preferably having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as methanesulfonylamino and benzenesulfonylamino).
  • a sulfamoyl group (preferably having 0 to 30 carbon atoms, more preferably 0 to 20 carbon atoms, particularly preferably 0 to 12 carbon atoms, such as sulfamoyl, methylsulfamoyl, dimethylsulfamoyl, phenyl Sulfamoyl, etc.), carbamoyl groups (preferably having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as carbamoyl, methylcarbamoyl, diethylcarbamoyl, Phenylcarbamoyl etc.), alkylthio group ( Preferably, it has 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as methylthio, ethylthio, etc.), an arylthio group (preferably 6 to 30 carbon atoms).
  • Rufinyl group (preferably having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, and examples thereof include methanesulfinyl and benzenesulfinyl. ), Ureido groups (preferably having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as ureido, methylureido, phenylureido, etc.), phosphoric acid An amide group (preferably having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms such as diethyl phosphoric acid amide and phenylphosphoric acid amide), a hydroxy group , Mercapto group, halogen atom (eg fluorine atom, chlorine atom, bromine atom, iodine atom), cyano group, sulfo group, carboxyl group
  • Is for example, a nitrogen atom, oxygen atom, sulfur atom, phosphorus atom, silicon atom, selenium atom, tellurium atom, specifically pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, pyrrolyl, pyrazolyl, triazolyl, imidazolyl, oxazolyl, thiazolyl, And isoxazolyl, isothiazolyl, quinolyl, furyl, thienyl, selenophenyl, tellurophenyl, piperidyl, piperidino, morpholino, pyrrolidyl, pyrrolidino, benzoxazolyl, benzoimidazolyl, benzothiazolyl, carbazolyl group, azepinyl group, silolyl group and the like.
  • Silyl group (preferably having 3 to 40 carbon atoms, more preferably 3 to 30 carbon atoms, particularly preferably 3 to 24 carbon atoms, and examples thereof include trimethylsilyl and triphenylsilyl).
  • a silyloxy group (preferably having 3 to 40 carbon atoms, more preferably 3 to 30 carbon atoms, particularly preferably 3 to 24 carbon atoms, such as trimethylsilyloxy, triphenylsilyloxy, etc.), phosphoryl group (for example, A diphenylphosphoryl group, a dimethylphosphoryl group, etc.).
  • These substituents may be further substituted, and examples of the further substituent include a group selected from the substituent group A described above.
  • the substituent substituted by the substituent may be further substituted, and examples of the further substituent include a group selected from the substituent group A described above.
  • the substituent substituted by the substituent substituted by the substituent may be further substituted, and examples of the further substituent include a group selected from the substituent group A described above.
  • Substituent group B An alkyl group (preferably having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 10 carbon atoms, such as methyl, ethyl, isopropyl, t-butyl, n-octyl, n-decyl, n-hexadecyl, cyclopropyl, cyclopentyl, cyclohexyl, etc.), alkenyl groups (preferably having 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, particularly preferably 2 to 10 carbon atoms, such as vinyl , Allyl, 2-butenyl, 3-pentenyl, etc.), alkynyl group (preferably having 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, particularly preferably 2 to 10 carbon atoms such as propargyl , 3-pentynyl, etc.), aryl groups (preferably having 6 to 30 carbon atom
  • substituents may be further substituted, and examples of the further substituent include groups selected from the above-mentioned substituent group A.
  • the substituent substituted by the substituent may be further substituted, and examples of the further substituent include a group selected from the substituent group A described above.
  • the substituent substituted by the substituent substituted by the substituent may be further substituted, and examples of the further substituent include a group selected from the substituent group A described above.
  • the substituent is appropriately selected for controlling the emission wavelength and potential, but in the case of shortening the wavelength, an electron donating group, a fluorine atom, and an aromatic ring group are preferable.
  • an electron donating group, a fluorine atom, and an aromatic ring group are preferable.
  • an alkyl group, a dialkylamino group, an alkoxy group, A fluorine atom, an aryl group, a heteroaryl group and the like are selected.
  • an electron withdrawing group is preferable, and for example, a cyano group, a perfluoroalkyl group, or the like is selected.
  • the substituent on the nitrogen is preferably an alkyl group, an aryl group, or a heteroaryl group, and an alkyl group or an aryl group is preferable from the viewpoint of the stability of the complex.
  • the substituents may be linked to form a condensed ring, and the formed ring includes a benzene ring, a pyridine ring, a pyrazine ring, a pyridazine ring, a pyrimidine ring, an imidazole ring, an oxazole ring, a thiazole ring, and a pyrazole. Ring, thiophene ring, furan ring and the like. These formed rings may have a substituent, and examples of the substituent include the substituent on the carbon atom and the substituent on the nitrogen atom.
  • B 1 represents a 5- or 6-membered ring containing Z 2 and a carbon atom.
  • Examples of the 5- or 6-membered ring formed by B 1 , Z 2 and a carbon atom include a benzene ring, a pyridine ring, a pyrimidine ring, a pyrazine ring, a pyridazine ring, a triazine ring, an imidazole ring, a pyrazole ring, an oxazole ring, a thiazole ring, Examples include a triazole ring, an oxadiazole ring, a thiadiazole ring, a thiophene ring, and a furan ring.
  • the benzene ring, pyridine ring, pyrazine ring, imidazole ring, pyrazole is preferable as the 5- or 6-membered ring formed by B 1 , Z 2 and carbon atom.
  • the 5- or 6-membered ring formed of B 1 , Z 2 and a carbon atom may have a substituent, and the substituent group A is a substituent on a nitrogen atom as a substituent on the carbon atom.
  • the substituent group B can be applied.
  • the substituent on carbon is preferably an alkyl group, a perfluoroalkyl group, an aryl group, a heteroaryl group, a dialkylamino group, a diarylamino group, an alkoxy group, a cyano group, or a fluorine atom.
  • the substituent is appropriately selected for controlling the emission wavelength and potential, but in the case of increasing the wavelength, an electron donating group and an aromatic ring group are preferable, for example, an alkyl group, a dialkylamino group, an alkoxy group, an aryl group, A heteroaryl group or the like is selected.
  • an electron withdrawing group is preferable, and for example, a fluorine atom, a cyano group, a perfluoroalkyl group, and the like are selected.
  • the substituent on the nitrogen is preferably an alkyl group, an aryl group, or a heteroaryl group, and an alkyl group or an aryl group is preferable from the viewpoint of the stability of the complex.
  • the substituents may be linked to form a condensed ring, and the formed ring includes a benzene ring, a pyridine ring, a pyrazine ring, a pyridazine ring, a pyrimidine ring, an imidazole ring, an oxazole ring, a thiazole ring, and a pyrazole. Ring, thiophene ring, furan ring and the like.
  • These formed rings may have a substituent, and examples of the substituent include the substituent on the carbon atom and the substituent on the nitrogen atom.
  • a 5- or 6-membered heterocyclic substituent formed by A 1 , Z 1 and a nitrogen atom and a 5- or 6-membered substituent formed by B 1 , Z 2 and a carbon atom are linked. Then, the same condensed ring as described above may be formed.
  • ligand represented by (XY) there are various known ligands used in conventionally known metal complexes.
  • ligands eg, halogen ligands (preferably chlorine ligands), etc., published in 1987, published by Yersin, “Organometallic Chemistry-Fundamentals and Applications-”
  • Nitrogen heteroaryl ligands for example, bipyridyl, phenanthroline, etc.
  • diketone ligands for example, acetylacetone, etc.
  • the ligands represented by (XY) are preferably the following general formulas (l-1) to (l-13), but the present invention is not limited to these.
  • Rx, Ry and Rz each independently represents a hydrogen atom or a substituent.
  • G represents CR or a nitrogen atom.
  • R represents a hydrogen atom or a substituent.
  • examples of the substituent include a substituent selected from the substituent group A.
  • Rx and Rz are each independently an alkyl group, a perfluoroalkyl group, a fluorine atom or an aryl group, more preferably an alkyl group having 1 to 4 carbon atoms, a perfluoroalkyl group having 1 to 4 carbon atoms, A fluorine atom and an optionally substituted phenyl group are most preferred, and a methyl group, an ethyl group, a trifluoromethyl group, a fluorine atom and a phenyl group are most preferred.
  • Ry is preferably a hydrogen atom, an alkyl group, a perfluoroalkyl group, a fluorine atom or an aryl group, more preferably a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or an optionally substituted phenyl group. And most preferably a hydrogen atom or a methyl group. Since these ligands are considered not to be sites where electrons are transported in the device or where electrons are concentrated by excitation, Rx, Ry, and Rz may be any chemically stable substituent, and the effects of the present invention can be achieved. Also has no effect.
  • R l1 ⁇ R l7 in the general formula (I-13) is preferably represents a substituent selected from substituent group A, may further have a substituent A.
  • G represents CR or a nitrogen atom.
  • R represents a substituent
  • examples of the substituent include a substituent selected from the substituent group A.
  • R 11 to R 17 and G represent C—R, any two of them may be bonded to each other to form a condensed 4- to 7-membered ring, and the condensed 4- to 7-membered ring is cycloalkyl , Aryl or heteroaryl, and the fused 4- to 7-membered ring may further have a substituent.
  • R 11 to R 17 is the same as the preferred range of R T1 to R T7 in general formula (E-3) described later.
  • G is preferably C—R, and R is preferably a hydrogen atom or an aryl group, more preferably a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 30 carbon atoms (for example, a phenyl group, a tolyl group, Naphthyl group, etc.), particularly preferably a hydrogen atom or a phenyl group.
  • (XY) is more preferably (l-1), (l-4), (l-13), and particularly preferably (l-1), (l-13).
  • Complexes having these ligands can be synthesized in the same manner as in known synthesis examples by using corresponding ligand precursors. For example, it can be synthesized in the same manner as described in International Publication 2009-073245, page 46.
  • a preferred embodiment of the iridium (Ir) complex represented by the general formula (E-1) is an iridium (Ir) complex represented by the general formula (E-2).
  • a E1 to A E8 each independently represents a nitrogen atom or C—R E.
  • R E represents a hydrogen atom or a substituent.
  • (XY) represents a monoanionic bidentate ligand.
  • n E2 represents an integer of 1 to 3.
  • a E1 to A E8 each independently represent a nitrogen atom or C—R E.
  • R E represents a hydrogen atom or a substituent, and R E may be connected to each other to form a ring.
  • Examples of the ring formed include the same ring as the condensed ring described in the general formula (E-1).
  • Examples of the substituent represented by R E we are the same as those mentioned above substituent group A.
  • a E1 ⁇ A E4 is C-R E, if A E1 ⁇ A E4 is C-R E, preferably a hydrogen atom R E of A E3, alkyl group, aryl group, amino group, An alkoxy group, an aryloxy group, a fluorine atom, or a cyano group, more preferably a hydrogen atom, an alkyl group, an amino group, an alkoxy group, an aryloxy group, or a fluorine atom, and particularly preferably a hydrogen atom or a fluorine atom.
  • R E of A E1 , A E2 and A E4 is preferably a hydrogen atom, alkyl group, aryl group, amino group, alkoxy group, aryloxy group, fluorine atom or cyano group, more preferably a hydrogen atom, An alkyl group, an amino group, an alkoxy group, an aryloxy group, or a fluorine atom, particularly preferably a hydrogen atom.
  • a E5 to A E8 are preferably C—R E , and when A E5 to A E8 are C—R E , R E is preferably a hydrogen atom, an alkyl group, a perfluoroalkyl group, an aryl group, heteroaryl Group, dialkylamino group, diarylamino group, alkyloxy group, cyano group, or fluorine atom, more preferably a hydrogen atom, alkyl group, perfluoroalkyl group, aryl group, dialkylamino group, cyano group, or fluorine atom. And more preferably a hydrogen atom, an alkyl group, a trifluoromethyl group, or a fluorine atom.
  • a E6 is preferably a nitrogen atom.
  • (X-Y) and n E2 of the general formula in (E1) (X-Y) , and has the same meaning as n E1 preferable ranges are also the same.
  • a more preferred form of the compound represented by the general formula (E-2) is a compound represented by the following general formula (E-3).
  • R T1 , R T2 , R T3 , R T4 , R T5 , R T6 and R T7 are each independently a hydrogen atom, an alkyl group, a cycloalkyl group, an alkenyl group, an alkynyl group, —CN, perfluoroalkyl group, trifluorovinyl group, —CO 2 R, —C (O) R, —NR 2 , —NO 2 , —OR, halogen atom, aryl group or heteroaryl group, and further substituents You may have.
  • Each R independently represents a hydrogen atom, an alkyl group, a perhaloalkyl group, an alkenyl group, an alkynyl group, a heteroalkyl group, an aryl group or a heteroaryl group.
  • A represents CR ′ or a nitrogen atom
  • R ′ represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkenyl group, an alkynyl group, —CN, a perfluoroalkyl group, a trifluorovinyl group, —CO 2 R, —C (O ) R, —NR 2 , —NO 2 , —OR, a halogen atom, an aryl group or a heteroaryl group, which may further have a substituent.
  • Each R independently represents a hydrogen atom, an alkyl group, a perhaloalkyl group, an alkenyl group, an alkynyl group, a heteroalkyl group, an aryl group or a heteroaryl group.
  • R T1 to R T7 and R ′ may be bonded to each other to form a condensed 4- to 7-membered ring, and the condensed 4- to 7-membered ring is cycloalkyl, aryl or heteroaryl
  • the condensed 4- to 7-membered ring may further have a substituent.
  • R T1 and R T7 , or R T5 and R T6 are condensed to form a benzene ring is preferred, and the case where R T5 and R T6 are condensed to form a benzene ring is particularly preferred.
  • (XY) represents a monoanionic bidentate ligand.
  • n E3 represents an integer of 1 to 3.
  • the alkyl group may have a substituent, may be saturated or unsaturated, and examples of the group that may be substituted include the above-described substituent A.
  • the alkyl group represented by R T1 to R T7 and R ′ is preferably an alkyl group having 1 to 8 carbon atoms in total, more preferably an alkyl group having 1 to 6 carbon atoms in total, such as methyl Group, ethyl group, i-propyl group, cyclohexyl group, t-butyl group and the like, and methyl group is particularly preferable.
  • the cycloalkyl group may have a substituent, may be saturated or unsaturated, and examples of the group that may be substituted include the above-described substituent A.
  • the cycloalkyl group represented by R T1 to R T7 and R ′ is preferably a cycloalkyl group having 4 to 7 ring members, more preferably a cycloalkyl group having 5 to 6 carbon atoms in total. A cyclopentyl group, a cyclohexyl group, etc. are mentioned.
  • the alkenyl group represented by R T1 to R T7 and R ′ preferably has 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, and particularly preferably 2 to 10 carbon atoms.
  • vinyl, allyl Examples include 1-propenyl, 1-isopropenyl, 1-butenyl, 2-butenyl, 3-pentenyl and the like.
  • the alkynyl group represented by R T1 to R T7 and R ′ preferably has 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, and particularly preferably 2 to 10 carbon atoms.
  • R T1 to R T7 and R ′ preferably has 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, and particularly preferably 2 to 10 carbon atoms.
  • Examples of the perfluoroalkyl group represented by R T1 to R T7 and R ′ include those in which all the hydrogen atoms of the aforementioned alkyl group are replaced with fluorine atoms.
  • the aryl group represented by R T1 to R T7 and R ′ is preferably a substituted or unsubstituted aryl group having 6 to 30 carbon atoms, such as a phenyl group, a tolyl group, a naphthyl group, etc.
  • a phenyl group is particularly preferred.
  • the heteroaryl group represented by R T1 to R T7 and R ′ is preferably a heteroaryl group having 5 to 8 carbon atoms, more preferably a 5- or 6-membered substituted or unsubstituted heteroaryl group.
  • Groups such as pyridyl, pyrazinyl, pyridazinyl, pyrimidinyl, triazinyl, quinolinyl, isoquinolinyl, quinazolinyl, cinnolinyl, phthalazinyl, quinoxalinyl, pyrrolyl, indolyl, furyl, benzofuryl , Thienyl group, benzothienyl group, pyrazolyl group, imidazolyl group, benzimidazolyl group, triazolyl group, oxazolyl group, benzoxazolyl group, thiazolyl group, benzothiazolyl group, isothiazolyl group, benzis
  • R T1 to R T7 and R ′ are preferably a hydrogen atom, an alkyl group, a cyano group, a trifluoromethyl group, a perfluoroalkyl group, a dialkylamino group, a fluoro group, an aryl group, or a heteroaryl group, more preferably A hydrogen atom, an alkyl group, a cyano group, a trifluoromethyl group, a fluoro group, and an aryl group are preferable, and a hydrogen atom, an alkyl group, and an aryl group are more preferable.
  • R T1 to R T7 and R ′ may be bonded to each other to form a condensed 4- to 7-membered ring, and the condensed 4- to 7-membered ring is cycloalkyl, aryl, or heteroaryl;
  • the condensed 4- to 7-membered ring may further have a substituent.
  • the definition and preferred range of cycloalkyl, aryl and heteroaryl formed are the same as the cycloalkyl group, aryl group and heteroaryl group defined by R T1 to R T7 and R ′.
  • A represents CR ′, and among R T1 to R T7 and R ′, 0 to 2 are alkyl groups or phenyl groups, and the rest are all hydrogen atoms, and R T1 to R T7 , And R ′ are particularly preferably 0 to 2 alkyl groups and the rest are all hydrogen atoms.
  • R T1 to R T7 and R ′ 0 to 2 are methyl groups and the rest are all hydrogen atoms. Most preferred is an atom.
  • n E3 is preferably 2 or 3.
  • the type of ligand in the complex is preferably composed of 1 to 2 types, more preferably 2 types.
  • (XY) has the same meaning as (XY) in formula (E-1), and the preferred range is also the same.
  • One preferred form of the compound represented by the general formula (E-3) is a compound represented by the following general formula (E-4).
  • R T1 to R T4 , A, (XY) and n E4 in the general formula (E-4) are R T1 to R T4 , A, (XY) and n E3 in the general formula (E-3).
  • the preferred range is also the same.
  • R 1 ′ to R 5 ′ are each independently a hydrogen atom, alkyl group, cycloalkyl group, alkenyl group, alkynyl group, cyano group, perfluoroalkyl group, trifluorovinyl group, —CO 2 R, —C (O) R.
  • Each R independently represents a hydrogen atom, an alkyl group, a perhaloalkyl group, an alkenyl group, an alkynyl group, a heteroalkyl group, an aryl group or a heteroaryl group.
  • R 1 ′ to R 5 ′ may be bonded to each other to form a condensed 4- to 7-membered ring, and the condensed 4- to 7-membered ring is cycloalkyl, aryl, or heteroaryl; The condensed 4- to 7-membered ring may further have a substituent.
  • preferred ranges for R 1 ′ to R 5 ′ are the same as R T1 to R T7 and R ′ in formula (E-3).
  • A represents CR ′, and 0 to 2 of R T1 to R T4 , R ′, and R 1 ′ to R 5 ′ are alkyl groups or phenyl groups, and the rest are all hydrogen atoms. More preferably, 0 to 2 of R T1 to R T4 , R ′, and R 1 ′ to R 5 ′ are alkyl groups and the rest are all hydrogen atoms.
  • Another preferred embodiment of the compound represented by the general formula (E-3) is a compound represented by the following general formula (E-5).
  • R T2 to R T6 , A, (XY) and n E5 in the general formula (E-5) are R T2 to R T6 , A, (XY) and n E3 in the general formula (E-3).
  • the preferred range is also the same.
  • R 6 ′ to R 8 ′ are each independently a hydrogen atom, alkyl group, cycloalkyl group, alkenyl group, alkynyl group, cyano group, perfluoroalkyl group, trifluorovinyl group, —CO 2 R, —C (O) R.
  • Each R independently represents a hydrogen atom, an alkyl group, a perhaloalkyl group, an alkenyl group, an alkynyl group, a heteroalkyl group, an aryl group or a heteroaryl group.
  • R T5 , R T6 , and R 6 ′ to R 8 ′ may be combined with each other to form a condensed 4- to 7-membered ring, and the condensed 4- to 7-membered ring is cycloalkyl, aryl or It is heteroaryl, and the fused 4- to 7-membered ring may further have a substituent. Further, preferred ranges for R 6 ′ to R 8 ′ are the same as R T1 to R T7 and R ′ in formula (E-3).
  • A represents CR ′, and 0 to 2 of R T2 to R T6 , R ′, and R 6 ′ to R 8 ′ are alkyl groups or phenyl groups, and the rest are all hydrogen atoms.
  • R T2 to R T6 , R ′, and R 6 ′ to R 8 ′ are more preferably a case where 0 to 2 are alkyl groups and the rest are all hydrogen atoms.
  • the compound represented by the general formula (1) is preferably contained in the light emitting layer or the hole blocking layer. More preferably, it is contained in the light emitting layer.
  • Another preferred embodiment of the compound represented by the general formula (E-1) is a case represented by the following general formula (E-6).
  • R 1a to R 1k each independently represent a hydrogen atom, an alkyl group, a cycloalkyl group, an alkenyl group, an alkynyl group, a cyano group, a perfluoroalkyl group, a trifluorovinyl group, —CO 2 R, —C (O) R, —NR 2 , —NO 2 , —OR, a halogen atom, an aryl group or a heteroaryl group, which may further have a substituent.
  • Each R independently represents a hydrogen atom, an alkyl group, a perhaloalkyl group, an alkenyl group, an alkynyl group, a heteroalkyl group, an aryl group or a heteroaryl group. Any two of R 1a to R 1k may be bonded to each other to form a condensed 4- to 7-membered ring, and the condensed 4- to 7-membered ring is cycloalkyl, aryl, or heteroaryl; The 7-membered ring may further have a substituent.
  • (XY) represents a monoanionic bidentate ligand.
  • n E6 represents an integer of 1 to 3.
  • R 1a to R 1k are the same as those in R T1 to R T7 and R ′ in the general formula (E-3). Further, it is particularly preferred that 0 to 2 of R 1a to R 1k are alkyl groups or phenyl groups and the rest are all hydrogen atoms, and 0 to 2 of R 1a to R 1k are alkyl groups and the rest are all hydrogen More preferably, it is an atom. The case where R 1j and R 1k are linked to form a single bond is particularly preferable.
  • the preferred range of (XY) and n E6 is the same as (XY) and n E3 in general formula (E-3).
  • a more preferable form of the compound represented by the general formula (E-6) is a case represented by the following general formula (E-7).
  • R 1a to R 1i are each independently a hydrogen atom, alkyl group, cycloalkyl group, alkenyl group, alkynyl group, cyano group, perfluoroalkyl group, trifluorovinyl group, —CO 2 R, —C (O) R, —NR 2 , —NO 2 , —OR, a halogen atom, an aryl group or a heteroaryl group, which may further have a substituent.
  • Each R independently represents a hydrogen atom, an alkyl group, a perhaloalkyl group, an alkenyl group, an alkynyl group, a heteroalkyl group, an aryl group or a heteroaryl group. Any one of R 1a to R 1k may be bonded to each other to form a condensed 4- to 7-membered ring, and the condensed 4- to 7-membered ring is a cycloalkyl group, an aryl group, or a heteroaryl group; The condensed 4- to 7-membered ring may further have a substituent.
  • (XY) represents a monoanionic bidentate ligand.
  • n E7 represents an integer of 1 to 3.
  • R 1a ⁇ R 1i definition and preferable ranges of R 1a ⁇ R 1i are the same as R 1a ⁇ R 1i in the formula (E-6). Further, it is particularly preferable that 0 to 2 of R 1a to R 1i are alkyl groups or aryl groups and the rest are all hydrogen atoms.
  • the definitions and preferred ranges of (XY) and n E7 are the same as (XY) and n E3 in general formula (E-3).
  • the compound represented by the general formula (1) is preferably contained in the light emitting layer or the hole blocking layer. .
  • One of preferred forms of the compound represented by the general formula (E-3) is a compound represented by the following general formula (E-8).
  • R T1 to R T7 in general formula (E-8) have the same meanings as those in general formula (E-3), and preferred ranges are also the same.
  • R l1 to R l7 and G have the same meanings as those in the ligand (l-13), and preferred ranges thereof are also the same.
  • R ′ represents a hydrogen atom or a substituent selected from substituent group A.
  • R ′ is preferably a hydrogen atom, an alkyl group, a cyano group, a trifluoromethyl group, a perfluoroalkyl group, a dialkylamino group, a fluorine atom, an aryl group, or a heteroaryl group, more preferably a hydrogen atom, an alkyl group, A fluorine atom or an aryl group, more preferably a hydrogen atom.
  • n E8 represents an integer of 1 to 3, and is preferably 2 or 1.
  • One of preferable forms of the compound represented by the general formula (E-3) is a compound represented by the following general formula (E-9).
  • R T1 and R T3 to R T7 in general formula (E-9) have the same meanings as those in general formula (E-3), and preferred ranges are also the same.
  • R l1 to R l7 and G have the same meanings as those in the ligand (l-13), and preferred ranges thereof are also the same.
  • R ′ represents a hydrogen atom or a substituent selected from substituent group A.
  • R ′ is preferably a hydrogen atom, an alkyl group, a cyano group, a trifluoromethyl group, a perfluoroalkyl group, a dialkylamino group, a fluorine atom, an aryl group, or a heteroaryl group, more preferably a hydrogen atom, an alkyl group, A fluorine atom or an aryl group, more preferably a hydrogen atom.
  • n E9 represents an integer of 1 to 3, and is preferably 2 or 1.
  • X represents an oxygen atom or a sulfur atom.
  • the compounds exemplified as the compound represented by the general formula (E-1) can be synthesized by the method described in JP2009-99783A, various methods described in US Pat. No. 7,279,232 and the like. After synthesis, it is preferable to purify by sublimation purification after purification by column chromatography, recrystallization or the like. By sublimation purification, not only can organic impurities be separated, but inorganic salts and residual solvents can be effectively removed.
  • the compound represented by the general formula (E-1) is preferably contained in the light emitting layer, but its application is not limited and may be further contained in any layer in the organic layer.
  • the compound represented by the general formula (E-1) in the light emitting layer is generally contained in the light emitting layer in an amount of 0.1% by mass to 50% by mass with respect to the total mass of the compound forming the light emitting layer. From the viewpoint of durability and external quantum efficiency, the content is preferably 1% by mass to 50% by mass, more preferably 2% by mass to 40% by mass, and more preferably 5% by mass to 20% by mass. Is more preferable.
  • a compound represented by any one of the general formulas (1) and (2) and a compound represented by any one of the general formulas (E-1) to (E-9) are used in combination in the light emitting layer. Is particularly preferred in the present invention.
  • the platinum (Pt) complex that can be used as the phosphorescent material is preferably a platinum (Pt) complex represented by the following general formula (C-1).
  • Q 1 , Q 2 , Q 3 and Q 4 each independently represent a ligand coordinated to platinum (Pt).
  • L 1 , L 2 and L 3 are each independently a single bond or a divalent group. Represents a linking group.
  • Q 1 , Q 2 , Q 3 and Q 4 each independently represent a ligand coordinated to platinum (Pt).
  • the bond between Q 1 , Q 2 , Q 3 and Q 4 and platinum (Pt) may be any of a covalent bond, an ionic bond, a coordinate bond, and the like.
  • a carbon atom, a nitrogen atom, an oxygen atom, a sulfur atom, and a phosphorus atom are preferable, Q ⁇ 1 >, Q ⁇ 2 >, Q ⁇ 3 > Of the atoms bonded to platinum (Pt) in Q 4 , at least one is preferably a carbon atom, more preferably two are carbon atoms, two are carbon atoms, and two are nitrogen atoms. Is particularly preferred.
  • Q 1 , Q 2 , Q 3, and Q 4 bonded to platinum (Pt) by a carbon atom may be an anionic ligand or a neutral ligand, and the anionic ligand is a vinyl group.
  • Ligand, aromatic hydrocarbon ring ligand eg benzene ligand, naphthalene ligand, anthracene ligand, phenanthrene ligand, etc.
  • heterocyclic ligand eg furan ligand, thiophene coordination
  • the groups represented by Q 1 , Q 2 , Q 3 and Q 4 may have a substituent, and as the substituent, those exemplified as the substituent group A can be appropriately applied. Moreover, substituents may be connected to each other (when Q 3 and Q 4 are connected, a platinum (Pt) complex of a cyclic tetradentate ligand is formed).
  • the group represented by Q 1 , Q 2 , Q 3 and Q 4 is preferably an aromatic hydrocarbon ring ligand bonded to platinum (Pt) by a carbon atom, and an aromatic bonded to platinum (Pt) by a carbon atom.
  • L 1 , L 2 and L 3 represent a single bond or a divalent linking group.
  • Divalent linking groups represented by L 1 , L 2 and L 3 include alkylene groups (methylene, ethylene, propylene, etc.), arylene groups (phenylene, naphthalenediyl), heteroarylene groups (pyridinediyl, thiophenediyl, etc.) ), Imino group (—NR—) (eg phenylimino group), oxy group (—O—), thio group (—S—), phosphinidene group (—PR—) (eg phenylphosphinidene group), silylene group (—SiRR′—) (dimethylsilylene group, diphenylsilylene group, etc.), or a combination thereof.
  • alkylene groups methylene, ethylene, propylene, etc.
  • arylene groups phenylene, naphthalenediyl
  • heteroarylene groups pyridinedi
  • R and R ′ each independently include an alkyl group, an aryl group, and the like. These linking groups may further have a substituent.
  • a single bond as L 1, L 2 and L 3
  • an alkylene group, an arylene group, heteroarylene group, an imino group, an oxy group, a thio group be a silylene group More preferably a single bond, an alkylene group, an arylene group or an imino group, still more preferably a single bond, an alkylene group or an arylene group, still more preferably a single bond, a methylene group or a phenylene group, still more preferably.
  • Single bond, disubstituted methylene group more preferably single bond, dimethylmethylene group, diethylmethylene group, diisobutylmethylene group, dibenzylmethylene group, ethylmethylmethylene group, methylpropylmethylene group, isobutylmethylmethylene group, diphenyl Methylene group, methylphenylmethylene group, cyclohexanediyl group, cyclope An tandiyl group, a fluorenediyl group, and a fluoromethylmethylene group.
  • L 1 is particularly preferably a dimethylmethylene group, a diphenylmethylene group, or a cyclohexanediyl group, and most preferably a dimethylmethylene group.
  • L 2 and L 3 are most preferably a single bond.
  • platinum (Pt) complexes represented by the general formula (C-1) a platinum (Pt) complex represented by the following general formula (C-2) is more preferable.
  • L 21 represents a single bond or a divalent linking group.
  • a 21 and A 22 each independently represents a carbon atom or a nitrogen atom.
  • Z 21 and Z 22 each independently represent a nitrogen-containing aromatic heterocyclic ring.
  • Z 23 and Z 24 each independently represents a benzene ring or an aromatic heterocycle.
  • L 21 has the same meaning as L 1 in formula (C-1), and the preferred range is also the same.
  • a 21 and A 22 each independently represent a carbon atom or a nitrogen atom. Of A 21, A 22, Preferably, at least one is a carbon atom, it A 21, A 22 are both carbon atoms are preferred from the standpoint of emission quantum yield stability aspects and complexes of the complex .
  • Z 21 and Z 22 each independently represent a nitrogen-containing aromatic heterocycle.
  • the nitrogen-containing aromatic heterocycle represented by Z 21 and Z 22 include a pyridine ring, pyrimidine ring, pyrazine ring, triazine ring, imidazole ring, pyrazole ring, oxazole ring, thiazole ring, triazole ring, oxadiazole ring, Examples include thiadiazole rings.
  • the ring represented by Z 21 and Z 22 is preferably a pyridine ring, a pyrazine ring, an imidazole ring or a pyrazole ring, more preferably a pyridine ring.
  • Z 23 and Z 24 each independently represent a benzene ring or an aromatic heterocycle.
  • the nitrogen-containing aromatic heterocycle represented by Z 23 and Z 24 include pyridine ring, pyrimidine ring, pyrazine ring, pyridazine ring, triazine ring, imidazole ring, pyrazole ring, oxazole ring, thiazole ring, triazole ring, oxadi Examples include an azole ring, a thiadiazole ring, a thiophene ring, and a furan ring.
  • the ring represented by Z 23 and Z 24 is preferably a benzene ring, a pyridine ring, a pyrazine ring, an imidazole ring, a pyrazole ring, or a thiophene ring. More preferred are a benzene ring, a pyridine ring and a pyrazole ring, and still more preferred are a benzene ring and a pyridine ring.
  • platinum (Pt) complexes represented by the general formula (C-2) one of the more preferred embodiments is a platinum (Pt) complex represented by the following general formula (C-4).
  • a 401 to A 414 each independently represents C—R or a nitrogen atom.
  • R represents a hydrogen atom or a substituent.
  • L 41 represents a single bond or a divalent linking group.
  • a 401 to A 414 each independently represents C—R or a nitrogen atom.
  • R represents a hydrogen atom or a substituent.
  • substituent represented by R those exemplified as the substituent group A can be applied.
  • a 401 to A 406 are preferably C—R, and Rs may be connected to each other to form a ring.
  • R in A 402 and A 405 is preferably a hydrogen atom, an alkyl group, an aryl group, an amino group, an alkoxy group, an aryloxy group, a fluorine atom, or a cyano group.
  • R in A 401 , A 403 , A 404 and A 406 is preferably a hydrogen atom, an alkyl group, an aryl group, an amino group, an alkoxy group, an aryloxy group, a fluorine atom or a cyano group, more preferably a hydrogen atom or amino Group, an alkoxy group, an aryloxy group and a fluorine atom, and particularly preferably a hydrogen atom.
  • L 41 has the same meaning as L 1 in formula (C-1), and the preferred range is also the same.
  • the number of N is preferably 0 to 2, and more preferably 0 to 1.
  • either A 408 or A 412 is preferably a nitrogen atom, and more preferably both A 408 and A 412 are nitrogen atoms.
  • platinum (Pt) complexes represented by the general formula (C-2) one of the more preferred embodiments is a platinum (Pt) complex represented by the following general formula (C-5).
  • a 501 to A 512 each independently represents C—R or a nitrogen atom, R represents a hydrogen atom or a substituent, and L 51 represents a single bond or a divalent linkage. Represents a group.
  • a 501 to A 506 and L 51 have the same meanings as A 401 to A 406 and L 41 in formula (C-4), and preferred ranges thereof are also the same.
  • R represents a hydrogen atom or a substituent.
  • substituent represented by R those exemplified as the substituent group A can be applied.
  • platinum (Pt) complexes represented by the general formula (C-1) another more preferable embodiment is a platinum (Pt) complex represented by the following general formula (C-6).
  • L 61 represents a single bond or a divalent linking group.
  • a 61 independently represents a carbon atom or a nitrogen atom.
  • Z 61 and Z 62 each independently represent a nitrogen-containing aromatic heterocycle.
  • Z 63 independently represents a benzene ring or an aromatic heterocycle, and
  • Y is an anionic acyclic ligand bonded to platinum (Pt).
  • L 61 has the same meaning as L 1 in formula (C-1), and the preferred range is also the same.
  • a 61 represents a carbon atom or a nitrogen atom. In view of the stability of the complex and the light emission quantum yield of the complex, A 61 is preferably a carbon atom.
  • Z 61 and Z 62 are synonymous with Z 21 and Z 22 in the general formula (C-2), respectively, and preferred ranges thereof are also the same.
  • Z 63 has the same meaning as Z 23 in formula (C-2), and the preferred range is also the same.
  • Y is an anionic acyclic ligand that binds to platinum (Pt).
  • An acyclic ligand is one in which atoms bonded to platinum (Pt) do not form a ring in the state of a ligand.
  • a carbon atom, a nitrogen atom, an oxygen atom, and a sulfur atom are preferable, a nitrogen atom and an oxygen atom are more preferable, and an oxygen atom is the most preferable.
  • a vinyl ligand is mentioned as Y couple
  • Examples of Y bonded to platinum (Pt) with a nitrogen atom include an amino ligand and an imino ligand.
  • Examples of Y bonded to platinum (Pt) with an oxygen atom include an alkoxy ligand, an aryloxy ligand, a heteroaryloxy ligand, an acyloxy ligand, a silyloxy ligand, a carboxyl ligand, and a phosphate group. Examples thereof include ligands and sulfonic acid ligands.
  • Examples of Y bonded to platinum (Pt) with a sulfur atom include alkyl mercapto ligands, aryl mercapto ligands, heteroaryl mercapto ligands, and thiocarboxylic acid ligands.
  • the ligand represented by Y may have a substituent, and those listed as the substituent group A can be appropriately applied as the substituent. Moreover, substituents may be connected to each other.
  • the ligand represented by Y is preferably a ligand bonded to platinum (Pt) with an oxygen atom, and more preferably an acyloxy ligand, an alkyloxy ligand, an aryloxy ligand, a heteroaryloxy A ligand and a silyloxy ligand are preferable, and an acyloxy ligand is more preferable.
  • platinum (Pt) complexes represented by the general formula (C-6) one of the more preferred embodiments is a platinum (Pt) complex represented by the following general formula (C-7).
  • a 701 to A 710 each independently represents C—R or a nitrogen atom, R represents a hydrogen atom or a substituent, L 71 represents a single bond or a divalent linking group, Y represents (It is an anionic acyclic ligand that binds to platinum (Pt).)
  • L 71 has the same meaning as L 61 in formula (C-6), and the preferred range is also the same.
  • a 701 to A 710 have the same meanings as A 401 to A 410 in formula (C-4), and the preferred ranges are also the same.
  • Y has the same meaning as Y in formula (C-6), and the preferred range is also the same.
  • platinum (Pt) complex represented by the general formula (C-1) include [0143] to [0152], [0157] to [0158], and [0162] to JP-A-2005-310733.
  • a Compounds described in [0090], compounds described in [0055] to [0071] of JP-A-2007-96255, JP-A-2006-31379 No. [0043] - [0046] can be mentioned publications, other include platinum (Pt) complex exemplified below.
  • the platinum (Pt) complex compound represented by the general formula (C-1) is described in, for example, Journal of Organic Chemistry 53,786, (1988), G.A. R. Newkome et al. ), Page 789, method described in left column 53 to right column 7, line 790, method described in left column 18 to 38, method 790, method described in right column 19 to 30 and The combination, Chemische Berichte 113, 2749 (1980), H.C. Lexy et al.), Page 2752, lines 26 to 35, and the like.
  • a ligand or a dissociated product thereof and a metal compound are mixed with a solvent (for example, a halogen solvent, an alcohol solvent, an ether solvent, an ester solvent, a ketone solvent, a nitrile solvent, an amide solvent, a sulfone solvent,
  • a solvent for example, a halogen solvent, an alcohol solvent, an ether solvent, an ester solvent, a ketone solvent, a nitrile solvent, an amide solvent, a sulfone solvent
  • a base inorganic and organic bases such as sodium methoxide, t-butoxypotassium, triethylamine, potassium carbonate, etc.
  • a base inorganic and organic bases such as sodium methoxide, t-butoxypotassium, triethylamine, potassium carbonate, etc.
  • the content of the compound represented by the general formula (C-1) in the light emitting layer of the organic electroluminescence of the present invention is preferably 1 to 30% by mass, and preferably 3 to 25% by mass in the light emitting layer. More preferred is 5 to 20% by mass.
  • the type of the fluorescent material is not particularly limited.
  • the content of the fluorescent light emitting material in the light emitting layer of the organic electroluminescent element of the present invention is preferably 1 to 30% by weight, more preferably 1 to 20% by weight, in the light emitting layer. More preferably.
  • the maximum emission wavelength of the light emitting material is preferably 400 to 700 nm, more preferably 500 to 700 nm. It is more preferably ⁇ 650 nm, and most preferably 520 to 550 nm.
  • the maximum emission wavelength of the phosphorescent material represented by the general formula (E-3) is in the range of about 500 to 550 nm when a plurality of R T1 to R T7 and R ′ do not form a ring together.
  • the maximum emission wavelength of the phosphorescent material represented by (E-4) or (E-5) is in the range of approximately 550 to 650 nm.
  • the thickness of the light emitting layer is not particularly limited, but is usually preferably 2 nm to 500 nm, and more preferably 5 nm to 200 nm, and more preferably 10 nm to 100 nm, from the viewpoint of external quantum efficiency. More preferably.
  • the light emitting layer in the organic electroluminescent element of the present invention may be composed only of a light emitting material, or may be a mixed layer of a host material and a light emitting material.
  • the kind of the light emitting material may be one kind or two or more kinds.
  • the host material is preferably a charge transport material.
  • the host material may be one kind or two or more kinds, and examples thereof include a configuration in which an electron transporting host material and a hole transporting host material are mixed.
  • the light emitting layer may contain a material that does not have charge transporting properties and does not emit light.
  • the light emitting layer may be a single layer or a multilayer of two or more layers, and each layer may contain the same light emitting material or host material, or each layer may contain a different material. When there are a plurality of light emitting layers, each of the light emitting layers may emit light with different emission colors.
  • the host material is a compound mainly responsible for charge injection and transport in the light emitting layer, and itself is a compound that does not substantially emit light.
  • “substantially does not emit light” means that the amount of light emitted from the compound that does not substantially emit light is preferably 5% or less, more preferably 3% or less of the total amount of light emitted from the entire device. Preferably it says 1% or less.
  • a compound represented by the general formula (1) can be used as the host material.
  • Examples of other host materials that can be used in the organic electroluminescence device of the present invention include the following compounds. Pyrrole, indole, carbazole, azaindole, azacarbazole, triazole, oxazole, oxadiazole, pyrazole, imidazole, thiophene, benzothiophene, dibenzothiophene, furan, benzofuran, dibenzofuran, polyarylalkane, pyrazoline, pyrazolone, phenylenediamine, aryl Amine, amino-substituted chalcone, styrylanthracene, fluorenone, hydrazone, stilbene, silazane, aromatic tertiary amine compounds, styrylamine compounds, porphyrin compounds, condensed aromatic hydrocarbon compounds (anthracene, pyrene, fluorene, naphthalene, phenanthrene) , Triphen
  • the host material that can be used in combination in the light emitting layer of the organic electroluminescent device of the present invention may be a hole transporting host material or an electron transporting host material.
  • the triplet lowest excitation energy (T 1 energy) in the film state of the host material is preferably higher than the T 1 energy of the phosphorescent light emitting material in terms of color purity, light emission efficiency, and driving durability. It is preferable T 1 is greater 0.1eV higher than the T 1 of the phosphorescent material of the host material, more preferably at least 0.2eV higher, and further preferably more than 0.3eV large. T 1 of the a film state of the host material is a large T 1 is obtained from the phosphorescent material to the host material for thereby quench T 1 is less than the light emission of the phosphorescent material.
  • the content of the host compound in the light emitting layer in the organic electroluminescent device of the present invention is not particularly limited, but is 15 mass with respect to the total compound mass forming the light emitting layer from the viewpoint of light emission efficiency and driving voltage. % Or more and 95% by mass or less is preferable.
  • the light emitting layer contains a plurality of types of host compounds including the compound represented by the general formula (1)
  • the compound represented by the general formula (1) is 50% by mass or more and 99% by mass or less in all the host compounds. It is preferable.
  • the organic electroluminescent element of the present invention may have other layers other than the light emitting layer.
  • Other organic layers other than the light emitting layer that the organic layer may have include a hole injection layer, a hole transport layer, a block layer (hole block layer, exciton block layer, etc.), an electron transport layer, and the like. Is mentioned. Examples of the specific layer configuration include the following, but the present invention is not limited to these configurations.
  • the organic electroluminescent element of the present invention preferably includes (A) at least one organic layer preferably disposed between the anode and the light emitting layer.
  • Examples of the organic layer (A) preferably disposed between the anode and the light emitting layer include a hole injection layer, a hole transport layer, and an electron block layer from the anode side.
  • the organic electroluminescent element of the present invention preferably includes (B) at least one organic layer preferably disposed between the cathode and the light emitting layer.
  • Examples of the organic layer (B) preferably disposed between the cathode and the light emitting layer include an electron injection layer, an electron transport layer, and a hole blocking layer from the cathode side.
  • an example of a preferred embodiment of the organic electroluminescent element of the present invention is the embodiment described in FIG. 1, and as the organic layer, a hole injection layer 4, a hole transport layer 5, In this embodiment, the light emitting layer 6, the hole blocking layer 7, and the electron transport layer 8 are laminated in this order.
  • the organic layer a hole injection layer 4, a hole transport layer 5, In this embodiment, the light emitting layer 6, the hole blocking layer 7, and the electron transport layer 8 are laminated in this order.
  • other layers other than the light emitting layer which may be included in the organic electroluminescent element of the present invention will be described.
  • the hole injection layer and the hole transport layer are layers having a function of receiving holes from the anode or the anode side and transporting them to the cathode side.
  • the matters described in paragraph numbers [0165] to [0167] of JP-A-2008-270736 can be applied to the present invention.
  • the hole injection layer preferably contains an electron accepting dopant.
  • an electron-accepting dopant may be any organic material or inorganic material as long as it can extract electrons from the doped material and generate radical cations.
  • TCNQ tetracyanoquinodimethane
  • F 4 -TCNQ tetrafluorotetracyanoquinodimethane
  • molybdenum oxide and the like.
  • the electron-accepting dopant in the hole injection layer is preferably contained in an amount of 0.01% by mass to 50% by mass, and preferably 0.1% by mass to 40% by mass with respect to the total mass of the compound forming the hole injection layer. %, More preferably 0.2% by mass to 30% by mass.
  • the electron blocking layer is a layer having a function of preventing electrons transported from the cathode side to the light emitting layer from passing through to the anode side.
  • an electron blocking layer can be provided as an organic layer adjacent to the light emitting layer on the anode side.
  • the organic compound constituting the electron blocking layer for example, those mentioned as the hole transport material described above can be applied.
  • the thickness of the electron blocking layer is preferably 1 nm to 500 nm, more preferably 3 nm to 100 nm, and even more preferably 5 nm to 50 nm.
  • the electron blocking layer may have a single layer structure composed of one or more of the above-described materials, or may have a multilayer structure composed of a plurality of layers having the same composition or different compositions.
  • the material used for the electron blocking layer is preferably higher than the T 1 energy of the phosphorescent material in terms of color purity, luminous efficiency, and driving durability. It is preferable T 1 is greater than 0.1eV than T 1 of the phosphorescent material in the film state of the material used for the electron blocking layer, it is more preferably at least 0.2eV higher, and further preferably more than 0.3eV large.
  • the electron injection layer and the electron transport layer are layers having a function of receiving electrons from the cathode or the cathode side and transporting them to the anode side.
  • the electron injection material and the electron transport material used for these layers may be a low molecular compound or a high molecular compound.
  • the electron transport material the compound represented by the general formula (1) can be used.
  • electron transport materials include pyridine derivatives, quinoline derivatives, pyrimidine derivatives, pyrazine derivatives, phthalazine derivatives, phenanthroline derivatives, triazine derivatives, triazole derivatives, oxazole derivatives, oxadiazole derivatives, imidazole derivatives, benzimidazole derivatives, imidazopyridine derivatives.
  • the thicknesses of the electron injection layer and the electron transport layer are each preferably 500 nm or less from the viewpoint of lowering the driving voltage.
  • the thickness of the electron transport layer is preferably 1 nm to 500 nm, more preferably 5 nm to 200 nm, and even more preferably 10 nm to 100 nm.
  • the thickness of the electron injection layer is preferably from 0.1 nm to 200 nm, more preferably from 0.2 nm to 100 nm, and even more preferably from 0.5 nm to 50 nm.
  • the electron injection layer and the electron transport layer may have a single layer structure composed of one or more of the above-described materials, or may have a multilayer structure composed of a plurality of layers having the same composition or different compositions.
  • the electron injection layer preferably contains an electron donating dopant.
  • an electron donating dopant may be any organic material or inorganic material as long as it can give electrons to the doped material and generate radical anions.
  • TTF tetrathiafulvalene
  • TTT dithiaimidazole compounds
  • TTT tetrathianaphthacene
  • bis- [1,3 diethyl-2-methyl-1,2-dihydrobenzimidazolyl] lithium, cesium and the like.
  • the electron donating dopant in the electron injection layer is preferably contained in an amount of 0.01% by mass to 50% by mass, and 0.1% by mass to 40% by mass with respect to the total mass of the compound forming the electron injection layer. More preferably, the content is 0.5 to 30% by mass.
  • the hole blocking layer is a layer having a function of preventing holes transported from the anode side to the light emitting layer from passing through to the cathode side.
  • a hole blocking layer can be provided as an organic layer adjacent to the light emitting layer on the cathode side.
  • the T 1 energy in the film state of the organic compound constituting the hole blocking layer is higher than the T 1 energy of the light emitting material in order to prevent energy transfer of excitons generated in the light emitting layer and not to reduce the light emission efficiency. It is preferable.
  • the organic compound constituting the hole blocking layer the compound represented by the general formula (1) can be used.
  • Examples of other organic compounds constituting the hole blocking layer other than the compound represented by the general formula (1) include aluminum (III) bis (2-methyl-8-quinolinato) 4-phenylphenolate ( Aluminum complexes such as aluminum (III) bis (2-methyl-8-quinolinato) 4-phenylphenolate (abbreviated as Balq)), triazole derivatives, 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline ( Phenanthroline derivatives such as 2,9-Dimethyl-4,7-diphenyl-1,10-phenanthroline (abbreviated as BCP)) and the like.
  • BCP 2,9-Dimethyl-4,7-diphenyl-1,10-phenanthroline
  • the thickness of the hole blocking layer is preferably 1 nm to 500 nm, more preferably 3 nm to 100 nm, still more preferably 5 nm to 50 nm.
  • the hole blocking layer may have a single layer structure made of one or more of the materials described above, or may have a multilayer structure made of a plurality of layers having the same composition or different compositions.
  • the material used for the hole blocking layer is preferably higher than the T 1 energy of the phosphorescent light emitting material in terms of color purity, light emission efficiency, and driving durability. Holes T 1 of the at film state of the material used in the blocking layer is preferably greater 0.1eV higher than the T 1 of the phosphorescent material, more preferably at least 0.2eV higher, and further preferably more than 0.3eV greater .
  • the organic electroluminescent element of the present invention is preferably disposed between the (B) cathode and the light emitting layer.
  • a material particularly preferably used for the material of the organic layer a compound represented by the general formula (1), a compound represented by the following general formula (P-1), and a compound represented by the following general formula (O-1) Can be mentioned.
  • the compound represented by the general formula (O-1) and the compound represented by the general formula (P-1) will be described.
  • the organic electroluminescent device of the present invention preferably includes at least one organic layer between the light emitting layer and the cathode, and the organic layer contains at least one compound represented by the following general formula (O-1). It is preferable from the viewpoint of device efficiency and driving voltage.
  • the general formula (O-1) will be described below.
  • R O1 represents an alkyl group, an aryl group, or each independently .A O1 ⁇ A O4 representing the heteroaryl group, the C-R A or .R A representing the nitrogen atom Represents a hydrogen atom, an alkyl group, an aryl group, or a heteroaryl group, and a plurality of R A may be the same or different, L O1 represents a divalent to hexavalent linking group comprising an aryl ring or a heteroaryl ring; N O1 represents an integer of 2 to 6.
  • R O1 represents an alkyl group (preferably having 1 to 8 carbon atoms), an aryl group (preferably having 6 to 30 carbon atoms), or a heteroaryl group (preferably having 4 to 12 carbon atoms). It may have a substituent selected from group A.
  • R O1 is preferably an aryl group or a heteroaryl group, more preferably an aryl group.
  • a preferable substituent when the aryl group of R O1 has a substituent includes an alkyl group, an aryl group or a cyano group, more preferably an alkyl group or an aryl group, and still more preferably an aryl group.
  • the aryl group of R O1 When the aryl group of R O1 has a plurality of substituents, the plurality of substituents may be bonded to each other to form a 5- or 6-membered ring.
  • the aryl group of R O1 is preferably a phenyl group which may have a substituent selected from the substituent group A, more preferably a phenyl group which may be substituted with an alkyl group or an aryl group, More preferred is an unsubstituted phenyl group or 2-phenylphenyl group.
  • a O1 to A O4 each independently represent C—R A or a nitrogen atom.
  • 0 to 2 are preferably nitrogen atoms, more preferably 0 or 1 is a nitrogen atom.
  • all of A O1 ⁇ A O4 is C-R A, or A O1 be a nitrogen atom, is preferably A O2 ⁇ A O4 is C-R A, A O1 be a nitrogen atom, A O2 ⁇ More preferably, A O4 is C—R A , A O1 is a nitrogen atom, A O2 to A O4 are C—R A , and R A is all hydrogen atoms.
  • R A represents a hydrogen atom, an alkyl group (preferably having a carbon number of 1 to 8), an aryl group (preferably having a carbon number of 6 to 30), or a heteroaryl group (preferably having a carbon number of 4 to 12). It may have a substituent selected from the substituent group A.
  • the plurality of R A may be the same or different.
  • R A is preferably a hydrogen atom or an alkyl group, more preferably a hydrogen atom.
  • L O1 represents a divalent to hexavalent linking group consisting of an aryl ring (preferably having 6 to 30 carbon atoms) or a heteroaryl ring (preferably having 4 to 12 carbon atoms).
  • L O1 is preferably an arylene group, heteroarylene group, aryltriyl group, or heteroaryltriyl group, more preferably a phenylene group, a biphenylene group, or a benzenetriyl group, still more preferably a biphenylene group, Or it is a benzenetriyl group.
  • L O1 may have a substituent selected from the aforementioned substituent group A, and the alkyl group, aryl group, or cyano group is preferred as the substituent when it has a substituent. Specific examples of L O1 include the following.
  • n O1 represents an integer of 2 to 6, preferably an integer of 2 to 4, more preferably 2 or 3. n O1 is most preferably 3 in terms of device efficiency, and most preferably 2 in terms of device durability.
  • the compound represented by the general formula (O-1) is more preferably a compound represented by the following general formula (O-2).
  • R O1 represents an alkyl group, an aryl group, or a heteroaryl group.
  • R O2 to R O4 each independently represents a hydrogen atom, an alkyl group, an aryl group, or a heteroaryl group.
  • a O1 to A O4 each independently represent C—R A or a nitrogen atom, R A represents a hydrogen atom, an alkyl group, an aryl group, or a heteroaryl group, and a plurality of R A are the same or different. May be.
  • R O1 and A O1 ⁇ A O4 the general formula (O1) in the same meaning as R O1 and A O1 ⁇ A O4 of, also the same preferable ranges thereof.
  • R 02 to R 04 are each independently a hydrogen atom, an alkyl group (preferably having 1 to 8 carbon atoms), an aryl group (preferably having 6 to 30 carbon atoms), or a heteroaryl group (preferably having 4 to 12 carbon atoms). These may have a substituent selected from the aforementioned substituent group A.
  • R 02 to R 04 are preferably a hydrogen atom, an alkyl group, or an aryl group, more preferably a hydrogen atom or an aryl group, and most preferably a hydrogen atom.
  • the compound represented by the general formula (O-1) has a glass transition temperature (Tg) of 100 ° C. from the viewpoint of stable operation at high temperature storage, stable operation against high temperature driving, and heat generation during driving. It is preferably from ⁇ 300 ° C., more preferably from 120 ° C. to 300 ° C., further preferably from 120 ° C. to 300 ° C., and still more preferably from 140 ° C. to 300 ° C.
  • the compound represented by the general formula (O-1) can be synthesized by the method described in JP-A No. 2001-335776. After synthesis, purification by column chromatography, recrystallization, reprecipitation, etc., followed by purification by sublimation is preferred. Not only can organic impurities be separated by sublimation purification, but inorganic salts, residual solvents, moisture, and the like can be effectively removed.
  • the compound represented by the general formula (O-1) is preferably contained in the organic layer between the light emitting layer and the cathode, but the cathode side layer adjacent to the light emitting layer is used. It is more preferable that it is contained.
  • the compound represented by the general formula (O-1) is preferably contained in an amount of 70 to 100% by mass, and more preferably 85 to 100% by mass with respect to the total mass of the organic layer to be added.
  • the organic electroluminescent element of the present invention preferably contains at least one organic layer between the light emitting layer and the cathode, and contains at least one compound represented by the following general formula (P) in the organic layer. Is preferable from the viewpoints of element efficiency and driving voltage. Below, general formula (P) is demonstrated.
  • R P represents an alkyl group (preferably having 1 to 8 carbon atoms), an aryl group (preferably having 6 to 30 carbon atoms), or a heteroaryl group (preferably having 4 to 12 carbon atoms). These may have a substituent selected from the aforementioned substituent group A.
  • nP represents an integer of 1 to 10, and when R P is plural, they may be the same or different.
  • At least one of R P is a substituent represented by the following general formulas (P-1) to (P-3).
  • R P1 to R P3 and R ′ P1 to R ′ P3 are an alkyl group (preferably having a carbon number of 1 to 8) and an aryl group (preferably having a carbon number of 6-30) or a heteroaryl group (preferably having 4 to 12 carbon atoms), which may have a substituent selected from the aforementioned substituent group A.
  • n P1 and n P2 are 0 to Represents an integer of 4, and when R P1 to R P3 and R ′ P1 to R ′ P3 are plural, they may be the same or different, and L P1 to L P3 each represents a single bond, an aryl ring or a heteroaryl ring Represents one of divalent linking groups consisting of: * represents a bonding position with the anthracene ring of the general formula (P).
  • a preferred substituent other than the substituents represented by (P-1) to (P-3) is an aryl group, more preferably any one of a phenyl group, a biphenyl group, a terphenyl group, and a naphthyl group. And more preferably a naphthyl group.
  • R P1 to R P3 and R ′ P1 to R ′ P3 are preferably either aryl groups or heteroaryl groups, more preferably aryl groups, still more preferably phenyl groups, biphenyl groups, terphenyl groups, It is either a naphthyl group, most preferably a phenyl group.
  • L P1 to L P3 are preferably a single bond or a divalent linking group comprising an aryl ring, more preferably a single bond, phenylene, biphenylene, terphenylene or naphthylene, still more preferably It is either a single bond, phenylene, or naphthylene.
  • the compound represented by the general formula (P) can be synthesized by the method described in WO2003 / 060956, WO2004 / 080975, and the like. After synthesis, purification by column chromatography, recrystallization, reprecipitation, etc., followed by purification by sublimation is preferred. Not only can organic impurities be separated by sublimation purification, but inorganic salts, residual solvents, moisture, and the like can be effectively removed.
  • the compound represented by the general formula (P) is preferably contained in the organic layer between the light emitting layer and the cathode, but may be contained in a layer adjacent to the cathode. More preferred.
  • the compound represented by the general formula (P) is preferably contained in an amount of 70 to 100% by mass, and more preferably 85 to 100% by mass with respect to the total mass of the organic layer to be added.
  • the entire organic electric field element may be protected by a protective layer.
  • the protective layer the matters described in JP-A-2008-270736, paragraphs [0169] to [0170] can be applied to the present invention.
  • the material for the protective layer may be inorganic or organic.
  • the organic electroluminescent element of the present invention may be sealed entirely using a sealing container.
  • the sealing container the matters described in paragraph [0171] of JP-A-2008-270736 can be applied to the present invention.
  • the organic electroluminescence device of the present invention emits light by applying a direct current (which may include an alternating current component as necessary) voltage (usually 2 to 15 volts) or a direct current between the anode and the cathode.
  • a direct current which may include an alternating current component as necessary
  • the driving method of the organic electroluminescence device of the present invention is described in JP-A-2-148687, JP-A-6-301355, JP-A-5-290080, JP-A-7-134558, JP-A-8-234585, and JP-A-8-2441047.
  • the driving methods described in each publication, Japanese Patent No. 2784615, US Pat. Nos. 5,828,429 and 6,023,308 can be applied.
  • the external quantum efficiency of the organic electroluminescent element of the present invention is preferably 7% or more, more preferably 10% or more, and further preferably 12% or more.
  • the value of the external quantum efficiency should be the maximum value of the external quantum efficiency when the device is driven at 20 ° C., or the value of the external quantum efficiency in the vicinity of 300 to 400 cd / m 2 when the device is driven at 20 ° C. Can do.
  • the internal quantum efficiency of the organic electroluminescence device of the present invention is preferably 30% or more, more preferably 50% or more, and further preferably 70% or more.
  • the internal quantum efficiency of the device is calculated by dividing the external quantum efficiency by the light extraction efficiency. In a normal organic EL element, the light extraction efficiency is about 20%.
  • the organic electroluminescent device of the present invention preferably has an emission wavelength of 500 to 700 nm from the viewpoint of the lowest excited triplet (T 1 ) energy of the compound represented by the general formula (1).
  • the emission wavelength is preferably 500 to 700 nm, It is more preferably 550 nm, and particularly preferably 520 to 550 nm.
  • the emission wavelength is preferably 400 to 700 nm, It is more preferably 600 nm, and particularly preferably 450 to 550 nm.
  • the organic electroluminescent element of the present invention can be suitably used for a display element, a display, a backlight, an electrophotography, an illumination light source, a recording light source, an exposure light source, a reading light source, a sign, a signboard, an interior, or optical communication.
  • a device that is driven in a region where light emission luminance is high such as a light emitting device, a lighting device, and a display device.
  • the light emitting device of the present invention includes the organic electroluminescent element of the present invention. Next, the light emitting device of the present invention will be described with reference to FIG.
  • the light emitting device of the present invention uses the organic electroluminescent element.
  • FIG. 2 is a cross-sectional view schematically showing an example of the light emitting device of the present invention.
  • the light emitting device 20 in FIG. 2 includes a transparent substrate (support substrate) 2, an organic electroluminescent element 10, a sealing container 16, and the like.
  • the organic electroluminescent device 10 is configured by sequentially laminating an anode (first electrode) 3, an organic layer 11, and a cathode (second electrode) 9 on a substrate 2.
  • a protective layer 12 is laminated on the cathode 9, and a sealing container 16 is provided on the protective layer 12 with an adhesive layer 14 interposed therebetween.
  • a part of each electrode 3 and 9, a partition, an insulating layer, etc. are abbreviate
  • the adhesive layer 14 a photocurable adhesive such as an epoxy resin or a thermosetting adhesive can be used, and for example, a thermosetting adhesive sheet can also be used.
  • the use of the light-emitting device of the present invention is not particularly limited, and for example, it can be a display device such as a television, a personal computer, a mobile phone, and electronic paper in addition to a lighting device.
  • FIG. 3 is a cross-sectional view schematically showing an example of the illumination device of the present invention.
  • the illumination device 40 of the present invention includes the organic EL element 10 and the light scattering member 30 described above. More specifically, the lighting device 40 is configured such that the substrate 2 of the organic EL element 10 and the light scattering member 30 are in contact with each other.
  • the light scattering member 30 is not particularly limited as long as it can scatter light.
  • the light scattering member 30 is a member in which fine particles 32 are dispersed on a transparent substrate 31.
  • a glass substrate can be preferably cited.
  • the fine particles 32 transparent resin fine particles can be preferably exemplified.
  • the glass substrate and the transparent resin fine particles known ones can be used. In such an illuminating device 40, when light emitted from the organic electroluminescent element 10 is incident on the light incident surface 30A of the scattering member 30, the incident light is scattered by the light scattering member 30, and the scattered light is emitted from the light emitting surface 30B. It is emitted as illumination light.
  • the display device of the present invention includes the organic electroluminescent element of the present invention.
  • Examples of the display device of the present invention include a display device such as a television, a personal computer, a mobile phone, and electronic paper.
  • Synthesis Example 1 The compound represented by the general formula (1) can be synthesized by combining the methods described in JP-T 2010-535806 and other known reactions. Synthesis Example 1 Synthesis of Compound 1
  • Example 1 A glass substrate having a thickness of 0.5 mm and a 2.5 cm square ITO film (manufactured by Geomat Co., Ltd., surface resistance 10 ⁇ / ⁇ ) is placed in a cleaning container, subjected to ultrasonic cleaning in 2-propanol, and then subjected to UV-ozone treatment for 30 minutes. Went. The following organic compound layers were sequentially deposited on the transparent anode (ITO film) by vacuum deposition.
  • ITO film transparent anode
  • First layer HAT-CN: film thickness 10 nm
  • Second layer NPD: film thickness 30 nm
  • Third layer host material described in Table 1 and GD-1 (mass ratio 90:10): film thickness 30 nm
  • Fourth layer HBL material described in Table 1: film thickness 5 nm
  • Fifth layer Alq: film thickness 45 nm
  • 0.1 nm of lithium fluoride and 100 nm of metallic aluminum were vapor-deposited in this order to form a cathode.
  • the obtained laminate is put in a glove box substituted with nitrogen gas without being exposed to the atmosphere, and a glass sealing can and an ultraviolet curable adhesive (XNR5516HV, manufactured by Nagase Ciba Co., Ltd.) are used.
  • the light emitting portion is a 2 mm ⁇ 2 mm square.
  • Table 1 shows the results of evaluating these elements from the viewpoints of relative efficiency after storage at high temperature and the highest achieved luminance by the following method.
  • the organic electroluminescent device of each Example using the compound represented by the general formula (1) of Compounds 1, 2, 4, 8, 9, 11 and 12 as the host compound of the light emitting layer was It was also found that the relative efficiency after high temperature storage was good and the maximum reached brightness was high. In addition, it was found that the devices 1-6 to 1-8 using the compound represented by the general formula (1) for the host material and the hole blocking layer of the light emitting layer have higher highest reached luminance. On the other hand, Comparative Elements 1-1 to 1-3 use Comparative Compounds 1, 2, and 4 as the host compounds of the light emitting layer, respectively, and have low relative efficiency after storage at high temperatures and low maximum brightness. all right. Note that the emission wavelength of the organic electroluminescent device produced in Example 1 was 522 to 527 nm.
  • Example 2 shows the results of fabricating the device in the same manner as in Example 1 except that the layer configuration was changed to the one shown below, and performing the same evaluation as in Example 1.
  • First layer 2-TNATA and F 4 -TCNQ (mass ratio 99.7: 0.3): film thickness 160 nm
  • the organic electroluminescence devices of the examples using the compounds represented by the general formula (1) of the compounds 2, 9 and 10 as the material of the hole blocking layer are all relative efficiency after high temperature storage. It was found that the maximum brightness was also high.
  • Comparative Elements 2-1 and 2-2 were obtained by using Comparative Compounds 2 and 3, respectively, as the material of the hole blocking layer, indicating that the relative efficiency after high-temperature storage was poor and the maximum reached luminance was low. It was. Note that the emission wavelength of the organic electroluminescent element produced in Example 2 was 503 to 507 nm.
  • Example 3 shows the results obtained by fabricating the device in the same manner as in Example 1 except that the layer configuration is changed to the following, and performing the same evaluation as in Example 1.
  • First layer CuPc: film thickness 10 nm
  • Second layer NPD: film thickness 30 nm
  • Third layer Host material described in Table 3 and RD-1 (mass ratio 95: 5): film thickness 30 nm
  • Fourth layer ET-2: film thickness 5 nm 5th layer: ET-3: film thickness 50 nm
  • the organic electroluminescent elements of the Examples using the compounds represented by the general formula (1) of Compounds 1, 6, 7 and 9 as the host compounds of the light emitting layer are all relative to each other after high temperature storage. It was found that the efficiency was good and the maximum reached luminance was also high.
  • Comparative Elements 3-1 and 3-2 were obtained by using Comparative Compounds 2 and 5 as the host material of the light emitting layer, and it was found that the relative efficiency after high temperature storage was poor and the maximum reached luminance was low. Note that the emission wavelength of the organic electroluminescent device produced in Example 3 was 618 to 622 nm.
  • Example 4 shows the results of fabricating the device in the same manner as in Example 1 except that the layer configuration was changed to the following, and performing the same evaluation as in Example 1.
  • the organic electroluminescence devices of the Examples using the compounds represented by the general formula (1) of the compounds 3, 6 and 11 as the material of the hole blocking layer are all relative efficiency after high temperature storage. It was found that the maximum brightness was also high.
  • Comparative Elements 4-1 and 4-2 were those using Comparative Compounds 1 and 2 as the material of the hole blocking layer, and it was found that the relative efficiency after high temperature storage was poor and the maximum reached luminance was low.
  • the emission wavelength of the organic electroluminescent element produced in Example 4 was 628 to 631 nm.
  • Example 5 Table 5 shows the results of fabricating the device in the same manner as in Example 1 except that the layer configuration was changed to the following, and performing the same evaluation as in Example 1.
  • First layer HAT-CN: film thickness 10 nm
  • Second layer NPD: film thickness 115 nm
  • Third layer HT-3: film thickness 5 nm
  • Fourth layer H-2 and Firepic (mass ratio 90:10): film thickness 30 nm
  • Fifth layer HBL material described in Table 5: film thickness 5 nm 6th layer: ET-5: film thickness 25 nm
  • the organic electroluminescence devices of the examples using the compounds represented by the general formula (1) of the compounds 1, 8 and 10 as the material of the hole blocking layer are all relative efficiency after high temperature storage. It was found that the maximum brightness was also high.
  • Comparative Elements 5-1 and 5-2 use Comparative Compounds 2 and 3 as the material of the hole blocking layer, and it was found that the relative efficiency after high-temperature storage was poor and the maximum reached luminance was low. . Note that the emission wavelength of the organic electroluminescent element produced in Example 5 was 472 to 476 nm.
  • Example 6 shows the results obtained by fabricating the device in the same manner as in Example 1 except that the layer configuration is changed to the following, and performing the same evaluation as in Example 1.
  • First layer 2-TNATA and F 4 -TCNQ (mass ratio 99.7: 0.3): film thickness 120 nm
  • the organic electroluminescence devices of the examples using the compounds represented by the general formula (1) of the compounds 5, 10 and 12 as the material of the hole blocking layer are all relative efficiency after high temperature storage. It was found that the maximum brightness was also high.
  • the comparative elements 6-1 and 6-2 were prepared using the comparative compounds 2 and 3 as the material of the hole blocking layer, and it was found that the relative efficiency after high temperature storage was poor and the maximum reached luminance was low. . Note that the emission wavelength of the organic electroluminescent device produced in Example 6 was 457 to 460 nm.
  • Example 7 shows the results of fabricating an element in the same manner as in Example 1 except that the layer configuration was changed to the following, and performing the same evaluation as in Example 1.
  • Example 8 shows the results of fabricating the device in the same manner as in Example 1 except that the layer configuration was changed to the following, and performing the same evaluation as in Example 1.
  • Example 9 shows the results of fabricating an element in the same manner as in Example 1 except that the layer configuration was changed to the one shown below, and performing the same evaluation as in Example 1.
  • First layer 2-TNATA and F 4 -TCNQ (mass ratio 99.7: 0.3): film thickness 160 nm
  • the organic electroluminescent elements of the examples using the compounds of the present invention as the host compound of the light emitting layer all have good relative efficiency after high temperature storage and high maximum brightness. all right.
  • the device using the comparative compound as the host compound was found to have a low relative efficiency after storage at high temperature and a low maximum luminance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Pyridine Compounds (AREA)

Abstract

 下記式で表される化合物からなる電荷輸送材料は、高温保管後の効率が高く、最高到達輝度が高い(R101、R102はそれぞれ独立にアルキル基、アリール基、ヘテロアリール基、フッ素原子又はシリル基を表し、さらにこれらの基またはアミノ基で置換されていてもよい。R101、R102の中に縮環アリール構造と縮環ヘテロアリール構造は含まれない。R101、R102の中に単環の芳香環(該芳香環は、環員が炭素原子又は窒素原子で構成される6員環である)が合計で5個以上含まれる。n101は0~11の整数、n102は0~9の整数を表し、複数のR101、R102は同一でも異なっていてもよい。AA1~AA9は夫々独立にCH(CHの水素原子はR102で置換されていてもよい)又は窒素原子を表す)。

Description

電荷輸送材料、有機電界発光素子及び該素子を用いたことを特徴とする発光装置、表示装置または照明装置
 本発明は電荷輸送材料、有機電界発光素子及び該素子を用いたことを特徴とする発光装置、表示装置または照明装置に関する。
 有機電界発光素子(以下、「素子」、「有機EL素子」ともいう)は、低電圧駆動で高輝度の発光が得られることから活発に研究開発が行われている。有機電界発光素子は、一対の電極間に有機層を有し、陰極から注入された電子と陽極から注入された正孔とが有機層において再結合し、生成した励起子のエネルギーを発光に利用するものである。
 近年、イリジウム(Ir)錯体や白金(Pt)錯体などの燐光発光材料を用いることにより、素子の高効率化が進んでいる。また、発光材料をホスト材料中にドープした発光層を用いるドープ型素子が広く採用されている。
 発光層に用いられるホスト材料やその他の有機層に含有される電荷輸送材料の開発も盛んに行われている。
 例えば、特許文献1は、トリフェニレン構造を有する化合物を用いた有機電界発光素子を開示しており、メタ位に置換基(非縮環のアリール、ヘテロアリール)を有するフェニレンが結合した化合物を用いた有機電界発光素子が記載されている。
 一方、近年では有機電界発光素子をはじめとする各種表示装置類は、幅広く使用されてきており、様々な環境下で安定して長期間動作することが求められている。例えば、自動車への車載用途などでは、日中の走行時または駐車時にその車内はかなりの高温となることから高温保管後にも特性が変化しないことも求められている。また、有機電界発光素子は、従来の発光装置と同程度以上に駆動時に熱を発する点からも、このような高温保管後に特性が変化しないことが重要視されている。
特表2010-535806号公報
 これに対し、本発明者らが特許文献1に記載の化合物を用いた有機電界発光素子の特性を検討した結果、高温保管後の効率が低くなり、耐熱性の観点で不十分であったことに加え、最高到達輝度が低いという課題が新たに見つかった。
 本発明が解決しようとする課題は、高温保管後の効率が高く、最高到達輝度が高い電荷輸送材料および有機電界発光素子を提供することである。
 本発明者らが鋭意検討した結果、特許文献1に具体的に記載されている化合物に対して、トリフェニレン構造と単環の芳香環構造を含む化合物が特定の連結様式で連結し、かつ、化合物内における単環の芳香環の個数を多くすることで、高温保管後の効率が高く、最高到達輝度が高い電荷輸送材料および有機電界発光素子が提供されることを見出した。
 すなわち、本発明は下記の手段により達成することができる。
[1] 下記一般式(1)で表される化合物からなることを特徴とする電荷輸送材料。
Figure JPOXMLDOC01-appb-C000006
(一般式(1)において、R101およびR102はそれぞれ独立にアルキル基、アリール基、ヘテロアリール基、フッ素原子またはシリル基を表し、さらにこれらの基またはアミノ基で置換されていてもよい。ただし、R101およびR102の中に縮環アリール構造と縮環ヘテロアリール構造は含まれない。R101およびR102の中に含まれる単環の芳香環(該芳香環は、環員が炭素原子または窒素原子で構成される6員環である)の合計は5個以上。n101は0~11の整数、n102は0~9の整数を表し、複数のR101およびR102は同一でも異なっていてもよい。AA1~AA9はそれぞれ独立にCH(CHの水素原子はR102で置換されていてもよい)または窒素原子を表す。)
[2] 前記一般式(1)で表される化合物が、下記一般式(2)で表されることを特徴とする[1]に記載の電荷輸送材料。
Figure JPOXMLDOC01-appb-C000007
(一般式(2)において、R111はそれぞれ独立にアルキル基、アリール基、ヘテロアリール基、フッ素原子またはシリル基を表し、さらにこれらの基またはアミノ基で置換されていてもよい。R231~R234はそれぞれ独立にアルキル基、フッ素原子、シリル基またはアミノ基を表す。R235~R238はそれぞれ独立にアリール基またはヘテロアリール基を表す。ただし、R111およびR231~R238の中に縮環アリール構造と縮環ヘテロアリール構造は含まれない。R111およびR231~R238の中に単環の芳香環(該芳香環は、環員が炭素原子または窒素原子で構成される6員環である)が合計で3~6個含まれる。n111は0~11の整数を表し、y31~y33およびy35~y37はそれぞれ独立に0~4の整数を表し、y34およびy38は0~5の整数を表す。複数のR111およびR231~R238は同一でも異なっていてもよい。AB1~AB17はそれぞれ独立にCH(CHの水素原子はR231~R238で置換されていてもよい)または窒素原子を表し、6員環の芳香環を構成する環員である。)
[3] 前記一般式(2)における前記AB3がCHを表し、該AB3の水素原子が前記R235の少なくとも1つによって置換されていることを特徴とする[2]に記載の電荷輸送材料。
[4] 前記一般式(1)におけるn101が0であることを特徴とする[1]~[3]のいずれか一項に記載の電荷輸送材料。
[5] 前記一般式(1)におけるR101またはR102が、フッ素原子、フルオロアルキル基、シクロアルキル基、シリル基、アルキルシリル基、アリールシリル基、または、シクロアルキレン基もしくはケイ素原子連結基を含む置換基であることを特徴とする[1]~[4]のいずれか一項に記載の電荷輸送材料。
[6] 前記一般式(1)に含まれる全ての単環の芳香環が、炭素原子骨格の6員環であることを特徴とする[1]~[5]のいずれか一項に記載の電荷輸送材料。
[7] 前記一般式(1)で表される化合物が炭素原子および水素原子のみからなることを特徴とする[1]~[6]のいずれか一項に記載の電荷輸送材料。
[8] 前記一般式(1)で表される化合物の分子量が1200以下であることを特徴とする[1]~[7]のいずれか一項に記載の電荷輸送材料。
[9] 前記一般式(1)で表される化合物が、単環の芳香環(該芳香環は、環員が炭素原子または窒素原子で構成される6員環である)が単結合を介して4個以上連続して結合している部分構造を少なくとも1つ有し、前記部分構造中において、パラ位で連続して連結している前記単環の芳香環の個数が3個以下であることを特徴とする[1]~[8]のいずれか一項に記載の電荷輸送材料。
[10] 基板と、該基板上に配置され、陽極及び陰極を含む一対の電極と、該電極間に配置された有機層とを有し、前記有機層が、燐光発光材料と[1]~[9]のいずれか一項に記載の電荷輸送材料を含有することを特徴とする有機電界発光素子。
[11] 前記燐光発光材料が下記一般式(E-1)で表されることを特徴とする[10]に記載の有機電界発光素子。
Figure JPOXMLDOC01-appb-C000008
(一般式(E-1)中、x1及びZ2はそれぞれ独立に、炭素原子又は窒素原子を表す。A1はZ1と窒素原子と共に5又は6員のヘテロ環を形成する原子群を表す。B1はZ2と炭素原子と共に5又は6員環を形成する原子群を表す。(X-Y)はモノアニオン性の二座配位子を表す。nE1は1~3の整数を表す。)
[12] 前記一般式(E-1)で表される燐光発光材料が下記一般式(E-2)で表されることを特徴とする[10]または[11]に記載の有機電界発光素子。
Figure JPOXMLDOC01-appb-C000009
(一般式(E-2)中、AE1~AE8はそれぞれ独立に、窒素原子、または、REで置換された炭素原子を表す。REは水素原子又は置換基を表す。(X-Y)はモノアニオン性の二座配位子を表す。nE2は1~3の整数を表す。)
[13] 前記一般式(E-1)で表される燐光発光材料の極大発光波長が500nm~700nmであることを特徴とする[10]~[12]のいずれか一項に記載の有機電界発光素子。
[14] 前記有機層が、前記燐光発光材料を含む発光層とその他の有機層を有し、前記発光層が前記一般式(1)で表される化合物を含有することを特徴とする[10]~[13]のいずれか一項に記載の有機電界発光素子。
[15] 前記有機層が、前記燐光発光材料を含む発光層とその他の有機層を有し、該その他の有機層が、前記発光層と前記陰極との間に配置されたホールブロック層を含み、且つ、該ホールブロック層が前記一般式(1)で表される化合物を含有することを特徴とする[10]~[14]のいずれか一項に記載の有機電界発光素子。
[16] 極大発光波長が500nm~550nmであることを特徴とする[10]~[15]のいずれか一項に記載の有機電界発光素子。
[17] [10]~[16]のいずれか一項に記載の有機電界発光素子を含むことを特徴とする発光装置、表示装置または照明装置。
[18] 下記一般式(1)で表される化合物。
Figure JPOXMLDOC01-appb-C000010
(一般式(1)において、R101およびR102はそれぞれ独立にアルキル基、アリール基、ヘテロアリール基、フッ素原子またはシリル基を表し、さらにこれらの基またはアミノ基で置換されていてもよい。ただし、R101およびR102の中に縮環アリール構造と縮環ヘテロアリール構造は含まれない。R101およびR102の中に単環の芳香環(該芳香環は、環員が炭素原子または窒素原子で構成される6員環である)が合計で5個以上含まれる。n101は0~11の整数、n102は0~9の整数を表し、複数のR101およびR102は同一でも異なっていてもよい。AA1~AA9はそれぞれ独立にCH(CHの水素原子はR102で置換されていてもよい)または窒素原子を表す。)
 本発明における一般式(1)で表される化合物を用いることにより、高温保管後の効率が高く、最高到達輝度が高い電荷輸送材料および有機電界発光素子を提供することができる。
本発明に係る有機電界発光素子の構成の一例を示す概略図である。 本発明に係る発光装置の一例を示す概略図である。 本発明に係る照明装置の一例を示す概略図である。
 以下において、本発明の内容について詳細に説明する。以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。尚、本願明細書において「~」とはその前後に記載される数値を下限値および上限値として含む意味で使用される。
[電荷輸送材料]
 本発明の電荷輸送材料は、下記一般式(1)で表される化合物からなることを特徴とする。
Figure JPOXMLDOC01-appb-C000011
(一般式(1)において、R101およびR102はそれぞれ独立にアルキル基、アリール基、ヘテロアリール基、フッ素原子またはシリル基を表し、さらにこれらの基またはアミノ基で置換されていてもよい。ただし、R101およびR102の中に縮環アリール構造と縮環ヘテロアリール構造は含まれない。R101およびR102の中に単環の芳香環(該芳香環は、環員が炭素原子または窒素原子で構成される6員環である)が合計で5個以上含まれる。n101は0~11の整数、n102は0~9の整数を表し、複数のR101およびR102は同一でも異なっていてもよい。AA1~AA9はそれぞれ独立にCH(CHの水素原子はR102で置換されていてもよい)または窒素原子を表す。)
 本発明の電荷輸送材料はこのような構成を有することで、いかなる理論に拘泥するものでもないが、効率や駆動耐久性を損なうことなくガラス転移温度Tgを高めることができ、さらに分子励起状態、ラジカルカチオン状態、ラジカルアニオン状態になったときに分子内の広域なπ共役系に励起状態や電荷拡がるため、高温保管後の素子特性に優れ、高輝度駆動による電荷や励起子の負荷集中に対しても安定に駆動できる。そのため、本発明の電荷輸送材料を用いた有機電界発光素子は、高温保管後の効率や最高到達輝度にも優れる。
 前記一般式(1)で表される本発明の電荷輸送材料は、電子写真、有機トランジスタ、有機光電変換素子(エネルギー変換用途、センサー用途等)、有機電界発光素子等の有機エレクトロニクス素子に好ましく用いることができ、有機電界発光素子に用いるのが特に好ましい。
 本発明の電荷輸送材料は、前記一般式(1)で表される化合物を含有する薄膜にも用いることができる。該薄膜は、前記組成物を用いて蒸着法やスパッタ法等の乾式製膜法、転写法、印刷法等の湿式製膜法により形成することができる。薄膜の膜厚は用途によっていかなる厚みでもよいが、好ましくは0.1nm~1mmであり、より好ましくは0.5nm~1μmであり、更に好ましくは1nm~200nmであり、特に好ましくは1nm~100nmである。
 以下、前記一般式(1)で表される化合物からなる電荷輸送材料の好ましい範囲について説明する。
 なお、本発明において、前記一般式(1)の説明における水素原子(H)は同位体(重水素原子、D)も含み、また更に置換基を構成する原子は、その同位体も含んでいることを表す。
 本発明において、「置換基」というとき、その置換基は置換されていてもよい。例えば、本発明で「アルキル基」と言う時、フッ素原子で置換されたアルキル基(例えばトリフルオロメチル基)やアリール基で置換されたアルキル基(例えばトリフェニルメチル基)なども含むが、「炭素数1~6のアルキル基」と言うとき、置換されたものも含めた全ての基として炭素数が1~6であることを示す。
 本発明において、フッ素原子、フルオロアルキル基、シクロアルキル基、シリル基、アルキルシリル基、アリールシリル基または、シクロアルキレン基もしくはケイ素原子連結基を含む置換基のことを「特定置換基」とも言う。なお、アルキル基とアリール基で置換されたシリル基も前記特定置換基に含まれる。
 但し、本明細書中において、「シクロアルキレン基」とは、1,4-シクロヘキサンジイル、1,3-シクロヘキサンジイル、1,2-シクロヘキサンジイル、シクロペンタン等の総称を意味し、シクルアルケンから水素原子を1つ抜き取った環を意味するものではない。
<一般式(1)のR101およびR102
 前記一般式(1)中、R101およびR102はそれぞれ独立にアルキル基、アリール基、ヘテロアリール基、フッ素原子またはシリル基を表し、さらにこれらの基またはアミノ基で置換されていてもよい。ただし、R101およびR102の中に縮環アリール構造と縮環ヘテロアリール構造は含まれない。R101およびR102の中に単環の芳香環(該芳香環は、環員が炭素原子または窒素原子で構成される6員環である)が合計で5個以上含まれる。なお、前記一般式(1)における、前記単環の芳香環(該芳香環は、環員が炭素原子または窒素原子で構成される6員環である)の環員は、該単環の芳香環中、窒素原子が3個以下であることが好ましく、2個以下であることがより好ましく、1個以下であることが特に好ましく、0個であることがより特に好ましい。
 前記一般式(1)中、R101およびR102の中に単環の芳香環(該芳香環は、環員が炭素原子または窒素原子で構成される6員環である)が合計で5個以上含まれることにより、本発明の効果を奏することができる。R101およびR102の中に含まれる前記単環の芳香環は、5~8個であることが蒸着適正の観点から好ましく、5~7個であることがより好ましく、5~6個であることが特に好ましい。
 前記R101およびR102がアルキル基である場合、該アルキル基としては、直鎖状、分岐状又は環状であってもよく、一般的には炭素数1~30、好ましくは炭素数1~20、より好ましくは炭素数1~10、更に好ましくは炭素数1~6、最も好ましくは炭素数1~4のアルキル基である。例えばメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、t-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、n-ヘキシル基、n-オクチル基、n-デシル基、n-ヘキサデシル基、シクロプロピル基、シクロペンチル基、シクロヘキシル基等が挙げられ、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、t-ブチル基、シクロペンチル基およびシクロヘキシル基が好ましく、より好ましくはメチル基、エチル基、n-プロピル基、t-ブチル基およびシクロヘキシル基のいずれかであり、特に好ましくはメチル基、イソプロピル基およびt-ブチル基のいずれかであり、より特に好ましくはメチル基、t-ブチル基である。
 前記R101およびR102としてのアルキル基は、さらにアルキル基、アリール基、ヘテロアリール基、フッ素原子またはシリル基を置換基として有していてもよい。その中でも、アリール基、ヘテロアリール基またはフッ素原子で置換されていることが好ましい。
 前記R101およびR102としてのアルキル基がフッ素原子で置換されている場合、全ての水素原子がフッ素原子で置換されてパーフルオロアルキル基を形成することがより好ましく、-CF2CF2CF3基またはトリフロロメチル基を形成することが特に好ましく、トリフロロメチル基を形成することがより特に好ましい。
 一方、前記R101およびR102としてのアルキル基がアリール基またはヘテロアリール基で置換されている場合、該アリール基またはヘテロアリール基が単環の芳香環(該芳香環は、環員が炭素原子または窒素原子で構成される6員環である)であることが好ましい。また、この場合、前記R101およびR102としてのアルキル基が複数の単環の芳香環(該芳香環は、環員が炭素原子または窒素原子で構成される6員環である)で置換されていることが好ましい。
 前記R101およびR102としてのアルキル基がさらにアルキル基で置換されている場合、該さらなる置換基であるアルキル基はメチル基であることが好ましい。
 前記R101およびR102としてのアルキル基は、第4級炭素となるように置換されていることがより好ましい。
 前記R101およびR102がシリル基である場合、該シリル基は置換されていることが好ましく、該置換基としては、アルキル基およびアリール基が好ましい。前記R101およびR102としてのシリル基がアルキル基またはアリール基で置換されている場合、全ての水素原子がアルキル基またはアリール基で置換されてトリアルキルシリル基またはトリアリールシリル基を形成することがより好ましく、トリメチルシリル基またはトリフェニルシリル基を形成することが特に好ましい。なお、該トリアリールシリル基はそのアリール基部分がさらに置換されていてもよく、その場合はアリール基で置換されていることが好ましく、フェニル基で置換されていることがより好ましい。
 前記R101およびR102がヘテロアリール基である場合、該ヘテロアリール基としては、窒素原子を含む5又は6員のヘテロ環が好ましい。前記窒素原子を含む5又は6員のヘテロ環としては、ピリジン環、ピリミジン環、ピラジン環、トリアジン環、イミダゾール環、ピラゾール環、オキサゾール環、チアゾール環、トリアゾール環、オキサジアゾール環、チアジアゾール環などが挙げられる。本発明の電荷輸送材料を有機電界発光素子に用いる場合は、錯体の安定性、発光波長制御及び発光量子収率の観点から、その中でもピリジン環、ピラジン環、イミダゾール環、ピラゾール環であることがより好ましく、特に好ましくはピリジン環、イミダゾール環、ピラジン環であり、更に好ましくはピリジン環またはイミダゾール環であり、最も好ましくはピリジン環である。但し、前記R101およびR102は、ヘテロアリール基よりもアリール基であることが好ましい。
 前記R101およびR102がアリール基である場合、好ましくは炭素数6~30、より好ましくは炭素数6~20、特に好ましくは炭素数6~12であり、例えばフェニル、ナフチル、アントリルなどが挙げられる。前記R101およびR102は単環のアリール基であることが好ましく、フェニル基であることがより好ましい。
 前記R101およびR102としてのアリール基またはヘテロアリール基は、さらにアルキル基、アリール基、ヘテロアリール基、フッ素原子、シリル基またはアミノ基を置換基として有していてもよい。
 前記R101およびR102としてのアリール基またはヘテロアリール基に、アルキル基、フッ素原子またはシリル基が置換する場合、該置換基としてのアルキル基、ヘテロアリール基、フッ素原子またはシリル基の好ましい範囲は、R101およびR102がアルキル基、ヘテロアリール基、フッ素原子またはシリル基である場合と同様である。前記R101およびR102としてのアリール基またはヘテロアリール基にアルキル基、ヘテロアリール基、フッ素原子またはシリル基が置換する場合、これらの置換基の個数は前記R101およびR102としてのアリール基またはヘテロアリール基に対して1~3個であることが好ましく、1または2個であることがより好ましく、1個であることが特に好ましい。
 前記R101およびR102としてのアリール基またはヘテロアリール基に、アミノ基が置換する場合、該アミノ基はアルキル基、アリール基またはヘテロアリール基でまたさらに置換されていることが好ましく、該アミノ基は第3級アミンであることがより好ましい。この場合の該アミノ基をまたさらに置換するアルキル基、アリール基またはヘテロアリール基の好ましい範囲は、前述するR101およびR102としてのアルキル基、アリール基またはヘテロアリール基の好ましい範囲と同様である。
 前記R101およびR102としてのアリール基またはヘテロアリール基に対して、アリール基またはヘテロアリール基が置換する場合、置換によって形成されるアリール基とアリーレン基、または、ヘテロアリール基とヘテロアリーレン基が、いずれも単環どうしであることが好ましく、いずれも6員環の単環であることがより好ましい。
 前記R101およびR102としてのアリール基またはヘテロアリール基に対して、アリール基またはヘテロアリール基が置換して、6員環の単環であるアリール基とアリーレン基、または、ヘテロアリール基とヘテロアリーレン基、あるいはこれらの連結基や置換基が互いに組み合わさって連結している場合、これらの6員環の単環が単結合で複数連結した1価の置換基(単結合で連結した6員環の単環の数は、好ましくは2~6、より好ましくは2~5個、特に好ましくは2~4個)であることが好ましい。例えば、6員環の単環であるアリール基とアリーレン基が連結置換基を形成している場合の好ましい構造は、ビフェニル基、ターフェニル基、クォーターフェニル基、キンクフェニル基等が挙げられる。
 前記6員環の単環が単結合で複数連結した1価の置換基は、単環の芳香環(該芳香環は、環員が炭素原子または窒素原子で構成される6員環である)が単結合を介して4個以上連続して結合している部分構造を少なくとも1つ有し、前記部分構造中において、パラ位で連続して連結している前記単環の芳香環の個数が3個以下であることが好ましい。すなわち、前記6員環の単環が単結合で複数連結した1価の置換基は、パラ位置換フェニル環を3つよりは多く含まないことが好ましい。
 これらのうち、前記6員環の単環が単結合で複数連結した1価の置換基は、フェニル基、ビフェニル基、ターフェニル基(特にp-ターフェニル基または3,5-ジフェニルフェニルが好ましく、p-ターフェニル基がより好ましい)のいずれかが好ましく、ビフェニル基またはターフェニル基のいずれかがより好ましく、ビフェニル基が最も好ましい。上記の例はヘテロアリール基とヘテロアリーレン基が連結する場合も同様の構造である。
 前記R101がアリール基またはヘテロアリール基である場合、前記R101は、下記一般式(3)で表されるであることが特に好ましい。
Figure JPOXMLDOC01-appb-C000012
(上記式中、AA11~AA33はそれぞれ独立にCHまたは窒素原子を表し、6員環の芳香環を構成する環員である。R201~R204はそれぞれ独立にアルキル基、フッ素原子またはシリル基を表し、y1~y3はそれぞれ独立に0~4の整数を表し、y4は0~5の整数を表す。R205~R208はそれぞれ独立にアリール基またはヘテロアリール基を表し、y5~y8はそれぞれ独立に0~2の整数を表す。但し、y1とy5の和、y2とy6の和およびy3とy7の和は最大で4であり、y4とy8の和は最大で5である。x1、x2およびx3はそれぞれ独立に0または1を表し、x1≦x2≦x3である。)
 前記一般式(3)中、R201~R204の好ましい範囲は、前記一般式(1)におけるR101およびR102としてのアルキル基、フッ素原子またはシリル基の好ましい範囲と同様である。その中でも、R201~R204はアルキル基またはフッ素原子であることが好ましく、メチル基、n-プロピル基またはフッ素原子であることがより好ましい。
 前記一般式(3)中、R205~R208の好ましい範囲は、前記一般式(1)におけるR101およびR102としてのアリール基またはヘテロアリール基の好ましい範囲と同様である。その中でも、R205~R208はアリール基であることが好ましく、フェニル基であることがより好ましい。
 前記一般式(3)中、y5~y8の和、すなわちR101中における6員環の芳香環の枝分かれの個数は、0または1であることが好ましく、0であることが特に好ましい。
 前記一般式(3)中、x1~x3が1である場合、y1~y3は0であることが好ましく、y4は0~2であることが好ましく、y5~y8が0であることが好ましい。このとき、R201はアルキル基であることが好ましく、炭素数1~3のアルキル基であることが好ましく、メチル基またはn-プロピル基であることがより好ましい。
 前記一般式(3)中、x1が0であり、x2およびx3が1である場合、y1は0~2であることが好ましく、y2~y8がいずれも0であることが好ましい。このとき、R201はアルキル基であることが好ましく、メチル基であることがより好ましい。
 前記一般式(3)中、x1およびx2が0であり、x3が1である場合、y1~y6が0であり、y7が1であり、y8が0であることが好ましい。このとき、R207はアリール基であることが好ましく、フェニル基であることがより好ましい。
 前記一般式(3)中、x1~x3が0である場合、y1~y3は0であることが好ましく、y4は0または1であることが好ましく、y5~y8が0であることが好ましい。このとき、R201はフッ素原子であることが好ましい。
 前記一般式(3)中、AA11~AA33によって構成される6員環の芳香環のうち、窒素原子を含む環が1個以下であることが好ましく、0個であることがより好ましい。
 前記一般式(3)中、各6員環の芳香環の連結に制限はないが、メタ位またはパラ位で連結していることが好ましく、少なくともx1で表される6員環の芳香環と、x2で表される6員環の芳香環はメタ位で連結していることがより好ましく、全ての6員環の芳香環がメタ位で連結していることが特に好ましい。
 次に、前記R102がアリール基またはヘテロアリール基である場合、前記R102は、下記一般式(4)で表される置換基であることが特に好ましい。
Figure JPOXMLDOC01-appb-C000013
(上記式中、AA41~AA69はそれぞれ独立にCHまたは窒素原子を表し、6員環の芳香環を構成する環員である。R211~R215はそれぞれ独立にアルキル基、フッ素原子、シリル基またはアミノ基を表し、y11~y14はそれぞれ独立に0~4の整数を表し、y15は0~5の整数を表す。R216~R220はそれぞれ独立にアリール基またはヘテロアリール基を表し、y16~y20はそれぞれ独立に0~2の整数を表す。但し、y11とy16の和、y12とy17の和、y13とy18の和およびy14とy19の和は最大で4であり、y15とy20の和は最大で5である。x11、x12、x13およびx14はそれぞれ独立に0または1を表し、x11≦x12≦x13≦x14である。)
 前記一般式(4)中、R211~R215の好ましい範囲は、前記一般式(1)におけるR101およびR102としてのアルキル基、フッ素原子またはシリル基の好ましい範囲と同様である。但し、置換または無置換のアミノ基であってもよい。その中でも、R211~R215はアルキル基、フッ素原子、シリル基またはアミノ基であることが好ましく、アルキル基、フッ素原子またはシリル基であることがより好ましい。
 前記一般式(4)中、R216~R220の好ましい範囲は、前記一般式(1)におけるR101およびR102としてのアリール基またはヘテロアリール基の好ましい範囲と同様である。その中でも、R216~R220はアリール基であることが好ましく、フェニル基であることがより好ましい。
 前記一般式(4)中、y16~y20の和、すなわちR102中における6員環の芳香環の枝分かれの個数は、0~2であることが好ましく、0または1であることがより好ましく、0であることが特に好ましい。
 前記一般式(4)中、x11~x14が1である場合、y11は0であることが好ましく、y12は0または1であることが好ましく、y13~y20は0であることが好ましい。y12が1のとき、R212はアルキル基であることが好ましく、フッ素原子で置換されたアルキル基であることが好ましく、パーフルオロアルキル基であることがより好ましく、炭素数3のパーフルオロアルキル基であることが特に好ましい。
 前記一般式(4)中、x11が0であり、x12~x14が1である場合、y12は0または1であることが好ましく、y13は0であることが好ましく、y14は0または1であることが好ましく、y15およびy17は0であることが好ましく、y18は0または1であることが好ましく、y19およびy20は0であることが好ましい。このとき、R212およびR214はそれぞれ独立にアルキル基であることが好ましく、t-ブチル基であることがより好ましい。R218はアリール基であることが好ましく、フッ素原子で置換されたアリール基であることが好ましく、パーフルオロアリール基であることがより好ましく、炭素数6のパーフルオロアリール基であることが特に好ましい。
 前記一般式(4)中、x11およびx12が0であり、x13およびx14が1である場合、y13は0または1であることが好ましく、y14は0であることが好ましく、y15は0または1であることが好ましく、y18およびy19が0または1であることが好ましく、y20が0であることが好ましい。このとき、R213はアルキル基、フッ素原子またはシリル基であることが好ましく、フッ素原子で置換されたアルキル基、フッ素原子またはアルキル基で置換されたシリル基であることがより好ましく、パーフルオロメチル基、フッ素原子、またはトリメチルシリル基であることが特に好ましい。R215はアルキル基であることが好ましく、イソプロピル基であることがより好ましい。R218およびR219はそれぞれ独立にアリール基であることが好ましく、フェニル基であることがより好ましい。
 前記一般式(4)中、x11~X13が0であり、x14が1である場合、y14が0~2であることが好ましく、y15が0~2であることが好ましく、y19が0~2であることが好ましく、y20が0であることが好ましい。このとき、R214はアルキル基またはシリル基であることが好ましく、炭素数1~3のアルキル基またはアルキル基で置換されたシリル基であることがより好ましく、メチル基、イソプロピル基またはジメチルフェニルシリル基であることが特に好ましい。R215はアルキル基、シリル基またはアミノ基であることが好ましく、炭素数1~4の直鎖または分枝のアルキル基、シクロアルキル基、アリール基で置換されたシリル基またはアリール基で置換されたアミノ基であることがより好ましく、トリフェニルメチル基、メチルフェニルエチル基、イソプロピル基、n-プロピル基、t-ブチル基、シクロへキシル基、トリフェニルシリル基または3',5'-ジメチルビフェニレン置換のアミノ基が特に好ましい。R215はアリール基であることが好ましく、フェニル基であることがより好ましい。
前記一般式(4)中、x11~X14が0である場合、y15が0~2であることが好ましく、y20が0であることが好ましい。このとき、R215はアルキル基であることが好ましく、メチル基またはt-ブチル基であることがより好ましい。
 前記一般式(4)中、AA41~AA69によって構成される6員環の芳香環のうち、窒素原子を含む環が1個以下であることが好ましく、0個であることがより好ましい。
 前記一般式(4)中、各6員環の芳香環の連結に制限はないが、メタ位またはパラ位で連結していることが好ましく、少なくともx11で表される6員環の芳香環と、x12で表される6員環の芳香環はパラ位で連結していることがより好ましい。但し、6員環の芳香環がパラ位で連結する個数は3個以下であることが好ましい。
 前記一般式(1)におけるR101は、フッ素原子、フルオロアルキル基、シクロアルキル基、シリル基、アルキルシリル基、アリールシリル基または、シクロアルキレン基もしくはケイ素原子連結基を含む置換基(前記特定置換基)のうち、いずれを含む態様でもよいが、前記特定置換基を1つも含まない態様でもよい。本発明では、前記一般式(1)におけるR101がフッ素原子、フルオロアルキル基またはアルキルシリル基を含む態様、あるいは、前記特定置換基を1つも含まない態様が好ましく、前記特定置換基を1つも含まない態様がより好ましい。
 前記一般式(1)におけるR101はアルキル基、アリール基、ヘテロアリール基、フッ素原子またはシリル基の中でも、置換基を有していてもよいアリール基が好ましく、前記一般式(3)で表されるアリール基がより好ましく、前記一般式(3)におけるX1が0であり、X2およびX3が1であるアリール基が特に好ましく、前記一般式(3)におけるy1~y8がすべて0であるアリール基より特に好ましく、無置換のm-ターフェニレンであることがさらにより特に好ましい。
 前記一般式(1)におけるR102は、フッ素原子、フルオロアルキル基、シクロアルキル基、シリル基、アルキルシリル基、アリールシリル基または、シクロアルキレン基もしくはケイ素原子連結基を含む置換基(前記特定置換基)のうち、いずれを含む態様でもよいが、本発明では、前記一般式(1)におけるR102がフッ素原子、フルオロアルキル基、シクロアルキル基またはアルキルシリル基を含む態様が好ましく、シクロアルキル基、アルキルシリル基またはアリールシリル基を含む態様がより好ましく、アルキルシリル基またはアリールシリル基を含む態様が特に好ましい。
 前記一般式(1)におけるR102はアルキル基、アリール基、ヘテロアリール基、フッ素原子またはシリル基の中でも、置換基を有してもよいヘテロアリール基または置換基を有していてもよいアリール基が好ましく、前記一般式(4)で表されるアリール基が特に好ましい。
 前記一般式(3)または(4)中、前記6員環の単環は、パラ位で連結する個数は3個以下であることが好ましい。例えば、p-ターフェニレン基の末端に、さらに6員環の単環が連結する場合は、メタ位またはオルト位で連結することが好ましく、メタ位で連結することがより好ましい。
<一般式(1)のn101およびn102>
 前記一般式(1)においてn101は0~11の整数を表し、0~2の整数であることが好ましく、0または1であることが特に好ましく、0であることがより特に好ましい。
 前記一般式(1)においてn101が0ではない場合、前記R101がトリフェニレン環構造に置換する位置については特に制限はないが、前記一般式(1)においてトリフェニレン環がビフェニレン構造と連結している環以外に置換基R101を有することが好ましい。
 前記一般式(1)においてn102は0~7の整数を表し、1~6の整数であることが好ましく、1~5の整数であることが特に好ましく、1~2の整数であることがより特に好ましい。
 前記一般式(1)においてn102が0ではない場合、前記R102がビフェニレン構造に置換する位置については特に制限はないが、前記一般式(1)のビフェニレン構造中においてトリフェニレン構造と結合していない側の6員環の単環に少なくとも1つの置換基R102を有することが好ましく、トリフェニレン環構造と結合している側の6員環の単環及びトリフェニレン構造と結合していない側の6員環の単環の両方に少なくとも1つの置換基R102を有することが好ましい。
 さらに、トリフェニレン環構造と結合している側の6員環の単環及びトリフェニレン構造と結合していない側の6員環の単環の両方に少なくとも1つの単環の芳香環(該芳香環は、環員が炭素原子または窒素原子で構成される6員環である)を有することが特に好ましい。
 本発明の電荷輸送材料は、前記一般式(1)で表される化合物が、下記一般式(2)で表されることが好ましい。
Figure JPOXMLDOC01-appb-C000014
 一般式(2)において、R111はそれぞれ独立にアルキル基、アリール基、ヘテロアリール基、フッ素原子またはシリル基を表し、さらにこれらの基またはアミノ基で置換されていてもよい。R231~R234はそれぞれ独立にアルキル基、フッ素原子、シリル基またはアミノ基を表す。R235~R238はそれぞれ独立にアリール基またはヘテロアリール基を表す。ただし、R111およびR231~R238の中に縮環アリール構造と縮環ヘテロアリール構造は含まれない。R111およびR231~R238の中に単環の芳香環(該芳香環は、環員が炭素原子または窒素原子で構成される6員環である)が合計で3~6個含まれる。n111は0~11の整数を表し、y31~y33およびy35~y37はそれぞれ独立に0~4の整数を表し、y34およびy38は0~5の整数を表す。複数のR111およびR231~R238は同一でも異なっていてもよい。AB1~AB17はそれぞれ独立にCH(CHの水素原子はR231~R238で置換されていてもよい)または窒素原子を表し、6員環の芳香環を構成する環員である。
 前記一般式(2)におけるR111およびn111の好ましい範囲は、前記一般式(1)におけるR101およびn101の好ましい範囲とそれぞれ同じである。
 前記一般式(2)中、AB1~AB17を含む各6員環の単環の好ましい範囲は、前記一般式(1)におけるR101およびR102としてのアリール基またはヘテロアリール基の好ましい範囲と同様である。
 前記一般式(2)中、R231~R234の好ましい範囲は、前記一般式(1)におけるR101およびR102としてのアルキル基、アリール基、ヘテロアリール基、フッ素原子またはシリル基の好ましい範囲と同様である。但し、R231~R234は置換または無置換のアミノ基であってもよい。その中でも、R231~R234はアルキル基、アリール基、フッ素原子またはシリル基であることが好ましく、シリル基であることがより好ましい。
 前記一般式(2)中、R235~R238の好ましい範囲は、前記一般式(1)におけるR101およびR102としてのアリール基またはヘテロアリール基の好ましい範囲と同様である。その中でも、R235~R238はアリール基であることが好ましく、p-ターフェニレン基であることがより好ましい。
 前記一般式(2)中、y35~y38の和は、0~3であることが好ましく、0~2であることがより好ましく、0~1であることが特に好ましい。
 前記一般式(2)中、y31は0または1であることが好ましい。このとき、R231はアルキル基またはシリル基であることが好ましく、メチル基またはアリール基置換のシリル基であることがより好ましく、メチル基またはトリフェニルシリル基であることが特に好ましく、トリフェニルシリル基(但し、さらに置換基として1または2のフェニル基を有することも好ましい)であることがより特に好ましい。
 前記一般式(2)中、y32は0~3であることが好ましく、0または1であることが好ましい。このとき、R232はアルキル基、フッ素原子、シリル基またはアミノ基であることが好ましく、無置換またはフッ素原子で置換されたアルキル基、フッ素原子、アルキル基またはアリール基で置換されたシリル基またはフェニル基で置換されたアミノ基であることがより好ましく、メチル基、フッ素原子、トリフロロメチル基、トリメチルシリル基、トリフェニルシリル基またはアミノ基が2個のフェニルで置換された基であることが特に好ましく、メチル基、フッ素原子またはトリメチルシリル基であることがより好ましい。
 前記一般式(2)中、y33は0または1であることが好ましい。このとき、R233はシリル基であることが好ましく、アルキル基およびアリール基の少なくとも一方で置換されたシリル基であることがより好ましく、アルキル基およびアリール基で置換されたシリル基であることが特に好ましく、メチル基およびフェニル基で置換されたシリル基であることがより特に好ましい。
 前記一般式(2)中、y34は0または1であることが好ましい、このとき、R234はアルキル基、シリル基またはアミノ基であることが好ましく、アルキル基またはアリール基もしくはフェニル基で置換されたシリル基であることがより好ましく、エチル基(さらに置換基を有していてもよい)、n-プロピル基、イソプロピル基、t-ブチル基、トリメチルシリル基、トリフェニルシリル基またはアミノ基が2個のビフェニル(さらにメチル基を置換基として有していてもよい)で置換された基であることがより特に好ましい。
 前記一般式(2)中、y35は0または1であることが好ましい。このとき、R235はアリール基であることが好ましく、フェニル基、ビフェニル基、m-ターフェニル基、p-ターフェニル基またはこれらの基がさらに置換された基であることがより好ましい。前記さらなる置換基としては、アルキル基、フッ素原子、シリル基またはアリール基が好ましく、トリフロロメチル基、トリフェニルメチル基、イソプロピル基、t-ブチル基、トリメチルシリル基、フェニル基がより好ましい。
 前記一般式(2)中、y36は0または1であることが好ましい。このとき、R236はアリール基であることが好ましく、フェニル基、ジメチルフェニル基、ビフェニル基が2個のフェニル基で置換された基、p-ターフェニレン基であることがより好ましく、フェニル基、またはp-ターフェニレン基であることが特に好ましい。
 前記一般式(2)中、y37は0であることが好ましい。
 前記一般式(2)中、y38は0または1であることが好ましい。このとき、R238はアリール基であることが好ましく、フェニル基、ビフェニル基、p-ターフェニレン基であることがより好ましい。
 前記一般式(2)中、AB1~AB17によって構成される6員環の芳香環のうち、窒素原子を含む環が1個以下であることが好ましく、0個であることがより好ましい。
 前記一般式(2)中、各6員環の芳香環の連結に制限はないが、メタ位またはパラ位で連結していることが好ましい。
 本発明では、前記一般式(2)における前記AB3がCHを表し、該AB3の水素原子が前記R235の少なくとも1つによって置換されていることが好ましい。
 前記一般式(1)で表される化合物は、前記一般式(1)に含まれる全ての単環の芳香環が、炭素原子骨格の6員環であることが好ましく、炭素原子および水素原子のみからなることがさらに好ましい。
 さらに、前記一般式(1)で表される化合物は、単環の芳香環(該芳香環は、環員が炭素原子または窒素原子で構成される6員環である)が単結合を介して4個以上連続して結合している部分構造を少なくとも1つ有し、前記部分構造中において、パラ位で連続して連結している前記単環の芳香環の個数が3個以下であることが、緑色の燐光発光材料を用いる観点から好ましい。なお、この記載はパラ位で連続して連結している前記単環の芳香環の個数が4個である態様を本発明から除外するものではなく、パラ位で連続して連結している前記単環の芳香環の個数が4個である化合物は赤色の燐光発光材料を用いる観点からは好ましい。
 よりさらに、前記一般式(1)で表される化合物は、トリフェニレン環を構成する縮環の部分構造であるフェニル環を含め、パラ位で連続して連結している芳香環の個数が3個以下であることが好ましい。
 前記一般式(1)で表される化合物の膜状態でのT1エネルギーは、2.39eV(55.0kcal/mol)以上3.25eV(75.0kcal/mol)以下であることが好ましく、2.47eV(57.0kcal/mol)以上3.04eV(70.0kcal/mol)以下であることがより好ましく、2.52eV(58.0kcal/mol)以上2.82eV(65.0kcal/mol)以下であることが更に好ましい。特に、発光材料として燐光発光材料を用いる場合には、T1エネルギーが上記範囲となることが好ましい。
 T1エネルギーは、材料の薄膜の燐光発光スペクトルを測定し、その短波長端から求めることができる。例えば、洗浄した石英ガラス基板上に、材料を真空蒸着法により約50nmの膜厚に成膜し、薄膜の燐光発光スペクトルを液体窒素温度下でF-7000日立分光蛍光光度計(日立ハイテクノロジーズ)を用いて測定する。得られた発光スペクトルの短波長側の立ち上がり波長をエネルギー単位に換算することによりT1エネルギーを求めることができる。
 本発明の電荷輸送材料では、前記一般式(1)で表される化合物の分子量は、1200以下であることが好ましく、1000以下であることがより好ましく、750以上1000以下であることが更に好ましく、750以上900以下であることが特に好ましく、750以上850以下であることが最も好ましい。分子量をこの範囲とすることで、膜質が良好で、昇華精製・蒸着適性に優れた材料が得られる。
 有機電界発光素子を高温駆動時や素子駆動中の発熱に対して安定して動作させる観点から、一般式(1)で表される化合物のガラス転移温度(Tg)は80℃以上400℃以下であることが好ましく、100℃以上400℃以下であることがより好ましく、120℃以上400℃以下であることが更に好ましい。
 一般式(1)で表される化合物の具体例を以下に示すが、本発明はこれらに限定されない。
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
 上記一般式(1)で表される化合物は、特開2004-43349号公報、特開2004-83481号公報、US2006/0280965、WO2009/021107、特開2009-114068号公報、特表2010-535806号公報等に記載の方法や、その他公知の反応を組み合わせて合成できる。
 合成後、カラムクロマトグラフィー、再結晶等による精製を行った後、昇華精製により精製することが好ましい。昇華精製により、有機不純物を分離できるだけでなく、無機塩や残留溶媒等を効果的に取り除くことができる。
[有機電界発光素子]
 本発明の有機電界発光素子は、基板と、該基板上に配置され、陽極及び陰極を含む一対の電極と、該電極間に配置された有機層とを有し、前記有機層が、燐光発光材料と本発明の電荷輸送材料、すなわち前記一般式(1)で表される化合物を含むことを特徴とする。
Figure JPOXMLDOC01-appb-C000019
(一般式(1)において、R101およびR102はそれぞれ独立にアルキル基、アリール基、ヘテロアリール基、フッ素原子またはシリル基を表し、さらにこれらの基またはアミノ基で置換されていてもよい。ただし、R101およびR102の中に縮環アリール構造と縮環ヘテロアリール構造は含まれない。R101およびR102の中に単環の芳香環(該芳香環は、環員が炭素原子または窒素原子で構成される6員環である)が合計で5個以上含まれる。n101は0~11の整数、n102は0~9の整数を表し、複数のR101およびR102は同一でも異なっていてもよい。AA1~AA9はそれぞれ独立にCH(CHの水素原子はR102で置換されていてもよい)または窒素原子を表す。)
 本発明の有機電界発光素子の構成は、特に制限されることはない。図1に、本発明の有機電界発光素子の構成の一例を示す。図1の有機電界発光素子10は、基板2上に、一対の電極(陽極3と陰極9)の間に有機層を有する。
 有機電界発光素子の素子構成、基板、陰極及び陽極については、例えば、特開2008-270736号公報に詳述されており、該公報に記載の事項を本発明に適用することができる。
 以下、本発明の有機電界発光素子の好ましい態様について、基板、電極、有機層、保護層、封止容器、駆動方法、発光波長、用途の順で詳細に説明する。
<基板>
 本発明の有機電界発光素子は、基板を有する。
 本発明で使用する基板としては、有機層から発せられる光を散乱又は減衰させない基板であることが好ましい。有機材料の場合には、耐熱性、寸法安定性、耐溶剤性、電気絶縁性、及び加工性に優れていることが好ましい。
<電極>
 本発明の有機電界発光素子は、前記基板上に配置され、陽極及び陰極を含む一対の電極を有する。
 発光素子の性質上、一対の電極である陽極及び陰極のうち少なくとも一方の電極は、透明若しくは半透明であることが好ましい。
(陽極)
 陽極は、通常、有機層に正孔を供給する電極としての機能を有していればよく、その形状、構造、大きさ等については特に制限はなく、発光素子の用途、目的に応じて、公知の電極材料の中から適宜選択することができる。前述のごとく、陽極は、通常透明陽極として設けられる。
(陰極) 陰極は、通常、有機層に電子を注入する電極としての機能を有していればよく、その形状、構造、大きさ等については特に制限はなく、発光素子の用途、目的に応じて、公知の電極材料の中から適宜選択することができる。
<有機層>
 本発明の有機電界発光素子は、前記電極間に配置された有機層を有し、前記有機層が、燐光発光材料と前記一般式(1)で表される化合物を含むことを特徴とする。
 前記有機層は、特に制限はなく、有機電界発光素子の用途、目的に応じて適宜選択することができるが、前記透明電極上に又は前記半透明電極上に形成されるのが好ましい。この場合、有機層は、前記透明電極又は前記半透明電極上の全面又は一面に形成される。
 有機層の形状、大きさ、及び厚み等については、特に制限はなく、目的に応じて適宜選択することができる。
 以下、本発明の有機電界発光素子における、有機層の構成、有機層の形成方法、有機層を構成する各層の好ましい態様および各層に使用される材料について順に説明する。
(有機層の構成)
 本発明の有機電界発光素子では、前記有機層が、電荷輸送層を含むことが好ましい。前記電荷輸送層とは、有機電界発光素子に電圧を印加した際に電荷移動が起こる層をいう。具体的には正孔注入層、正孔輸送層、電子ブロック層、発光層、正孔ブロック層、電子輸送層又は電子注入層が挙げられる。前記電荷輸送層が正孔注入層、正孔輸送層、電子ブロック層又は発光層であれば、低コストかつ高効率な有機電界発光素子の製造が可能となる。
 本発明の有機電界発光素子では、前記燐光発光材料を含む発光層とその他の有機層を有し、前記発光層が前記一般式(1)で表される化合物を含有することが好ましい。さらに、本発明の有機電界発光素子では、前記有機層が、前記燐光発光材料を含む発光層とその他の有機層を有すことがより好ましい。但し、本発明の有機電界発光素子は、前記有機層が発光層とその他の有機層を有する場合であっても、必ずしも明確に層間が区別されなくてもよい。
 本発明の有機電界発光素子は、前記有機層が燐光発光材料と前記一般式(1)で表される化合物を含む。このとき、前記燐光発光材料と前記一般式(1)で表される化合物が含まれる場所に特に制限はない。本発明では、前記有機層が、前記燐光発光材料を含む発光層とその他の有機層を有し、前記発光層が前記一般式(1)で表される化合物を含有することがより好ましい。このとき、前記一般式(1)で表される化合物が、発光層のホスト材料(以下、ホスト化合物とも言う)として用いられることが好ましい。
 前記一般式(1)で表される化合物は、有機電界発光素子の陰極と陽極の間のいずれの有機層に含有されてもよい。
 前記一般式(1)で表される化合物を含有してもよい有機層としては、発光層、正孔注入層、正孔輸送層、電子輸送層、電子注入層、励起子ブロック層、電荷ブロック層(正孔ブロック層、電子ブロック層など)などを挙げることができ、好ましくは、発光層、励起子ブロック層、電荷ブロック層、電子輸送層、電子注入層のいずれかであり、より好ましくは発光層、励起子ブロック層、電荷ブロック層、又は電子輸送層であり、特に好ましくは発光層、ホールブロック層、電子ブロック層であり、より特に好ましくは発光層又は正孔ブロック層であり、さらにより特に好ましくは発光層である。
 前記一般式(1)で表される化合物は、発光層に含有される場合、発光層の全質量に対して0.1~99質量%含まれることが好ましく、1~95質量%含まれることがより好ましく、10~95質量%含まれることがより好ましい。
 前記一般式(1)で表される化合物を用いる発光材料の極大発光波長は、400~700nmであることが好ましく、500~700nmであることがより好ましく、500~650nmであることが特に好ましく、500~550nmであることがより特に好ましく、520~550nmであることが最も好ましい。
 また、前記一対の電極間に、前記電子輸送層または正孔ブロック層(より好ましくは正孔ブロック層)を有し、前記電子輸送層または前記正孔ブロック層が前記一般式(1)で表される化合物を含有することも好ましい。
 前記一般式(1)で表される化合物は、発光層以外の有機層に含有される場合、該有機層の全質量に対して70~100質量%含まれることが好ましく、85~100質量%含まれることがより好ましい。
 これらの有機層は、それぞれ複数層設けてもよく、複数層設ける場合には同一の材料で形成してもよいし、層毎に異なる材料で形成してもよい。
(有機層の形成方法)
 本発明の有機電界発光素子において、各有機層は、蒸着法やスパッタ法等の乾式製膜法、転写法、印刷法、スピンコート法、バーコート法等の湿式製膜法(溶液塗布法)のいずれによっても好適に形成することができる。
 本発明の有機電界発光素子は、前記一対の電極間に配置された有機層が、少なくとも一層の前記一般式(1)で表される化合物を含む組成物の蒸着により形成された層を含むことが好ましい。
(発光層)
 発光層は、電界印加時に、陽極、正孔注入層又は正孔輸送層から正孔を受け取り、陰極、電子注入層又は電子輸送層から電子を受け取り、正孔と電子の再結合の場を提供して発光させる機能を有する層である。但し、本発明における前記発光層は、このようなメカニズムによる発光に必ずしも限定されるものではない。本発明の有機電界発光素子における発光層は、少なくとも一種の燐光発光材料を含有することが好ましい。
 本発明の有機電界発光素子における前記発光層は、前記発光材料のみで構成されていてもよく、ホスト材料と前記発光材料の混合層とした構成でもよい。前記発光材料の種類は一種であっても二種以上であってもよい。前記ホスト材料は電荷輸送材料であることが好ましい。前記ホスト材料は一種であっても二種以上であってもよく、例えば、電子輸送性のホスト材料とホール輸送性のホスト材料を混合した構成が挙げられる。更に、前記発光層は、電荷輸送性を有さず、発光しない材料を含んでいてもよい。
 また、発光層は一層であっても二層以上の多層であってもよく、それぞれの層に同じ発光材料やホスト材料を含んでもよいし、層毎に異なる材料を含んでもよい。発光層が複数の場合、それぞれの発光層が異なる発光色で発光してもよい。
 発光層の厚さは、特に限定されるものではないが、通常、2nm~500nmであるのが好ましく、中でも、外部量子効率の観点で、3nm~200nmであるのがより好ましく、5nm~100nmであるのが更に好ましい。
 本発明の有機電界発光素子は、前記発光層が前記一般式(1)で表される化合物を含有することが好ましい態様であり、前記発光層のホスト材料として前記一般式(1)で表される化合物を用いることがより好ましい態様である。ここで、本明細書中、ホスト材料とは、発光層において主に電荷の注入、輸送を担う化合物であり、また、それ自体は実質的に発光しない化合物のことである。ここで「実質的に発光しない」とは、該実質的に発光しない化合物からの発光量が好ましくは素子全体での全発光量の5%以下であり、より好ましくは3%以下であり、更に好ましくは1%以下であることを言う。
 以下、前記発光層の材料として、前記発光材料、前記一般式(1)で表される化合物以外のその他のホスト材料について順に説明する。なお、前記一般式(1)で表される化合物は、本発明の有機電界発光素子において前記発光層以外に用いられてもよい。
(発光材料)
 本発明における発光材料としては、燐光発光材料、蛍光発光材料等いずれも用いることができる。
 本発明における発光層は、色純度を向上させるためや発光波長領域を広げるために2種類以上の発光材料を含有することができる。発光材料の少なくとも一種が燐光発光材料であることが好ましい。
 本発明では、発光層に含有される少なくとも一種の燐光発光材料に加えて、発光材料として、蛍光発光材料や、発光層に含有される燐光発光材料とは異なる燐光発光材料を用いることができる。
 これら蛍光発光材料や燐光発光材料については、例えば、特開2008-270736号公報の段落番号[0100]~[0164]、特開2007-266458号公報の段落番号[0088]~[0090]に詳述されており、これら公報の記載の事項を本発明に適用することができる。
 本発明に使用できる燐光発光材料としては、例えば、US6303238B1、US6097147、WO00/57676、WO00/70655、WO01/08230、WO01/39234A2、WO01/41512A1、WO02/02714A2、WO02/15645A1、WO02/44189A1、WO05/19373A2、特開2001-247859、特開2002-302671、特開2002-117978、特開2003-133074、特開2002-235076、特開2003-123982、特開2002-170684、EP1211257、特開2002-226495、特開2002-234894、特開2001-247859、特開2001-298470、特開2002-173674、特開2002-203678、特開2002-203679、特開2004-357791、特開2006-256999、特開2007-19462、特開2007-84635、特開2007-96259、WO07/095118、WO10/111175、WO10/027583、WO10/028151等の特許文献に記載の燐光発光化合物などが挙げられ、中でも、更に好ましい発光材料としては、イリジウム(Ir)錯体、白金(Pt)錯体、Cu錯体、Re錯体、W錯体、Rh錯体、Ru錯体、Pd錯体、Os錯体、Eu錯体、Tb錯体、Gd錯体、Dy錯体、及びCe錯体等の燐光発光性金属錯体化合物が挙げられる。特に好ましくは、イリジウム(Ir)錯体、白金(Pt)錯体、又はRe錯体であり、中でも金属-炭素結合、金属-窒素結合、金属-酸素結合、金属-硫黄結合の少なくとも一つの配位様式を含むイリジウム(Ir)錯体、白金(Pt)錯体、又はRe錯体が好ましい。更に、発光効率、駆動耐久性、色度等の観点で、イリジウム(Ir)錯体、白金(Pt)錯体が特に好ましく、イリジウム(Ir)錯体が最も好ましい。
 本発明における発光層に含有される燐光発光材料としては、以下に示す一般式(E-1)で表されるイリジウム(Ir)錯体、又は以下の一般式(C-1)で表される白金(Pt)錯体を用いることが好ましい。
 一般式(E-1)で表されるイリジウム(Ir)錯体について説明する。
Figure JPOXMLDOC01-appb-C000020
 一般式(E-1)中、Z1及びZ2はそれぞれ独立に、炭素原子又は窒素原子を表す。
 A1はZ1と窒素原子と共に5又は6員のヘテロ環を形成する原子群を表す。
 B1はZ2と炭素原子と共に5又は6員環を形成する原子群を表す。
 (X-Y)はモノアニオン性の二座配位子を表す。
 nE1は1~3の整数を表す。nE1が2または3の場合、Z1、Z2、A1及びB1を含む配位子が2つまたは3つ存在することになるが、2つまたは3つ存在する該配位子は互いに同じであっても異なっていてもよい。
 nE1は1~3の整数を表し、好ましくは2又は3であり、さらに好ましくは3である。
 Z1及びZ2はそれぞれ独立に、炭素原子又は窒素原子を表す。Z1及びZ2として好ましくは炭素原子である。
 A1はZ1と窒素原子と共に5又は6員のヘテロ環を形成する原子群を表す。A1、Z1及び窒素原子を含む5又は6員のヘテロ環としては、ピリジン環、ピリミジン環、ピラジン環、トリアジン環、イミダゾール環、ピラゾール環、オキサゾール環、チアゾール環、トリアゾール環、オキサジアゾール環、チアジアゾール環などが挙げられる。
 錯体の安定性、発光波長制御及び発光量子収率の観点から、A1、Z1及び窒素原子で形成される5又は6員のヘテロ環として好ましくは、ピリジン環、ピラジン環、イミダゾール環、ピラゾール環であり、より好ましくはピリジン環、イミダゾール環、ピラジン環であり、更に好ましくはピリジン環、イミダゾール環であり、最も好ましくはピリジン環である。
 前記A1、Z1及び窒素原子で形成される5又は6員のヘテロ環は置換基を有していてもよく、炭素原子上の置換基としては下記置換基群Aが、窒素原子上の置換基としては下記置換基群Bが適用できる。炭素上の置換基として好ましくはアルキル基、ペルフルオロアルキル基、アリール基、ヘテロアリール基、ジアルキルアミノ基、ジアリールアミノ基、アルコキシ基、シアノ基、フッ素原子である。
《置換基群A》
 アルキル基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~10であり、例えばメチル、エチル、イソプロピル、t-ブチル、n-オクチル、n-デシル、n-ヘキサデシル、シクロプロピル、シクロペンチル、シクロヘキシルなどが挙げられる。)、アルケニル基(好ましくは炭素数2~30、より好ましくは炭素数2~20、特に好ましくは炭素数2~10であり、例えばビニル、アリル、2-ブテニル、3-ペンテニルなどが挙げられる。)、アルキニル基(好ましくは炭素数2~30、より好ましくは炭素数2~20、特に好ましくは炭素数2~10であり、例えばプロパルギル、3-ペンチニルなどが挙げられる。)、アリール基(好ましくは炭素数6~30、より好ましくは炭素数6~20、特に好ましくは炭素数6~12であり、例えばフェニル、p-メチルフェニル、ナフチル、アントリルなどが挙げられる。)、アミノ基(好ましくは炭素数0~30、より好ましくは炭素数0~20、特に好ましくは炭素数0~10であり、例えばアミノ、メチルアミノ、ジメチルアミノ、ジエチルアミノ、ジベンジルアミノ、ジフェニルアミノ、ジトリルアミノなどが挙げられる。)、アルコキシ基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~10であり、例えばメトキシ、エトキシ、ブトキシ、2-エチルヘキシロキシなどが挙げられる。)、アリールオキシ基(好ましくは炭素数6~30、より好ましくは炭素数6~20、特に好ましくは炭素数6~12であり、例えばフェニルオキシ、1-ナフチルオキシ、2-ナフチルオキシなどが挙げられる。)、ヘテロ環オキシ基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~12であり、例えばピリジルオキシ、ピラジニルオキシ、ピリミジニルオキシ、キノリルオキシなどが挙げられる。)、アシル基(好ましくは炭素数2~30、より好ましくは炭素数2~20、特に好ましくは炭素数2~12であり、例えばアセチル、ベンゾイル、ホルミル、ピバロイルなどが挙げられる。)、アルコキシカルボニル基(好ましくは炭素数2~30、より好ましくは炭素数2~20、特に好ましくは炭素数2~12であり、例えばメトキシカルボニル、エトキシカルボニルなどが挙げられる。)、アリールオキシカルボニル基(好ましくは炭素数7~30、より好ましくは炭素数7~20、特に好ましくは炭素数7~12であり、例えばフェニルオキシカルボニルなどが挙げられる。)、アシルオキシ基(好ましくは炭素数2~30、より好ましくは炭素数2~20、特に好ましくは炭素数2~10であり、例えばアセトキシ、ベンゾイルオキシなどが挙げられる。)、アシルアミノ基(好ましくは炭素数2~30、より好ましくは炭素数2~20、特に好ましくは炭素数2~10であり、例えばアセチルアミノ、ベンゾイルアミノなどが挙げられる。)、アルコキシカルボニルアミノ基(好ましくは炭素数2~30、より好ましくは炭素数2~20、特に好ましくは炭素数2~12であり、例えばメトキシカルボニルアミノなどが挙げられる。)、アリールオキシカルボニルアミノ基(好ましくは炭素数7~30、より好ましくは炭素数7~20、特に好ましくは炭素数7~12であり、例えばフェニルオキシカルボニルアミノなどが挙げられる。)、スルホニルアミノ基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~12であり、例えばメタンスルホニルアミノ、ベンゼンスルホニルアミノなどが挙げられる。)、スルファモイル基(好ましくは炭素数0~30、より好ましくは炭素数0~20、特に好ましくは炭素数0~12であり、例えばスルファモイル、メチルスルファモイル、ジメチルスルファモイル、フェニルスルファモイルなどが挙げられる。)、カルバモイル基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~12であり、例えばカルバモイル、メチルカルバモイル、ジエチルカルバモイル、フェニルカルバモイルなどが挙げられる。)、アルキルチオ基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~12であり、例えばメチルチオ、エチルチオなどが挙げられる。)、アリールチオ基(好ましくは炭素数6~30、より好ましくは炭素数6~20、特に好ましくは炭素数6~12であり、例えばフェニルチオなどが挙げられる。)、ヘテロ環チオ基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~12であり、例えばピリジルチオ、2-ベンズイミゾリルチオ、2-ベンズオキサゾリルチオ、2-ベンズチアゾリルチオなどが挙げられる。)、スルホニル基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~12であり、例えばメシル、トシルなどが挙げられる。)、スルフィニル基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~12であり、例えばメタンスルフィニル、ベンゼンスルフィニルなどが挙げられる。)、ウレイド基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~12であり、例えばウレイド、メチルウレイド、フェニルウレイドなどが挙げられる。)、リン酸アミド基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~12であり、例えばジエチルリン酸アミド、フェニルリン酸アミドなどが挙げられる。)、ヒドロキシ基、メルカプト基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子)、シアノ基、スルホ基、カルボキシル基、ニトロ基、ヒドロキサム酸基、スルフィノ基、ヒドラジノ基、イミノ基、ヘテロ環基(ヘテロアリール基も包含し、好ましくは炭素数1~30、より好ましくは炭素数1~12であり、ヘテロ原子としては、例えば窒素原子、酸素原子、硫黄原子、リン原子、ケイ素原子、セレン原子、テルル原子であり、具体的にはピリジル、ピラジニル、ピリミジニル、ピリダジニル、ピロリル、ピラゾリル、トリアゾリル、イミダゾリル、オキサゾリル、チアゾリル、イソキサゾリル、イソチアゾリル、キノリル、フリル、チエニル、セレノフェニル、テルロフェニル、ピペリジル、ピペリジノ、モルホリノ、ピロリジル、ピロリジノ、ベンゾオキサゾリル、ベンゾイミダゾリル、ベンゾチアゾリル、カルバゾリル基、アゼピニル基、シロリル基などが挙げられる。)、シリル基(好ましくは炭素数3~40、より好ましくは炭素数3~30、特に好ましくは炭素数3~24であり、例えばトリメチルシリル、トリフェニルシリルなどが挙げられる。)、シリルオキシ基(好ましくは炭素数3~40、より好ましくは炭素数3~30、特に好ましくは炭素数3~24であり、例えばトリメチルシリルオキシ、トリフェニルシリルオキシなどが挙げられる。)、ホスホリル基(例えばジフェニルホスホリル基、ジメチルホスホリル基などが挙げられる。)が挙げられる。これらの置換基は更に置換されてもよく、更なる置換基としては、以上に説明した置換基群Aから選択される基を挙げることができる。また、置換基に置換した置換基は更に置換されてもよく、さらなる置換基としては、以上に説明した置換基群Aから選択される基を挙げることができる。また、置換基に置換した置換基に置換した置換基は更に置換されてもよく、さらなる置換基としては、以上に説明した置換基群Aから選択される基を挙げることができる。
《置換基群B》
 アルキル基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~10であり、例えばメチル、エチル、イソプロピル、t-ブチル、n-オクチル、n-デシル、n-ヘキサデシル、シクロプロピル、シクロペンチル、シクロヘキシルなどが挙げられる。)、アルケニル基(好ましくは炭素数2~30、より好ましくは炭素数2~20、特に好ましくは炭素数2~10であり、例えばビニル、アリル、2-ブテニル、3-ペンテニルなどが挙げられる。)、アルキニル基(好ましくは炭素数2~30、より好ましくは炭素数2~20、特に好ましくは炭素数2~10であり、例えばプロパルギル、3-ペンチニルなどが挙げられる。)、アリール基(好ましくは炭素数6~30、より好ましくは炭素数6~20、特に好ましくは炭素数6~12であり、例えばフェニル、p-メチルフェニル、ナフチル、アントリルなどが挙げられる。)、シアノ基、ヘテロ環基(ヘテロアリール基も包含し、好ましくは炭素数1~30、より好ましくは炭素数1~12であり、ヘテロ原子としては、例えば窒素原子、酸素原子、硫黄原子、リン原子、ケイ素原子、セレン原子、テルル原子であり、具体的にはピリジル、ピラジニル、ピリミジニル、ピリダジニル、ピロリル、ピラゾリル、トリアゾリル、イミダゾリル、オキサゾリル、チアゾリル、イソキサゾリル、イソチアゾリル、キノリル、フリル、チエニル、セレノフェニル、テルロフェニル、ピペリジル、ピペリジノ、モルホリノ、ピロリジル、ピロリジノ、ベンゾオキサゾリル、ベンゾイミダゾリル、ベンゾチアゾリル、カルバゾリル基、アゼピニル基、シロリル基などが挙げられる。)これらの置換基は更に置換されてもよく、更なる置換基としては、前記置換基群Aから選択される基を挙げることができる。また、置換基に置換した置換基は更に置換されてもよく、さらなる置換基としては、以上に説明した置換基群Aから選択される基を挙げることができる。また、置換基に置換した置換基に置換した置換基は更に置換されてもよく、さらなる置換基としては、以上に説明した置換基群Aから選択される基を挙げることができる。
 置換基は発光波長や電位の制御のために適宜選択されるが、短波長化させる場合には電子供与性基、フッ素原子、芳香環基が好ましく、例えばアルキル基、ジアルキルアミノ基、アルコキシ基、フッ素原子、アリール基、ヘテロアリール基などが選択される。また長波長化させる場合には電子求引性基が好ましく、例えばシアノ基、ペルフルオロアルキル基などが選択される。
 窒素上の置換基として好ましくは、アルキル基、アリール基、ヘテロアリール基であり、錯体の安定性の観点からアルキル基、アリール基が好ましい。
 前記置換基同士は連結して縮合環を形成していてもよく、形成される環としては、ベンゼン環、ピリジン環、ピラジン環、ピリダジン環、ピリミジン環、イミダゾール環、オキサゾール環、チアゾール環、ピラゾール環、チオフェン環、フラン環などが挙げられる。これら形成される環は置換基を有していてもよく、置換基としては前述の炭素原子上の置換基、窒素原子上の置換基が挙げられる。
 B1はZ2と炭素原子を含む5又は6員環を表す。B1、Z2及び炭素原子で形成される5又は6員環としては、ベンゼン環、ピリジン環、ピリミジン環、ピラジン環、ピリダジン環、トリアジン環、イミダゾール環、ピラゾール環、オキサゾール環、チアゾール環、トリアゾール環、オキサジアゾール環、チアジアゾール環、チオフェン環、フラン環などが挙げられる。
 錯体の安定性、発光波長制御及び発光量子収率の観点からB1、Z2及び炭素原子で形成される5又は6員環として好ましくは、ベンゼン環、ピリジン環、ピラジン環、イミダゾール環、ピラゾール環、チオフェン環であり、より好ましくはベンゼン環、ピリジン環、ピラゾール環であり、更に好ましくはベンゼン環、ピリジン環である。
 前記B1、Z2及び炭素原子で形成される5又は6員環は置換基を有していてもよく、炭素原子上の置換基としては前記置換基群Aが、窒素原子上の置換基としては前記置換基群Bが適用できる。炭素上の置換基として好ましくはアルキル基、ペルフルオロアルキル基、アリール基、ヘテロアリール基、ジアルキルアミノ基、ジアリールアミノ基、アルコキシ基、シアノ基、フッ素原子である。
 置換基は発光波長や電位の制御のために適宜選択されるが、長波長化させる場合には電子供与性基、芳香環基が好ましく、例えばアルキル基、ジアルキルアミノ基、アルコキシ基、アリール基、ヘテロアリール基などが選択される。また短波長化させる場合には電子求引性基が好ましく、例えばフッ素原子、シアノ基、ペルフルオロアルキル基などが選択される。
 窒素上の置換基として好ましくは、アルキル基、アリール基、ヘテロアリール基であり、錯体の安定性の観点からアルキル基、アリール基が好ましい。前記置換基同士は連結して縮合環を形成していてもよく、形成される環としては、ベンゼン環、ピリジン環、ピラジン環、ピリダジン環、ピリミジン環、イミダゾール環、オキサゾール環、チアゾール環、ピラゾール環、チオフェン環、フラン環などが挙げられる。これら形成される環は置換基を有していてもよく、置換基としては前述の炭素原子上の置換基、窒素原子上の置換基が挙げられる。
 また前記A1、Z1及び窒素原子で形成される5又は6員のヘテロ環の置換基と、前記B1、Z2及び炭素原子で形成される5又は6員環の置換基とが連結して、前述と同様の縮合環を形成していてもよい。
 (X-Y)で表される配位子としては、従来公知の金属錯体に用いられる種々の公知の配位子があるが、例えば、「Photochemistry and Photophysics of Coordination Compounds」Springer-Verlag社 H.Yersin著 1987年発行、「有機金属化学-基礎と応用-」裳華房社 山本明夫著 1982年発行等に記載の配位子(例えば、ハロゲン配位子(好ましくは塩素配位子)、含窒素ヘテロアリール配位子(例えば、ビピリジル、フェナントロリンなど)、ジケトン配位子(例えば、アセチルアセトンなど)が挙げられる。
 *はイリジウム(Ir)への配位位置を表す。
 (X-Y)で表される配位子としては下記一般式(l-1)~(l-13)が好ましいが、本発明はこれらに限定されない。
Figure JPOXMLDOC01-appb-C000021
 *は一般式(E-1)におけるイリジウム(Ir)への配位位置を表す。Rx、Ry及びRzはそれぞれ独立に水素原子又は置換基を表す。GはC-R又は窒素原子を表す。Rは水素原子、または置換基を表す。
 Rx、Ry及びRzが置換基を表す場合、該置換基としては前記置換基群Aから選ばれる置換基が挙げられる。好ましくは、Rx、Rzはそれぞれ独立にアルキル基、ペルフルオロアルキル基、フッ素原子、アリール基のいずれかであり、より好ましくは炭素数1~4のアルキル基、炭素数1~4のペルフルオロアルキル基、フッ素原子、置換されていても良いフェニル基であり、最も好ましくはメチル基、エチル基、トリフルオロメチル基、フッ素原子、フェニル基である。Ryは好ましくは水素原子、アルキル基、ペルフルオロアルキル基、フッ素原子、アリール基のいずれかであり、より好ましくは水素原子、炭素数1~4のアルキル基、置換されていても良いフェニル基であり、最も好ましくは水素原子、メチル基のいずれかである。これら配位子は素子中で電荷を輸送したり励起によって電子が集中する部位ではないと考えられるため、Rx、Ry、Rzは化学的に安定な置換基であれば良く、本発明の効果にも影響を及ぼさない。
 一般式(I-13)におけるRl1~Rl7は置換基群Aから選ばれる置換基を表すことが好ましく、更に置換基Aを有していてもよい。
 GはC-R又は窒素原子を表す。Rが置換基を表す場合、該置換基としては前記置換基群Aから選ばれる置換基が挙げられる。
 Rl1~Rl7およびGがC-Rを表す場合のRは、任意の2つが互いに結合して縮合4~7員環を形成してもよく、該縮合4~7員環は、シクロアルキル、アリール又はヘテロアリールであり、該縮合4~7員環は更に置換基を有していてもよい。
 Rl1~Rl7の好ましい範囲は、後述の一般式(E-3)におけるRT1~RT7の好ましい範囲と同様である。
 Gとして好ましくはC-Rであり、Rとして好ましくは水素原子、アリール基であり、より好ましくは水素原子、炭素数6から30の置換若しくは無置換のアリール基(例えば、フェニル基、トリル基、ナフチル基等)、であり、特に好ましくは水素原子、フェニル基である。
 (X-Y)としてより好ましくは(l-1)、(l-4)、(l-13)であり、特に好ましくは(l-1)、(l-13)である。これらの配位子を有する錯体は、対応する配位子前駆体を用いることで公知の合成例と同様に合成できる。例えば国際公開2009-073245号46ページに記載の方法と同様に合成する事ができる。
 一般式(E-1)で表されるイリジウム(Ir)錯体の好ましい態様は、一般式(E-2)で表されるイリジウム(Ir)錯体である。
Figure JPOXMLDOC01-appb-C000022
 一般式(E-2)中、AE1~AE8はそれぞれ独立に、窒素原子又はC-REを表す。
 REは水素原子又は置換基を表す。
 (X-Y)はモノアニオン性の二座配位子を表す。
 nE2は1~3の整数を表す。
 AE1~AE8はそれぞれ独立に、窒素原子又はC-REを表す。REは水素原子又は置換基を表し、RE同士が互いに連結して環を形成していてもよい。形成される環としては、前述の一般式(E-1)において述べた縮合環と同様のものが挙げられる。REで表される置換基としては、前記置換基群Aとして挙げたものが適用できる。
 AE1~AE4として好ましくはC-REであり、AE1~AE4がC-REである場合に、AE3のREとして好ましくは水素原子、アルキル基、アリール基、アミノ基、アルコキシ基、アリールオキシ基、フッ素原子、又はシアノ基であり、より好ましくは水素原子、アルキル基、アミノ基、アルコキシ基、アリールオキシ基、又はフッ素原子であり、特に好ましく水素原子、又はフッ素原子であり、AE1、AE2及びAE4のREとして好ましくは水素原子、アルキル基、アリール基、アミノ基、アルコキシ基、アリールオキシ基、フッ素原子、又はシアノ基であり、より好ましくは水素原子、アルキル基、アミノ基、アルコキシ基、アリールオキシ基、又はフッ素原子であり、特に好ましく水素原子である。
 AE5~AE8として好ましくはC-REであり、AE5~AE8がC-REである場合に、REとして好ましくは水素原子、アルキル基、ペルフルオロアルキル基、アリール基、ヘテロアリール基、ジアルキルアミノ基、ジアリールアミノ基、アルキルオキシ基、シアノ基、又はフッ素原子であり、より好ましくは、水素原子、アルキル基、ペルフルオロアルキル基、アリール基、ジアルキルアミノ基、シアノ基、又はフッ素原子であり、更に好ましくは、水素原子、アルキル基、トリフルオロメチル基、又はフッ素原子である。また可能な場合は置換基同士が連結して縮環構造を形成してもよい。発光波長を短波長側にシフトさせる場合、AE6が窒素原子であることが好ましい。
 (X-Y)、及びnE2は一般式(E-1)における(X-Y)、及びnE1と同義であり好ましい範囲も同様である。
 前記一般式(E-2)で表される化合物のより好ましい形態は、下記一般式(E-3)で表される化合物である。
Figure JPOXMLDOC01-appb-C000023
 一般式(E-3)中、RT1、RT2、RT3、RT4、RT5、RT6及びRT7は、それぞれ独立に水素原子、アルキル基、シクロアルキル基、アルケニル基、アルキニル基、-CN、ペルフルオロアルキル基、トリフルオロビニル基、-CO2R、-C(O)R、-NR2、-NO2、-OR、ハロゲン原子、アリール基又はヘテロアリール基を表し、更に置換基を有していてもよい。Rはそれぞれ独立に、水素原子、アルキル基、ペルハロアルキル基、アルケニル基、アルキニル基、ヘテロアルキル基、アリール基又はヘテロアリール基を表す。
 AはCR'又は窒素原子を表し、R'は水素原子、アルキル基、シクロアルキル基、アルケニル基、アルキニル基、-CN、ペルフルオロアルキル基、トリフルオロビニル基、-CO2R、-C(O)R、-NR2、-NO2、-OR、ハロゲン原子、アリール基又はヘテロアリール基を表し、更に置換基を有していてもよい。Rはそれぞれ独立に、水素原子、アルキル基、ペルハロアルキル基、アルケニル基、アルキニル基、ヘテロアルキル基、アリール基又はヘテロアリール基を表す。
 RT1~RT7、及びR'は、任意の2つが互いに結合して縮合4~7員環を形成してもよく、該縮合4~7員環は、シクロアルキル、アリール又はヘテロアリールであり、該縮合4~7員環は更に置換基を有していてもよい。これらのうち、RT1とRT7、又はRT5とRT6で縮環してベンゼン環を形成する場合が好ましく、RT5とRT6で縮環してベンゼン環を形成する場合が特に好ましい。
 (X-Y)は、モノアニオン性の二座配位子を表す。nE3は1~3の整数を表す。
 アルキル基としては、置換基を有していてもよく、飽和であっても不飽和であってもよく、置換してもよい基としては、前述の置換基Aを挙げることができる。RT1~RT7、及びR'で表されるアルキル基として、好ましくは総炭素原子数1~8のアルキル基であり、より好ましくは総炭素原子数1~6のアルキル基であり、例えばメチル基、エチル基、i-プロピル基、シクロヘキシル基、t-ブチル基等が挙げられ、メチル基が特に好ましい。
 シクロアルキル基としては、置換基を有していてもよく、飽和であっても不飽和であってもよく、置換してもよい基としては、前述の置換基Aを挙げることができる。RT1~RT7、及びR'で表されるシクロアルキル基として、好ましくは環員数4~7のシクロアルキル基であり、より好ましくは総炭素原子数5~6のシクロアルキル基であり、例えばシクロペンチル基、シクロヘキシル基等が挙げられる。
 RT1~RT7、及びR'で表されるアルケニル基としては好ましくは炭素数2~30、より好ましくは炭素数2~20、特に好ましくは炭素数2~10であり、例えばビニル、アリル、1-プロペニル、1-イソプロペニル、1-ブテニル、2-ブテニル、3-ペンテニルなどが挙げられる。
 RT1~RT7、及びR'で表されるアルキニル基としては、好ましくは炭素数2~30、より好ましくは炭素数2~20、特に好ましくは炭素数2~10であり、例えばエチニル、プロパルギル、1-プロピニル、3-ペンチニルなどが挙げられる。
 RT1~RT7、及びR'で表されるペルフルオロアルキル基は、前述のアルキル基の全ての水素原子がフッ素原子に置き換えられたものが挙げられる。
 RT1~RT7、及びR'で表されるアリール基としては、好ましくは、炭素数6から30の置換若しくは無置換のアリール基、例えば、フェニル基、トリル基、ナフチル基等が挙げられ、フェニル基が特に好ましい。
 RT1~RT7、及びR'で表されるヘテロアリール基としては、好ましくは、炭素数5~8のヘテロアリール基であり、より好ましくは、5又は6員の置換若しくは無置換のヘテロアリール基であり、例えば、ピリジル基、ピラジニル基、ピリダジニル基、ピリミジニル基、トリアジニル基、キノリニル基、イソキノリニル基、キナゾリニル基、シンノリニル基、フタラジニル基、キノキサリニル基、ピロリル基、インドリル基、フリル基、ベンゾフリル基、チエニル基、ベンゾチエニル基、ピラゾリル基、イミダゾリル基、ベンズイミダゾリル基、トリアゾリル基、オキサゾリル基、ベンズオキサゾリル基、チアゾリル基、ベンゾチアゾリル基、イソチアゾリル基、ベンズイソチアゾリル基、チアジアゾリル基、イソオキサゾリル基、ベンズイソオキサゾリル基、ピロリジニル基、ピペリジニル基、ピペラジニル基、イミダゾリジニル基、チアゾリニル基、スルホラニル基、カルバゾリル基、ジベンゾフリル基、ジベンゾチエニル基、7ピリドインドリル基などが挙げられる。好ましい例としては、ピリジル基、ピリミジニル基、イミダゾリル基、チエニル基であり、より好ましくは、ピリジル基、ピリミジニル基である。
 RT1~RT7、及びR'として好ましくは、水素原子、アルキル基、シアノ基、トリフルオロメチル基、ペルフルオロアルキル基、ジアルキルアミノ基、フルオロ基、アリール基、ヘテロアリール基であり、より好ましくは水素原子、アルキル基、シアノ基、トリフルオロメチル基、フルオロ基、アリール基であり、更に好ましくは、水素原子、アルキル基、アリール基である。
 RT1~RT7、及びR'は任意の2つが互いに結合して縮合4~7員環を形成してもよく、該縮合4~7員環は、シクロアルキル、アリール又はヘテロアリールであり、該縮合4~7員環は更に置換基を有していてもよい。形成されるシクロアルキル、アリール、ヘテロアリールの定義及び好ましい範囲はRT1~RT7、及びR'で定義したシクロアルキル基、アリール基、ヘテロアリール基と同じである。
 またAがCR'を表すと共に、RT1~RT7、及びR'のうち、0~2つがアルキル基又はフェニル基で、残りが全て水素原子である場合が特に好ましく、RT1~RT7、及びR'のうち、0~2つがアルキル基で、残りが全て水素原子である場合が特に好ましく、RT1~RT7、及びR'のうち、0~2つがメチル基で、残りが全て水素原子である場合が最も好ましい。
 nE3は2又は3であることが好ましい。錯体中の配位子の種類は1~2種類から構成されることが好ましく、更に好ましくは2種類である。
 (X-Y)は、一般式(E-1)における(X-Y)と同義であり好ましい範囲も同様である。
 前記一般式(E-3)で表される化合物の好ましい形態の一つは、下記一般式(E-4)で表される化合物である。
Figure JPOXMLDOC01-appb-C000024
 一般式(E-4)におけるRT1~RT4、A、(X-Y)及びnE4は、一般式(E-3)におけるRT1~RT4、A、(X-Y)及びnE3と同義であり、好ましい範囲も同様である。R1'~R5'はそれぞれ独立に水素原子、アルキル基、シクロアルキル基、アルケニル基、アルキニル基、シアノ基、ペルフルオロアルキル基、トリフルオロビニル基、-CO2R、-C(O)R、-NR2、-NO2、-OR、ハロゲン原子、アリール基又はヘテロアリール基を表し、更に置換基を有していてもよい。Rはそれぞれ独立に、水素原子、アルキル基、ペルハロアルキル基、アルケニル基、アルキニル基、ヘテロアルキル基、アリール基又はヘテロアリール基を表す。
 R1'~R5'は、任意の2つが互いに結合して縮合4~7員環を形成してもよく、該縮合4~7員環は、シクロアルキル、アリール又はヘテロアリールであり、該縮合4~7員環は更に置換基を有していてもよい。
 また、R1'~R5'における好ましい範囲は、一般式(E-3)におけるRT1~RT7、R'と同様である。またAがCR'を表すと共に、RT1~RT4、R'、及びR1'~R5'のうち、0~2つがアルキル基又はフェニル基で残りが全て水素原子である場合が特に好ましく、RT1~RT4、R'、及びR1'~R5'のうち、0~2つがアルキル基で残りが全て水素原子である場合が更に好ましい。
 前記一般式(E-3)で表される化合物の好ましい別の形態は、下記一般式(E-5)で表される化合物である。
Figure JPOXMLDOC01-appb-C000025
 一般式(E-5)におけるRT2~RT6、A、(X-Y)及びnE5は、一般式(E-3)におけるRT2~RT6、A、(X-Y)及びnE3と同義であり、好ましい範囲も同様である。R6'~R8'はそれぞれ独立に水素原子、アルキル基、シクロアルキル基、アルケニル基、アルキニル基、シアノ基、ペルフルオロアルキル基、トリフルオロビニル基、-CO2R、-C(O)R、-NR2、-NO2、-OR、ハロゲン原子、アリール基又はヘテロアリール基を表し、更に置換基を有していてもよい。Rはそれぞれ独立に、水素原子、アルキル基、ペルハロアルキル基、アルケニル基、アルキニル基、ヘテロアルキル基、アリール基又はヘテロアリール基を表す。
 RT5、RT6、R6'~R8'は、任意の2つが互いに結合して縮合4~7員環を形成してもよく、該縮合4~7員環は、シクロアルキル、アリール又はヘテロアリールであり、該縮合4~7員環は更に置換基を有していてもよい。
 また、R6'~R8'における好ましい範囲は、一般式(E-3)におけるRT1~RT7、R'と同様である。またAがCR'を表すと共に、RT2~RT6、R'、及びR6'~R8'のうち、0~2つがアルキル基又はフェニル基で残りが全て水素原子である場合が特に好ましく、RT2~RT6、R'、及びR6'~R8'のうち、0~2つがアルキル基で残りが全て水素原子である場合が更に好ましい。
 一般式(E-4)又は(E-5)で表される燐光発光材料を用いる場合、一般式(1)で表される化合物は、発光層又は正孔ブロック層に含有されることが好ましく、発光層に含有されることがより好ましい。
 一般式(E-1)で表される化合物の好ましい別の形態は、下記一般式(E-6)で表される場合である。
Figure JPOXMLDOC01-appb-C000026
 一般式(E-6)中、R1a~R1kは、それぞれ独立に水素原子、アルキル基、シクロアルキル基、アルケニル基、アルキニル基、シアノ基、ペルフルオロアルキル基、トリフルオロビニル基、-CO2R、-C(O)R、-NR2、-NO2、-OR、ハロゲン原子、アリール基又はヘテロアリール基を表し、更に置換基を有していてもよい。Rはそれぞれ独立に、水素原子、アルキル基、ペルハロアルキル基、アルケニル基、アルキニル基、ヘテロアルキル基、アリール基又はヘテロアリール基を表す。
 R1a~R1kは、任意の2つが互いに結合して縮合4~7員環を形成してもよく、該縮合4~7員環は、シクロアルキル、アリール又はヘテロアリールであり、該縮合4~7員環は更に置換基を有していてもよい。
 (X-Y)は、モノアニオン性の二座配位子を表す。
 nE6は1~3の整数を表す。
 一般式(E-6)において、R1a~R1kの好ましい範囲は、一般式(E-3)におけるRT1~RT7、R'におけるものと同様である。またR1a~R1kのうち、0~2つがアルキル基又はフェニル基で残りが全て水素原子である場合が特に好ましく、R1a~R1kのうち、0~2つがアルキル基で残りが全て水素原子である場合が更に好ましい。
 R1jとR1kとが連結し単結合を形成する場合が特に好ましい。
 (X-Y)、及びnE6の好ましい範囲は、一般式(E-3)における(X-Y)、及びnE3と同様である。
 一般式(E-6)で表される化合物のより好ましい形態は、下記一般式(E-7)で表される場合である。
Figure JPOXMLDOC01-appb-C000027
 一般式(E-7)中、R1a~R1iは、それぞれ独立に水素原子、アルキル基、シクロアルキル基、アルケニル基、アルキニル基、シアノ基、ペルフルオロアルキル基、トリフルオロビニル基、-CO2R、-C(O)R、-NR2、-NO2、-OR、ハロゲン原子、アリール基又はヘテロアリール基を表し、更に置換基を有していてもよい。Rはそれぞれ独立に、水素原子、アルキル基、ペルハロアルキル基、アルケニル基、アルキニル基、ヘテロアルキル基、アリール基又はヘテロアリール基を表す。
 R1a~R1kは、任意の2つが互いに結合して縮合4~7員環を形成してもよく、該縮合4~7員環は、シクロアルキル基、アリール基又はヘテロアリール基であり、該縮合4~7員環は更に置換基を有していてもよい。
 (X-Y)は、モノアニオン性の二座配位子を表す。
 nE7は1~3の整数を表す。
 一般式(E-7)中、R1a~R1iの定義や好ましい範囲は一般式(E-6)におけるR1a~R1iと同様である。またR1a~R1iのうち、0~2つがアルキル基又はアリール基で残りが全て水素原子である場合が特に好ましい。(X-Y)、及びnE7の定義や好ましい範囲は一般式(E-3)における(X-Y)、及びnE3と同様である。
 一般式(E-6)又は(E-7)で表される燐光発光材料を用いる場合、一般式(1)で表される化合物は、発光層又は正孔ブロック層に含有されることが好ましい。
 前記一般式(E-3)で表される化合物の好ましい形態の一つは、下記一般式(E-8)で表される化合物である。
Figure JPOXMLDOC01-appb-C000028
 一般式(E-8)におけるRT1~RT7は、一般式(E-3)におけるそれらと同義であり、また好ましい範囲も同様である。Rl1~Rl7およびGは、配位子(l-13)におけるそれらと同義であり、また好ましい範囲も同様である。R'は水素原子又は置換基群Aから選ばれる置換基を表す。R'として好ましくは、水素原子、アルキル基、シアノ基、トリフルオロメチル基、ペルフルオロアルキル基、ジアルキルアミノ基、フッ素原子、アリール基、ヘテロアリール基であり、より好ましくは、水素原子、アルキル基、フッ素原子、アリール基であり、更に好ましくは水素原子である。nE8は1~3の整数を表し、2又は1であることが好ましい。
 前記一般式(E-3)で表される化合物の好ましい形態の一つは、下記一般式(E-9)で表される化合物である。
Figure JPOXMLDOC01-appb-C000029
 一般式(E-9)におけるRT1、RT3~RT7は、一般式(E-3)におけるそれらと同義であり、また好ましい範囲も同様である。Rl1~Rl7およびGは、配位子(l-13)におけるそれらと同義であり、また好ましい範囲も同様である。R'は水素原子又は置換基群Aから選ばれる置換基を表す。R'として好ましくは、水素原子、アルキル基、シアノ基、トリフルオロメチル基、ペルフルオロアルキル基、ジアルキルアミノ基、フッ素原子、アリール基、ヘテロアリール基であり、より好ましくは、水素原子、アルキル基、フッ素原子、アリール基であり、更に好ましくは水素原子である。nE9は1~3の整数を表し、2又は1であることが好ましい。Xは酸素原子又は硫黄原子を表す。
 一般式(E-1)で表される化合物の好ましい具体例を以下に列挙するが、以下に限定されるものではない。
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
 上記一般式(E-1)で表される化合物として例示した化合物は、特開2009-99783号公報に記載の方法や、米国特許7279232号等に記載の種々の方法で合成できる。合成後、カラムクロマトグラフィー、再結晶等による精製を行った後、昇華精製により精製することが好ましい。昇華精製により、有機不純物を分離できるだけでなく、無機塩や残留溶媒等を効果的に取り除くことができる。
 一般式(E-1)で表される化合物は、発光層に含有されることが好ましいが、その用途が限定されることはなく、有機層内のいずれの層に更に含有されてもよい。
 発光層中の一般式(E-1)で表される化合物は,発光層中に一般的に発光層を形成する全化合物質量に対して、0.1質量%~50質量%含有されるが、耐久性、外部量子効率の観点から1質量%~50質量%含有されることが好ましく、2質量%~40質量%含有されることがより好ましく、5質量%~20質量%含有されることが更に好ましい。
 一般式(1)および(2)のいずれかで表される化合物と、一般式(E-1)~(E-9)のいずれかで表される化合物を発光層中で組み合わせて使用することが、本発明では特に好ましい。
 燐光発光材料として用いることができる白金(Pt)錯体として好ましくは、下記一般式(C-1)で表される白金(Pt)錯体である。
Figure JPOXMLDOC01-appb-C000033
(式中、Q1、Q2、Q3及びQ4はそれぞれ独立に白金(Pt)に配位する配位子を表す。L1、L2及びL3はそれぞれ独立に単結合又は二価の連結基を表す。)
 一般式(C-1)について説明する。Q1、Q2、Q3及びQ4はそれぞれ独立に白金(Pt)に配位する配位子を表す。この時、Q1、Q2、Q3及びQ4と白金(Pt)の結合は、共有結合、イオン結合、配位結合などいずれであっても良い。Q1、Q2、Q3及びQ4中の白金(Pt)に結合する原子としては、炭素原子、窒素原子、酸素原子、硫黄原子、リン原子が好ましく、Q1、Q2、Q3及びQ4中の白金(Pt)に結合する原子の内、少なくとも一つが炭素原子であることが好ましく、二つが炭素原子であることがより好ましく、二つが炭素原子で、二つが窒素原子であることが特に好ましい。
 炭素原子で白金(Pt)に結合するQ1、Q2、Q3及びQ4としては、アニオン性の配位子でも中性の配位子でもよく、アニオン性の配位子としてはビニル配位子、芳香族炭化水素環配位子(例えばベンゼン配位子、ナフタレン配位子、アントラセン配位子、フェナントレン配位子など)、ヘテロ環配位子(例えばフラン配位子、チオフェン配位子、ピリジン配位子、ピラジン配位子、ピリミジン配位子、ピリダジン配位子、トリアジン配位子、チアゾール配位子、オキサゾール配位子、ピロール配位子、イミダゾール配位子、ピラゾール配位子、トリアゾール配位子及び、それらを含む縮環体(例えばキノリン配位子、ベンゾチアゾール配位子など))が挙げられる。中性の配位子としてはカルベン配位子が挙げられる。
 Q1、Q2、Q3及びQ4で表される基は、置換基を有していてもよく、置換基としては前記置換基群Aとして挙げたものが適宜適用できる。また置換基同士が連結していても良い(Q3とQ4が連結した場合、環状四座配位子の白金(Pt)錯体になる)。
 Q1、Q2、Q3及びQ4で表される基として好ましくは、炭素原子で白金(Pt)に結合する芳香族炭化水素環配位子、炭素原子で白金(Pt)に結合する芳香族ヘテロ環配位子、窒素原子で白金(Pt)に結合する含窒素芳香族ヘテロ環配位子、アシルオキシ配位子、アルキルオキシ配位子、アリールオキシ配位子、ヘテロアリールオキシ配位子、シリルオキシ配位子であり、より好ましくは、炭素原子で白金(Pt)に結合する芳香族炭化水素環配位子、炭素原子で白金(Pt)に結合する芳香族ヘテロ環配位子、窒素原子で白金(Pt)に結合する含窒素芳香族ヘテロ環配位子、アシルオキシ配位子、アリールオキシ配位子であり、更に好ましくは炭素原子で白金(Pt)に結合する芳香族炭化水素環配位子、炭素原子で白金(Pt)に結合する芳香族ヘテロ環配位子、窒素原子で白金(Pt)に結合する含窒素芳香族ヘテロ環配位子、アシルオキシ配位子である。
 L1、L2及びL3は、単結合又は二価の連結基を表す。L1、L2及びL3で表される二価の連結基としては、アルキレン基(メチレン、エチレン、プロピレンなど)、アリーレン基(フェニレン、ナフタレンジイル)、ヘテロアリーレン基(ピリジンジイル、チオフェンジイルなど)、イミノ基(-NR-)(フェニルイミノ基など)、オキシ基(-O-)、チオ基(-S-)、ホスフィニデン基(-PR-)(フェニルホスフィニデン基など)、シリレン基(-SiRR'-)(ジメチルシリレン基、ジフェニルシリレン基など)、又はこれらを組み合わせたものが挙げられる。ここで、R及びR'としては各々独立してアルキル基、アリール基等が挙げられる。これらの連結基は、更に置換基を有していてもよい。
 錯体の安定性及び発光量子収率の観点から、L1、L2及びL3として好ましくは単結合、アルキレン基、アリーレン基、ヘテロアリーレン基、イミノ基、オキシ基、チオ基、シリレン基であり、より好ましくは単結合、アルキレン基、アリーレン基、イミノ基であり、更に好ましくは単結合、アルキレン基、アリーレン基であり、更に好ましくは、単結合、メチレン基、フェニレン基であり、更に好ましくは単結合、ジ置換のメチレン基であり、更に好ましくは単結合、ジメチルメチレン基、ジエチルメチレン基、ジイソブチルメチレン基、ジベンジルメチレン基、エチルメチルメチレン基、メチルプロピルメチレン基、イソブチルメチルメチレン基、ジフェニルメチレン基、メチルフェニルメチレン基、シクロヘキサンジイル基、シクロペンタンジイル基、フルオレンジイル基、フルオロメチルメチレン基である。
 L1は特に好ましくはジメチルメチレン基、ジフェニルメチレン基、シクロヘキサンジイル基であり、最も好ましくはジメチルメチレン基である。
 L2及びL3として最も好ましくは単結合である。
 一般式(C-1)で表される白金(Pt)錯体のうち、より好ましくは下記一般式(C-2)で表される白金(Pt)錯体である。
Figure JPOXMLDOC01-appb-C000034
(式中、L21は単結合又は二価の連結基を表す。A21、A22はそれぞれ独立に炭素原子又は窒素原子を表す。Z21、Z22はそれぞれ独立に含窒素芳香族ヘテロ環を表す。Z23、Z24はそれぞれ独立にベンゼン環又は芳香族ヘテロ環を表す。)
 一般式(C-2)について説明する。L21は、前記一般式(C-1)中のL1と同義であり、また好ましい範囲も同様である。
 A21、A22はそれぞれ独立に炭素原子又は窒素原子を表す。A21、A22の内、少なくとも一方は炭素原子であることが好ましく、A21、A22が共に炭素原子であることが、錯体の安定性の観点及び錯体の発光量子収率の観点から好ましい。
 Z21、Z22は、それぞれ独立に含窒素芳香族ヘテロ環を表す。Z21、Z22で表される含窒素芳香族ヘテロ環としては、ピリジン環、ピリミジン環、ピラジン環、トリアジン環、イミダゾール環、ピラゾール環、オキサゾール環、チアゾール環、トリアゾール環、オキサジアゾール環、チアジアゾール環などが挙げられる。錯体の安定性、発光波長制御及び発光量子収率の観点から、Z21、Z22で表される環として好ましくは、ピリジン環、ピラジン環、イミダゾール環、ピラゾール環であり、より好ましくはピリジン環、イミダゾール環、ピラゾール環であり、更に好ましくはピリジン環、ピラゾール環であり、特に好ましくはピリジン環である。
 Z23、Z24は、それぞれ独立にベンゼン環又は芳香族ヘテロ環を表す。Z23、Z24で表される含窒素芳香族ヘテロ環としては、ピリジン環、ピリミジン環、ピラジン環、ピリダジン環、トリアジン環、イミダゾール環、ピラゾール環、オキサゾール環、チアゾール環、トリアゾール環、オキサジアゾール環、チアジアゾール環、チオフェン環、フラン環などが挙げられる。錯体の安定性、発光波長制御及び発光量子収率の観点からZ23、Z24で表される環として好ましくは、ベンゼン環、ピリジン環、ピラジン環、イミダゾール環、ピラゾール環、チオフェン環であり、より好ましくはベンゼン環、ピリジン環、ピラゾール環であり、更に好ましくはベンゼン環、ピリジン環である。
 一般式(C-2)で表される白金(Pt)錯体のうち、より好ましい態様の一つは下記一般式(C-4)で表される白金(Pt)錯体である。
Figure JPOXMLDOC01-appb-C000035
(一般式(C-4)中、A401~A414はそれぞれ独立にC-R又は窒素原子を表す。Rは水素原子又は置換基を表す。L41は単結合又は二価の連結基を表す。)
 一般式(C-4)について説明する。
 A401~A414はそれぞれ独立にC-R又は窒素原子を表す。Rは水素原子又は置換基を表す。
 Rで表される置換基としては、前記置換基群Aとして挙げたものが適用できる。
 A401~A406として好ましくはC-Rであり、R同士が互いに連結して環を形成していても良い。A401~A406がC-Rである場合に、A402、A405のRとして好ましくは水素原子、アルキル基、アリール基、アミノ基、アルコキシ基、アリールオキシ基、フッ素原子、シアノ基であり、より好ましくは水素原子、アミノ基、アルコキシ基、アリールオキシ基、フッ素原子であり、特に好ましくは水素原子、フッ素原子である。A401、A403、A404、A406のRとして好ましくは水素原子、アルキル基、アリール基、アミノ基、アルコキシ基、アリールオキシ基、フッ素原子、シアノ基であり、より好ましくは水素原子、アミノ基、アルコキシ基、アリールオキシ基、フッ素原子であり、特に好ましく水素原子である。
 L41は、前記一般式(C-1)中のL1と同義であり、また好ましい範囲も同様である。
 A407~A414としては、A407~A410とA411~A414のそれぞれにおいて、N(窒素原子)の数は、0~2が好ましく、0~1がより好ましい。発光波長を短波長側にシフトさせる場合、A408及びA412のいずれかが窒素原子であることが好ましく、A408とA412が共に窒素原子であることが更に好ましい。
 一般式(C-2)で表される白金(Pt)錯体のうち、より好ましい態様の一つは下記一般式(C-5)で表される白金(Pt)錯体である。
Figure JPOXMLDOC01-appb-C000036
 (一般式(C-5)中、A501~A512は、それぞれ独立に、C-R又は窒素原子を表す。Rは水素原子又は置換基を表す。L51は単結合又は二価の連結基を表す。)
 一般式(C-5)について説明する。A501~A506及びL51は、前記一般式(C-4)におけるA401~A406及びL41と同義であり、好ましい範囲も同様である。
 A507、A508及びA509とA510、A511及びA512は、及びそれぞれ独立に、C-R又は窒素原子を表す。Rは水素原子又は置換基を表す。Rで表される置換基としては、前記置換基群Aとして挙げたものが適用できる。
 一般式(C-1)で表される白金(Pt)錯体のうち、より好ましい別の態様は下記一般式(C-6)で表される白金(Pt)錯体である。
Figure JPOXMLDOC01-appb-C000037
 (式中、L61は単結合又は二価の連結基を表す。A61はそれぞれ独立に炭素原子又は窒素原子を表す。Z61、Z62はそれぞれ独立に含窒素芳香族ヘテロ環を表す。Z63はそれぞれ独立にベンゼン環又は芳香族ヘテロ環を表す。Yは白金(Pt)に結合するアニオン性の非環状配位子である。)
 一般式(C-6)について説明する。L61は、前記一般式(C-1)中のL1と同義であり、また好ましい範囲も同様である。
 A61は炭素原子又は窒素原子を表す。錯体の安定性の観点及び錯体の発光量子収率の観点からA61は炭素原子であることが好ましい。
 Z61、Z62は、それぞれ前記一般式(C-2)におけるZ21、Z22と同義であり、また好ましい範囲も同様である。Z63は、前記一般式(C-2)におけるZ23と同義であり、また好ましい範囲も同様である。
 Yは白金(Pt)に結合するアニオン性の非環状配位子である。非環状配位子とは白金(Pt)に結合する原子が配位子の状態で環を形成していないものである。Y中の白金(Pt)に結合する原子としては、炭素原子、窒素原子、酸素原子、硫黄原子が好ましく、窒素原子、酸素原子がより好ましく、酸素原子が最も好ましい。
 炭素原子で白金(Pt)に結合するYとしてはビニル配位子が挙げられる。窒素原子で白金(Pt)に結合するYとしてはアミノ配位子、イミノ配位子が挙げられる。酸素原子で白金(Pt)に結合するYとしては、アルコキシ配位子、アリールオキシ配位子、ヘテロアリールオキシ配位子、アシルオキシ配位子、シリルオキシ配位子、カルボキシル配位子、リン酸配位子、スルホン酸配位子などが挙げられる。硫黄原子で白金(Pt)に結合するYとしては、アルキルメルカプト配位子、アリールメルカプト配位子、ヘテロアリールメルカプト配位子、チオカルボン酸配位子などが挙げられる。
 Yで表される配位子は、置換基を有していてもよく、置換基としては前記置換基群Aとして挙げたものが適宜適用できる。また置換基同士が連結していても良い。
 Yで表される配位子として好ましくは酸素原子で白金(Pt)に結合する配位子であり、より好ましくはアシルオキシ配位子、アルキルオキシ配位子、アリールオキシ配位子、ヘテロアリールオキシ配位子、シリルオキシ配位子であり、更に好ましくはアシルオキシ配位子である。
 一般式(C-6)で表される白金(Pt)錯体のうち、より好ましい態様の一つは下記一般式(C-7)で表される白金(Pt)錯体である。
Figure JPOXMLDOC01-appb-C000038
(式中、A701~A710は、それぞれ独立に、C-R又は窒素原子を表す。Rは水素原子又は置換基を表す。L71は単結合又は二価の連結基を表す。Yは白金(Pt)に結合するアニオン性の非環状配位子である。)
 一般式(C-7)について説明する。L71は、前記一般式(C-6)中のL61と同義であり、また好ましい範囲も同様である。A701~A710は一般式(C-4)におけるA401~A410と同義であり、また好ましい範囲も同様である。Yは一般式(C-6)におけるYと同義であり、また好ましい範囲も同様である。
 一般式(C-1)で表される白金(Pt)錯体として具体的には、特開2005-310733号公報の〔0143〕~〔0152〕、〔0157〕~〔0158〕、〔0162〕~〔0168〕に記載の化合物、特開2006-256999号公報の〔0065〕~〔0083〕に記載の化合物、特開2006-93542号公報の〔0065〕~〔0090〕に記載の化合物、特開2007-73891号公報の〔0063〕~〔0071〕に記載の化合物、特開2007-324309号公報の〔0079〕~〔0083〕に記載の化合物、特開2006-93542号公報の〔0065〕~〔0090〕に記載の化合物、特開2007-96255号公報の〔0055〕~〔0071〕に記載の化合物、特開2006-313796号公報の〔0043〕~〔0046〕が挙げられ、その他以下に例示する白金(Pt)錯体が挙げられる。
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
 一般式(C-1)で表される白金(Pt)錯体化合物は、例えば、Journal of Organic Chemistry 53,786,(1988)、G.R.Newkome et al.)の、789頁、左段53行~右段7行に記載の方法、790頁、左段18行~38行に記載の方法、790頁、右段19行~30行に記載の方法及びその組み合わせ、Chemische Berichte 113,2749(1980)、H.Lexyほか)の、2752頁、26行~35行に記載の方法等、種々の手法で合成できる。
 例えば、配位子、又はその解離体と金属化合物を溶媒(例えば、ハロゲン系溶媒、アルコール系溶媒、エーテル系溶媒、エステル系溶媒、ケトン系溶媒、ニトリル系溶媒、アミド系溶媒、スルホン系溶媒、スルホキサイド系溶媒、水などが挙げられる)の存在下、若しくは、溶媒非存在下、塩基の存在下(無機、有機の種々の塩基、例えば、ナトリウムメトキシド、t-ブトキシカリウム、トリエチルアミン、炭酸カリウムなどが挙げられる)、若しくは、塩基非存在下、室温以下、若しくは加熱し(通常の加熱以外にもマイクロウェーブで加熱する手法も有効である)得ることができる。
 本発明の有機電界発光の前記発光層における一般式(C-1)で表される化合物の含有量は発光層中1~30質量%であることが好ましく、3~25質量%であることがより好ましく、5~20質量%であることが更に好ましい。
 前記蛍光発光材料の種類は特に限定されるものではないが、例えば、ベンゾオキサゾール、ベンゾイミダゾール、ベンゾチアゾール、スチリルベンゼン、ポリフェニル、ジフェニルブタジエン、テトラフェニルブタジエン、ナフタルイミド、クマリン、ピラン、ペリノン、オキサジアゾール、アルダジン、ピラリジン、シクロペンタジエン、ビススチリルアントラセン、キナクリドン、ピロロピリジン、チアジアゾロピリジン、シクロペンタジエン、スチリルアミン、縮合多環芳香族化合物(アントラセン、フェナントレン、ピレン、ペリレン、フルオランテン、ルブレン、クリセン、又はペンタセンなど)、8-キノリノールの金属錯体、ピロメテン錯体や希土類錯体に代表される各種金属錯体、ポリチオフェン、ポリフェニレン、ポリフェニレンビニレン等のポリマー化合物、有機シラン、及びこれらの誘導体などを挙げることができる。
 以下に蛍光発光材料の具体例を示すが、本発明はこれらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
 本発明の有機電界発光素子の前記発光層における蛍光発光材料の含有量は発光層中1~30質量%であることが好ましく、1~20質量%であることがより好ましく、1~10質量%であることが更に好ましい。
 本発明において、一般式(1)で表される化合物とのクエンチ防止の点から、発光材料の極大発光波長は、400~700nmであることが好ましく、500~700nmであることがより好ましく、520~650nmであることが更に好ましく、520~550nmであることが最も好ましい。
 一般式(E-3)で表される燐光発光材料の極大発光波長は、複数のRT1~RT7、及びR'で共同して環形成しない場合にはおよそ500~550nmの範囲、一般式(E-4)又は(E-5)で表される燐光発光材料の極大発光波長は、およそ550~650nmの範囲である。
 発光層の厚さは、特に限定されるものではないが、通常、2nm~500nmであるのが好ましく、中でも、外部量子効率の観点で、5nm~200nmであるのがより好ましく、10nm~100nmであるのが更に好ましい。
 本発明の有機電界発光素子における発光層は、発光材料のみで構成されていてもよく、ホスト材料と発光材料の混合層とした構成でもよい。発光材料の種類は一種であっても二種以上であっても良い。ホスト材料は電荷輸送材料であることが好ましい。ホスト材料は一種であっても二種以上であってもよく、例えば、電子輸送性のホスト材料と正孔輸送性のホスト材料を混合した構成が挙げられる。更に、発光層中に電荷輸送性を有さず、発光しない材料を含んでいてもよい。
 また、発光層は一層であっても二層以上の多層であってもよく、それぞれの層に同じ発光材料やホスト材料を含んでもよいし、層毎に異なる材料を含んでもよい。発光層が複数の場合、それぞれの発光層が異なる発光色で発光してもよい。
(ホスト材料)
 ホスト材料とは、発光層において主に電荷の注入、輸送を担う化合物であり、また、それ自体は実質的に発光しない化合物のことである。ここで「実質的に発光しない」とは、該実質的に発光しない化合物からの発光量が好ましくは素子全体での全発光量の5%以下であり、より好ましくは3%以下であり、更に好ましくは1%以下であることを言う。
 ホスト材料としては、一般式(1)で表される化合物を用いることができる。
 その他の本発明有機電界発光素子に用いることのできるホスト材料としては、例えば、以下の化合物を挙げることができる。
 ピロール、インドール、カルバゾール、アザインドール、アザカルバゾール、トリアゾール、オキサゾール、オキサジアゾール、ピラゾール、イミダゾール、チオフェン、ベンゾチオフェン、ジベンゾチオフェン、フラン、ベンゾフラン、ジベンゾフラン、ポリアリールアルカン、ピラゾリン、ピラゾロン、フェニレンジアミン、アリールアミン、アミノ置換カルコン、スチリルアントラセン、フルオレノン、ヒドラゾン、スチルベン、シラザン、芳香族第三級アミン化合物、スチリルアミン化合物、ポルフィリン系化合物、縮環芳香族炭化水素化合物(アントラセン、ピレン、フルオレン、ナフタレン、フェナントレン、トリフェニレン等)、ポリシラン系化合物、ポリ(N-ビニルカルバゾール)、アニリン系共重合体、チオフェンオリゴマー、ポリチオフェン等の導電性高分子オリゴマー、有機シラン、カーボン膜、ピリジン、ピリミジン、トリアジン、イミダゾール、ピラゾール、トリアゾ-ル、オキサゾ-ル、オキサジアゾ-ル、フルオレノン、アントラキノジメタン、アントロン、ジフェニルキノン、チオピランジオキシド、カルボジイミド、フルオレニリデンメタン、ジスチリルピラジン、フッ素置換芳香族化合物、ナフタレンペリレン等の複素環テトラカルボン酸無水物、フタロシアニン、8-キノリノ-ル誘導体の金属錯体やメタルフタロシアニン、ベンゾオキサゾ-ルやベンゾチアゾ-ルを配位子とする金属錯体に代表される各種金属錯体及びそれらの誘導体(置換基や縮環を有していてもよい)等を挙げることができる。
 これらのうち、カルバゾール、ジベンゾチオフェン、ジベンゾフラン、アリールアミン、縮環芳香族炭化水素化合物、金属錯体が特に好ましい。
 本発明の有機電界発光素子における発光層において、併用することができるホスト材料としては、正孔輸送性ホスト材料であっても、電子輸送性ホスト材料であってもよい。
 発光層において、前記ホスト材料の膜状態での三重項最低励起エネルギー(T1エネルギー)が、前記燐光発光材料のT1エネルギーより高いことが色純度、発光効率、駆動耐久性の点で好ましい。ホスト材料のT1が燐光発光材料のT1より0.1eV以上大きいことが好ましく、0.2eV以上大きいことがより好ましく、0.3eV以上大きいことが更に好ましい。
 ホスト材料の膜状態でのT1が燐光発光材料のT1より小さいと発光を消光してしまうためホスト材料には燐光発光材料より大きなT1が求められる。また、ホスト材料のT1が燐光発光材料より大きい場合でも、両者のT1差が小さい場合には一部、燐光発光材料からホスト材料への逆エネルギー移動が起こるため、効率低下や耐久性低下の原因となる。従って、T1が十分に大きく、化学的安定性及びキャリア注入・輸送性の高いホスト材料が求められている。
 また、本発明有機電界発光素子における発光層におけるホスト化合物の含有量は、特に限定されるものではないが、発光効率、駆動電圧の観点から、発光層を形成する全化合物質量に対して15質量%以上95質量%以下であることが好ましい。発光層に、一般式(1)で表される化合物を含む複数種類のホスト化合物を含む場合、一般式(1)で表される化合物は全ホスト化合物中50質量%以上99質量%以下であることが好ましい。
(その他の層)
 本発明の有機電界発光素子は、前記発光層以外のその他の層を有していてもよい。
 前記有機層が有していてもよい前記発光層以外のその他の有機層として、正孔注入層、正孔輸送層、ブロック層(正孔ブロック層、励起子ブロック層など)、電子輸送層などが挙げられる。前記具体的な層構成として、下記が挙げられるが本発明はこれらの構成に限定されるものではない。
 ・陽極/正孔輸送層/発光層/電子輸送層/陰極、
 ・陽極/正孔輸送層/発光層/ブロック層/電子輸送層/陰極、
 ・陽極/正孔輸送層/発光層/ブロック層/電子輸送層/電子注入層/陰極、
 ・陽極/正孔注入層/正孔輸送層/発光層/ブロック層/電子輸送層/陰極、
 ・陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/陰極、
 ・陽極/正孔注入層/正孔輸送層/発光層/ブロック層/電子輸送層/電子注入層/陰極、
 ・陽極/正孔注入層/正孔輸送層/ブロック層/発光層/ブロック層/電子輸送層/電子注入層/陰極。
 本発明の有機電界発光素子は、(A)前記陽極と前記発光層との間に好ましく配置される有機層を少なくとも一層含むことが好ましい。前記(A)前記陽極と前記発光層との間に好ましく配置される有機層としては、陽極側から正孔注入層、正孔輸送層、電子ブロック層を挙げることができる。
 本発明の有機電界発光素子は、(B)前記陰極と前記発光層との間に好ましく配置される有機層少なくとも一層含むことが好ましい。前記(B)前記陰極と前記発光層との間に好ましく配置される有機層としては、陰極側から電子注入層、電子輸送層、正孔ブロック層を挙げることができる。
 具体的には、本発明の有機電界発光素子の好ましい態様の一例は、図1に記載される態様であり、前記有機層として、陽極側3から正孔注入層4、正孔輸送層5、発光層6、正孔ブロック層7及び電子輸送層8がこの順に積層されている態様である。
 以下、これら本発明の有機電界発光素子が有していてもよい前記発光層以外のその他の層について、説明する。
(A)陽極と前記発光層との間に好ましく配置される有機層
 まず、(A)前記陽極と前記発光層との間に好ましく配置される有機層について説明する。
(A-1)正孔注入層、正孔輸送層
 正孔注入層、正孔輸送層は、陽極又は陽極側から正孔を受け取り陰極側に輸送する機能を有する層である。
 正孔注入層、正孔輸送層については、特開2008-270736号公報の段落番号〔0165〕~〔0167〕に記載の事項を本発明に適用することができる。
 正孔注入層には電子受容性ドーパントを含有することが好ましい。正孔注入層に電子受容性ドーパントを含有することにより、正孔注入性が向上し、駆動電圧が低下する、効率が向上するなどの効果がある。電子受容性ドーパントとは、ドープされる材料から電子を引き抜き、ラジカルカチオンを発生させることが可能な材料であれば有機材料、無機材料のうちいかなるものでもよいが、例えば、テトラシアノキノジメタン(TCNQ)、テトラフルオロテトラシアノキノジメタン(F4-TCNQ)、酸化モリブデンなどが挙げられる。
 正孔注入層中の電子受容性ドーパントは、正孔注入層を形成する全化合物質量に対して、0.01質量%~50質量%含有されることが好ましく、0.1質量%~40質量%含有されることがより好ましく、0.2質量%~30質量%含有されることがより好ましい。
(A-2)電子ブロック層
 電子ブロック層は、陰極側から発光層に輸送された電子が、陽極側に通りぬけることを防止する機能を有する層である。本発明において、発光層と陽極側で隣接する有機層として、電子ブロック層を設けることができる。
 電子ブロック層を構成する有機化合物の例としては、例えば前述の正孔輸送材料として挙げたものが適用できる。
 電子ブロック層の厚さとしては、1nm~500nmであるのが好ましく、3nm~100nmであるのがより好ましく、5nm~50nmであるのが更に好ましい。
 電子ブロック層は、上述した材料の一種又は二種以上からなる単層構造であってもよいし、同一組成又は異種組成の複数層からなる多層構造であってもよい。
 電子ブロック層に用いる材料は、前記燐光発光材料のT1エネルギーより高いことが色純度、発光効率、駆動耐久性の点で好ましい。電子ブロック層に用いる材料の膜状態でのT1が燐光発光材料のT1より0.1eV以上大きいことが好ましく、0.2eV以上大きいことがより好ましく、0.3eV以上大きいことが更に好ましい。
(B)陰極と前記発光層との間に好ましく配置される有機層
 次に、前記(B)陰極と前記発光層との間に好ましく配置される有機層について説明する。
(B-1)電子注入層、電子輸送層
 電子注入層、電子輸送層は、陰極又は陰極側から電子を受け取り陽極側に輸送する機能を有する層である。これらの層に用いる電子注入材料、電子輸送材料は低分子化合物であっても高分子化合物であってもよい。
 電子輸送材料としては、前記一般式(1)で表される化合物を用いることができる。その他の電子輸送材料としては、ピリジン誘導体、キノリン誘導体、ピリミジン誘導体、ピラジン誘導体、フタラジン誘導体、フェナントロリン誘導体、トリアジン誘導体、トリアゾール誘導体、オキサゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ベンゾイミダゾール誘導体、イミダゾピリジン誘導体、フルオレノン誘導体、アントラキノジメタン誘導体、アントロン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド誘導体、フルオレニリデンメタン誘導体、ジスチリルピラジン誘導体、ナフタレン、ペリレン等の芳香環テトラカルボン酸無水物、フタロシアニン誘導体、8-キノリノール誘導体の金属錯体やメタルフタロシアニン、ベンゾオキサゾールやベンゾチアゾールを配位子とする金属錯体に代表される各種金属錯体、シロールに代表される有機シラン誘導体、ナフタレン、アントラセン、フェナントレン、トリフェニレン、ピレン等の縮環炭化水素化合物等をから選ばれることが好ましく、ピリジン誘導体、ベンゾイミダゾール誘導体、イミダゾピリジン誘導体、金属錯体、縮環炭化水素化合物のいずれかであることがより好ましい。
 電子注入層、電子輸送層の厚さは、駆動電圧を下げるという観点から、各々500nm以下であることが好ましい。
 電子輸送層の厚さとしては、1nm~500nmであるのが好ましく、5nm~200nmであるのがより好ましく、10nm~100nmであるのが更に好ましい。また、電子注入層の厚さとしては、0.1nm~200nmであるのが好ましく、0.2nm~100nmであるのがより好ましく、0.5nm~50nmであるのが更に好ましい。
 電子注入層、電子輸送層は、上述した材料の1種又は2種以上からなる単層構造であってもよいし、同一組成又は異種組成の複数層からなる多層構造であってもよい。
 電子注入層には電子供与性ドーパントを含有することが好ましい。電子注入層に電子供与性ドーパントを含有させることにより、電子注入性が向上し、駆動電圧が低下する、効率が向上するなどの効果がある。電子供与性ドーパントとは、ドープされる材料に電子を与え、ラジカルアニオンを発生させることが可能な材料であれば有機材料、無機材料のうちいかなるものでもよいが、例えば、テトラチアフルバレン(TTF)、テトラチアナフタセン(TTT)、ビス-[1,3 ジエチル-2-メチル-1,2-ジヒドロベンズイミダゾリル]などのジヒドロイミダゾール化合物、リチウム、セシウムなどが挙げられる。
 電子注入層中の電子供与性ドーパントは、電子注入層を形成する全化合物質量に対して、0.01質量%~50質量%含有されることが好ましく、0.1質量%~40質量%含有されることがより好ましく、0.5質量%~30質量%含有されることがより好ましい。
(B-2)正孔ブロック層
 正孔ブロック層は、陽極側から発光層に輸送された正孔が、陰極側に通りぬけることを防止する機能を有する層である。本発明において、発光層と陰極側で隣接する有機層として、正孔ブロック層を設けることができる。
 正孔ブロック層を構成する有機化合物の膜状態でのT1エネルギーは、発光層で生成する励起子のエネルギー移動を防止し、発光効率を低下させないために、発光材料のT1エネルギーよりも高いことが好ましい。
 正孔ブロック層を構成する有機化合物の例としては、前記一般式(1)で表される化合物を用いることができる。
 前記一般式(1)で表される化合物以外の、正孔ブロック層を構成するその他の有機化合物の例としては、アルミニウム(III)ビス(2-メチル-8-キノリナト)4-フェニルフェノレート(Aluminum (III)bis(2-methyl-8-quinolinato)4-phenylphenolate(Balqと略記する))等のアルミニウム錯体、トリアゾール誘導体、2,9-ジメチル-4,7-ジフェニル-1,10-フェナントロリン(2,9-Dimethyl-4,7-diphenyl-1,10-phenanthroline(BCPと略記する))等のフェナントロリン誘導体、等が挙げられる。
 正孔ブロック層の厚さとしては、1nm~500nmであるのが好ましく、3nm~100nmであるのがより好ましく、5nm~50nmであるのが更に好ましい。
 正孔ブロック層は、上述した材料の一種又は二種以上からなる単層構造であってもよいし、同一組成又は異種組成の複数層からなる多層構造であってもよい。
 正孔ブロック層に用いる材料は、前記燐光発光材料のT1エネルギーより高いことが色純度、発光効率、駆動耐久性の点で好ましい。正孔ブロック層に用いる材料の膜状態でのT1が燐光発光材料のT1より0.1eV以上大きいことが好ましく、0.2eV以上大きいことがより好ましく、0.3eV以上大きいことが更に好ましい。
(B-3)陰極と前記発光層との間に好ましく配置される有機層に特に好ましく用いられる材料
 本発明の有機電界発光素子は、前記(B)陰極と前記発光層との間に好ましく配置される有機層の材料に特に好ましく用いられる材料として、前記一般式(1)で表される化合物、下記一般式(P-1)で表される化合物および下記一般式(O-1)で表される化合物を挙げることができる。
 以下、前記一般式(O-1)で表される化合物と、前記一般式(P-1)で表される化合物について説明する。
 本発明の有機電界発光素子は、発光層と陰極との間に少なくとも一層の有機層を含むことが好ましく、該有機層に少なくとも一種の下記一般式(O-1)で表される化合物を含有することが素子の効率や駆動電圧の観点から好ましい。以下に、一般式(O-1)について説明する。
Figure JPOXMLDOC01-appb-C000049
 (一般式(O-1)中、RO1は、アルキル基、アリール基、又はヘテロアリール基を表す。AO1~AO4はそれぞれ独立に、C-RA又は窒素原子を表す。RAは水素原子、アルキル基、アリール基、又はヘテロアリール基を表し、複数のRAは同じでも異なっていても良い。LO1は、アリール環又はヘテロアリール環からなる二価~六価の連結基を表す。nO1は2~6の整数を表す。)
 RO1は、アルキル基(好ましくは炭素数1~8)、アリール基(好ましくは炭素数6~30)、又はヘテロアリール基(好ましくは炭素数4~12)を表し、これらは前述の置換基群Aから選ばれる置換基を有していても良い。RO1として好ましくはアリール基、又はヘテロアリール基であり、より好ましくはアリール基である。RO1のアリール基が置換基を有する場合の好ましい置換基としては、アルキル基、アリール基又はシアノ基が挙げられ、アルキル基又はアリール基がより好ましく、アリール基が更に好ましい。RO1のアリール基が複数の置換基を有する場合、該複数の置換基は互いに結合して5又は6員環を形成していても良い。RO1のアリール基は、好ましくは置換基群Aから選ばれる置換基を有していても良いフェニル基であり、より好ましくはアルキル基又はアリール基が置換していてもよいフェニル基であり、更に好ましくは無置換のフェニル基又は2-フェニルフェニル基である。
 AO1~AO4はそれぞれ独立に、C-RA又は窒素原子を表す。AO1~AO4のうち、0~2つが窒素原子であるのが好ましく、0又は1つが窒素原子であるのがより好ましい。AO1~AO4の全てがC-RAであるか、又はAO1が窒素原子で、AO2~AO4がC-RAであるのが好ましく、AO1が窒素原子で、AO2~AO4がC-RAであるのがより好ましく、AO1が窒素原子で、AO2~AO4がC-RAであり、RAが全て水素原子であるのが更に好ましい。
 RAは水素原子、アルキル基(好ましくは炭素数1~8)、アリール基(好ましくは炭素数6~30)、又はヘテロアリール基(好ましくは炭素数4~12)を表し、これらは前述の置換基群Aから選ばれる置換基を有していても良い。また複数のRAは同じでも異なっていても良い。RAとして好ましくは水素原子又はアルキル基であり、より好ましくは水素原子である。
 LO1は、アリール環(好ましくは炭素数6~30)又はヘテロアリール環(好ましくは炭素数4~12)からなる二価~六価の連結基を表す。LO1として好ましくは、アリーレン基、ヘテロアリーレン基、アリールトリイル基、又はヘテロアリールトリイル基であり、より好ましくはフェニレン基、ビフェニレン基、又はベンゼントリイル基であり、更に好ましくはビフェニレン基、又はベンゼントリイル基である。LO1は前述の置換基群Aから選ばれる置換基を有していても良く、置換基を有する場合の置換基としてはアルキル基、アリール基、又はシアノ基が好ましい。LO1の具体例としては、以下のものが挙げられる。
Figure JPOXMLDOC01-appb-C000050
 nO1は2~6の整数を表し、好ましくは2~4の整数であり、より好ましくは2又は3である。nO1は、素子効率の観点では最も好ましくは3であり、素子の耐久性の観点では最も好ましくは2である。
 一般式(O-1)で表される化合物は、より好ましくは下記一般式(O-2)で表される化合物である。
Figure JPOXMLDOC01-appb-C000051
 (一般式(O-2)中、RO1はアルキル基、アリール基、又はヘテロアリール基を表す。RO2~RO4はそれぞれ独立に、水素原子、アルキル基、アリール基、又はヘテロアリール基を表す。AO1~AO4はそれぞれ独立に、C-RA又は窒素原子を表す。RAは水素原子、アルキル基、アリール基、又はヘテロアリール基を表し、複数のRAは同じでも異なっていても良い。)
 RO1及びAO1~AO4は、前記一般式(O-1)中のRO1及びAO1~AO4と同義であり、またそれらの好ましい範囲も同様である。
 R02~R04はそれぞれ独立に、水素原子、アルキル基(好ましくは炭素数1~8)、アリール基(好ましくは炭素数6~30)、又はヘテロアリール基(好ましくは炭素数4~12)を表し、これらは前述の置換基群Aから選ばれる置換基を有していても良い。R02~R04として好ましくは水素原子、アルキル基、又はアリール基であり、より好ましくは水素原子、又はアリール基であり、最も好ましくは水素原子である。
 前記一般式(O-1)で表される化合物は、高温保存時の安定性、高温駆動時、駆動時の発熱に対して安定して動作させる観点から、ガラス転移温度(Tg)は100℃~300℃であることが好ましく、120℃~300℃であることがより好ましく、120℃~300℃であることが更に好ましく、140℃~300℃であることが更により好ましい。
 一般式(O-1)で表される化合物の具体例を以下に示すが、本発明はこれらに限定されない。
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000053
 前記一般式(O-1)で表される化合物は、特開2001-335776号に記載の方法で合成可能である。合成後、カラムクロマトグラフィー、再結晶、再沈殿などによる精製を行った後、昇華精製により精製することが好ましい。昇華精製により有機不純物を分離できるだけではなく、無機塩や残留溶媒、水分等を効果的に取り除くことが可能である。
 本発明の有機電界発光素子において、一般式(O-1)で表される化合物は発光層と陰極との間の有機層に含有されることが好ましいが、発光層に隣接する陰極側の層に含有されることがより好ましい。
 一般式(O-1)で表される化合物は、添加する有機層の全質量に対して70~100質量%含まれることが好ましく、85~100質量%含まれることがより好ましい。
 本発明の有機電界発光素子は、発光層と陰極との間に少なくとも一層の有機層を含むことが好ましく、該有機層に少なくとも一種の下記一般式(P)で表される化合物を含有することが素子の効率や駆動電圧の観点から好ましい。以下に、一般式(P)について説明する。
Figure JPOXMLDOC01-appb-C000054
 (一般式(P)中、RPは、アルキル基(好ましくは炭素数1~8)、アリール基(好ましくは炭素数6~30)、又はヘテロアリール基(好ましくは炭素数4~12)を表し、これらは前述の置換基群Aから選ばれる置換基を有していても良い。nPは1~10の整数を表し、RPが複数の場合、それらは同一でも異なっていてもよい。RPのうち少なくとも一つは、下記一般式(P-1)~(P-3)で表される置換基である。
Figure JPOXMLDOC01-appb-C000055
(一般式(P-1)~(P-3)中、RP1~RP3、R'P1~R'P3はそれぞれアルキル基(好ましくは炭素数1~8)、アリール基(好ましくは炭素数6~30)、又はヘテロアリール基(好ましくは炭素数4~12)を表し、これらは前述の置換基群Aから選ばれる置換基を有していても良い。nP1及びnP2は0~4の整数を表し、RP1~RP3、R'P1~R'P3が複数の場合、それらは同一でも異なっていてもよい。LP1~LP3は、単結合、アリール環又はヘテロアリール環からなる二価の連結基のいずれかを表す。*は一般式(P)のアントラセン環との結合位を表す。)
 RPとして、(P-1)~(P-3)で表される置換基以外の好ましい置換基はアリール基であり、より好ましくはフェニル基、ビフェニル基、ターフェニル基、ナフチル基のいずれかであり、更に好ましくはナフチル基である。
 RP1~RP3、R'P1~R'P3として、好ましくはアリール基、ヘテロアリール基のいずれかであり、より好ましくはアリール基であり、更に好ましくはフェニル基、ビフェニル基、ターフェニル基、ナフチル基のいずれかであり、最も好ましくはフェニル基である。
 LP1~LP3として、好ましくは単結合、アリール環からなる二価の連結基のいずれかであり、より好ましくは単結合、フェニレン、ビフェニレン、ターフェニレン、ナフチレンのいずれかであり、更に好ましくは単結合、フェニレン、ナフチレンのいずれかである。
 一般式(P)で表される化合物の具体例を以下に示すが、本発明はこれらに限定されない。
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000057
 前記一般式(P)で表される化合物は、WO2003/060956、WO2004/080975等に記載の方法で合成可能である。合成後、カラムクロマトグラフィー、再結晶、再沈殿などによる精製を行った後、昇華精製により精製することが好ましい。昇華精製により有機不純物を分離できるだけではなく、無機塩や残留溶媒、水分等を効果的に取り除くことが可能である。
 本発明の有機電界発光素子において、一般式(P)で表される化合物は発光層と陰極との間の有機層に含有されることが好ましいが、陰極に隣接する層に含有されることがより好ましい。
 一般式(P)で表される化合物は、添加する有機層の全質量に対して70~100質量%含まれることが好ましく、85~100質量%含まれることがより好ましい。
<保護層>
 本発明において、有機電界素子全体は、保護層によって保護されていてもよい。
 保護層については、特開2008-270736号公報の段落番号〔0169〕~〔0170〕に記載の事項を本発明に適用することができる。なお、保護層の材料は無機物であっても、有機物であってもよい。
<封止容器>
 本発明の有機電界発光素子は、封止容器を用いて素子全体を封止してもよい。
 封止容器については、特開2008-270736号公報の段落番号〔0171〕に記載の事項を本発明に適用することができる。
<駆動方法>
 本発明の有機電界発光素子は、陽極と陰極との間に直流(必要に応じて交流成分を含んでもよい)電圧(通常2ボルト~15ボルト)、又は直流電流を印加することにより、発光を得ることができる。
 本発明の有機電界発光素子の駆動方法については、特開平2-148687号、同6-301355号、同5-29080号、同7-134558号、同8-234685号、同8-241047号の各公報、特許第2784615号、米国特許5828429号、同6023308号の各明細書等に記載の駆動方法を適用することができる。
 本発明の有機電界発光素子の外部量子効率としては、7%以上が好ましく、10%以上がより好ましく、12%以上が更に好ましい。外部量子効率の数値は20℃で素子を駆動したときの外部量子効率の最大値、若しくは、20℃で素子を駆動したときの300~400cd/m2付近での外部量子効率の値を用いることができる。
 本発明の有機電界発光素子の内部量子効率は、30%以上であることが好ましく、50%以上が更に好ましく、70%以上が更に好ましい。素子の内部量子効率は、外部量子効率を光取り出し効率で除して算出される。通常の有機EL素子では光取り出し効率は約20%であるが、基板の形状、電極の形状、有機層の膜厚、無機層の膜厚、有機層の屈折率、無機層の屈折率等を工夫することにより、光取り出し効率を20%以上にすることが可能である。
<発光波長>
 本発明の有機電界発光素子は、その発光波長に制限はない。例えば、光の三原色のうち、赤色の発光に用いても、緑色の発光に用いても、青色の発光に用いてもよい。その中でも、本発明の有機電界発光素子は、発光波長が500~700nmであることが、前記一般式(1)で表される化合物の最低励起三重項(T1)エネルギーの観点から好ましい。
 具体的には、本発明の有機電界発光素子において、前記一般式(1)で表される化合物を発光層のホスト材料として用いる場合は、発光波長が500~700nmであることが好ましく、500~550nmであることがより好ましく、520~550nmであることが特に好ましい。
 一方、本発明の有機電界発光素子において、前記一般式(1)で表される化合物を正孔ブロック層の電荷輸送材料として用いる場合は、発光波長が400~700nmであることが好ましく、450~600nmであることがより好ましく、450~550nmであることが特に好ましい。
<本発明の有機電界発光素子の用途>
 本発明の有機電界発光素子は、表示素子、ディスプレイ、バックライト、電子写真、照明光源、記録光源、露光光源、読み取り光源、標識、看板、インテリア、又は光通信等に好適に利用できる。特に、発光装置、照明装置、表示装置等の発光輝度が高い領域で駆動されるデバイスに好ましく用いられる。
[発光装置]
 本発明の発光装置は、本発明の有機電界発光素子を含むことを特徴とする。
 次に、図2を参照して本発明の発光装置について説明する。
 本発明の発光装置は、前記有機電界発光素子を用いてなる。
 図2は、本発明の発光装置の一例を概略的に示した断面図である。図2の発光装置20は、透明基板(支持基板)2、有機電界発光素子10、封止容器16等により構成されている。
 有機電界発光素子10は、基板2上に、陽極(第一電極)3、有機層11、陰極(第二電極)9が順次積層されて構成されている。また、陰極9上には、保護層12が積層されており、更に、保護層12上には接着層14を介して封止容器16が設けられている。なお、各電極3、9の一部、隔壁、絶縁層等は省略されている。
 ここで、接着層14としては、エポキシ樹脂等の光硬化型接着剤や熱硬化型接着剤を用いることができ、例えば熱硬化性の接着シートを用いることもできる。
 本発明の発光装置の用途は特に制限されるものではなく、例えば、照明装置のほか、テレビ、パーソナルコンピュータ、携帯電話、電子ペーパ等の表示装置とすることができる。
[照明装置]
 本発明の照明装置は、本発明の有機電界発光素子を含むことを特徴とする。
 次に、図3を参照して本発明の照明装置について説明する。
 図3は、本発明の照明装置の一例を概略的に示した断面図である。本発明の照明装置40は、図3に示すように、前述した有機EL素子10と、光散乱部材30とを備えている。より具体的には、照明装置40は、有機EL素子10の基板2と光散乱部材30とが接触するように構成されている。
 光散乱部材30は、光を散乱できるものであれば特に制限されないが、図3においては、透明基板31に微粒子32が分散した部材とされている。透明基板31としては、例えば、ガラス基板を好適に挙げることができる。微粒子32としては、透明樹脂微粒子を好適に挙げることができる。ガラス基板及び透明樹脂微粒子としては、いずれも、公知のものを使用できる。このような照明装置40は、有機電界発光素子10からの発光が散乱部材30の光入射面30Aに入射されると、入射光を光散乱部材30により散乱させ、散乱光を光出射面30Bから照明光として出射するものである。
[表示装置]
 本発明の表示装置は、本発明の有機電界発光素子を含むことを特徴とする。 本発明の表示装置としては、例えば、テレビ、パーソナルコンピュータ、携帯電話、電子ペーパ等の表示装置とすることなどを挙げることができる。
 以下に実施例を挙げて本発明をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り、適宜、変更することができる。従って、本発明の範囲は以下に示す具体例に限定されるものではない。
1.合成例
 前記一般式(1)で表される化合物は、特表2010-535806に記載の方法や、その他公知の反応を組み合わせて合成できる。
(合成例1)化合物1の合成
Figure JPOXMLDOC01-appb-C000058
 3-ブロモ-p-ターフェニル10.0g(32.3mmol)、ビス(ピナコラート)ジボロン12.3g(48.5mmol)、1,1'-ビス(ジフェニルホスフィノ)フェロセン]パラジウムジクロリドジクロロメタン錯体(1:1)(PdCl2(dppf))1.32g(1.62mmol)、酢酸カリウム9.51g(96.9mmol)、ジメチルスルホキシド(DMSO)170mLを混合し、窒素雰囲気下、70℃で4時間攪拌した。反応液を室温に戻した後、トルエンと水を加えて有機層を抽出した。有機層を濃縮した後、カラムクロマトグラフィー(展開溶媒:トルエン/ヘキサン(1:1))により精製し、さらにトルエン/エタノール(1:2)で再結晶することにより合成中間体1を7.35g得た(収率64%)。
 合成中間体1を3.52g(9.88mmol)、1-ブロモ-3,5-ジヨードベンゼン2.13g(5.20mmol)、酢酸パラジウム58mg(0.26mmol)、トリフェニルホスフィン273mg(1.04mmol)、炭酸ナトリウム2.20g(20.8mmol)、1,2-ジメトキシエタン(DME)32mL、水16mLを混合し、窒素雰囲気下、12時間攪拌した。反応液を室温に戻し、析出した固体を濾過した。この固体をトルエンで加熱完溶させ、黒色成分をセライトろ過により濾別した後、室温で析出した固体を濾過することで合成中間体2を2.12g(66%)得た。
 4,4,5,5-テトラメチル-2-(トリフェニレン-2-イル)-1,3,2-ジオキサボラン1.17g(3.30mmol)、合成中間体2を1.84g(3.00mmol)、トリス(ジベンジリデンアセトン)ジパラジウム(Pd2(dba)3)83mg(0.090mmol)、2-ジシクロヘキシルホスフィノ-2',6'-ジメトキシビフェニル(SPhos)148mg(0.36mmol)、リン酸カリウム1.28g(6.00mmol)、トルエン25mL、水12.5mLを混合し、窒素雰囲気下、5時間加熱還流した。反応液を室温に戻し、析出した固体を濾過した。この固体をトルエンで加熱完溶させ、シリカゲルカラムクロマトグラフィー(展開溶媒:トルエン)にて原点成分を除去した後、トルエンで再結晶することにより化合物1を1.95g得た(収率85%)。
化合物1のNMRデータ
1H NMR(400MHz,in DMSO-d6);δ(ppm)=8.99(s,1H),8.80-8.78(m,2H),8.73-8.68(m,3H),8.09-7.98(m,6H),7.79(d,6H),7.73-7.61(m,16H),7.47(t,4H),7.38-7.35(m,2H)ppm.
(合成例2)化合物4の合成
Figure JPOXMLDOC01-appb-C000059
 4-(トリフェニルシリル)フェニルボロン酸4.18g(11.0mmol)、p-ブロモヨードベンゼン12.5g(44.0mmol)、酢酸パラジウム74mg(0.33mmol)、トリフェニルホスフィン346mg(1.32mmol)、炭酸ナトリウム2.33g(22.0mmol)、1,2-ジメトキシエタン(DME)54mL、水27mLを混合し、窒素雰囲気下、3時間加熱還流した。反応液を室温に戻した後、有機層を抽出した。有機層を濃縮した後、シリカゲルカラムクロマトグラフィー(展開溶媒:トルエン)により原点成分を除去し、さらにヘキサンによりたき洗いすることにより合成中間体3を4.00g得た(74%)。
 合成中間体3を4.00g(8.14mmol)、ビス(ピナコラート)ジボロン3.10g(12.2mmol)、1,1'-ビス(ジフェニルホスフィノ)フェロセン]パラジウムジクロリドジクロロメタン錯体(1:1)(PdCl2(dppf))335mg(0.41mmol)、酢酸カリウム1.84g(18.7mmol)、ジメチルスルホキシド(DMSO)65mLを混合し、窒素雰囲気下、70℃で5時間攪拌した。反応液を室温に戻した後、トルエン、水を添加し、有機層を抽出した。有機層を濃縮した後、シリカゲルカラムクロマトグラフィー(展開溶媒:トルエン/ヘキサン(2:3))により精製し、さらにメタノールでたき洗いすることにより合成中間体4を2.90g得た(収率66%)。
 合成中間体4を2.69g(5.00mmol)、3,3'-ジブロモ-1,1'-ビフェニル4.68g(15.0mmol)、酢酸パラジウム34mg(0.15mmol)、トリフェニルホスフィン157mg(0.60mmol)、炭酸ナトリウム1.06g(10.0mmol)、トルエン32mL、水16mLを混合し、窒素雰囲気下、12時間加熱還流した。反応液を室温に戻して有機層を抽出し、有機層を濃縮した後、シリカゲルカラムクロマトグラフィー(展開溶媒:トルエン/ヘキサン(1:2))で精製した。さらにエタノールでたき洗いすることにより、合成中間体5を1.70g得た(収率53%)。
 4,4,5,5-テトラメチル-2-(トリフェニレン-2-イル)-1,3,2-ジオキサボラン974mg(2.75mmol)、合成中間体5を1.61g(2.50mmol)、トリス(ジベンジリデンアセトン)ジパラジウム(Pd2(dba)3)69mg(0.075mmol)、2-ジシクロヘキシルホスフィノ-2',6'-ジメトキシビフェニル(SPhos)123mg(0.30mmol)、リン酸カリウム1.06g(5.00mmol)、トルエン20mL、水10mLを混合し、窒素雰囲気下、6.5時間加熱還流した。反応液を室温に戻した後、有機層を抽出した。有機層を濃縮し、シリカゲルカラムクロマトグラフィー(展開溶媒:トルエン)により原点成分を除去した後、トルエン/ヘキサン(1:1)で再結晶し、さらにアセトンであき洗いすることにより化合物4を1.61g得た(収率81%)。
化合物4のNMRデータ
1H NMR(400MHz,in DMSO-d6);δ(ppm)=9.15(s,1H),9.10-9.07(m,1H),8.93(d,1H),8.88-8.83(m,3H),8.32(s,1H),8.18-8.14(m,2H),8.00(d,1H),7.95(d,2H),7.89-7.63(m,13H),7.60(d,2H),7.55-7.45(m,15H)ppm.
 化合物2、化合物3、化合物5~12も化合物1、化合物4の合成法に準じて合成した。
2.素子作製・評価
 素子作製に用いた材料は全て昇華精製を行い、高速液体クロマトグラフィー(東ソーTSKgel ODS-100Z)により純度(254nmの吸収強度面積比)が99.9%以上であることを確認した。
(実施例1)
 厚み0.5mm、2.5cm角のITO膜を有するガラス基板(ジオマテック社製、表面抵抗10Ω/□)を洗浄容器に入れ、2-プロパノール中で超音波洗浄した後、30分間UV-オゾン処理を行った。この透明陽極(ITO膜)上に真空蒸着法にて以下の有機化合物層を順次蒸着した。
 第1層:HAT-CN:膜厚10nm
 第2層:NPD:膜厚30nm
 第3層:表1中に記載のホスト材料及びGD-1(質量比90:10):膜厚30nm
 第4層:表1中に記載のHBL材料:膜厚5nm
 第5層:Alq:膜厚45nm
 この上に、フッ化リチウム0.1nm及び金属アルミニウム100nmをこの順に蒸着し陰極とした。
 得られた積層体を、大気に触れさせることなく、窒素ガスで置換したグローブボックス内に入れ、ガラス製の封止缶及び紫外線硬化型の接着剤(XNR5516HV、長瀬チバ(株)製)を用いて封止し、素子1-1~1-8、比較素子1-1~1-3を得た。発光部分は2mm×2mmの正方形である。これらの素子を以下の方法で高温保管後の相対効率、最高到達輝度の観点で評価した結果を表1に示す。
(a) 高温保管後の相対効率
 東陽テクニカ製ソースメジャーユニット2400を用いて、直流電圧を各素子に印加し発光させ、その輝度をトプコン社製輝度計BM-8を用いて測定した。発光スペクトルと発光波長は浜松ホトニクス製スペクトルアナライザーPMA-11を用いて測定した。これらを元に輝度が1000cd/m2付近の外部量子効率(η)を輝度換算法により算出した。
 さらに各素子を100℃の恒温槽中で100時間保管後、先と同様の方法により効率(η')を測定した。これらの比(η'/η)を耐熱性の指標とした。この値は大きいほど好ましい。
(b) 最高到達輝度
 各素子の輝度を測定しながら印加電圧を大きくしていき、最大となる輝度を最高到達輝度とし、相対値で記載した。
Figure JPOXMLDOC01-appb-T000060
 上記表1より、発光層のホスト化合物として化合物1、2、4、8、9、11および12の一般式(1)で表される化合物を用いた各実施例の有機電界発光素子は、いずれも高温保管後の相対効率が良好であり、最高到達輝度も高いことがわかった。また、一般式(1)で表される化合物を発光層のホスト材料にも正孔ブロック層にも用いた素子1-6~1-8はさらに最高到達輝度が高いことがわかった。
 一方、比較素子1-1~1-3は、発光層のホスト化合物として比較化合物1、2および4をそれぞれ用いたものであり、高温保管後の相対効率が悪く、最高到達輝度も小さいことがわかった。
 なお、実施例1で作製した有機電界発光素子の発光波長は522~527nmであった。
(実施例2)
 層構成を以下に示すものに変えた以外は実施例1と同様にして素子を作製し、実施例1と同様の評価を行った結果を表2に示す。
 第1層:2-TNATA及びF4-TCNQ(質量比99.7:0.3) :膜厚160nm
 第2層:NPD:膜厚5nm
 第3層:HT-1:膜厚3nm
 第4層:H-1及びGD-2(質量比85:15):膜厚30nm
 第5層:表2中に記載のHBL材料:膜厚10nm
 第6層:ET-2:膜厚20nm
Figure JPOXMLDOC01-appb-T000061
 上記表2より、正孔ブロック層の材料として化合物2、9および10の一般式(1)で表される化合物を用いた各実施例の有機電界発光素子は、いずれも高温保管後の相対効率が良好であり、最高到達輝度も高いことがわかった。
 一方、比較素子2-1および2-2は、正孔ブロック層の材料として比較化合物2、3をそれぞれ用いたものであり、高温保管後の相対効率が悪く、最高到達輝度も低いことがわかった。
 なお、実施例2で作製した有機電界発光素子の発光波長は503~507nmであった。
(実施例3)
 層構成を以下に示すものに変えた以外は実施例1と同様にして素子を作製し、実施例1と同様の評価を行った結果を表3に示す。
 第1層:CuPc:膜厚10nm
 第2層:NPD:膜厚30nm
 第3層:表3中に記載のホスト材料及びRD-1(質量比95:5):膜厚30nm
 第4層:ET-2:膜厚5nm
 第5層:ET-3:膜厚50nm
Figure JPOXMLDOC01-appb-T000062
 上記表3より、発光層のホスト化合物として化合物1、6、7および9の一般式(1)で表される化合物を用いた各実施例の有機電界発光素子は、いずれも高温保管後の相対効率が良好であり、最高到達輝度も高いことがわかった。
 一方、比較素子3-1および3-2は、発光層のホスト材料として比較化合物2、5を用いたものであり、高温保管後の相対効率が悪く、最高到達輝度も低いことがわかった。
 なお、実施例3で作製した有機電界発光素子の発光波長は618~622nmであった。
(実施例4)
 層構成を以下に示すものに変えた以外は実施例1と同様にして素子を作製し、実施例1と同様の評価を行った結果を表4に示す。
 第1層:TCTA:膜厚35nm
 第2層:HT-2:膜厚5nm
 第3層:BAlq及びRD-2(質量比90:10):膜厚30nm
 第4層:表4中に記載のHBL材料:膜厚5nm
 第5層:ET-4:膜厚45nm
Figure JPOXMLDOC01-appb-T000063
 上記表4より、正孔ブロック層の材料として化合物3、6および11の一般式(1)で表される化合物を用いた各実施例の有機電界発光素子は、いずれも高温保管後の相対効率が良好であり、最高到達輝度も高いことがわかった。
 一方、比較素子4-1および4-2は、正孔ブロック層の材料として比較化合物1、2を用いたものであり、高温保管後の相対効率が悪く、最高到達輝度も低いことがわかった。
 なお、実施例4で作製した有機電界発光素子の発光波長は628~631nmであった。
(実施例5)
 層構成を以下に示すものに変えた以外は実施例1と同様にして素子を作製し、実施例1と同様の評価を行った結果を表5に示す。
 第1層:HAT-CN:膜厚10nm
 第2層:NPD:膜厚115nm
 第3層:HT-3:膜厚5nm
 第4層:H-2及びFirpic(質量比90:10):膜厚30nm
 第5層:表5中に記載のHBL材料:膜厚5nm
 第6層:ET-5:膜厚25nm
Figure JPOXMLDOC01-appb-T000064
 上記表5より、正孔ブロック層の材料として化合物1、8および10の一般式(1)で表される化合物を用いた各実施例の有機電界発光素子は、いずれも高温保管後の相対効率が良好であり、最高到達輝度も高いことがわかった。
 一方、比較素子5-1および5-2は、正孔ブロック層の材料として比較化合物2、3を用いたものであり、高温保管後の相対効率が悪く、最高到達輝度も低いことがわかった。
 なお、実施例5で作製した有機電界発光素子の発光波長は472~476nmであった。
(実施例6)
 層構成を以下に示すものに変えた以外は実施例1と同様にして素子を作製し、実施例1と同様の評価を行った結果を表6に示す。
 第1層:2-TNATA及びF4-TCNQ(質量比99.7:0.3) :膜厚120nm
 第2層:NPD:膜厚7nm
 第3層:HT-3:膜厚3nm
 第4層:H-3及びBD-1(質量比85:15):膜厚30nm
 第5層:表6中に記載のHBL材料:膜厚5nm
 第6層:BAlq:膜厚25nm
Figure JPOXMLDOC01-appb-T000065
 上記表6より、正孔ブロック層の材料として化合物5、10および12の一般式(1)で表される化合物を用いた各実施例の有機電界発光素子は、いずれも高温保管後の相対効率が良好であり、最高到達輝度も高いことがわかった。
 一方、比較素子6-1および6-2は、正孔ブロック層の材料として比較化合物2、3を用いたものであり、高温保管後の相対効率が悪く、最高到達輝度も低いことがわかった。
 なお、実施例6で作製した有機電界発光素子の発光波長は457~460nmであった。
(実施例7)
 層構成を以下に示すものに変えた以外は実施例1と同様にして素子を作製し、実施例1と同様の評価を行った結果を表7に示す。
 第1層:2-TNATA及びF4-TCNQ(質量比99.7:0.3) :膜厚160nm
 第2層:NPD:膜厚5nm
 第3層:HT-1:膜厚3nm
 第4層:H-1及びGD-3(質量比90:10):膜厚30nm
 第5層:表7中に記載のHBL材料:膜厚10nm
 第6層:ET-2:膜厚20nm
Figure JPOXMLDOC01-appb-T000066
(実施例8)
 層構成を以下に示すものに変えた以外は実施例1と同様にして素子を作製し、実施例1と同様の評価を行った結果を表8に示す。
 第1層:2-TNATA及びF4-TCNQ(質量比99.7:0.3) :膜厚160nm
 第2層:NPD:膜厚5nm
 第3層:HT-1:膜厚3nm
 第4層:H-1及びGD-4(質量比90:10):膜厚30nm
 第5層:表8中に記載のHBL材料:膜厚10nm
 第6層:ET-2:膜厚20nm
Figure JPOXMLDOC01-appb-T000067
(実施例9)
 層構成を以下に示すものに変えた以外は実施例1と同様にして素子を作製し、実施例1と同様の評価を行った結果を表9に示す。
 第1層:2-TNATA及びF4-TCNQ(質量比99.7:0.3) :膜厚160nm
 第2層:NPD:膜厚5nm
 第3層:HT-1:膜厚3nm
 第4層:H-1及びGD-5(質量比90:10):膜厚30nm
 第5層:表9中に記載のHBL材料:膜厚10nm
 第6層:ET-2:膜厚20nm
Figure JPOXMLDOC01-appb-T000068
 上記表7~9より、発光層のホスト化合物として本発明の化合物を用いた各実施例の有機電界発光素子は、いずれも高温保管後の相対効率が良好であり、最高到達輝度も高いことがわかった。
 一方、ホスト化合物として比較化合物を用いた素子は高温保管後の相対効率が悪く、最高到達輝度も小さいことがわかった。
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000070
Figure JPOXMLDOC01-appb-C000071
 2・・・基板
 3・・・陽極
 4・・・正孔注入層
 5・・・正孔輸送層
 6・・・発光層
 7・・・正孔ブロック層
 8・・・電子輸送層
 9・・・陰極
 10・・・有機電界発光素子
 11・・・有機層
 12・・・保護層
 14・・・接着層
 16・・・封止容器
 20・・・発光装置
 30・・・光散乱部材
 31・・・透明基板
 30A・・・光入射面
 30B・・・光出射面
 32・・・微粒子
 40・・・照明装置

Claims (18)

  1.  下記一般式(1)で表される化合物からなることを特徴とする電荷輸送材料。
    Figure JPOXMLDOC01-appb-C000001
    (一般式(1)において、R101およびR102はそれぞれ独立にアルキル基、アリール基、ヘテロアリール基、フッ素原子またはシリル基を表し、さらにこれらの基またはアミノ基で置換されていてもよい。ただし、R101およびR102の中に縮環アリール構造と縮環ヘテロアリール構造は含まれない。R101およびR102の中に単環の芳香環(該芳香環は、環員が炭素原子または窒素原子で構成される6員環である)が合計で5個以上含まれる。n101は0~11の整数、n102は0~9の整数を表し、複数のR101およびR102は同一でも異なっていてもよい。AA1~AA9はそれぞれ独立にCH(CHの水素原子はR102で置換されていてもよい)または窒素原子を表す。)
  2.  前記一般式(1)で表される化合物が、下記一般式(2)で表されることを特徴とする請求項1に記載の電荷輸送材料。
    Figure JPOXMLDOC01-appb-C000002
    (一般式(2)において、R111はそれぞれ独立にアルキル基、アリール基、ヘテロアリール基、フッ素原子またはシリル基を表し、さらにこれらの基またはアミノ基で置換されていてもよい。R231~R234はそれぞれ独立にアルキル基、フッ素原子、シリル基またはアミノ基を表す。R235~R238はそれぞれ独立にアリール基またはヘテロアリール基を表す。ただし、R111およびR231~R238の中に縮環アリール構造と縮環ヘテロアリール構造は含まれない。R111およびR231~R238の中に単環の芳香環(該芳香環は、環員が炭素原子または窒素原子で構成される6員環である)が合計で3~6個含まれる。n111は0~11の整数を表し、y31~y33およびy35~y37はそれぞれ独立に0~4の整数を表し、y34およびy38は0~5の整数を表す。複数のR111およびR231~R238は同一でも異なっていてもよい。AB1~AB17はそれぞれ独立にCH(CHの水素原子はR231~R238で置換されていてもよい)または窒素原子を表し、6員環の芳香環を構成する環員である。)
  3.  前記一般式(2)における前記AB3がCHを表し、該AB3の水素原子が前記R235の少なくとも1つによって置換されていることを特徴とする請求項2に記載の電荷輸送材料。
  4.  前記一般式(1)におけるn101が0であることを特徴とする請求項1~3のいずれか一項に記載の電荷輸送材料。
  5.  前記一般式(1)におけるR101またはR102が、フッ素原子、フルオロアルキル基、シクロアルキル基、シリル基、アルキルシリル基、アリールシリル基、または、シクロアルキレン基もしくはケイ素原子連結基を含む置換基であることを特徴とする請求項1~4のいずれか一項に記載の電荷輸送材料。
  6.  前記一般式(1)に含まれる全ての単環の芳香環が、炭素原子骨格の6員環であることを特徴とする請求項1~5のいずれか一項に記載の電荷輸送材料。
  7.  前記一般式(1)で表される化合物が炭素原子および水素原子のみからなることを特徴とする請求項1~6のいずれか一項に記載の電荷輸送材料。
  8.  前記一般式(1)で表される化合物の分子量が1200以下であることを特徴とする請求項1~7のいずれか一項に記載の電荷輸送材料。
  9.  前記一般式(1)で表される化合物が、単環の芳香環(該芳香環は、環員が炭素原子または窒素原子で構成される6員環である)が単結合を介して4個以上連続して結合している部分構造を少なくとも1つ有し、
     前記部分構造中において、パラ位で連続して連結している前記単環の芳香環の個数が3個以下であることを特徴とする請求項1~8のいずれか一項に記載の電荷輸送材料。
  10.  基板と、
     該基板上に配置され、陽極及び陰極を含む一対の電極と、
     該電極間に配置された有機層とを有し、
     前記有機層が、燐光発光材料と請求項1~9のいずれか一項に記載の電荷輸送材料を含有することを特徴とする有機電界発光素子。
  11.  前記燐光発光材料が下記一般式(E-1)で表されることを特徴とする請求項10に記載の有機電界発光素子。
    Figure JPOXMLDOC01-appb-C000003
    (一般式(E-1)中、Z1及びZ2はそれぞれ独立に、炭素原子又は窒素原子を表す。A1はZ1と窒素原子と共に5又は6員のヘテロ環を形成する原子群を表す。B1はZ2と炭素原子と共に5又は6員環を形成する原子群を表す。(X-Y)はモノアニオン性の二座配位子を表す。nE1は1~3の整数を表す。)
  12.  前記一般式(E-1)で表される燐光発光材料が下記一般式(E-2)で表されることを特徴とする請求項10または11に記載の有機電界発光素子。
    Figure JPOXMLDOC01-appb-C000004
    (一般式(E-2)中、AE1~AE8はそれぞれ独立に、窒素原子、または、REで置換された炭素原子を表す。REは水素原子又は置換基を表す。(X-Y)はモノアニオン性の二座配位子を表す。nE2は1~3の整数を表す。)
  13.  前記一般式(E-1)で表される燐光発光材料の極大発光波長が500nm~700nmであることを特徴とする請求項10~12のいずれか一項に記載の有機電界発光素子。
  14.  前記有機層が、前記燐光発光材料を含む発光層とその他の有機層を有し、
     前記発光層が前記一般式(1)で表される化合物を含有することを特徴とする請求項10~13のいずれか一項に記載の有機電界発光素子。
  15.  前記有機層が、前記燐光発光材料を含む発光層とその他の有機層を有し、
     該その他の有機層が、前記発光層と前記陰極との間に配置されたホールブロック層を含み、且つ、該ホールブロック層が前記一般式(1)で表される化合物を含有することを特徴とする請求項10~14のいずれか一項に記載の有機電界発光素子。
  16.  極大発光波長が500nm~550nmであることを特徴とする10~15のいずれか一項に記載の有機電界発光素子。
  17.  請求項10~16のいずれか一項に記載の有機電界発光素子を含むことを特徴とする発光装置、表示装置または照明装置。
  18.  下記一般式(1)で表される化合物。
    Figure JPOXMLDOC01-appb-C000005
    (一般式(1)において、R101およびR102はそれぞれ独立にアルキル基、アリール基、ヘテロアリール基、フッ素原子またはシリル基を表し、さらにこれらの基またはアミノ基で置換されていてもよい。ただし、R101およびR102の中に縮環アリール構造と縮環ヘテロアリール構造は含まれない。R101およびR102の中に単環の芳香環(該芳香環は、環員が炭素原子または窒素原子で構成される6員環である)が合計で5個以上含まれる。n101は0~11の整数、n102は0~9の整数を表し、複数のR101およびR102は同一でも異なっていてもよい。AA1~AA9はそれぞれ独立にCH(CHの水素原子はR102で置換されていてもよい)または窒素原子を表す。)
PCT/JP2012/058359 2011-03-31 2012-03-29 電荷輸送材料、有機電界発光素子及び該素子を用いたことを特徴とする発光装置、表示装置または照明装置 WO2012133652A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020137025179A KR101964477B1 (ko) 2011-03-31 2012-03-29 전하 수송 재료, 유기 전계 발광 소자 및 그 소자를 사용한 것을 특징으로 하는 발광 장치, 표시 장치 또는 조명 장치

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011080215 2011-03-31
JP2011-080215 2011-03-31
JP2012-072478 2012-03-27
JP2012072478A JP5872944B2 (ja) 2011-03-31 2012-03-27 電荷輸送材料、有機電界発光素子及び該素子を用いたことを特徴とする発光装置、表示装置または照明装置

Publications (1)

Publication Number Publication Date
WO2012133652A1 true WO2012133652A1 (ja) 2012-10-04

Family

ID=46931354

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/058359 WO2012133652A1 (ja) 2011-03-31 2012-03-29 電荷輸送材料、有機電界発光素子及び該素子を用いたことを特徴とする発光装置、表示装置または照明装置

Country Status (3)

Country Link
JP (1) JP5872944B2 (ja)
KR (1) KR101964477B1 (ja)
WO (1) WO2012133652A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160126477A1 (en) * 2014-10-31 2016-05-05 Samsung Sdi Co., Ltd. Organic compound for optoelectric device and composition for optoelectric device and organic optoelectric device and display device
US9520567B2 (en) 2013-05-16 2016-12-13 Cheil Industries, Inc. Luminescent material for organic optoelectric device and organic optoelectric device and display device
EP3042943A4 (en) * 2013-09-06 2017-04-12 Samsung SDI Co., Ltd. Composition for organic optoelectronic device, organic optoelectronic device, and display device
CN110041165A (zh) * 2019-05-10 2019-07-23 安徽秀朗新材料科技有限公司 一种2-溴三亚苯的制备方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9997716B2 (en) * 2014-05-27 2018-06-12 Universal Display Corporation Organic electroluminescent materials and devices
KR101818580B1 (ko) 2014-10-30 2018-01-15 삼성에스디아이 주식회사 유기 광전자 소자 및 표시 장치
KR101869843B1 (ko) * 2014-10-31 2018-07-19 삼성에스디아이 주식회사 유기 광전자 소자 및 표시 장치
KR101818581B1 (ko) * 2014-10-31 2018-01-15 삼성에스디아이 주식회사 유기 광전자 소자 및 표시 장치
CN111018040B (zh) * 2019-12-02 2022-02-01 天津科技大学 一种用于降解亚甲兰的光热性能材料和应用
KR20240016268A (ko) * 2021-06-04 2024-02-06 미쯔비시 케미컬 주식회사 방향족 화합물 및 유기 전계 발광 소자
WO2023181507A1 (ja) * 2022-03-25 2023-09-28 三菱ケミカル株式会社 有機電界発光素子の発光層用材料、発光層形成用組成物、有機電界発光素子、及び有機電界発光素子の製造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008543086A (ja) * 2005-05-31 2008-11-27 ユニバーサル ディスプレイ コーポレイション 燐光発光ダイオードにおけるトリフェニレンホスト
JP2011166103A (ja) * 2010-01-15 2011-08-25 Fujifilm Corp 有機電界発光素子

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102189768B1 (ko) * 2007-08-08 2020-12-14 유니버셜 디스플레이 코포레이션 인광성 발광 다이오드의 단일 트리페닐렌 발색단
KR101676501B1 (ko) * 2008-06-30 2016-11-15 유니버셜 디스플레이 코포레이션 트리페닐렌을 포함하는 정공 수송 물질

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008543086A (ja) * 2005-05-31 2008-11-27 ユニバーサル ディスプレイ コーポレイション 燐光発光ダイオードにおけるトリフェニレンホスト
JP2011166103A (ja) * 2010-01-15 2011-08-25 Fujifilm Corp 有機電界発光素子

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9520567B2 (en) 2013-05-16 2016-12-13 Cheil Industries, Inc. Luminescent material for organic optoelectric device and organic optoelectric device and display device
EP3042943A4 (en) * 2013-09-06 2017-04-12 Samsung SDI Co., Ltd. Composition for organic optoelectronic device, organic optoelectronic device, and display device
US20160126477A1 (en) * 2014-10-31 2016-05-05 Samsung Sdi Co., Ltd. Organic compound for optoelectric device and composition for optoelectric device and organic optoelectric device and display device
US10193081B2 (en) * 2014-10-31 2019-01-29 Samsung Sdi Co., Ltd. Organic compound for optoelectric device and composition for optoelectric device and organic optoelectric device and display device
CN110041165A (zh) * 2019-05-10 2019-07-23 安徽秀朗新材料科技有限公司 一种2-溴三亚苯的制备方法

Also Published As

Publication number Publication date
KR20140020935A (ko) 2014-02-19
KR101964477B1 (ko) 2019-04-01
JP2012216819A (ja) 2012-11-08
JP5872944B2 (ja) 2016-03-01

Similar Documents

Publication Publication Date Title
JP5906114B2 (ja) 電荷輸送材料、有機電界発光素子、発光装置、表示装置および照明装置
JP5984450B2 (ja) 有機電界発光素子、並びに、該素子を用いた発光装置、表示装置、照明装置及び該素子用の化合物
JP5735241B2 (ja) 有機電界発光素子及び電荷輸送材料
JP5872944B2 (ja) 電荷輸送材料、有機電界発光素子及び該素子を用いたことを特徴とする発光装置、表示装置または照明装置
JP6132470B2 (ja) 有機電界発光素子、該素子に用いる化合物および有機電界発光素子用材料、並びに該素子を用いた発光装置、表示装置及び照明装置
JP5875468B2 (ja) 有機電界発光素子用材料、有機電界発光素子並びに該素子を用いた発光装置、表示装置及び照明装置
JP5946317B2 (ja) 有機電界発光素子とそれに用いることができる化合物および有機電界発光素子用材料、並びに該素子を用いた発光装置、表示装置及び照明装置
JP2013175698A (ja) 有機電界発光素子、有機電界発光素子用電荷輸送材料、並びに、該素子を用いた発光装置、表示装置及び照明装置
JP5973762B2 (ja) 電荷輸送材料、有機電界発光素子及び該素子を用いたことを特徴とする発光装置、表示装置または照明装置
JP5872930B2 (ja) 有機電界発光素子及び電荷輸送材料
WO2011086867A1 (ja) 有機電界発光素子
JP6118034B2 (ja) 有機電界発光素子とそれに用いることができる化合物および有機電界発光素子用材料、並びに該素子を用いた発光装置、表示装置及び照明装置
JP5979947B2 (ja) 有機電界発光素子、該素子に用いる化合物、並びに該素子を用いた発光装置、表示装置及び照明装置
WO2012014696A1 (ja) 有機電界発光素子及びp-ジシアノベンゼン構造を有する化合物
WO2011086864A1 (ja) 有機電界発光素子
JP5591066B2 (ja) 有機電界発光素子及び電荷輸送材料
JP6006008B2 (ja) 化合物、有機電界発光素子並びに該有機電界発光素子を用いた発光装置、表示装置及び照明装置
JP2013183010A (ja) 化合物、有機電界発光素子用材料、電荷輸送材料、有機電界発光素子
JP6012148B2 (ja) 有機電界発光素子、化合物、並びに該素子を用いた発光装置、表示装置及び照明装置
JP5778407B2 (ja) 有機電界発光素子及び電荷輸送材料
JP6109231B2 (ja) 有機電界発光素子及び電荷輸送材料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12763586

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137025179

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12763586

Country of ref document: EP

Kind code of ref document: A1