WO2012133616A1 - Discharge lamp - Google Patents

Discharge lamp Download PDF

Info

Publication number
WO2012133616A1
WO2012133616A1 PCT/JP2012/058304 JP2012058304W WO2012133616A1 WO 2012133616 A1 WO2012133616 A1 WO 2012133616A1 JP 2012058304 W JP2012058304 W JP 2012058304W WO 2012133616 A1 WO2012133616 A1 WO 2012133616A1
Authority
WO
WIPO (PCT)
Prior art keywords
line
light
light receiving
spectral sensitivity
spectral
Prior art date
Application number
PCT/JP2012/058304
Other languages
French (fr)
Japanese (ja)
Inventor
昭芳 藤森
金井 信夫
和正 藤原
圭 上条
陽佑 南雲
Original Assignee
株式会社オーク製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社オーク製作所 filed Critical 株式会社オーク製作所
Priority to KR1020137025788A priority Critical patent/KR101867527B1/en
Priority to CN201280016296.5A priority patent/CN103460137B/en
Publication of WO2012133616A1 publication Critical patent/WO2012133616A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/7055Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
    • G03F7/70558Dose control, i.e. achievement of a desired dose
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/0219Electrical interface; User interface
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/0233Handheld
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/04Optical or mechanical part supplementary adjustable parts
    • G01J1/0488Optical or mechanical part supplementary adjustable parts with spectral filtering
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2051Exposure without an original mask, e.g. using a programmed deflection of a point source, by scanning, by drawing with a light beam, using an addressed light or corpuscular source
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70008Production of exposure light, i.e. light sources
    • G03F7/70016Production of exposure light, i.e. light sources by discharge lamps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/82Lamps with high-pressure unconstricted discharge having a cold pressure > 400 Torr
    • H01J61/822High-pressure mercury lamps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/84Lamps with discharge constricted by high pressure
    • H01J61/86Lamps with discharge constricted by high pressure with discharge additionally constricted by close spacing of electrodes, e.g. for optical projection
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/36Controlling
    • H05B41/38Controlling the intensity of light

Definitions

  • the present invention relates to a photometric device that measures light such as illuminance, and more particularly to light measurement with respect to radiated light of a discharge lamp used in an exposure device or the like.
  • pattern light is projected onto a substrate coated with a photosensitive material such as a photoresist to form a pattern on the photosensitive material.
  • a photosensitive material such as a photoresist
  • lighting control is performed by measuring the illuminance and the like using a photometric device between exposures and adjusting the power supplied to the discharge lamp (for example, see Patent Documents 1 and 2).
  • a high-pressure / ultra-high-pressure mercury lamp that emits light including bright lines of g-line (436 nm), h-line (405 nm), and i-line (365 nm) is used (see Patent Document 3).
  • the photosensitive material also has sensitivity characteristics based on bright lines.
  • a filter that removes light other than g-line, h-line, and i-line is provided, and illuminance is measured based on light transmitted through the filter (for example, , See Patent Document 4).
  • the illuminance is detected using a filter with peak transmittance in line with the emission line for a discharge lamp with such radiation characteristics, it will be affected by noise-like spectral fluctuations near the peak, and the illuminance over the entire spectrum will be reduced. It cannot be detected accurately. As a result, power adjustment based on erroneous illuminance measurement is performed, and unnecessary power fluctuations frequently occur during lamp lighting, which affects the lamp life. In addition, an erroneous photometric value is detected in photometric calculations other than illuminance.
  • the present invention is directed to realizing a photometric apparatus and an exposure apparatus that appropriately measure light from a discharge lamp without being affected by noise-induced discharge fluctuations.
  • the exposure apparatus of the present invention includes a discharge lamp that emits spectral light including g-line (436 nm), h-line (405 nm), and i-line (365 nm) emission lines, and illuminance measurement means that measures light emitted from the discharge lamp. And a light adjusting means for adjusting the power supplied to the discharge lamp based on the measured value.
  • the discharge lamp As the discharge lamp, a high-pressure or ultrahigh-pressure mercury lamp can be applied.
  • a spectrum including g-line, h-line, and i-line emission line spectra is generated, and the spectrum distribution of the emitted light corresponds to the three emission lines. It exhibits a continuous spectral distribution curve with a large relative spectral intensity in a narrow wavelength region.
  • the discharge lamp can be applied as a mercury lamp sealed in a discharge tube with a mercury of 0.2 mg / mm 3 or more.
  • the light receiving unit of the light measuring means includes, for example, a light receiving element such as a photoelectric conversion element and a filter disposed on the incident light path, and performs measurement based on an electric signal generated by light incident on the light receiving element.
  • the spectral sensitivity characteristic of the light receiving unit is determined based on the spectral sensitivity characteristic of the light receiving element and the spectral transmittance characteristic of the filter. When the spectral sensitivity of the light receiving element is approximately constant over the entire wavelength range without having a deviating sensitivity in the specific wavelength range, the spectral transmission characteristic of the filter appears as it is as the spectral sensitivity characteristic of the light receiving unit.
  • the light measurement means can measure any of various physical quantities related to the emitted light of the discharge lamp, such as illuminance, luminance, and light quantity, as measurement values.
  • the light adjusting means adjusts the supplied power so as to maintain the measured photometric value at an appropriate value or a constant value.
  • the spectral sensitivity characteristic of the light measurement means is between two adjacent bright lines, i.e., between i line (365 nm) and h line (405 nm), or between h line (405 nm) and g line (436 nm). Between the two, peak sensitivity is provided.
  • the peak sensitivity of the light receiving portion is at a position shifted from the h-line and i-line that should be watched, and the sensitivity (spectral value) corresponding to the h-line and i-line in the spectral sensitivity characteristic is lower than the peak sensitivity. Since the sensitivity (spectrum value) decreases toward the i-line and h-line with the peak sensitivity at the top, even if a dominant discharge fluctuation of noise occurs near the bright line, the fluctuation is not greatly affected by the discharge lamp. Can be measured.
  • the spectral sensitivity characteristic can be represented by a substantially Gaussian distribution curve (normal distribution) centered on the peak sensitivity, or can be represented by a band pass (band).
  • the spectral sensitivity curve may be configured such that the peak sensitivity is as far as possible from i-line and h-line or g-line or i-line.
  • a peak may be provided in the intermediate region.
  • the light measurement means may have an effective sensitivity characteristic in which the half-value width of the spectral sensitivity curve is wider than the wavelength range between the i-line and the h-line. Thereby, the spectral intensity in the wavelength region between the i-line and the h-line is detected with high accuracy as a whole.
  • the sensitivity should be 85% or less of the peak sensitivity, and the spectral sensitivity curve has a wider half-value width than the wavelength range between the h-line and i-line. That's fine. As a result, it is possible to eliminate the influence of noise and to more reliably detect the overall spectrum variation.
  • a photometric device performs photometric calculation based on a light receiving unit having a light receiving element such as a photoelectric conversion element, a filter disposed on an incident optical path, and light incident on the light receiving element.
  • a light receiving portion having a spectral sensitivity characteristic having a peak sensitivity between two adjacent bright lines of g-line (436 nm), h-line (405 nm), and i-line (365 nm). .
  • the present invention it is possible to measure accurate illuminance, luminance, light quantity, etc. by the spectral sensitivity characteristics of the light receiving section, and it is possible to realize accurate photometry of the discharge lamp.
  • the above-described spectral sensitivity characteristic can be applied.
  • the photometric device can detect, for example, illuminance, luminance, light amount, etc., and can be configured as an illuminometer, luminance meter, and light meter, respectively.
  • the photometric device can be configured as a handycam type photometric device, for example, and the light receiving unit and the measuring unit may be integrated. Alternatively, the light receiving unit and the measurement unit can be connected via a signal cable.
  • the light receiving unit may be connected to the desktop type photometric device main body with a cable.
  • the photometric device can be used by being incorporated in the exposure device or the light source device, or can be configured to perform photometry by installing the photometric device on a drawing table or the like in the exposure preparation stage.
  • a photometric device includes a light receiving unit having a light receiving element, a filter disposed on an incident optical path, and a measuring unit that performs photometric calculation based on light incident on the light receiving element. It has a spectral sensitivity characteristic having a peak sensitivity between two matched bright lines.
  • FIG. 1 is a schematic block diagram of an exposure apparatus according to the first embodiment.
  • the exposure apparatus 10 is a maskless exposure apparatus that directly forms a pattern on a substrate SW having a photosensitive material such as a photoresist formed on the surface thereof, and includes a discharge lamp 21 and a DMD (Digital Micro-mirror Device) 24.
  • the substrate SW is irradiated based on the light from the discharge lamp 21 to form a pattern on the surface of the substrate SW.
  • the discharge lamp 21 is a high-pressure or ultrahigh-pressure mercury lamp and contains, for example, 0.2 mg / mm 3 or more of mercury.
  • the spectrum of the discharge lamp has a continuous spectral distribution at about 330 nm to 480 nm and emits g-line (436 nm), h-line (405 nm), and i-line (365 nm) emission line spectrum light.
  • the light emitted from the discharge lamp 21 is shaped into parallel light by the illumination optical system 23 and guided to the DMD 24 through the mirror 25, the half mirror 27A, and the mirror 27B.
  • the DMD 24 is a light modulation element array (for example, 1024 ⁇ 768) in which micro rectangular micromirrors of several ⁇ m to several tens ⁇ m are two-dimensionally arranged in a matrix, and is controlled by the exposure control unit 60.
  • each micromirror is selectively ON / OFF controlled based on the exposure data sent from the exposure control unit 60.
  • the light reflected by the micromirror in the ON state is guided to the projection optical system 28 via the half mirror 27A.
  • the light beam formed by the reflected light from the ON state mirror, that is, the light of the pattern image is irradiated onto the substrate SW.
  • a pattern is formed on the entire substrate while moving the substrate SW.
  • the exposure apparatus 10 includes an illuminance measurement control device 50 including an illuminance calculation control unit 30 and a light receiving unit 40.
  • the illuminance measurement control device 50 measures the illuminance of the discharge lamp 21 and performs constant illuminance lighting control.
  • the light from the discharge lamp 21 is guided to the light receiving unit 40 by moving the light receiving unit 40 to the irradiation region of the projection optical system 28.
  • the illuminance measurement is performed based on the light incident on the light receiving unit 40 from the end of drawing on one substrate to the start of drawing on the next substrate.
  • the light receiving unit 40 includes a light receiving element 41 composed of a photoelectric conversion element and the like, and a filter 42 disposed to face the light receiving surface of the light receiving element 41, and light incident from a window (not shown) of the housing part is The light enters the light receiving element 41 through the filter 42 on the incident optical path.
  • the filter 42 has a spectral transmittance characteristic that transmits light in a predetermined band including g-line (436 nm), h-line (405 nm), and i-line (365 nm), and a wavelength region other than that band. Remove the light. A signal generated by the light incident on the light receiving element 41 is sent to the illuminance calculation control unit 30.
  • the signal input to the illuminance calculation control unit 30 is amplified by the amplifier 35 and then converted into a digital signal by the A / D converter 34. Then, the illuminance is calculated in the calculation unit 36.
  • the illuminance calculation method is obtained by a conventionally known method.
  • the illuminance control unit 33 adjusts the power supplied from the lamp driving unit 32 to the discharge lamp 21 based on the illuminance data. Thereby, while the lamp is lit, light is irradiated from the discharge lamp 21 to the substrate SW with a constant illuminance.
  • FIG. 2 is a diagram showing the spectral sensitivity characteristics of the light receiving section.
  • FIG. 3 is a diagram showing the spectral sensitivity characteristic of the light receiving unit and the spectral distribution characteristic of the discharge lamp. The spectral sensitivity characteristics of the light receiving unit will be described with reference to FIGS.
  • the photosensitive material of the substrate SW on which a pattern is formed by the exposure apparatus 10 often has a photosensitive characteristic that reacts with g-rays, h-rays, or i-rays as mercury rays.
  • the spectral sensitivity curve L1 of the light receiving unit 40 is a curve that approximates a Gaussian distribution over the wavelength range 340 to 480 nm according to these emission lines, and has a peak sensitivity P1 at 385 nm.
  • the sensitivity at the h-line (405 nm) is P2
  • the sensitivity at the i-line (365 nm) is P3, which is a substantially symmetrical distribution curve centering on the peak P1 having the highest relative spectral value.
  • FIG. 3 shows the spectral distribution curve SP of the discharge lamp 21 together with the spectral sensitivity curve L1 of the light receiving section.
  • the spectral sensitivity curve L1 of the light receiving unit is based on the spectral transmittance characteristic of the filter 42 and the spectral sensitivity characteristic of the light receiving element 41.
  • the discharge lamp 21 emits continuous spectrum light including g-line (436 nm), h-line (405 nm), and i-line (365 nm) emission lines, and has a sharp spectral power with a narrow wavelength width of around 436 nm, 405 nm, and 365 nm. It has.
  • the spectral change is relatively gradual, and a continuous distribution curve spread over a wide range.
  • FIG. 3 shows a spectral distribution curve in which the spectral value suddenly decreases in the vicinity of the g-line (436 nm), h-line (405 nm), and i-line (365 nm), and the self-absorption phenomenon of the discharge lamp 21 appears prominently.
  • Spectral distribution characteristics are illustrated. Such spectral fluctuations in a specific narrow wavelength range occur irregularly during lighting.
  • the wavelength range with high sensitivity in the spectral sensitivity curve L1 is excluded from the h-line and i-line, and is not affected by fluctuations in the spectral distribution due to self-absorption, and the wavelength between the h-line and i-line. Light is transmitted over the entire area.
  • the spectral power of the light incident on the light receiving element 41 becomes light that is not controlled by noise-like spectral fluctuations, and the actual illuminance is appropriately detected. And based on the illumination intensity detected appropriately, the constant illumination illumination which adjusted the electric power supplied to the discharge lamp 21 is performed, and frequent power adjustment is suppressed.
  • the exposure apparatus 10 that forms a pattern using the discharge lamp 21 includes the illuminance measurement control device 50 including the illuminance calculation control unit 30 and the light receiving unit 40, and the light receiving unit 40.
  • the peak P1 is shifted from the h-line (405 nm) and the i-line (365 nm), and is provided in a substantially intermediate wavelength region from two adjacent bright lines.
  • the sensitivity for h-line and i-line is lower than the peak sensitivity, and the sensitivity ratio R1 at the wavelength of h-line and the sensitivity ratio R2 at the wavelength of i-line are 85% or less of P1.
  • the half-value width ( ⁇ / 2) of the spectral sensitivity curve is wider than the wavelength region between the h-line and the i-line.
  • a photometric device according to the second embodiment will be described with reference to FIGS.
  • a photometric device independent of the exposure device is used for illuminance measurement.
  • FIG. 4 is a schematic diagram of an illuminometer in the second embodiment.
  • the handycam type illuminance meter 100 includes a main body 120 including a display unit 129 and a light receiving unit 110, and the light receiving unit 110 is connected to a connection unit 127 of the main body 120 via a signal cable 130 attached to the light receiving unit 110. Connected. In order to measure illuminance in an exposure apparatus (not shown), the light receiving unit 110 of the illuminometer 100 is placed on the substrate mounting stage, and the light receiving unit 110 is moved to a predetermined measurement point. And the illumination intensity displayed on the display part 129 of the main body 120 is confirmed, and the electric power supplied to a discharge lamp is adjusted.
  • FIG. 5 is a block diagram of an illuminometer according to the second embodiment.
  • the light receiving unit 110 includes a filter 114 and a light receiving element 116 below a window 112 provided on the upper surface of the light receiving unit main body 110H, and the light receiving unit 110 is disposed to face the light receiving element 116.
  • a light receiving unit 110 ′ having a spectral sensitivity characteristic described later can be selectively connected to the main body 120.
  • FIG. 6 is a diagram showing the spectral sensitivity characteristics of the light receiving unit different from the first embodiment.
  • the spectral sensitivity curve L2 has the peak P2 in the approximate middle between the g-line and the h-line, it is not affected by the noise-dominated spectrum fluctuation due to self-absorption and the like, and The spectral light in the entire wavelength range is appropriately transmitted and guided to the light receiving element 116.
  • the electrical signal generated in the light receiving element 116 of the light receiving unit 110 or the light receiving element 116 'of the light receiving unit 110' is amplified by the amplifier 122 and then converted into a digital signal by the A / D converter 124. Then, the illuminance is calculated in the calculation unit 128. The obtained illuminance data is displayed on the display unit 129.
  • the controller 126 controls the power supply circuit and signal processing circuit inside the main body.
  • the illuminance meter is configured as a photometric device.
  • other photometric devices such as a luminance meter, an integrated light meter, and an integrated intensity meter can be applied.
  • the luminance, light quantity, intensity, and the like are calculated from a signal based on the received light according to a conventionally known arithmetic processing method.
  • the main body 120 can be configured not only as a handy cam type but also as a desktop device.
  • the filter may be selectively detachably attached to the light receiving unit by a slide mechanism using a guide groove.
  • the discharge lamp a mercury lamp other than the above can be used, and a discharge lamp that emits continuous spectrum light including a continuous spectrum and a bright line of g-line, h-line, and i-line is applicable. Is possible. Alternatively, a discharge lamp that emits continuous spectrum light including a plurality of other bright lines may be used.
  • the photometric device is configured to have spectral sensitivity characteristics that match the characteristics of the discharge lamp. Further, when the illuminance measuring device is incorporated in the exposure apparatus as in the first embodiment, a configuration having sensitivity characteristics by a filter may be used.
  • This example is composed of an illuminometer provided with a light receiving portion having the spectral sensitivity characteristics described in the first and second embodiments.
  • a comparison experiment with a conventional illuminometer provided with a light receiving portion having spectral sensitivity characteristics was performed.
  • FIG. 7 is a diagram showing spectral sensitivity characteristics of a conventional light receiving portion (hereinafter referred to as a first conventional light receiving portion) corresponding to i-line (365 nm).
  • FIG. 8 is a diagram showing spectral sensitivity characteristics of a conventional light receiving unit (hereinafter referred to as a second conventional light receiving unit) corresponding to h line (405 nm).
  • the spectral sensitivity curve L3 shown in FIG. 7 is a distribution curve having a peak sensitivity of about 355 nm, and has a maximum sensitivity on the short wavelength side near the i-line (365 nm).
  • a spectral sensitivity curve L4 shown in FIG. 8 is a distribution curve having a peak sensitivity of about 405 nm, and has a maximum sensitivity on the short wavelength side near the h line (405 nm).
  • Sensitivity ratio R41 0.75 at the wavelength of g-line (436 nm)
  • sensitivity ratio 42 0.99 at the wavelength of h-line (405 nm)
  • sensitivity ratio R43 0.35 at the wavelength of i-line (365 nm)
  • the half-value width ⁇ / 2 of the spectral sensitivity curve is 75 nm.
  • Each spectral sensitivity curve has a peak sensitivity in a wavelength range that is easily affected by noise-like spectral fluctuations due to self-absorption.
  • FIG. 9 is a graph showing fluctuations in lamp supply power when constant illuminance lighting control is performed using the first and second conventional light receiving units shown in FIGS.
  • FIG. 10 is a graph showing power fluctuations when constant illuminance lighting control is performed using the light receiving unit of the present embodiment.
  • a super-high pressure mercury lamp of mercury 0.2 mg / mm 3 or more was used as a discharge lamp, and constant illumination lighting control was performed.
  • FIG. 10 is a graph showing fluctuations in lamp supply power when constant illumination lighting control is performed using the light receiving unit of the present embodiment.
  • power adjustment is performed with almost no large power fluctuation. This is because, by using the light receiving unit of the present embodiment described above, the entire spectrum power is accurately detected and an appropriate power adjustment is performed without being affected by the radiation spectrum fluctuation in which noise becomes dominant.
  • 10 shows the power fluctuation of the discharge lamp which is an example according to the first embodiment, but the discharge lamp which is an example according to the second embodiment is also accompanied by a large power fluctuation. Absent.
  • FIG. 11 is a diagram showing changes in the spectral distribution measured when the supplied power is adjusted stepwise.
  • the power distribution is changed in steps of 20 W in the range of 170 W to 250 W, and the spectrum distributions SL1 to SL5 at that time are shown.
  • the spectral intensity of the spectral distribution curve decreases as a whole.
  • the spectral distribution shown in FIG. 11 is a graph created based on the spectral distribution curve obtained by measuring the light emitted from the discharge lamp and passing through the optical system with the multi-side optical system MC-3000-28C (manufactured by Otsuka Electronics Co., Ltd.). It is.
  • FIG. 12 is a graph plotting the spectral relative integrated intensity for each power.
  • the relative integrated value obtained by integrating the values obtained by multiplying the spectral distribution curve measured for each supply power by the sensitivity curve of the light receiving unit is graphed in comparison with each light receiving unit.
  • the integrated value of the second conventional light receiving unit when the supplied power is 250 W as a reference (100%) the ratio of the integrated intensity in the supplied power of each light receiving unit is shown.
  • the spectral distribution curve calculated for each supply power shown in FIG. 11 is multiplied by the spectral sensitivity curve shown in FIG. 2 for each unit wavelength (1 nm), and 300 nm.
  • the integrated value between 500 nm and 500 nm is obtained and shown as a ratio to the integrated value of the second conventional light receiving unit when the supplied power calculated by the same method is 250 W.
  • the spectrum relative integrated intensity in each light receiving unit decreases with reference to the supplied power of 250 W, and the integrated intensity decreases almost in proportion to the amount of power change.
  • the overall spectral relative integrated intensity is large.
  • FIG. 13 is a graph showing the rate of change of the spectral relative integrated intensity.
  • the rate of change of the integrated intensity when the input power is 170 W is used as a reference.
  • the rate of change is greatest when the light receiving unit of this embodiment is used.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Plasma & Fusion (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

An exposure apparatus of the present invention is provided with: a discharge lamp, which radiates light that includes emission lines, i.e., the g line (436 nm), the h line (405 nm) and the i line (365 nm); a light measuring means, which has a light receiving section, and measures the light radiated from the discharge lamp; and an illumination adjusting means, which, on the basis of a measurement value obtained from the light measuring means, adjusts power to be supplied to the discharge lamp. The light measuring means has spectral sensitivity characteristics having peak sensitivities between two adjacent emission lines among the g line, the h line and the i line.

Description

放電ランプDischarge lamp
 本発明は、照度など光を測定する測光装置に関し、特に、露光装置等に使用される放電ランプの放射光に対する光測定に関する。 The present invention relates to a photometric device that measures light such as illuminance, and more particularly to light measurement with respect to radiated light of a discharge lamp used in an exposure device or the like.
 露光装置では、フォトレジストなどの感光材料を塗布した基板に対してパターン光を投影し、感光材料にパターンを形成する。高精度のパターンを形成するためには、露光動作中、一定の照射量で光を照射する必要がある。そのため、露光の合間に測光装置を用いて照度等を計測し、放電ランプへの供給電力を調整して点灯制御を行う(例えば、、特許文献1、2参照)。 In the exposure apparatus, pattern light is projected onto a substrate coated with a photosensitive material such as a photoresist to form a pattern on the photosensitive material. In order to form a highly accurate pattern, it is necessary to irradiate light with a fixed dose during the exposure operation. Therefore, lighting control is performed by measuring the illuminance and the like using a photometric device between exposures and adjusting the power supplied to the discharge lamp (for example, see Patent Documents 1 and 2).
 露光装置では、g線(436nm)、h線(405nm)、i線(365nm)の輝線を含む光を発光する高圧/超高圧水銀ランプが使用されている(特許文献3参照)。感光材料も輝線に基づいた感度特性をもっており、照度測定装置においては、g線、h線、i線以外の光を除去するフィルタを設け、フィルタを透過した光に基づいて照度を測定する(例えば、特許文献4参照)。 In the exposure apparatus, a high-pressure / ultra-high-pressure mercury lamp that emits light including bright lines of g-line (436 nm), h-line (405 nm), and i-line (365 nm) is used (see Patent Document 3). The photosensitive material also has sensitivity characteristics based on bright lines. In the illuminance measuring apparatus, a filter that removes light other than g-line, h-line, and i-line is provided, and illuminance is measured based on light transmitted through the filter (for example, , See Patent Document 4).
特開平8-8154号公報JP-A-8-8154 特開2002-5736号公報JP 2002-5736 A 特開2010-85954号公報JP 2010-85954 A 特開2002-340667号公報JP 2002-340667 A
 上述した放電ランプでは放電管内が高圧のため、放射照度においては放電変動によるノイズが支配的な状態になり易い。特に、輝線付近では、光エネルギーの自己吸収によって変化が生じ、計測される輝線付近のスペクトル値は、ノイズ的な放電変動に大きく影響される。 In the discharge lamp described above, since the inside of the discharge tube is at a high pressure, noise due to discharge fluctuation tends to be dominant in the irradiance. In particular, in the vicinity of the bright line, a change occurs due to self-absorption of light energy, and the measured spectral value in the vicinity of the bright line is greatly influenced by noise-like discharge fluctuations.
 そのため、ランプ出力低下が実質的に生じず、放射スペクトル分布全体の変化は小さくても、輝線付近の放射スペクトルだけが変動する場合が生じる。その一方、実際にランプの出力低下によって放射スペクトル分布全体が変動しても、その全体的変動量に比べて輝線付近の放射スペクトル変動が小さい場合もある。 For this reason, there is a case where only the radiation spectrum in the vicinity of the emission line fluctuates even if the change in the entire radiation spectrum distribution is small, without substantially reducing the lamp output. On the other hand, even if the entire radiation spectrum distribution fluctuates due to a reduction in lamp output, the radiation spectrum fluctuation near the bright line may be smaller than the total fluctuation amount.
 このような放射特性をもつ放電ランプに対し、輝線に合わせてピーク透過率をもつフィルタを使って照度検出すると、そのピーク付近でのノイズ的スペクトル変動に影響されてしまい、スペクトル全体に渡る照度を正確に検出できない。その結果、誤った照度計測に基づいた電力調整を行うことになり、ランプ点灯中、不必要な電力変動が頻繁に続き、ランプ寿命に影響を与える。また、照度以外の測光演算においても、誤った測光値を検出してしまう。 If the illuminance is detected using a filter with peak transmittance in line with the emission line for a discharge lamp with such radiation characteristics, it will be affected by noise-like spectral fluctuations near the peak, and the illuminance over the entire spectrum will be reduced. It cannot be detected accurately. As a result, power adjustment based on erroneous illuminance measurement is performed, and unnecessary power fluctuations frequently occur during lamp lighting, which affects the lamp life. In addition, an erroneous photometric value is detected in photometric calculations other than illuminance.
 本発明は、ノイズの支配的な放電変動に影響されることなく、放電ランプの光を適正に測定する測光装置および露光装置を実現することに向けられる。 The present invention is directed to realizing a photometric apparatus and an exposure apparatus that appropriately measure light from a discharge lamp without being affected by noise-induced discharge fluctuations.
 本発明の露光装置は、g線(436nm)、h線(405nm)、i線(365nm)の輝線を含むスペクトル光を発光する放電ランプと、放電ランプから放射される光を測定する照度測定手段と、測定値に基づき、放電ランプへ供給する電力を調整する光調整手段とを備える。 The exposure apparatus of the present invention includes a discharge lamp that emits spectral light including g-line (436 nm), h-line (405 nm), and i-line (365 nm) emission lines, and illuminance measurement means that measures light emitted from the discharge lamp. And a light adjusting means for adjusting the power supplied to the discharge lamp based on the measured value.
 放電ランプとしては、高圧もしくは超高圧水銀ランプが適用可能であり、この場合、g線、h線、i線の輝線スペクトルを含むスペクトルが生じ、放射光のスペクトル分布は、3つの輝線に応じた狭波長域において大きな相対的スペクトル強度をもつ連続的な分光分布曲線を呈する。例えば、放電ランプは、水銀0.2mg/mm以上放電管内に封入された水銀ランプとして適用可能である。 As the discharge lamp, a high-pressure or ultrahigh-pressure mercury lamp can be applied. In this case, a spectrum including g-line, h-line, and i-line emission line spectra is generated, and the spectrum distribution of the emitted light corresponds to the three emission lines. It exhibits a continuous spectral distribution curve with a large relative spectral intensity in a narrow wavelength region. For example, the discharge lamp can be applied as a mercury lamp sealed in a discharge tube with a mercury of 0.2 mg / mm 3 or more.
 光測定手段の受光部は、例えば、光電変換素子などの受光素子と、入射光路上に配置されるフィルタなどを備え、受光素子へ入射する光によって生じる電気信号に基づいて測定する。受光部の分光感度特性は、受光素子の分光感度特性およびフィルタの分光透過率特性に基づいて定められる。受光素子の分光感度が、特定波長域に偏向的感度をもつことなく、波長域全体に渡っておよそ一定である場合、フィルタの分光透過特性がそのまま受光部の分光感度特性として現れる。 The light receiving unit of the light measuring means includes, for example, a light receiving element such as a photoelectric conversion element and a filter disposed on the incident light path, and performs measurement based on an electric signal generated by light incident on the light receiving element. The spectral sensitivity characteristic of the light receiving unit is determined based on the spectral sensitivity characteristic of the light receiving element and the spectral transmittance characteristic of the filter. When the spectral sensitivity of the light receiving element is approximately constant over the entire wavelength range without having a deviating sensitivity in the specific wavelength range, the spectral transmission characteristic of the filter appears as it is as the spectral sensitivity characteristic of the light receiving unit.
 光測定手段は、測定値として、照度、輝度、光量など、放電ランプの放射光に関する様々な物理量のいずれかを測定することが可能である。光調整手段は、計測される測光値を適正な値あるいは一定の値で維持するように、供給電力を調整する。 The light measurement means can measure any of various physical quantities related to the emitted light of the discharge lamp, such as illuminance, luminance, and light quantity, as measurement values. The light adjusting means adjusts the supplied power so as to maintain the measured photometric value at an appropriate value or a constant value.
 本発明では、光測定手段の分光感度特性が、隣り合う2つの輝線の間、すなわち、i線(365nm)とh線(405nm)の間、あるいは、h線(405nm)とg線(436nm)との間に、ピーク感度を設けている。 In the present invention, the spectral sensitivity characteristic of the light measurement means is between two adjacent bright lines, i.e., between i line (365 nm) and h line (405 nm), or between h line (405 nm) and g line (436 nm). Between the two, peak sensitivity is provided.
 すなわち、受光部のピーク感度は、本来注視すべきh線、i線からシフトした位置にあり、分光感度特性におけるh線とi線に応じた感度(スペクトル値)は、ピーク感度よりも低い。ピーク感度を頂点としてi線およびh線に向け感度(スペクトル値)が低くなるため、輝線付近におけるノイズの支配的な放電変動が生じても、その変動に大きく影響されることがなく、放電ランプの光を測定することができる。 That is, the peak sensitivity of the light receiving portion is at a position shifted from the h-line and i-line that should be watched, and the sensitivity (spectral value) corresponding to the h-line and i-line in the spectral sensitivity characteristic is lower than the peak sensitivity. Since the sensitivity (spectrum value) decreases toward the i-line and h-line with the peak sensitivity at the top, even if a dominant discharge fluctuation of noise occurs near the bright line, the fluctuation is not greatly affected by the discharge lamp. Can be measured.
 たとえば、定照度点灯制御が行われる場合、正確に測定される照度に応じて電力調整することが可能となり、誤った電力調整によって本来必要としない電力変動が生じることなく、安定した定照度点灯が実現される。 For example, when constant illuminance lighting control is performed, it is possible to adjust the power according to the accurately measured illuminance, and stable constant illuminance lighting can be achieved without causing unnecessary power fluctuation due to incorrect power adjustment. Realized.
 分光感度特性は、ピーク感度を中心とした略ガウス分布曲線(正規分布)によって表すことが可能であり、あるいは、バンドパス(帯域)によって表すことも可能である。分光感度曲線としては、i線とh線あるいはg線、i線からピーク感度をできるだけ離すように構成すればよく、例えば、中間域にピークをもたせるようにしてもよい。 The spectral sensitivity characteristic can be represented by a substantially Gaussian distribution curve (normal distribution) centered on the peak sensitivity, or can be represented by a band pass (band). The spectral sensitivity curve may be configured such that the peak sensitivity is as far as possible from i-line and h-line or g-line or i-line. For example, a peak may be provided in the intermediate region.
 ノイズの支配的な放電変動の影響を避ける一方、i線とh線間の波長域、もしくはh線とg線間の波長域の光を広範囲に漏れなく検出することが望ましい。例えば、光測定手段は、i線とh線の間の波長域よりも分光感度曲線の半値幅が広い有効な感度特性をもつようにするのがよい。これによって、i線とh線間の波長域におけるスペクトル強度が全体的に精度よく検出される。 It is desirable to detect the light in the wavelength range between the i-line and h-line or the wavelength range between the h-line and g-line without leaking while avoiding the influence of noise-dominated discharge fluctuations. For example, the light measurement means may have an effective sensitivity characteristic in which the half-value width of the spectral sensitivity curve is wider than the wavelength range between the i-line and the h-line. Thereby, the spectral intensity in the wavelength region between the i-line and the h-line is detected with high accuracy as a whole.
 例えば、h線とi線の波長においてはピーク感度の85%以下の感度とし、h線とi線の間の波長域よりも分光感度曲線の半値幅が広い有効な感度特性を持つようにすればよい。これにより、ノイズによる影響を排除し、全体的スペクトル変動の検出をより確実にすることが可能である。 For example, at the h-line and i-line wavelengths, the sensitivity should be 85% or less of the peak sensitivity, and the spectral sensitivity curve has a wider half-value width than the wavelength range between the h-line and i-line. That's fine. As a result, it is possible to eliminate the influence of noise and to more reliably detect the overall spectrum variation.
 一方、本発明の他の局面における測光装置は、光電変換素子などの受光素子と、入射光路上に配置されるフィルタとを有する受光部と、受光素子に入射する光に基づいて、測光演算する測定部とを備え、受光部は、g線(436nm)、h線(405nm)、i線(365nm)のうち隣り合う2つの輝線間にピーク感度のある分光感度特性を有することを特徴とする。 On the other hand, a photometric device according to another aspect of the present invention performs photometric calculation based on a light receiving unit having a light receiving element such as a photoelectric conversion element, a filter disposed on an incident optical path, and light incident on the light receiving element. A light receiving portion having a spectral sensitivity characteristic having a peak sensitivity between two adjacent bright lines of g-line (436 nm), h-line (405 nm), and i-line (365 nm). .
 本発明においても、受光部の分光感度特性によって正確な照度、輝度、光量などを計測することが可能となり、放電ランプの正確な測光を実現することができる。より具体的な受光部の分光感度特性としては、上述した分光感度特性が適用可能である。 Also in the present invention, it is possible to measure accurate illuminance, luminance, light quantity, etc. by the spectral sensitivity characteristics of the light receiving section, and it is possible to realize accurate photometry of the discharge lamp. As a more specific spectral sensitivity characteristic of the light receiving unit, the above-described spectral sensitivity characteristic can be applied.
 測光装置は、例えば照度、輝度、光量などを検出可能であり、それぞれ照度計、輝度計、光量計として構成可能である。測光装置は、例えばハンディカムタイプの測光装置として構成可能であり、受光部と測定部を一体的にしてもよい。あるいは、受光部と測定部との間に信号ケーブルを介して接続するように構成することも可能である。 The photometric device can detect, for example, illuminance, luminance, light amount, etc., and can be configured as an illuminometer, luminance meter, and light meter, respectively. The photometric device can be configured as a handycam type photometric device, for example, and the light receiving unit and the measuring unit may be integrated. Alternatively, the light receiving unit and the measurement unit can be connected via a signal cable.
 一方、卓上タイプの測光装置本体に受光部をケーブル接続させるように構成してもよい。さらに、測光装置を露光装置、あるいは光源装置内に組み込んで使用し、あるいは、露光準備段階で測光装置を描画テーブル等に設置して測光するように構成することも可能である。 On the other hand, the light receiving unit may be connected to the desktop type photometric device main body with a cable. Further, the photometric device can be used by being incorporated in the exposure device or the light source device, or can be configured to perform photometry by installing the photometric device on a drawing table or the like in the exposure preparation stage.
 本発明の他の局面における測光装置は、受光素子と、入射光路上に配置されるフィルタとを有する受光部と、受光素子に入射する光に基づいて、測光演算する測定部とを備え、隣り合う2つの輝線間にピーク感度のある分光感度特性を有することを特徴とする。 A photometric device according to another aspect of the present invention includes a light receiving unit having a light receiving element, a filter disposed on an incident optical path, and a measuring unit that performs photometric calculation based on light incident on the light receiving element. It has a spectral sensitivity characteristic having a peak sensitivity between two matched bright lines.
 本発明によれば、ノイズの支配的な放電変動に影響されずに放電ランプの光を適正に測定することができる。 According to the present invention, it is possible to appropriately measure the light of the discharge lamp without being affected by the dominant discharge fluctuation of noise.
第1の実施形態である露光装置の概略的ブロック図である。It is a schematic block diagram of the exposure apparatus which is 1st Embodiment. 受光部の分光感度特性を示した図である。It is the figure which showed the spectral sensitivity characteristic of the light-receiving part. 放電ランプの分光分布特性を示した図である。It is the figure which showed the spectral distribution characteristic of the discharge lamp. 第2の実施形態における照度計の模式図である。It is a schematic diagram of the illuminance meter in 2nd Embodiment. 第2の実施形態である照度計のブロック図である。It is a block diagram of the illumination meter which is 2nd Embodiment. 第1の実施形態とは異なる受光部の分光感度特性を示した図である。It is the figure which showed the spectral sensitivity characteristic of the light-receiving part different from 1st Embodiment. i線(365nm)に応じた従来受光部(以下では、第1従来受光部という)の分光感度特性を示した図である。It is the figure which showed the spectral sensitivity characteristic of the conventional light-receiving part (henceforth a 1st conventional light-receiving part) according to i line | wire (365 nm). h線(405nm)に応じた従来受光部(以下では、第2従来受光部という)の分光感度特性を示した図である。It is the figure which showed the spectral sensitivity characteristic of the conventional light-receiving part (henceforth a 2nd conventional light-receiving part) according to h line | wire (405 nm). 図7、図8に示す第1、第2従来受光部を使って定照度点灯制御を行ったときのランプ供給電力の変動を示したグラフである。It is the graph which showed the fluctuation | variation of the lamp supply power when performing constant illumination illumination control using the 1st, 2nd conventional light-receiving part shown in FIG. 7, FIG. 本実施例の受光部を使って定照度点灯制御を行ったときの電力変動を示したグラフである。It is the graph which showed the electric power fluctuation | variation when performing constant illumination illumination control using the light-receiving part of a present Example. 供給電力を段階的に調整したときに測定される分光分布の変化を示した図である。It is the figure which showed the change of the spectral distribution measured when supply electric power is adjusted in steps. スペクトル相対積算強度を電力ごとにプロットしたグラフである。It is the graph which plotted spectrum relative integrated intensity for every electric power. スペクトル相対的積算強度の変化率を示したグラフである。It is the graph which showed the change rate of spectrum relative integrated intensity.
 以下では、図面を参照して本発明の実施形態について説明する。
 
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1は、第1の実施形態である露光装置の概略的ブロック図である。 FIG. 1 is a schematic block diagram of an exposure apparatus according to the first embodiment.
 露光装置10は、フォトレジストなどの感光材料を表面に形成した基板SWに直接パターンを形成するマスクレス露光装置であって、放電ランプ21、DMD(Digital Micro-mirror Device)24を備えている。放電ランプ21からの光に基づいて基板SWを照射し、基板SWの表面にパターンを形成する。 The exposure apparatus 10 is a maskless exposure apparatus that directly forms a pattern on a substrate SW having a photosensitive material such as a photoresist formed on the surface thereof, and includes a discharge lamp 21 and a DMD (Digital Micro-mirror Device) 24. The substrate SW is irradiated based on the light from the discharge lamp 21 to form a pattern on the surface of the substrate SW.
 放電ランプ21は、高圧もしくは超高圧水銀ランプであり、例えば、0.2mg/mm以上の水銀が含まれている。放電ランプのスペクトルは、およそ330nm~480nmにおいて連続的なスペクトル分布であるとともに、g線(436nm)、h線(405nm)、i線(365nm)の輝線スペクトル光を放射する。 The discharge lamp 21 is a high-pressure or ultrahigh-pressure mercury lamp and contains, for example, 0.2 mg / mm 3 or more of mercury. The spectrum of the discharge lamp has a continuous spectral distribution at about 330 nm to 480 nm and emits g-line (436 nm), h-line (405 nm), and i-line (365 nm) emission line spectrum light.
 放電ランプ21から放射された光は、照明光学系23によって平行光に成形され、ミラー25、ハーフミラー27A、ミラー27Bを経てDMD24に導かれる。DMD24は、数μm~数十μmの微小矩形状マイクロミラーをマトリクス状に2次元配列させた光変調素子アレイ(例えば、1024×768)であり、露光制御部60によって制御される。 The light emitted from the discharge lamp 21 is shaped into parallel light by the illumination optical system 23 and guided to the DMD 24 through the mirror 25, the half mirror 27A, and the mirror 27B. The DMD 24 is a light modulation element array (for example, 1024 × 768) in which micro rectangular micromirrors of several μm to several tens μm are two-dimensionally arranged in a matrix, and is controlled by the exposure control unit 60.
 DMD24では、露光制御部60から送られてくる露光データに基づいて、各マイクロミラーがそれぞれ選択的にON/OFF制御される。ON状態のマイクロミラーにおいて反射した光は、ハーフミラー27Aを介して投影光学系28へ導かれる。そして、ON状態ミラーからの反射光によって形成される光束、すなわちパターン像の光が基板SWに照射される。基板SWを移動させながらパターンを基板全体に形成する。 In the DMD 24, each micromirror is selectively ON / OFF controlled based on the exposure data sent from the exposure control unit 60. The light reflected by the micromirror in the ON state is guided to the projection optical system 28 via the half mirror 27A. The light beam formed by the reflected light from the ON state mirror, that is, the light of the pattern image is irradiated onto the substrate SW. A pattern is formed on the entire substrate while moving the substrate SW.
 露光装置10は、照度演算制御部30、受光部40から構成される照度測定制御装置50を備えている。照度測定制御装置50は、放電ランプ21の照度を測定し、定照度点灯制御を行う。受光部40が投影光学系28の照射領域に移動することにより、放電ランプ21の光は受光部40へ導かれる。1つの基板に対する描画が終了してから次の基板への描画開始までの間、受光部40に入射した光に基づいて照度測定を行う。 The exposure apparatus 10 includes an illuminance measurement control device 50 including an illuminance calculation control unit 30 and a light receiving unit 40. The illuminance measurement control device 50 measures the illuminance of the discharge lamp 21 and performs constant illuminance lighting control. The light from the discharge lamp 21 is guided to the light receiving unit 40 by moving the light receiving unit 40 to the irradiation region of the projection optical system 28. The illuminance measurement is performed based on the light incident on the light receiving unit 40 from the end of drawing on one substrate to the start of drawing on the next substrate.
 受光部40は、光電変換素子などで構成される受光素子41と、受光素子41の受光面に対向配置されるフィルタ42を備え、筐体部分の窓(図示せず)から入射した光は、入射光路上にあるフィルタ42を通って、受光素子41に入射する。 The light receiving unit 40 includes a light receiving element 41 composed of a photoelectric conversion element and the like, and a filter 42 disposed to face the light receiving surface of the light receiving element 41, and light incident from a window (not shown) of the housing part is The light enters the light receiving element 41 through the filter 42 on the incident optical path.
 後述するように、フィルタ42は、g線(436nm)、h線(405nm)、i線(365nm)を含む所定帯域の光を透過する分光透過率特性を備えており、その帯域以外の波長域の光を除去する。受光素子41に入射した光によって生じた信号は、照度演算制御部30へ送られる。 As will be described later, the filter 42 has a spectral transmittance characteristic that transmits light in a predetermined band including g-line (436 nm), h-line (405 nm), and i-line (365 nm), and a wavelength region other than that band. Remove the light. A signal generated by the light incident on the light receiving element 41 is sent to the illuminance calculation control unit 30.
 照度演算制御部30に入力された信号は、アンプ35によって増幅処理された後、A/D変換器34においてデジタル信号に変換される。そして、演算部36において照度が算出される。照度算出方法については、従来周知の方法によって求められる。 The signal input to the illuminance calculation control unit 30 is amplified by the amplifier 35 and then converted into a digital signal by the A / D converter 34. Then, the illuminance is calculated in the calculation unit 36. The illuminance calculation method is obtained by a conventionally known method.
 照度制御部33は、照度データに基づいてランプ駆動部32から放電ランプ21へ供給される電力を調整する。これにより、ランプ点灯している間、照度一定で放電ランプ21から基板SWに対して光が照射される。 The illuminance control unit 33 adjusts the power supplied from the lamp driving unit 32 to the discharge lamp 21 based on the illuminance data. Thereby, while the lamp is lit, light is irradiated from the discharge lamp 21 to the substrate SW with a constant illuminance.
 図2は、受光部の分光感度特性を示した図である。図3は、受光部の分光感度特性と放電ランプの分光分布特性を示した図である。図2、3を用いて、受光部の分光感度特性について説明する。 FIG. 2 is a diagram showing the spectral sensitivity characteristics of the light receiving section. FIG. 3 is a diagram showing the spectral sensitivity characteristic of the light receiving unit and the spectral distribution characteristic of the discharge lamp. The spectral sensitivity characteristics of the light receiving unit will be described with reference to FIGS.
 露光装置10によってパターンを形成する基板SWの感光材料は、水銀線としてg線、h線、あるいはi線に反応する感光特性を備えていることが多い。図2に示すように、受光部40の分光感度曲線L1は、これら輝線に従った波長域340~480nmに渡るガウス分布に近似した曲線であり、385nmにピーク感度P1がある。h線(405nm)における感度はP2、i線(365nm)における感度はP3であり、相対的スペクトル値の最も高いピークP1を中心にして、ほぼ対称的な分布曲線になっている。 The photosensitive material of the substrate SW on which a pattern is formed by the exposure apparatus 10 often has a photosensitive characteristic that reacts with g-rays, h-rays, or i-rays as mercury rays. As shown in FIG. 2, the spectral sensitivity curve L1 of the light receiving unit 40 is a curve that approximates a Gaussian distribution over the wavelength range 340 to 480 nm according to these emission lines, and has a peak sensitivity P1 at 385 nm. The sensitivity at the h-line (405 nm) is P2, and the sensitivity at the i-line (365 nm) is P3, which is a substantially symmetrical distribution curve centering on the peak P1 having the highest relative spectral value.
 図3には、受光部の分光感度曲線L1とともに、放電ランプ21の分光分布曲線SPが図示されている。ただし、受光部の分光感度曲線L1は、フィルタ42の分光透過率特性と受光素子41の分光感度特性に基づく。放電ランプ21は、g線(436nm)、h線(405nm)、i線(365nm)の輝線を含めた連続的なスペクトル光を放射し、436nm、405nm、365nm前後の狭い波長幅で鋭いスペクトルパワーをもつ。また、超高圧水銀ランプであるため、比較的スペクトル変化が緩やかであり、広範囲に広がった連続的な分布曲線になっている。 FIG. 3 shows the spectral distribution curve SP of the discharge lamp 21 together with the spectral sensitivity curve L1 of the light receiving section. However, the spectral sensitivity curve L1 of the light receiving unit is based on the spectral transmittance characteristic of the filter 42 and the spectral sensitivity characteristic of the light receiving element 41. The discharge lamp 21 emits continuous spectrum light including g-line (436 nm), h-line (405 nm), and i-line (365 nm) emission lines, and has a sharp spectral power with a narrow wavelength width of around 436 nm, 405 nm, and 365 nm. It has. In addition, since it is an ultra-high pressure mercury lamp, the spectral change is relatively gradual, and a continuous distribution curve spread over a wide range.
 ランプ点灯中、放電ランプ21の分光分布は、自己吸収(吸収スペクトル)によって変動する。図3では、g線(436nm)、h線(405nm)、i線(365nm)付近で急激にスペクトル値が下がる分光分布曲線を示しており、放電ランプ21の自己吸収現象が顕著に現れている分光分布特性が図示されている。このような特定の狭い波長域でのスペクトル変動が点灯中不規則に生じる。 During the lamp operation, the spectral distribution of the discharge lamp 21 varies due to self-absorption (absorption spectrum). FIG. 3 shows a spectral distribution curve in which the spectral value suddenly decreases in the vicinity of the g-line (436 nm), h-line (405 nm), and i-line (365 nm), and the self-absorption phenomenon of the discharge lamp 21 appears prominently. Spectral distribution characteristics are illustrated. Such spectral fluctuations in a specific narrow wavelength range occur irregularly during lighting.
 本実施形態の受光部40の分光感度曲線L1のピークP1は、h線(405nm)、i線(365nm)から離れており、隣り合う2つの輝線からほぼ中間の波長をもつ光に対して最大の感度がある。また、h線の波長における感度比R11と、i線の波長における感度比R12は、P1と比較して低くなり、P1=1.0に対して、R11=0.70、R12=0.61であり、ともにP1の85パーセント以下である。 The peak P1 of the spectral sensitivity curve L1 of the light receiving unit 40 of the present embodiment is far from the h-line (405 nm) and i-line (365 nm), and is maximum for light having an approximately intermediate wavelength from two adjacent bright lines. There is sensitivity. Further, the sensitivity ratio R11 at the wavelength of h-line and the sensitivity ratio R12 at the wavelength of i-line are lower than P1, and R11 = 0.70 and R12 = 0.61 for P1 = 1.0. Both are 85% or less of P1.
 更に、h線とi線との間の波長域よりも分光感度曲線の半値幅(△λ/2)が広く、△λ/2=50nmである。このように、分光感度曲線L1の中で感度の高い波長域をh線、i線から外し、自己吸収による分光分布の変動に影響を受けず、かつ、h線とi線との間の波長域全体に渡って光が透過する。 Furthermore, the half-value width (Δλ / 2) of the spectral sensitivity curve is wider than the wavelength region between the h-line and i-line, and Δλ / 2 = 50 nm. In this way, the wavelength range with high sensitivity in the spectral sensitivity curve L1 is excluded from the h-line and i-line, and is not affected by fluctuations in the spectral distribution due to self-absorption, and the wavelength between the h-line and i-line. Light is transmitted over the entire area.
 その結果、受光素子41に入射する光のスペクトルパワーは、ノイズ的なスペクトル変動に支配されていない光となり、実際の照度が適正に検出される。そして、適正に検出される照度に基づいて、放電ランプ21への供給電力を調整した定照度点灯が行われ、頻繁な電力調整が抑制される。 As a result, the spectral power of the light incident on the light receiving element 41 becomes light that is not controlled by noise-like spectral fluctuations, and the actual illuminance is appropriately detected. And based on the illumination intensity detected appropriately, the constant illumination illumination which adjusted the electric power supplied to the discharge lamp 21 is performed, and frequent power adjustment is suppressed.
 このように本実施形態によれば、放電ランプ21を使用してパターンを形成する露光装置10が、照度演算制御部30および受光部40から構成される照度測定制御装置50を備え、受光部40の分光感度曲線L1は、ピークP1がh線(405nm)、i線(365nm)からシフトしており、隣り合う2つの輝線からほぼ中間の波長域に設けられている。ピーク感度よりもh線とi線における感度が低く、h線の波長における感度比R1と、i線の波長における感度比R2は、P1の85%以下である。更に、h線とi線との間の波長域よりも分光感度曲線の半値幅(△λ/2)が広い。 As described above, according to the present embodiment, the exposure apparatus 10 that forms a pattern using the discharge lamp 21 includes the illuminance measurement control device 50 including the illuminance calculation control unit 30 and the light receiving unit 40, and the light receiving unit 40. In the spectral sensitivity curve L1, the peak P1 is shifted from the h-line (405 nm) and the i-line (365 nm), and is provided in a substantially intermediate wavelength region from two adjacent bright lines. The sensitivity for h-line and i-line is lower than the peak sensitivity, and the sensitivity ratio R1 at the wavelength of h-line and the sensitivity ratio R2 at the wavelength of i-line are 85% or less of P1. Furthermore, the half-value width (Δλ / 2) of the spectral sensitivity curve is wider than the wavelength region between the h-line and the i-line.
 次に、図4~図6を用いて、第2の実施形態である測光装置について説明する。第2の実施形態では、露光装置から独立した測光装置が照度測定のため使用される。 Next, a photometric device according to the second embodiment will be described with reference to FIGS. In the second embodiment, a photometric device independent of the exposure device is used for illuminance measurement.
 図4は、第2の実施形態における照度計の模式図である。 FIG. 4 is a schematic diagram of an illuminometer in the second embodiment.
 ハンディカムタイプの照度計100は、表示部129を備えた本体120と受光部110とを備え、受光部110は、受光部110に取り付けられた信号ケーブル130を介して、本体120の接続部127に接続される。図示しない露光装置における照度測定のため、照度計100の受光部110を基板搭載ステージに設置し、所定の測定ポイントに受光部110を移動させる。そして、本体120の表示部129に表示される照度を確認し、放電ランプへの供給電力を調整する。 The handycam type illuminance meter 100 includes a main body 120 including a display unit 129 and a light receiving unit 110, and the light receiving unit 110 is connected to a connection unit 127 of the main body 120 via a signal cable 130 attached to the light receiving unit 110. Connected. In order to measure illuminance in an exposure apparatus (not shown), the light receiving unit 110 of the illuminometer 100 is placed on the substrate mounting stage, and the light receiving unit 110 is moved to a predetermined measurement point. And the illumination intensity displayed on the display part 129 of the main body 120 is confirmed, and the electric power supplied to a discharge lamp is adjusted.
 図5は、第2の実施形態である照度計のブロック図である。 FIG. 5 is a block diagram of an illuminometer according to the second embodiment.
 受光部110は、受光部本体110Hの上面に設けられた窓112の下方に、フィルタ114および受光素子116を備えており、受光部110は、受光素子116に対向配置されている。ここでは、第1の実施形態と同様の分光感度特性を有する受光部110だけでなく、後述する分光感度特性を有する受光部110’が、選択的に本体120へ接続可能である。 The light receiving unit 110 includes a filter 114 and a light receiving element 116 below a window 112 provided on the upper surface of the light receiving unit main body 110H, and the light receiving unit 110 is disposed to face the light receiving element 116. Here, not only the light receiving unit 110 having the same spectral sensitivity characteristic as that of the first embodiment but also a light receiving unit 110 ′ having a spectral sensitivity characteristic described later can be selectively connected to the main body 120.
 図6は、第1の実施形態とは異なる受光部の分光感度特性を示した図である。 FIG. 6 is a diagram showing the spectral sensitivity characteristics of the light receiving unit different from the first embodiment.
 図6に示すように、受光部110’の分光感度分布曲線L2は、およそ422nmをピークP2としたガウス分布に近似した曲線であり、g線(436nm)とh線(405nm)の略中心位置にピークP2が存在する。また、g線の波長における感度比R21、h線の波長における感度比R22は、P2と比較して低くなり、P2=1.0に対して、R21=0.64、R22=0.71であって、ともにP1の85パーセント以下である。 As shown in FIG. 6, the spectral sensitivity distribution curve L2 of the light receiving unit 110 ′ is a curve that approximates a Gaussian distribution with a peak P2 of about 422 nm, and is approximately the center position of the g-line (436 nm) and h-line (405 nm). There is a peak P2. Further, the sensitivity ratio R21 at the wavelength of g-line and the sensitivity ratio R22 at the wavelength of h-line are lower than P2, and for P2 = 1.0, R21 = 0.64 and R22 = 0.71. Both are less than 85 percent of P1.
 更に、g線とh線との間の波長域よりも分光感度曲線の半値幅(△λ/2)が広く、△λ/2=43nmである。このように分光感度曲線L2にはg線とh線との略中間にピークP2があるため、自己吸収などによるノイズ支配のスペクトル変動の影響を受けることなく、かつ、h線とi線との間の波長域全体のスペクトル光を適切に透過し、受光素子116へ導く。 Furthermore, the half-value width (Δλ / 2) of the spectral sensitivity curve is wider than the wavelength region between the g-line and the h-line, and Δλ / 2 = 43 nm. Thus, since the spectral sensitivity curve L2 has the peak P2 in the approximate middle between the g-line and the h-line, it is not affected by the noise-dominated spectrum fluctuation due to self-absorption and the like, and The spectral light in the entire wavelength range is appropriately transmitted and guided to the light receiving element 116.
 受光部110の受光素子116、もしくは受光部110’の受光素子116’において生じた電気信号は、アンプ122によって増幅処理された後、A/D変換器124によってデジタル信号に変換される。そして、演算部128において照度が演算される。求められた照度データは、表示部129において表示される。コントローラ126は、本体内部の電源回路、信号処理回路を制御する。 The electrical signal generated in the light receiving element 116 of the light receiving unit 110 or the light receiving element 116 'of the light receiving unit 110' is amplified by the amplifier 122 and then converted into a digital signal by the A / D converter 124. Then, the illuminance is calculated in the calculation unit 128. The obtained illuminance data is displayed on the display unit 129. The controller 126 controls the power supply circuit and signal processing circuit inside the main body.
 なお、第1、第2の実施形態では照度計が測光装置として構成されているが、輝度計、積算光量計、積算強度計など、他の測光装置を適用することも可能である。この場合、測光装置本体において、受光に基づいた信号から輝度、光量、強度などが従来知られた演算処理方法に従って算出される。また、本体120をハンディカムタイプだけでなく、卓上型装置として構成することも可能である。さらに、ガイド溝を用いたスライド機構などによって、選択的にフィルタを受光部へ着脱自在に装着してもよい。 In the first and second embodiments, the illuminance meter is configured as a photometric device. However, other photometric devices such as a luminance meter, an integrated light meter, and an integrated intensity meter can be applied. In this case, in the photometric device main body, the luminance, light quantity, intensity, and the like are calculated from a signal based on the received light according to a conventionally known arithmetic processing method. In addition, the main body 120 can be configured not only as a handy cam type but also as a desktop device. Furthermore, the filter may be selectively detachably attached to the light receiving unit by a slide mechanism using a guide groove.
 放電ランプとしては、上記以外の水銀ランプを使用することも可能であり、連続的スペクトルであるとともに、g線、h線、i線を輝線が含まれる連続的スペクトル光を発光する放電ランプが適用可能である。あるいは、他の複数の輝線を含まれる連続的スペクトル光を発光する放電ランプを使用してもよい。この場合、測光装置は、放電ランプの特性に合わせた分光感度特性をもつように構成される。また、第1の実施形態のように露光装置へ照度測定装置が組み込まれている場合、フィルタによって感度特性をもつ構成にしてもよい。 As the discharge lamp, a mercury lamp other than the above can be used, and a discharge lamp that emits continuous spectrum light including a continuous spectrum and a bright line of g-line, h-line, and i-line is applicable. Is possible. Alternatively, a discharge lamp that emits continuous spectrum light including a plurality of other bright lines may be used. In this case, the photometric device is configured to have spectral sensitivity characteristics that match the characteristics of the discharge lamp. Further, when the illuminance measuring device is incorporated in the exposure apparatus as in the first embodiment, a configuration having sensitivity characteristics by a filter may be used.
 以下では、本発明の実施例について説明する。 Hereinafter, embodiments of the present invention will be described.
 本実施例は、第1、2の実施形態で説明した分光感度特性をもつ受光部を備えた照度計によって構成される。従来の分光感度特性を有する受光部を備えた照度計との比較実験を行った。 This example is composed of an illuminometer provided with a light receiving portion having the spectral sensitivity characteristics described in the first and second embodiments. A comparison experiment with a conventional illuminometer provided with a light receiving portion having spectral sensitivity characteristics was performed.
 図7は、i線(365nm)に応じた従来受光部(以下では、第1従来受光部という)の分光感度特性を示した図である。図8は、h線(405nm)に応じた従来受光部(以下では、第2従来受光部という)の分光感度特性を示した図である。 FIG. 7 is a diagram showing spectral sensitivity characteristics of a conventional light receiving portion (hereinafter referred to as a first conventional light receiving portion) corresponding to i-line (365 nm). FIG. 8 is a diagram showing spectral sensitivity characteristics of a conventional light receiving unit (hereinafter referred to as a second conventional light receiving unit) corresponding to h line (405 nm).
 図7に示す分光感度曲線L3は、およそ355nmをピーク感度とした分布曲線であり、i線(365nm)付近の短波長側に最大の感度がある。h線(405nm)の波長における感度比R31=0、i線(365nm)の波長における感度比R32=0.90であり、分光感度曲線の半値幅△λ/2=40nmである。 The spectral sensitivity curve L3 shown in FIG. 7 is a distribution curve having a peak sensitivity of about 355 nm, and has a maximum sensitivity on the short wavelength side near the i-line (365 nm). The sensitivity ratio R31 = 0 at the wavelength of h-line (405 nm), the sensitivity ratio R32 = 0.90 at the wavelength of i-line (365 nm), and the half-value width Δλ / 2 = 40 nm of the spectral sensitivity curve.
 図8に示す分光感度曲線L4は、およそ405nmをピーク感度とした分布曲線であり、h線(405nm)付近の短波長側に最大の感度がある。g線(436nm)の波長における感度比R41=0.75、h線(405nm)の波長における感度比42=0.99、i線(365nm)の波長における感度比R43=0.35であり、分光感度曲線の半値幅△λ/2=75nmである。いずれの分光感度曲線も、自己吸収などによるノイズ的スペクトル変動の影響を受け易い波長域にピーク感度を設けている。 A spectral sensitivity curve L4 shown in FIG. 8 is a distribution curve having a peak sensitivity of about 405 nm, and has a maximum sensitivity on the short wavelength side near the h line (405 nm). Sensitivity ratio R41 = 0.75 at the wavelength of g-line (436 nm), sensitivity ratio 42 = 0.99 at the wavelength of h-line (405 nm), sensitivity ratio R43 = 0.35 at the wavelength of i-line (365 nm), The half-value width Δλ / 2 of the spectral sensitivity curve is 75 nm. Each spectral sensitivity curve has a peak sensitivity in a wavelength range that is easily affected by noise-like spectral fluctuations due to self-absorption.
 図9は、図7、8に示す第1、第2従来受光部を使って定照度点灯制御を行ったときのランプ供給電力の変動を示したグラフである。図10は、本実施例の受光部を使って定照度点灯制御を行ったときの電力変動を示したグラフである。ここでは、放電ランプとして、水銀0.2mg/mm以上の超高圧水銀ランプを使用し、定照度点灯制御を行った。 FIG. 9 is a graph showing fluctuations in lamp supply power when constant illuminance lighting control is performed using the first and second conventional light receiving units shown in FIGS. FIG. 10 is a graph showing power fluctuations when constant illuminance lighting control is performed using the light receiving unit of the present embodiment. Here, a super-high pressure mercury lamp of mercury 0.2 mg / mm 3 or more was used as a discharge lamp, and constant illumination lighting control was performed.
 図7、図8に示す第1、第2従来受光部を使用した照度計の場合、ランプの使用中、大きな電力変動が連続的に絶え間なく生じている(図9のM1、M2参照)。これは、ノイズが支配的な放電変動に影響されて不正確な照度を検出してしまい、それに合わせて大きな電力変動を伴う不必要な電力調整が行われていることを表す。 7 and FIG. 8, in the case of the illuminometer using the first and second conventional light receiving units, large power fluctuations continuously occur continuously during use of the lamp (see M1 and M2 in FIG. 9). This indicates that an inaccurate illuminance is detected due to the influence of discharge fluctuations in which noise is dominant, and unnecessary power adjustment with a large power fluctuation is performed accordingly.
 図10は、本実施例の受光部を使って定照度点灯制御を行ったときのランプ供給電力の変動を示したグラフである。図10に示すように、大きな電力変動がほとんど生じることなく電力調整が行われている。これは、上述した本実施例の受光部を使うことによって、ノイズが支配的となった放射スペクトル変動に影響されることなく、全体的なスペクトルパワーを的確に検出し、適正な電力調整が行われていることを示している。なお、図10では第1実施形態に応じた実施例である放電ランプの電力変動を示しているが、第2実施形態に応じた実施例である放電ランプにおいても、同様に大きな電力変動を伴わない。 FIG. 10 is a graph showing fluctuations in lamp supply power when constant illumination lighting control is performed using the light receiving unit of the present embodiment. As shown in FIG. 10, power adjustment is performed with almost no large power fluctuation. This is because, by using the light receiving unit of the present embodiment described above, the entire spectrum power is accurately detected and an appropriate power adjustment is performed without being affected by the radiation spectrum fluctuation in which noise becomes dominant. It is shown that 10 shows the power fluctuation of the discharge lamp which is an example according to the first embodiment, but the discharge lamp which is an example according to the second embodiment is also accompanied by a large power fluctuation. Absent.
 次に、放電ランプへの供給電力を変化させたときのスペクトル相対的積算強度およびスペクトル相対的積算強度の変化について比較実験を行った。照度計については、本実施例のうち第1の実施形態に応じた実施例を使用し、従来例と比較した。 Next, a comparative experiment was conducted on the change of the relative spectral integrated intensity and the spectral relative integrated intensity when the power supplied to the discharge lamp was changed. About the illuminometer, the Example according to 1st Embodiment was used among the present Examples, and it compared with the prior art example.
 図11は、供給電力を段階的に調整したときに測定される分光分布の変化を示した図である。電力を170W~250Wの範囲で20Wずつ段階的に変化させ、そのときのスペクトル分布SL1~SL5が図示されている。供給電力が減少するほど、分光分布曲線のスペクトル強度が全体的に下がる。なお、図11に示すスペクトル分布は、放電ランプから放射され、光学系を通過した光をマルチ側光システムMC-3000-28C(大塚電子株式会社製)によって測定した分光分布曲線に基づき作成したグラフである。 FIG. 11 is a diagram showing changes in the spectral distribution measured when the supplied power is adjusted stepwise. The power distribution is changed in steps of 20 W in the range of 170 W to 250 W, and the spectrum distributions SL1 to SL5 at that time are shown. As the power supply decreases, the spectral intensity of the spectral distribution curve decreases as a whole. The spectral distribution shown in FIG. 11 is a graph created based on the spectral distribution curve obtained by measuring the light emitted from the discharge lamp and passing through the optical system with the multi-side optical system MC-3000-28C (manufactured by Otsuka Electronics Co., Ltd.). It is.
 図12は、スペクトル相対積算強度を電力ごとにプロットしたグラフである。ここでは、供給電力ごとに計測される分光分布曲線に対し、受光部の感度曲線で乗算した値を積算した相対的積算値を、各受光部で対比してグラフ化している。ここで、供給電力が250Wのときの第2従来受光部の積算値を基準(100%)として、各受光部の供給電力における積算強度の割合を示している。 FIG. 12 is a graph plotting the spectral relative integrated intensity for each power. Here, the relative integrated value obtained by integrating the values obtained by multiplying the spectral distribution curve measured for each supply power by the sensitivity curve of the light receiving unit is graphed in comparison with each light receiving unit. Here, using the integrated value of the second conventional light receiving unit when the supplied power is 250 W as a reference (100%), the ratio of the integrated intensity in the supplied power of each light receiving unit is shown.
 例えば、本実施例の受光部については、図11で示した供給電力ごとに計算される分光分布曲線に対して、図2で示した分光感度曲線で単位波長(1nm)毎に乗算し、300nmから500nmの間での積算値を求め、同じ方法で算出した供給電力が250Wのときの第2従来受光部の積算値に対する割合として示している。 For example, for the light receiving unit of this embodiment, the spectral distribution curve calculated for each supply power shown in FIG. 11 is multiplied by the spectral sensitivity curve shown in FIG. 2 for each unit wavelength (1 nm), and 300 nm. The integrated value between 500 nm and 500 nm is obtained and shown as a ratio to the integrated value of the second conventional light receiving unit when the supplied power calculated by the same method is 250 W.
 図12に示すように、各受光部におけるスペクトル相対積算強度は、供給電力250Wを基準として低下し、電力変化量にほぼ比例して積算強度が低下していく。本実施例の受光部および第2従来受光部を使用したとき、全体的にスペクトル相対的積算強度が大きい。 As shown in FIG. 12, the spectrum relative integrated intensity in each light receiving unit decreases with reference to the supplied power of 250 W, and the integrated intensity decreases almost in proportion to the amount of power change. When the light receiving unit of the present embodiment and the second conventional light receiving unit are used, the overall spectral relative integrated intensity is large.
 図13は、スペクトル相対的積算強度の変化率を示したグラフである。ここでは、入力電力170Wのときを基準としたときの積算強度の変化率が比によって表されている。変化率が大きいほど、分解能が高くより細かく積算強度の変化を検出することができ、精密に照度変動を把握することができる。図13に示すように、本実施例の受光部を使用したときの変化率が最も大きい。 FIG. 13 is a graph showing the rate of change of the spectral relative integrated intensity. Here, the rate of change of the integrated intensity when the input power is 170 W is used as a reference. The larger the change rate, the higher the resolution, the more finely the change in the integrated intensity can be detected, and the illuminance fluctuation can be accurately grasped. As shown in FIG. 13, the rate of change is greatest when the light receiving unit of this embodiment is used.
 以上に示すように、本実施例の受光部を使用することによって、ノイズが支配的な放電変動に影響されることなく、かつ、実際の放電変化(照度変化)を精密に把握することが可能となる。したがって、本実施例の受光部を使用することにより、輝度測定、光量測定など他の測光演算についても正確に行えることは明らかである。 As shown above, by using the light receiving unit of this embodiment, it is possible to accurately grasp the actual discharge change (illuminance change) without being affected by noise-dominated discharge fluctuations. It becomes. Therefore, it is obvious that other photometric calculations such as luminance measurement and light quantity measurement can be performed accurately by using the light receiving unit of this embodiment.
 本発明に関しては、添付されたクレームによって定義される本発明の意図および範囲から離れることなく、様々な変更、置換、代替が可能である。さらに、本発明では、明細書に記載された特定の実施形態のプロセス、装置、製造、構成物、手段、方法およびステップに限定されることを意図していない。当業者であれば、本発明の開示から、ここに記載された実施形態がもたらす機能と同様の機能を実質的に果たし、又は同等の作用、効果を実質的にもたらす装置、手段、方法が導かれることを認識するであろう。したがって、添付した請求の範囲は、そのような装置、手段、方法の範囲に含まれることが意図されている。 -Various changes, substitutions, and alternatives are possible with respect to the present invention without departing from the spirit and scope of the present invention as defined by the appended claims. Furthermore, the present invention is not intended to be limited to the specific embodiments of the processes, apparatus, manufacture, components, means, methods, and steps described in the specification. Those skilled in the art will appreciate from the disclosure of the present invention devices, means, and methods that perform substantially the same functions as those provided by the embodiments described herein, or that provide substantially the same operations and effects. You will recognize it. Accordingly, the appended claims are intended to be included within the scope of such devices, means, and methods.
 本願は、日本出願(特願2011-074420号、2011年3月30日出願)を基礎出願として優先権主張する出願であり、基礎出願の明細書、図面およびクレームを含む開示内容は、参照することによって本願全体に組み入れられている。 This application claims the priority as a basic application of a Japanese application (Japanese Patent Application No. 2011-074420, filed on March 30, 2011), and the disclosure including the specification, drawings and claims of the basic application is referred to. Which is incorporated herein by reference in its entirety.
 10 露光装置
 21 放電ランプ
 30 照度演算制御部
 40 受光部
 41 受光素子
 42 フィルタ
 50 照度測定制御装置
 100 照度計
 110 受光部
 114 フィルタ
 120 本体
 
 
DESCRIPTION OF SYMBOLS 10 Exposure apparatus 21 Discharge lamp 30 Illuminance calculation control part 40 Light-receiving part 41 Light-receiving element 42 Filter 50 Illuminance measurement control apparatus 100 Illuminance meter 110 Light-receiving part 114 Filter 120 Main body

Claims (15)

  1.  g線(436nm)、h線(405nm)、i線(365nm)の輝線を含む光を放射する放電ランプと、
     受光部を有し、前記放電ランプから放射される光を測定する光測定手段と、
     前記光測定手段における測定値に基づき、前記放電ランプへ供給する電力を調整する照明調整手段とを備え、
     前記光測定手段が、g線、h線、i線のうち隣り合う2つの輝線間にピーク感度のある分光感度特性を有することを特徴とする露光装置。
    a discharge lamp that emits light including emission lines of g-line (436 nm), h-line (405 nm), and i-line (365 nm);
    A light measuring means having a light receiving portion and measuring light emitted from the discharge lamp;
    Illumination adjustment means for adjusting the power supplied to the discharge lamp based on the measurement value in the light measurement means,
    An exposure apparatus, wherein the light measuring means has a spectral sensitivity characteristic having a peak sensitivity between two adjacent bright lines among g-line, h-line, and i-line.
  2.  前記分光感度特性における分光感度曲線の半値幅が、前記隣り合う2つの輝線間の波長域よりも広いことを特徴とする請求項1に記載の露光装置。 2. The exposure apparatus according to claim 1, wherein a half width of a spectral sensitivity curve in the spectral sensitivity characteristic is wider than a wavelength region between the two adjacent bright lines.
  3.  前記分光感度特性において、前記隣り合う2つの輝線における感度が、ともに前記ピーク感度の85パーセント以下であることを特徴とする請求項1に記載の露光装置。 2. The exposure apparatus according to claim 1, wherein, in the spectral sensitivity characteristic, sensitivities at the two adjacent bright lines are 85% or less of the peak sensitivity. 3.
  4.  前記分光感度特性が、i線とh線との間の波長域(365nm~405nm)にピーク感度を有することを特徴とする請求項1乃至3のいずれかに記載の露光装置。 4. The exposure apparatus according to claim 1, wherein the spectral sensitivity characteristic has a peak sensitivity in a wavelength region (365 nm to 405 nm) between i-line and h-line.
  5.  前記分光感度特性が、h線とg線との間の波長域(405nm~436nm)にピーク感度のある分光感度特性を有することを特徴とする請求項1乃至3のいずれかに記載の露光装置。 4. The exposure apparatus according to claim 1, wherein the spectral sensitivity characteristic has a spectral sensitivity characteristic having a peak sensitivity in a wavelength region (405 nm to 436 nm) between the h-line and the g-line. .
  6.  前記分光感度特性における分光感度曲線が、前記ピーク感度を中心とした略ガウス分布曲線によって表されることを特徴とする請求項1乃至3のいずれかに記載の露光装置。 4. The exposure apparatus according to claim 1, wherein the spectral sensitivity curve in the spectral sensitivity characteristic is represented by a substantially Gaussian distribution curve centered on the peak sensitivity.
  7.  前記光測定手段が、前記放電ランプから放射される光の照度を測定し、
     前記照明調整手段が、一定照度を維持するように供給電力を調整することを特徴とする請求項1乃至3のいずれかに記載の露光装置。
    The light measuring means measures the illuminance of light emitted from the discharge lamp;
    The exposure apparatus according to claim 1, wherein the illumination adjusting unit adjusts supply power so as to maintain a constant illuminance.
  8.  前記放電ランプが、水銀を0.2mg/mm以上封入した水銀ランプであることを特徴とする請求項1乃至3のいずれかに記載の露光装置。 The exposure apparatus according to any one of claims 1 to 3 , wherein the discharge lamp is a mercury lamp in which 0.2 mg / mm 3 or more of mercury is sealed.
  9.  受光素子と、入射光路上に配置されるフィルタとを有する受光部と、
     前記受光素子に入射する光に基づいて、測光演算する測定部とを備え、
     前記受光部が、g線(436nm)、h線(405nm)、i線(365nm)のうち隣り合う2つの輝線間にピーク感度のある分光感度特性を有することを特徴とする測光装置。
    A light receiving unit having a light receiving element and a filter disposed on the incident optical path;
    A measurement unit that performs photometric calculation based on light incident on the light receiving element;
    The photometric device according to claim 1, wherein the light receiving section has a spectral sensitivity characteristic having a peak sensitivity between two adjacent bright lines among g-line (436 nm), h-line (405 nm), and i-line (365 nm).
  10.  前記分光感度特性における分光感度曲線の半値幅が、前記隣り合う2つの輝線間の波長域よりも広いことを特徴とする請求項9に記載の測光装置。 10. The photometric device according to claim 9, wherein a half-value width of a spectral sensitivity curve in the spectral sensitivity characteristic is wider than a wavelength region between the two adjacent bright lines.
  11.  前記分光感度特性において、前記隣り合う2つの輝線における感度が、ともに前記ピーク感度の85パーセント以下であることを特徴とする請求項9に記載の測光装置。 10. The photometric device according to claim 9, wherein, in the spectral sensitivity characteristic, sensitivities at the two adjacent bright lines are 85% or less of the peak sensitivity.
  12.  前記分光感度特性が、i線とh線との間の波長域(365nm~405nm)にピーク感度を有することを特徴とする請求項9乃至11のいずれかに記載の測光装置。 12. The photometric device according to claim 9, wherein the spectral sensitivity characteristic has a peak sensitivity in a wavelength region (365 nm to 405 nm) between i-line and h-line.
  13.  前記分光感度特性が、h線とg線との間の波長域(405nm~436nm)にピーク感度のある分光感度特性を有することを特徴とする請求項9乃至11のいずれかに記載の測光装置。 12. The photometric device according to claim 9, wherein the spectral sensitivity characteristic has a spectral sensitivity characteristic having a peak sensitivity in a wavelength region (405 nm to 436 nm) between the h line and the g line. .
  14.  測光装置本体に信号ケーブルを介して接続可能であり、
     受光素子と、
     入射光路上に配置されるフィルタとを備え、
     輝線であるg線(436nm)、h線(405nm)、i線(365nm)のうち隣り合う2つの輝線間にピーク感度のある分光感度特性を有することを特徴とする測光装置の受光部。
    It can be connected to the photometric device body via a signal cable,
    A light receiving element;
    A filter disposed on the incident optical path,
    A light receiving portion of a photometric device characterized by having a spectral sensitivity characteristic having a peak sensitivity between two adjacent bright lines among g lines (436 nm), h lines (405 nm) and i lines (365 nm) which are bright lines.
  15.  受光素子と、入射光路上に配置されるフィルタとを有する受光部と、
     前記受光素子に入射する光に基づいて、測光演算する測定部とを備え、
     前記受光部が、隣り合う2つの輝線間にピーク感度のある分光感度特性を有することを特徴とする測光装置。
    A light receiving unit having a light receiving element and a filter disposed on the incident optical path;
    A measurement unit that performs photometric calculation based on light incident on the light receiving element;
    The photometric device, wherein the light receiving unit has a spectral sensitivity characteristic having a peak sensitivity between two adjacent bright lines.
PCT/JP2012/058304 2011-03-30 2012-03-29 Discharge lamp WO2012133616A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020137025788A KR101867527B1 (en) 2011-03-30 2012-03-29 Photometric device and exposure device
CN201280016296.5A CN103460137B (en) 2011-03-30 2012-03-29 Light measurer and exposure device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011074420A JP5723652B2 (en) 2011-03-30 2011-03-30 Photometric apparatus and exposure apparatus
JP2011-074420 2011-03-30

Publications (1)

Publication Number Publication Date
WO2012133616A1 true WO2012133616A1 (en) 2012-10-04

Family

ID=46931318

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/058304 WO2012133616A1 (en) 2011-03-30 2012-03-29 Discharge lamp

Country Status (5)

Country Link
JP (1) JP5723652B2 (en)
KR (1) KR101867527B1 (en)
CN (1) CN103460137B (en)
TW (1) TWI536119B (en)
WO (1) WO2012133616A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI629568B (en) * 2013-08-09 2018-07-11 日商奧克製作所股份有限公司 Illumination device and exposure device including the same
KR20150134527A (en) 2014-05-22 2015-12-02 주식회사 만도 Apparatus for inspecting coil current of hydraulic valve and method for inspecting coil current thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62137527A (en) * 1985-12-12 1987-06-20 Toshiba Corp Spectral distribution inspecting device
JPH036011A (en) * 1989-06-02 1991-01-11 Nec Yamagata Ltd Wafer aligner for semiconductor-device manufacture
JPH0521176A (en) * 1991-07-08 1993-01-29 Mitsubishi Electric Corp Discharge lamp lighting device
JP2009021971A (en) * 2007-06-15 2009-01-29 Toshiba Lighting & Technology Corp Optical communication system
JP2009251551A (en) * 2008-04-11 2009-10-29 Ushio Inc Ultraviolet irradiator, and control method of irradiator thereof

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4319830A (en) * 1979-08-06 1982-03-16 Terence Roach Multispectral light detection system
JPS58165324A (en) * 1982-03-25 1983-09-30 Nec Corp Measurement of integrated exposure of mask aliner
JPH04142020A (en) * 1990-10-02 1992-05-15 Nec Yamagata Ltd Aligner
JPH04343032A (en) * 1991-05-21 1992-11-30 Nec Yamagata Ltd Illumination meter for exposure device
JP3526652B2 (en) * 1995-05-11 2004-05-17 倉敷紡績株式会社 Optical measuring method and optical measuring device
JP2002005736A (en) * 2000-06-23 2002-01-09 Orc Mfg Co Ltd Measuring device for ultraviolet ray illuminance distribution
JP2002340667A (en) * 2001-05-15 2002-11-27 Nikon Corp Instrument for measuring illuminance, and exposure device
JP2003257846A (en) * 2002-03-07 2003-09-12 Nikon Corp Light source unit, lighting system, and system and method for exposure
JP2004170325A (en) * 2002-11-22 2004-06-17 Shimadzu Corp Spectrometric measuring instrument
JP4262032B2 (en) * 2003-08-25 2009-05-13 キヤノン株式会社 EUV light source spectrum measurement device
JP4428403B2 (en) * 2006-06-28 2010-03-10 ソニー株式会社 Infrared signal receiver, liquid crystal display and optical element
JP5181138B2 (en) * 2006-11-02 2013-04-10 友達光電股▲ふん▼有限公司 Liquid crystal panel manufacturing apparatus and liquid crystal panel manufacturing method
JP5320006B2 (en) 2008-10-03 2013-10-23 株式会社オーク製作所 Exposure drawing device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62137527A (en) * 1985-12-12 1987-06-20 Toshiba Corp Spectral distribution inspecting device
JPH036011A (en) * 1989-06-02 1991-01-11 Nec Yamagata Ltd Wafer aligner for semiconductor-device manufacture
JPH0521176A (en) * 1991-07-08 1993-01-29 Mitsubishi Electric Corp Discharge lamp lighting device
JP2009021971A (en) * 2007-06-15 2009-01-29 Toshiba Lighting & Technology Corp Optical communication system
JP2009251551A (en) * 2008-04-11 2009-10-29 Ushio Inc Ultraviolet irradiator, and control method of irradiator thereof

Also Published As

Publication number Publication date
JP2012208351A (en) 2012-10-25
TWI536119B (en) 2016-06-01
JP5723652B2 (en) 2015-05-27
TW201239550A (en) 2012-10-01
CN103460137A (en) 2013-12-18
KR20140061305A (en) 2014-05-21
CN103460137B (en) 2016-05-25
KR101867527B1 (en) 2018-06-15

Similar Documents

Publication Publication Date Title
US9509967B2 (en) Light source device and projector
JP5486692B2 (en) Integrating sphere photometer and measuring method thereof
JP5246395B2 (en) Optical property measuring device
TW201732223A (en) Topography measurement system
WO2006126444A1 (en) Sensor calibration method, exposure method, exposure device, device fabrication method, and reflection type mask
KR20160143536A (en) Polishing apparatus
JP6839787B2 (en) Radioactive source
TWI411894B (en) Exposing device
JP2007163358A (en) Light quantity monitor and light source device therewith
US7612868B2 (en) Exposure apparatus and method of manufacturing device
JP5723652B2 (en) Photometric apparatus and exposure apparatus
JP2010045356A (en) Lithographic apparatus and method
KR20130061085A (en) Method of calculating amount of fluctuation of imaging characteristic of projection optical system, exposure apparatus, and method of fabricating device
WO2014034596A1 (en) Illumination monitoring apparatus and exposure apparatus provided with same
TW201721294A (en) Lithographic apparatus and method
JP6623847B2 (en) Light source device and exposure apparatus having the same
JP2011165784A (en) Light irradiation device
JP3197796U (en) Collimator for X-ray fluoroscopic apparatus and X-ray fluoroscopic apparatus
JP5371080B2 (en) Exposure apparatus and exposure method
JP2015114439A (en) Ultraviolet irradiation device
JP4290427B2 (en) Light source for optical devices
JP2009267097A (en) Calibration method of spectral width measuring equipment, calibration apparatus of spectral width measuring equipment, narrow-band laser apparatus, light exposure apparatus, and method of manufacturing electronic device
JP5841381B2 (en) Light control device for exposure
TW200303970A (en) Light source unit, lighting device, exposure device and exposure method
JP5880496B2 (en) Light source device and projector

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12765174

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137025788

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12765174

Country of ref document: EP

Kind code of ref document: A1