WO2012133495A1 - 糖液の製造方法 - Google Patents

糖液の製造方法 Download PDF

Info

Publication number
WO2012133495A1
WO2012133495A1 PCT/JP2012/058076 JP2012058076W WO2012133495A1 WO 2012133495 A1 WO2012133495 A1 WO 2012133495A1 JP 2012058076 W JP2012058076 W JP 2012058076W WO 2012133495 A1 WO2012133495 A1 WO 2012133495A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
inorganic salt
sugar
cellulose
soluble inorganic
Prior art date
Application number
PCT/JP2012/058076
Other languages
English (en)
French (fr)
Inventor
栗原 宏征
淳平 岸本
山田 勝成
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2012521895A priority Critical patent/JP6136267B2/ja
Priority to CA2831543A priority patent/CA2831543C/en
Priority to BR112013024571-9A priority patent/BR112013024571B1/pt
Priority to US14/007,438 priority patent/US10179924B2/en
Publication of WO2012133495A1 publication Critical patent/WO2012133495A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/14Preparation of compounds containing saccharide radicals produced by the action of a carbohydrase (EC 3.2.x), e.g. by alpha-amylase, e.g. by cellulase, hemicellulase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/02Monosaccharides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Definitions

  • the present invention relates to a method for producing a sugar liquid from cellulose-containing biomass.
  • Patent Document 1 a method for recovering and reusing cellulase used for cellulose hydrolysis.
  • Patent Document 2 a continuous solid-liquid separation using a spin filter is performed, and the obtained sugar solution is filtered through an ultrafiltration membrane to recover cellulase (Patent Document 1), and a surfactant is added at the stage of enzymatic saccharification.
  • Patent Document 2 methods for suppressing cellulase adsorption and improving recovery efficiency
  • Patent Document 3 methods for recovering cellulase components by energizing the residue after enzymatic saccharification
  • the problem to be solved by the present invention is to reduce the amount of cellulase used in hydrolysis of cellulose when producing a sugar solution from cellulose-containing biomass as described above.
  • the present inventors have added a water-soluble inorganic salt to the cellulose hydrolyzate in a final concentration range of 5 to 35 g / L, so that it is contained in the cellulose hydrolyzate.
  • the inventors have found that the amount of cellulase recovered can be improved, and have completed the present invention.
  • a method for producing a sugar solution comprising the following steps (1) and (2).
  • Step (1) A step of hydrolyzing a cellulose pretreatment product with a water-soluble inorganic salt added so as to have a final concentration in the range of 5 to 35 g / L using a filamentous fungus-derived cellulase
  • Step (2) The hydrolyzate is subjected to solid-liquid separation, the obtained solution component is filtered through an ultrafiltration membrane, and filamentous fungus-derived cellulase is recovered as a non-permeate to obtain a sugar solution as a permeate.
  • step (1) Production of sugar solution according to [1], wherein the water-soluble inorganic salt in step (1) is at least one selected from the group consisting of sodium salts, potassium salts, magnesium salts, calcium salts and ammonium salts.
  • the water-soluble inorganic salt in step (1) is one or more selected from the group consisting of sodium chloride, potassium chloride, sodium sulfate, magnesium chloride, magnesium sulfate, calcium chloride and ammonium sulfate, [1] or [1] [2] The method for producing a sugar liquid according to [2].
  • the method further comprises the step (2) of filtering the sugar solution through a nanofiltration membrane and / or a reverse osmosis membrane to remove the fermentation inhibitor as a permeate and obtaining a sugar concentrate as a non-permeate.
  • the method for producing a sugar liquid according to any one of [1] to [5]. [7] Further, the permeate obtained by filtering the sugar solution in step (2) through a nanofiltration membrane is filtered through a reverse osmosis membrane, and an inorganic salt concentrate obtained as a non-permeate is obtained in step (1).
  • the manufacturing method of the sugar liquid as described in [6] including the process of reusing as a water-soluble inorganic salt.
  • the enzyme recovery rate of the filamentous fungus-derived cellulase from the cellulose hydrolyzate is improved, so that the amount of cellulase used in the sugar liquid production process can be reduced.
  • the cellulose pretreatment product in step (1) refers to a product obtained by pretreating cellulose-containing biomass for hydrolysis.
  • cellulose-containing biomass include herbaceous biomass such as bagasse, switchgrass, napiergrass, Eliansus, corn stover, corn cob, rice straw, straw, coconut husk, or wood such as trees, poplars, willows, and waste building materials It refers to biomass derived from aquatic environment such as aquatic biomass, algae and seaweed.
  • Such biomass contains lignin, which is an aromatic polymer, in addition to cellulose and hemicellulose (hereinafter referred to as “cellulose” as a generic term for cellulose and hemicellulose). That is, in this invention, in order to improve the biomass hydrolysis efficiency by a filamentous fungus origin cellulase, the pretreatment of a cellulose containing biomass is performed, and what was obtained as a result is called a cellulose pretreatment thing.
  • Examples of the pretreatment of cellulose-containing biomass include acid treatment, sulfuric acid treatment, dilute sulfuric acid treatment, alkali treatment, hydrothermal treatment, subcritical water treatment, pulverization treatment, steaming treatment, and drying treatment, but alkali treatment, hydrothermal treatment or
  • the dilute sulfuric acid treatment is preferably hydrothermal treatment, dilute sulfuric acid treatment or alkali treatment because the enzyme saccharification efficiency is excellent compared to other methods and the amount of the enzyme used is small.
  • Hydrothermal treatment is performed at a temperature of 100 to 400 ° C. for 1 second to 60 minutes after adding water so that the cellulose-containing biomass becomes 0.1 to 50% by weight. By treating at such temperature conditions, hydrolysis of cellulose occurs.
  • the number of processes is not particularly limited, and the process may be performed once or more. In particular, when the process is performed twice or more, the first process and the second and subsequent processes may be performed under different conditions.
  • the concentration of sulfuric acid is preferably 0.1 to 15% by weight, and more preferably 0.5 to 5% by weight.
  • the reaction temperature can be set in the range of 100 to 300 ° C., preferably 120 to 250 ° C.
  • the reaction time can be set in the range of 1 second to 60 minutes.
  • the number of processes is not particularly limited, and the process may be performed once or more. In particular, when the above process is performed twice or more, the first process and the second and subsequent processes may be performed under different conditions.
  • the hydrolyzate obtained by the dilute sulfuric acid treatment contains an acid, and further needs to be neutralized in order to perform a hydrolysis reaction with cellulase or to be used as a fermentation raw material.
  • Alkali treatment is a method of allowing an alkali selected from sodium hydroxide, calcium hydroxide, and ammonia to act on cellulose-containing biomass.
  • an alkali selected from sodium hydroxide, calcium hydroxide, and ammonia can be particularly preferably used.
  • ammonia treatment can be carried out by the method described in JP 2008-161125 A or JP 2008-535664 A.
  • the ammonia concentration to be used is added in the range of 0.1 to 15% by weight with respect to the cellulose-containing biomass, and the treatment is performed at 4 to 200 ° C., preferably 90 to 150 ° C.
  • Ammonia to be added may be in a liquid state or a gaseous state.
  • the form of addition may be pure ammonia or an aqueous ammonia solution.
  • the number of processes is not particularly limited, and the process may be performed once or more. When the process is performed twice or more, the first process and the second and subsequent processes may be performed under different conditions.
  • the processed material obtained by the ammonia treatment is further subjected to an enzymatic hydrolysis reaction, it is necessary to neutralize ammonia or remove ammonia. Neutralization may be performed on ammonia from which the solid content has been removed from the hydrolyzate by solid-liquid separation, or may be performed while the solid content is still contained.
  • the acid reagent used for neutralization is not particularly limited. Ammonia can be removed by volatilizing ammonia into a gaseous state by keeping the treated ammonia in a reduced pressure state, and the removed ammonia may be recovered and reused.
  • Step (1) is characterized in that a water-soluble inorganic salt is added to the aforementioned cellulose pretreated product so as to have a final concentration in the range of 5 to 35 g / L.
  • the final concentration of the water-soluble inorganic salt is less than 5 g / L, there is no effect on the recovery of the filamentous fungal cellulase in the step (2) described later.
  • it exceeds 35 g / L the activity of the filamentous fungal cellulase itself decreases. However, this is not preferable because the amount of sugar produced is reduced.
  • a salt refers to a compound in which an anion derived from an acid and a cation derived from a base are ion-bonded.
  • an “inorganic salt” refers to a “salt that does not contain a carbon atom” and is inorganic.
  • the “water-soluble inorganic salt” refers to an inorganic salt having solubility in water (water-soluble) of at least “50 g / L” or more among the inorganic salts described above.
  • the water solubility is less than “50 g / L”.
  • organic salt exists with respect to a water-soluble inorganic salt.
  • the organic salt refers to a compound in which an anion derived from an acid containing a carbon atom such as carboxylic acid (—COO ⁇ ) and another cation are ion-bonded, and is distinguished from the inorganic salt of the present invention.
  • acetate sodium acetate, etc.
  • citrate sodium citrate, etc.
  • the effect on enzyme recovery is also different.
  • the water-soluble inorganic salt is considered to have a small ion size (molecular weight) when each salt is dissociated with respect to the organic salt, thereby increasing the enzyme recovery rate in the step (2) described later.
  • the water-soluble inorganic salt used in the present invention is not particularly limited, but those selected from the group consisting of sodium salts, potassium salts, magnesium salts, calcium salts and ammonium salts can be preferably used. Of these, those selected from the group consisting of sodium chloride, sodium sulfate, magnesium chloride, magnesium sulfate, potassium chloride, calcium chloride and ammonium sulfate are more preferably used because the raw material price is low and a high enzyme recovery rate can be obtained.
  • monovalent inorganic salts such as sodium chloride and potassium chloride have an advantage that more than the necessary amount can be removed by combining with the subsequent nanofiltration membrane treatment, and ammonium sulfate is not removed by the nanofiltration membrane.
  • a sugar solution When used as a fermentation raw material for microorganisms, it is more preferably used as a water-soluble inorganic salt because it is used as a nitrogen source for microbial growth.
  • the water-soluble inorganic salt may be added before adding the filamentous fungus-derived cellulase to the cellulose pretreated product or after adding the filamentous fungus-derived cellulase.
  • adding an inorganic salt prior to the addition of the filamentous fungus-derived cellulase can suppress microbial contamination in the hydrolysis of the biomass pretreatment product by the filamentous fungus-derived cellulase and the resulting decrease in the yield of sugar produced. Therefore, it is preferable.
  • the water-soluble inorganic salt may be added in the form of a solid such as a powder or an aqueous solution, but a concentrated inorganic salt aqueous solution of about 5 to 500 g / L is prepared in advance.
  • the method of adding at the time of hydrolysis is preferable.
  • an inorganic salt is added in a solid state, an extremely high inorganic salt concentration is locally formed, which may cause deactivation of cellulase derived from filamentous fungi. Is preferred.
  • the water-soluble inorganic salt may be added so that the final concentration of the water-soluble inorganic salt is 5 to 35 g / L.
  • the cellulose pretreatment product contains an original cellulose-based biomass or a pretreatment-derived inorganic salt (a salt of phosphorus, sodium, potassium, etc.).
  • a technique for measuring ash content specifically, a biomass combustion test in the presence of air at 815 ° C., and a solid residue obtained.
  • a technique for measuring an inorganic substance by measuring the constant weight of cellulose is known, and the ash content derived from cellulosic biomass measured by the technique is a numerical value of less than about 3% by weight relative to the biomass weight.
  • most of the ash is silica (Si), and these silica compounds have extremely low water solubility and are different from water-soluble inorganic salts.
  • the solid concentration is usually adjusted to a range of 50 to 250 g / L. In this case, it is assumed that all ash derived from biomass is a water-soluble inorganic salt.
  • the concentration of the water-soluble inorganic salt during the hydrolysis is in the range of 1.5 to 3 g / L. That is, in this invention, it can be said that it is a hydrolysis in the final concentration range of a water-soluble inorganic salt remarkably high compared with the time of the hydrolysis of a normal cellulose pre-processed material.
  • the amount of water-soluble inorganic salt added and the final concentration may be measured using ion chromatography. In the hydrolysis reaction of the cellulose pretreatment product, there may be a slight increase in the concentration of the water-soluble inorganic salt, but the final concentration of the water-soluble inorganic salt before adding the enzyme may be measured to determine the addition amount.
  • the water-soluble inorganic salt used in the present invention is preferably a reagent-soluble water-soluble inorganic salt, but water-soluble inorganic salt derived from seawater, water-soluble inorganic salt derived from ash obtained by burning cellulose-containing biomass, and the like are also alternatives. Can be used.
  • seawater It is known that the concentration of water-soluble inorganic salt contained in seawater varies slightly depending on the collection site, but in general, sodium chloride 24 to 27 g / L, magnesium chloride 2.5 to 4 g / L, sulfuric acid A water-soluble inorganic salt mixture containing 1 to 2.5 g / L of magnesium and about 0.7 g / L of potassium chloride.
  • the pH of seawater is generally determined by its salt composition, and is generally in the range of pH 8.2 to 8.5. Therefore, seawater can be used as a water-soluble inorganic salt after adjusting to an optimum pH for hydrolysis of the filamentous fungus-derived cellulase.
  • the pH is preferably adjusted to a range of 4 to 6, and if it is outside this range, the enzyme may be deactivated.
  • a general acid such as sulfuric acid or hydrochloric acid may be used, and it is not particularly limited.
  • ash content obtained by boiler combustion of cellulose-containing biomass, a pretreated product thereof, or a saccharification residue obtained after hydrolysis can be used as an alternative to the water-soluble inorganic salt.
  • Such ash contains a large amount of potassium, and this can be dissolved in water and the pH adjusted to adjust the aqueous solution of the water-soluble inorganic salt.
  • the pH becomes alkaline. This is because potassium becomes potassium hydroxide.
  • potassium chloride or potassium sulfate which is a water-soluble inorganic salt, is formed.
  • the ash contains a large amount of water-insoluble silica, it is preferable to remove such water-insoluble inorganic substances by an appropriate technique such as filtration.
  • the acid or alkali used for the pretreatment of the cellulose-containing biomass can neutralize the acid or alkali used for the pretreatment of the cellulose-containing biomass and use a water-soluble inorganic salt produced by neutralization.
  • a water-soluble inorganic salt produced by neutralization.
  • an aqueous solution such as sodium hydroxide or ammonia
  • the cellulose pretreatment product (solid) obtained by solid-liquid separation after the pretreatment includes sodium hydroxide
  • An aqueous ammonia solution may remain. If the alkali remaining in such a cellulose pretreatment product (solid) is neutralized with, for example, sulfuric acid, an inorganic salt such as sodium sulfate or ammonium sulfate can be produced by neutralization.
  • the reagent actually "added” is an alkali, but a necessary amount of a water-soluble inorganic salt is formed by neutralization.
  • the final concentration of the water-soluble inorganic salt is adjusted to a range of 5 to 35 g / L by the hydrolysis step with the filamentous fungus-derived cellulase to which the acid is added as described above, the “water-soluble inorganic salt” of the present invention is added. It can be said.
  • water-soluble inorganic salts such as ammonium sulfate and sodium sulfate can be generated by using ammonia and sodium hydroxide for neutralization (FIG. 1). .
  • the cellulose-containing biomass is pretreated with acid or alkali and then solid-liquid separated, and the cellulose pretreatment product (solid) and the solution component separated into solution components and the cellulose pretreatment product (solid) are washed with water or the like.
  • the inorganic salt prepared by neutralization is prepared in the final concentration of 5 to 35 g / L in the cellulose pretreatment product (solid), it can be said that “add a water-soluble inorganic salt” of the present invention. (FIG. 2).
  • Table 1 summarizes examples of combinations of pretreatments and neutralizing agents in the case where water-soluble inorganic salts are produced by neutralization as described above.
  • calcium hydroxide (lime) is used as a neutralizing agent for sulfuric acid treatment and calcium sulfate is produced as an inorganic salt
  • calcium hydroxide is not a water-soluble inorganic salt. Excluded from the invention.
  • the addition of the water-soluble inorganic salt in the step (1) has the effect of increasing the recovery rate of the filamentous fungus-derived cellulase in the later-described step (2), and also reduces the microbial contamination and the accompanying sugar yield in the hydrolysis step. Can be suppressed.
  • the reaction temperature is in the range of 40 to 60 ° C., but this temperature range is optimal for culturing microorganisms such as lactic acid bacteria such as Bacillus and high-temperature resistant yeast contained in the treated product Since it corresponds to temperature, the produced sugar may be consumed by these microorganisms.
  • the loss of produced sugar accompanying the contamination of such microorganisms can be greatly suppressed. That is, in the present invention, in addition to the effect of increasing the enzyme recovery rate by adding a water-soluble inorganic salt, there is another effect that the sugar yield is improved.
  • the above-mentioned cellulose pretreatment product is characterized in that in step (1), hydrolysis is performed with a filamentous fungus-derived cellulase to obtain a hydrolyzate.
  • the hydrolysis of cellulose refers to reducing the molecular weight of cellulose.
  • hemicellulose components such as xylan, mannan and arabinan are also hydrolyzed at the same time.
  • the monosaccharide component contained in the hydrolyzate is glucose, xylose, mannose, galactose, etc.
  • the main monosaccharide component is glucose which is a hydrolyzate of cellulose.
  • disaccharides such as cellobiose and xylobiose, cellooligosaccharides, xylooligosaccharides and the like are included.
  • the cellulose pretreatment product is hydrolyzed with a fungal cellulase.
  • the filamentous fungi include Trichoderma, Aspergillus, Cellulomonas, Clostridium, Streptomyces, Humichola, and Humicola a. Examples include Acremonium, Irpex, Mucor, Talaromyces, Phanerochaete, white rot fungus, brown rot fungus, and the like.
  • Trichoderma-derived cellulase is an enzyme composition containing cellulase derived from Trichoderma microorganism as a main component.
  • the microorganism of the genus Trichoderma is not particularly limited, and specifically, Trichoderma reesei QM9414 (Trichoderma reesei QM9414), Trichoderma reesei QM9123 (Trichoderma reeseiQM9123), Trichoderma reesei Rutc-30er (Richo 3) -7 (Trichoderma reesei PC3-7), Trichoderma reesei ATCC 68589 (Trichoderma reesei ATCC 68589), Trichoderma reesei CL-847 (Trichoderma reesei CLd-847), Trichoderma reesei MCd77 (Trichoderma reesei MCd77 i MCG77), Trichoderma reesei MCG80
  • the cellulase derived from Trichoderma used in the present invention is an enzyme composition having a plurality of enzyme components such as cellobiohydrase, endoglucanase, exoglucanase, ⁇ -glucosidase, xylanase, and xylosidase, and having an activity of hydrolyzing and saccharifying cellulose. It is. Trichoderma-derived cellulase can efficiently hydrolyze cellulose due to the concerted effect or complementary effect of a plurality of enzyme components in cellulose degradation.
  • the cellulase used in the present invention preferably contains Trichoderma-derived cellobiohydrase and xylanase.
  • Cellobiohydrase is a general term for cellulases characterized by hydrolysis from the terminal portion of cellulose.
  • the enzyme group belonging to cellobiohydrase is represented by EC number: EC3.2.1.91. Are listed.
  • Endoglucanase is a general term for cellulases characterized by hydrolysis from the central part of the cellulose molecular chain.
  • Exoglucanase is a general term for cellulases characterized by hydrolysis from the end of a cellulose molecular chain, and is assigned to the exoglucanase as EC numbers: EC3.2.1.74 and EC3.2.1.58. Enzyme groups are described.
  • ⁇ -glucosidase is a general term for cellulases characterized by acting on cellooligosaccharide or cellobiose, and an enzyme group belonging to ⁇ -glucosidase is described as EC number: EC 3.2.1.21.
  • Xylanase is a general term for cellulases characterized by acting on hemicellulose or particularly xylan, and an enzyme group belonging to xylanase is described as EC number: EC3.2.1.8.
  • Xylosidase is a general term for cellulases characterized by acting on xylo-oligosaccharides, and an enzyme group belonging to xylosidase is described as EC number: EC 3.2.1.37.
  • a crude enzyme product is preferably used as the Trichoderma-derived cellulase.
  • the crude enzyme product is derived from a culture supernatant obtained by culturing the microorganism for an arbitrary period in a medium prepared so that Trichoderma microorganisms produce cellulase.
  • the medium components to be used are not particularly limited, but in order to promote the production of cellulase, a medium to which cellulose is added can be generally used.
  • the culture supernatant is preferably used as it is, or the culture supernatant from which Trichoderma cells are removed.
  • the weight ratio of each enzyme component in the crude enzyme product is not particularly limited.
  • the culture solution derived from Trichoderma reesei contains 50 to 95% by weight of cellobiohydrase, and the rest.
  • the endoglucanase, ⁇ -glucosidase and the like are included in the components.
  • Trichoderma microorganisms produce strong cellulase components in the culture solution, while ⁇ -glucosidase is retained in the cell or on the cell surface and therefore has low ⁇ -glucosidase activity in the culture solution.
  • a heterogeneous or homologous ⁇ -glucosidase may be further added to the enzyme product.
  • ⁇ -glucosidase derived from Aspergillus can be preferably used.
  • ⁇ -glucosidase derived from the genus Aspergillus include “Novozyme 188” commercially available from Novozyme.
  • a method of adding a heterologous or homologous ⁇ -glucosidase to a crude enzyme product a gene is introduced into a Trichoderma microorganism, and the Trichoderma microorganism that has been genetically modified so as to be produced in the culture solution is cultured. A method of isolating the culture solution may also be used.
  • the hydrolysis reaction temperature of the filamentous fungus-derived cellulase is preferably in the range of 15-100 ° C, more preferably 40-60 ° C, and most preferably 50 ° C.
  • the pH during the hydrolysis reaction is preferably in the range of pH 3 to 9, more preferably pH 4 to 5.5, and most preferably pH 5.
  • acid or alkali can be added and adjusted so as to achieve the target pH.
  • you may use a buffer solution suitably.
  • the hydrolysis of the cellulose pretreated product it is preferable to perform stirring and mixing in order to promote the contact between the cellulose pretreated product and the filamentous fungus-derived cellulase and to make the sugar concentration of the hydrolyzate uniform.
  • the solid content concentration of the cellulose pretreated product is more preferably in the range of 1 to 25% by weight. Further, it is more preferable to set the solid concentration at a low concentration of 1 to 10% by weight because the hydrolysis efficiency of the cellulose pretreatment product is improved. This is because filamentous fungus-derived cellulase has the property that the enzymatic reaction is inhibited by sugar products such as glucose and cellobiose, which are living organisms by hydrolysis.
  • step (2) first, the hydrolyzate obtained in step (1) is subjected to solid-liquid separation to recover solution components.
  • the solid-liquid separation can be carried out by a known solid-liquid separation method such as a centrifugal separation method such as a screw decanter, a filtration method such as pressure / suction filtration, or a membrane filtration method such as microfiltration.
  • a known solid-liquid separation method such as a centrifugal separation method such as a screw decanter, a filtration method such as pressure / suction filtration, or a membrane filtration method such as microfiltration.
  • Such solid-liquid separation may be carried out by combining one or more methods, and is not limited as long as it is a means for efficiently removing solids.
  • the solution components after the solid-liquid separation do not contain solids as much as possible, specifically, filtration by a centrifugal method or a filter press or the like.
  • the first solid-liquid separation by the method it is preferable to completely remove the solid matter by subjecting the obtained solution components to membrane filtration with a microfiltration membrane.
  • the microfiltration membrane is also called membrane filtration, and is a separation membrane that can separate and remove particles of about 0.01 to 10 ⁇ m from a fine particle suspension using a pressure difference as a driving force.
  • the surface of the microfiltration membrane has pores in the range of 0.01 to 10 ⁇ m, and fine particle components exceeding the pores can be separated and removed to the membrane side.
  • microfiltration membrane examples include cellulose acetate, aromatic polyamide, polyvinyl alcohol, polysulfone, polyvinylidene fluoride, polyethylene, polyacrylonitrile, ceramic, polypropylene, polycarbonate, and polytetrafluoroethylene (Teflon (registered trademark)).
  • a microfiltration membrane made of polyvinylidene fluoride is preferable in terms of antifouling properties, chemical resistance, strength, and filterability.
  • An ultrafiltration membrane generally has a pore diameter in the range of 1.5 to 250 nanometers and blocks water-soluble polymers having a molecular weight in the range of 1,000 to 200,000 as a non-permeate.
  • a separation membrane capable of The ultrafiltration membrane may be a fractional molecular weight capable of recovering filamentous fungus-derived cellulase, and a preferred fractional molecular weight is 1,000 to 100,000 Da, more preferably 10,000 to 30,000 Da.
  • a membrane made of materials such as polyethersulfone (PES), polyvinylidene fluoride (PVDF), and regenerated cellulose can be used.
  • an ultrafiltration membrane made of a synthetic polymer such as PES or PVDF.
  • a tubular type, a spiral element, a flat membrane or the like can be preferably used.
  • the ultrafiltration membrane may be filtered by a crossflow method or a dead end filtration method, but the crossflow filtration method is preferred in terms of fouling or flux.
  • a sugar solution can be obtained as a permeate by filtering the solution components through an ultrafiltration membrane.
  • the resulting sugar liquid is a liquid from which the solids originally contained in the sugar liquid are almost completely removed by solid-liquid separation.
  • the colored substance and the water-soluble polymer in the sugar liquid are removed on the non-permeate side by filtration through the ultrafiltration membrane, but the water-soluble polymer is used in step (1).
  • Cellulase components derived from filamentous fungi are included.
  • the filamentous fungus-derived cellulase component to be recovered is not particularly limited, but among the filamentous fungus-derived cellulase components used for hydrolysis, all or some of the components can be recovered as a non-permeate.
  • the non-permeate contains a sugar component derived from a sugar solution, in order to recover such a sugar component, an operation of adding water to the non-permeate and further filtering through an ultrafiltration membrane is performed. It may be repeated.
  • the effect of significantly increasing the amount of filamentous fungal cellulase enzyme contained in the recovered enzyme as compared with the prior art is observed. It is recovered with efficiency.
  • the recovered filamentous fungus-derived cellulase can be reused for hydrolysis of the cellulose pretreatment product, thereby reducing the amount of filamentous fungus-derived cellulase used.
  • the recovered filamentous fungus-derived cellulase may be reused alone for hydrolysis, or may be reused by mixing with an unused filamentous fungus-derived cellulase. Moreover, depending on the case, you may utilize effectively for uses other than the hydrolysis of a cellulose.
  • the sugar solution obtained in the step (2) is further filtered through a nanofiltration membrane and / or a reverse osmosis membrane, which is a method described in WO2010 / 067785.
  • a concentrated sugar concentrate can be obtained.
  • a nanofiltration membrane is also called a nanofilter (nanofiltration membrane, NF membrane), and is a membrane generally defined as “a membrane that transmits monovalent ions and blocks divalent ions”. . It is a membrane that is considered to have a minute gap of about several nanometers, and is mainly used to block minute particles, molecules, ions, salts, and the like in water.
  • the reverse osmosis membrane is also called an RO membrane, and is a membrane generally defined as “a membrane having a desalting function including monovalent ions”. It is a membrane that is thought to have ultrafine pores of several angstroms to several nanometers, and is mainly used for removing ionic components such as seawater desalination and ultrapure water production.
  • the material of the nanofiltration membrane or reverse osmosis membrane used in the present invention can be a polymer material such as cellulose acetate polymer, polyamide, polyester, polyimide, vinyl polymer, polysulfone, etc. It is not limited to the film
  • the nanofiltration membrane used in the present invention is preferably a spiral membrane element.
  • preferable nanofiltration membrane elements include, for example, GE Osmonics “GEsepa” which is a cellulose acetate-based nanofiltration membrane element, Alfa Laval nanofiltration membrane element NF99 or NF99HF having a functional layer of polyamide, Nanotec membrane element NF-45, NF-90, NF-200, NF-270 or NF-400 manufactured by Filmtec Co., Ltd.
  • the nanofiltration membrane element SU-210, SU-220, SU-600 or SU-610 manufactured by the same company including the nanofiltration membrane UTC60 may be mentioned, and NF99 or NF99HF, NF-45, NF-90, NF-200 are more preferable. Or NF-400 There is SU-210, SU-220, a SU-600 or SU-610, more preferably from SU-210, SU-220, SU-600 or SU-610.
  • a composite membrane using a cellulose acetate-based polymer as a functional layer (hereinafter also referred to as a cellulose acetate-based reverse osmosis membrane) or a composite membrane using a polyamide as a functional layer (hereinafter referred to as a functional layer) And a polyamide-based reverse osmosis membrane).
  • a cellulose acetate-based polymer organic acid esters of cellulose such as cellulose acetate, cellulose diacetate, cellulose triacetate, cellulose propionate, cellulose butyrate and the like, or a mixture thereof and those using mixed esters can be mentioned. It is done.
  • the polyamide includes a linear polymer or a crosslinked polymer having an aliphatic and / or aromatic diamine as a monomer.
  • reverse osmosis membrane used in the present invention include, for example, ultra-low pressure type SUL-G10, SUL-G20, low pressure type SU-710, SU-, which are polyamide-based reverse osmosis membrane modules manufactured by Toray Industries, Inc.
  • SU-720F SU-710L, SU-720L, SU-720LF, SU-720R, SU-710P, SU-720P, high-pressure type SU-810, SU-820 including UTC80 as a reverse osmosis membrane, SU-820L, SU-820FA, the company's cellulose acetate reverse osmosis membrane SC-L100R, SC-L200R, SC-1100, SC-1200, SC-2100, SC-2200, SC-3100, SC-3200, SC-8100 , SC-8200, NTR-759HR, NTR-729HF, NT made by Nitto Denko Corporation -70 SWC, ES10-D, ES20-D, ES20-U, ES15-D, ES15-U, LF10-D, Alfa Laval RO98pHt, RO99, HR98PP, CE4040C-30D, GE GE Sepa, Filmtec BW30-4040 TW30-4040, X
  • the term “fermentation-inhibiting substance” as used herein refers to a component other than a sugar that inhibits fermentation in the subsequent fermentation step, and specifically includes aromatic compounds, furan compounds, organic acids, monovalent inorganic salts, and the like. be able to. Examples of such representative aromatic compounds and furan compounds include furfural, hydroxymethylfurfural, vanillin, vanillic acid, syringic acid, coniferyl aldehyde, coumaric acid, ferulic acid and the like.
  • the sugar concentration of the sugar concentrate can be arbitrarily set in the range of 50 to 400 g / L depending on the processing conditions of the nanofiltration membrane and / or reverse osmosis membrane, and can be arbitrarily set according to the use of the sugar concentrate do it.
  • a nanofiltration membrane compared with a reverse osmosis membrane.
  • Whether to use a nanofiltration membrane or a reverse osmosis membrane may be selected in view of the concentration of the fermentation inhibitor contained in the sugar solution, or the influence of subsequent fermentation.
  • the inorganic salt concentrate can be obtained as a non-permeate by further filtering the nanofiltration membrane permeate through a reverse osmosis membrane. . Since the inorganic salt concentrate is mainly composed of the water-soluble inorganic salt added in step (1), it can be preferably reused in step (1).
  • Various chemicals can be produced by growing microorganisms having the ability to produce chemicals using the sugar solution obtained by the present invention as a fermentation raw material.
  • growing a microorganism as a fermentation raw material means that a sugar component or an amino source contained in a sugar solution is used as a nutrient for the microorganism to propagate and maintain the growth of the microorganism.
  • Specific examples of chemical products include substances that are mass-produced in the fermentation industry, such as alcohols, organic acids, amino acids, and nucleic acids. Such chemical products are accumulated and produced as chemical products inside and outside the body in the process of metabolism using the sugar component in the sugar solution as a carbon source.
  • chemicals that can be produced by microorganisms include ethanol, 1,3-propanediol, 1,4-butanediol, alcohols such as glycerol, acetic acid, lactic acid, pyruvic acid, succinic acid, malic acid, itaconic acid, citric acid.
  • examples thereof include organic acids such as acids, nucleosides such as inosine and guanosine, nucleotides such as inosinic acid and guanylic acid, and amine compounds such as cadaverine.
  • the sugar solution of the present invention can be applied to the production of enzymes, antibiotics, recombinant proteins and the like.
  • the microorganism used for the production of such a chemical product may be any microorganism that can efficiently produce the target chemical product, and microorganisms such as Escherichia coli, yeast, filamentous fungi, and basidiomycetes can be used.
  • FIG. 1 An example of an apparatus configuration for carrying out the method for producing a sugar liquid of the present invention is shown in FIG.
  • the hydrolysis tank (2) is for hydrolyzing the cellulose pretreatment product, a heat retaining device (1) capable of keeping heat in a temperature range of 40 ° C. to 60 ° C., and an inlet for introducing the cellulose pretreatment product (3)
  • a stirrer (4) for mixing the cellulose pretreatment product and a water-soluble inorganic salt preparation tank (5) for preparing, holding and adding a water-soluble inorganic salt may be used.
  • the press filtration (7) for solid-liquid separation of the hydrolyzate may have a hydrolyzate inlet (6) and a compressor (8).
  • the filtrate of the press filtration is collected in the press filtration filtrate tank (9).
  • the press filtration filtrate tank (9) is connected to the microfiltration membrane (11) via the MF pump (12).
  • the solid separated by the microfiltration membrane (11) is concentrated in the press filtrate tank (9) and discharged through the discharge line (10).
  • the filtrate of the microfiltration membrane is collected in the microfiltration membrane filtrate tank (13).
  • the microfiltration membrane filtrate tank is connected to the ultrafiltration membrane (15) via the UF pump (14), so that the filamentous fungus-derived cellulase can be separated and recovered as a non-permeate, and the sugar solution is ultrafiltered. It is recovered from the sugar liquid recovery line (16) as the filtrate of the membrane (15).
  • cellulose pretreatment product 2 (hydrothermal treatment) Rice straw was used as the cellulose. The cellulose was immersed in water and autoclaved (manufactured by Nitto Koatsu Co., Ltd.) at 180 ° C. for 20 minutes while stirring. The pressure at that time was 10 MPa. After the treatment, the solution component (hereinafter referred to as hydrothermal treatment liquid) and solid content were subjected to solid-liquid separation using centrifugation (3000 G), and the solid content was used as a cellulose pre-treatment product 3 in the following examples.
  • hydrothermal treatment liquid the solution component
  • solid content were subjected to solid-liquid separation using centrifugation (3000 G), and the solid content was used as a cellulose pre-treatment product 3 in the following examples.
  • Trichoderma-derived cellulase was prepared by the following method.
  • DPC-2A DPC-2A containers and autoclaved for 15 minutes at 121 ° C.. After standing to cool, 0.1% each of PE-M and Tween 80 that were autoclaved at 121 ° C. for 15 minutes was added, and 250 mL of Trichoderma reesei ATCC 68589 pre-cultured in a liquid medium by the above method was inoculated. did. Thereafter, the cells were cultured at 28 ° C., 87 hours, 300 rpm, and aeration volume of 1 vvm. After centrifugation, the supernatant was subjected to membrane filtration (Millipore-made Stericup-GV material: PVDF). 1/100 amount of ⁇ -glucosidase (Novozyme 188) as a protein weight ratio was added to the culture solution prepared under the aforementioned conditions, and this was used as a Trichoderma-derived cellulase in the following examples.
  • membrane filtration Millipore-made Stericup-GV
  • the amount of recovered enzyme of filamentous fungus-derived cellulase that can be recovered in step (2) is 1) crystalline cellulose decomposition activity, 2) cellobiose decomposition activity, 3) xylan decomposition
  • the activity was quantified by measuring three kinds of degradation activities (hereinafter referred to as activity values).
  • Cellobiose decomposition activity Cellobiose (manufactured by Wako Pure Chemical Industries, Ltd.) 500 mg / L, sodium acetate buffer (pH 5.0) is added to the enzyme solution so as to be 100 mM, and the reaction is carried out at 50 ° C. for 0.5 hour. I let you.
  • the reaction solution was prepared in a 1 mL tube, and the reaction was performed while rotating and mixing under the above conditions. After the reaction, the tube was centrifuged, and the glucose concentration of the supernatant component was measured. The glucose concentration was measured according to the method described in Reference Example 2.
  • the produced glucose concentration g / L was used as an active amount as it was, and used for comparison of the amount of recovered enzyme.
  • xylan decomposition activity To the enzyme solution, xylan (Birch wood xylan, manufactured by Wako Pure Chemical Industries, Ltd.) 10 g / L, sodium acetate buffer solution (pH 5.0) was added to a concentration of 100 mM. Reacted for hours. The reaction solution was prepared in a 1 mL tube, and the reaction was performed while rotating and mixing under the above conditions. After the reaction, the tube was centrifuged, and the xylose concentration of the supernatant component was measured. The xylose concentration was measured according to the method described in Reference Example 2. For the xylose decomposition activity, the produced xylose concentration (g / L) was used as it was as the active amount, and used for comparison of the recovered enzyme amount.
  • xylan (Birch wood xylan, manufactured by Wako Pure Chemical Industries, Ltd.) 10 g / L, sodium acetate buffer solution (pH 5.0) was added to a concentration of 100 mM.
  • the obtained filtrate was filtered through an ultrafiltration membrane with a molecular weight cut-off of 10,000 (VARISPIN 20 material: PES, manufactured by Sartorius steady biotech), and centrifuged at 4500 G until the membrane fraction became 1 mL. Distilled water (10 mL) was added to the membrane fraction and centrifuged again at 4500 G until the membrane fraction reached 1 mL. Thereafter, the enzyme was recovered from the membrane fraction. Each activity of the recovered enzyme was measured according to Reference Example 4.
  • Example 1 Hydrolysis 1 of cellulose pretreatment product to which water-soluble inorganic salt is added Distilled water is added to the cellulose pretreatment product 1 (0.5 g) prepared in Reference Example 1, and water-soluble inorganic salts (sodium chloride, potassium chloride, sodium sulfate, magnesium chloride, magnesium sulfate, calcium chloride, ammonium sulfate) are added, respectively.
  • water-soluble inorganic salts sodium chloride, potassium chloride, sodium sulfate, magnesium chloride, magnesium sulfate, calcium chloride, ammonium sulfate
  • Trichoderma cellulase prepared in Reference Example 3 was added, and the total weight was Distilled water was further added to 10 g. Except for the operation of adding the acetate buffer, the same procedure as in Comparative Example 1 was performed, and the sugar concentration and each recovered enzyme activity were measured.
  • Tables 4 and 5 show the relationship between the amount of each water-soluble inorganic salt added and the amount of sugar produced.
  • the amount of glucose and xylose produced is the same as in Comparative Examples 1 and 2 (Tables 2 and 3) up to 35 g / L with water-soluble inorganic salt, but it is found that the amount of produced sugar decreases when the amount is 50 g / L or more. did. This is probably because the enzyme reaction was inhibited because the water-soluble inorganic salt concentration was too high. On the other hand, in the range of 5 to 35 g / L, no significant reduction in produced sugar was confirmed.
  • the cellobiose decomposition activity in the water-soluble inorganic salt concentration range of 5 to 35 g / L was not significantly changed, but it was found that the activity decreased when the water-soluble inorganic salt concentration was 50 g / L or more.
  • Example 2 Hydrolysis of cellulose pretreatment product to which water-soluble inorganic salt is added 2
  • the same distilled water was added to the cellulose pretreated product 2 (0.5 g), and hydrolysis was performed in the same procedure as in Example 1.
  • the obtained sugar concentration and each recovered enzyme activity were measured.
  • Tables 9 and 10 show the relationship between the amount of each water-soluble inorganic salt added and the amount of sugar produced.
  • Up to 35 g / L of water-soluble inorganic salt was the same as Comparative Examples 1 and 2 (Tables 2 and 3), but it was found that the amount of glucose and xylose produced decreased at 50 g / L or more. This is probably because the enzyme reaction was inhibited because the water-soluble inorganic salt concentration was too high.
  • the range of 5 to 35 g / L no significant reduction in produced sugar was confirmed.
  • Example 3 Use of seawater as a water-soluble inorganic salt
  • the seawater used is the seawater (pH 8.3, solids dissolved amount 3.2%) collected in the vicinity of Misaki Fishing Port, Kanagawa Prefecture, and this is used with the Milex HV filter unit (33 mm, made by PVDF, pore diameter 0.45 ⁇ m). Then, filtered one was used.
  • the biomass pretreatment products 1 and 2 prepared in Reference Example 1 were hydrolyzed using the aforementioned seawater (pH 5) as a water-soluble inorganic salt.
  • Distilled water and seawater (pH 5) are added to the biomass pretreated products 1 and 2 (0.5 g), and 0.5 mL of Trichoderma cellulase prepared in Reference Example 3 is added, and distilled water is further added so that the total weight becomes 10 g. Added.
  • Seawater was added so that the final concentration was 1/2 dilution, that is, the water-soluble inorganic salt concentration was 15.1 g / L. The pH adjustment was not necessary because the pH of the seawater was adjusted to 5 in advance. Hydrolysis and solid-liquid separation were performed in the same procedure as in Comparative Example 1.
  • the sugar concentration (glucose and xylose concentration) of the obtained solution component was measured by the method described in Reference Example 2. Further, the solution component was further filtered using a Millex HV filter unit (33 mm, PVDF, pore diameter 0.45 ⁇ m), and a recovered enzyme was obtained in the same procedure as in Comparative Example 1. Each activity of the recovered enzyme was measured according to Reference Example 4. As a result, as shown in Tables 14 and 15, it was found that cellobiose decomposition activity, crystalline cellulose decomposition activity, and xylan decomposition activity were improved by addition of seawater to Comparative Example 1 even when seawater was added.
  • Example 4 Timing of addition of water-soluble inorganic salt in hydrolysis step To determine the timing of addition of water-soluble inorganic salt, the amount of sugar produced and recovered before cellulase addition, immediately after cellulase addition, and 23 hours after cellulase addition. Enzyme activities were compared.
  • As the water-soluble inorganic salt sodium chloride was used, and the addition concentration was 10 g / L.
  • Table 16 it was found that it is preferable to add a water-soluble inorganic salt before or immediately after the addition of cellulase (for example, reaction time 0) in terms of enhancing the recovered enzyme activity, particularly the crystalline cellulose decomposition activity. did.
  • Example 5 Sugar concentration and removal of monovalent inorganic salt by nanofiltration membrane
  • a large amount of sugar solution was prepared.
  • 20 g of Trichoderma-derived cellulase is added to cellulose pre-treated product 1 (1 kg), and sodium chloride is further added to a final concentration of 10 g / L.
  • the pH of the composition was adjusted with diluted sulfuric acid or diluted caustic soda to be in the range of 4.5 to 5.3. Diluted sulfuric acid and diluted caustic soda were added to keep this solution at a temperature of 45 to 50 ° C.
  • press filtration was performed in the following procedure using 10 L of the obtained enzyme saccharification slurry liquid.
  • a small filter press (filter press MO-4 manufactured by Iwata Sangyo) was used.
  • As the filter cloth a polyester woven cloth (T2731C manufactured by Iwata Sangyo) was used.
  • the slurry liquid 10L was put in a small tank, the liquid inlet was opened while aerated with compressed air from the bottom, and the slurry liquid was gradually introduced into the filter chamber by an air pump (Taiyo International 66053-3EB).
  • the squeezing process was performed by inflating the diaphragm attached to the filter chamber.
  • the squeezing pressure was gradually increased, raised to 0.5 MPa, and allowed to stand for about 30 minutes to collect the filtrate.
  • the total amount of the solution components obtained was 9.0 L.
  • the remaining liquid components were lost due to equipment dead volume.
  • the sugar concentration of the obtained solution component was measured, the glucose concentration was 16 g / L and the xylose concentration was 10 g / L.
  • the solid-liquid separation solution component was filtered through an ultrafiltration membrane to separate the recovered enzyme and the sugar solution component.
  • the recovered enzyme was a small flat membrane filtration device (GE Sepa (registered trademark) CF II Med / Set with a flat membrane of an ultrafiltration membrane with a molecular weight cut off of 10,000 (GE SEPA PW series, functional surface material: polyethersulfone)) Implementation was performed using a High Foulant System). 5 L of 9 L was filtered while controlling the operation pressure so that the raw water side flow rate was 2.5 L / min and the membrane flux was constant at 0.1 m / D.
  • Nanofiltration membrane concentration was carried out using 1 L of the obtained sugar solution.
  • the nanofiltration membrane uses DESAL-5L (manufactured by Desaline), and this nanofiltration membrane is set in a small flat membrane filtration device (GE Sepa (registered trademark) CF II Med / High Foulant System), and the raw water temperature The solution was filtered at 25 ° C. and the pressure of the high pressure pump at 3 MPa. This treatment yielded 0.2 L of nanofiltration membrane concentrate and 0.8 L of permeate (5-fold concentration).
  • the glucose, xylose, sodium ion, and chloride ion concentrations at this time are as shown in Table 17, and it was found that the sodium chloride concentration relative to the sugar concentration can be reduced by sugar concentration in the nanofiltration membrane.
  • Example 6 Sugar concentration and removal of monovalent inorganic salt by nanofiltration membrane 2 (diafiltration) Add 0.3 L of RO water to 0.3 L of the concentrate of the nanofiltration membrane obtained in Example 6 to adjust to a total of 0.6 L, and further filter this solution through the nanofiltration membrane to obtain 0.3 L. Concentrate (nanofiltration membrane concentrate 2) and 0.3 L permeate (nanofiltration membrane permeate 2) were obtained (2-fold concentration). The glucose, xylose, sodium ion, and chloride ion concentrations at this time are as shown in Table 18, and the monovalent inorganic salt concentration can be further reduced by further filtering the nanofiltration membrane concentrate through the nanofiltration membrane. There was found.
  • Example 7 Collection of inorganic salt concentrate by reverse osmosis membrane 0.8 L of the nanofiltration membrane obtained in Example 5 was subjected to RO membrane treatment to recover the inorganic salt concentrate.
  • the RO membrane uses a cross-linked wholly aromatic reverse osmosis membrane “UTC80” (manufactured by Toray Industries, Inc.), and this RO membrane is a small flat membrane filtration device (“Sepa” (registered trademark) CF II Med / High Foulant System manufactured by GE).
  • the raw water temperature was 25 ° C., and the pressure of the high-pressure pump was 3 MPa. This treatment yielded 0.64 L of permeate (5-fold concentration).
  • the concentrations of glucose, xylose, sodium ion, and chloride ion at this time are as shown in Table 19, and the inorganic salt contained as the permeate of the nanofiltration membrane is further filtered through a reverse osmosis membrane to concentrate the inorganic salt. It was found that a liquid could be obtained. As the permeate, pure water containing no inorganic salt and no sugar was obtained.
  • Example 8 Preparation of dilute sulfuric acid-treated cellulose pretreatment product, ammonia neutralization, hydrolysis by filamentous fungal cellulase Sugar cane bagasse as a cellulose-containing biomass is immersed in dilute sulfuric acid water (1 wt%, 10 g / L) and stirred. Autoclave treatment (manufactured by Nitto Koatsu Co., Ltd.) was performed at 190 ° C. for 10 minutes. The pressure at that time was 10 MPa. After the treatment, it was subjected to solid-liquid separation using a small filter press (filter press manufactured by Iwata Sangyo), and separated into a solution component (hereinafter referred to as sulfuric acid treatment solution) (0.5 L) and a solid content.
  • sulfuric acid treatment solution 0.5 L
  • the solid concentration of the solid was about 50%.
  • the solid matter was further suspended in RO water again, and the filter was pressed again to remove the sulfuric acid component contained in the solid matter.
  • the solid obtained by removing the sulfuric acid is referred to as cellulose pretreated product 3.
  • the cellulose pretreatment product 3 and the neutralized C5 sugar solution were mixed.
  • 10 mL of neutralized C5 sugar solution was added to 1 g of the solid matter of the cellulose pretreated product 3 and mixed (solid concentration: 10 wt%).
  • the pH was adjusted to 5 using dilute sulfuric acid and aqueous sodium hydroxide.
  • cellulase was added to conduct a hydrolysis reaction.
  • Cellulase was purchased from Genencor's “Accel Race Duet”. The addition amount was 0.2 mL of the cellulase.
  • the reaction was performed under the same conditions as in Comparative Example 1 and mixed at 50 ° C. for 24 hours.
  • Table 21 shows the sugar concentration (glucose / xylose) contained in the obtained hydrolyzate.
  • Example 2 the cellulose pretreatment product 3 and the neutralized C5 sugar solution were mixed (Comparative Example 2), cellulase was further added, and a hydrolysis reaction was performed in the same procedure as in Example 7.
  • Table 20 shows the sugar concentration (glucose / xylose) contained in the obtained hydrolyzate.
  • Humicola cellulase was prepared in the same pre-culture and main culture as in Reference Example 3 from Humicola grisea NBRC31242. 1/100 amount of ⁇ -glucosidase (Novozyme 188) as a protein weight ratio was added to the culture solution prepared under the above-mentioned conditions, and this was used as Humicola cellulase in the following Examples and Comparative Examples.
  • Comparative Example 4 Hydrolysis of cellulose pretreatment product 3 Using cellulose pretreatment product 3 of Example 8, according to the description of Comparative Example 1, hydrolysis and enzyme without adding a water-soluble inorganic salt Recovery was performed. At that time, hydrolysis was carried out using the Trichoderma-derived cellulase prepared in Reference Example 3 and the Humicola-derived cellulase prepared in Reference Example 6 as the filamentous fungus-derived cellulase. Table 21 shows the amount of sugar produced and the recovered enzyme activity.
  • Example 9 Hydrolysis of cellulose pretreatment product to which water-soluble inorganic salt was added 3 Distilled water was added to the cellulose pretreated product 3 (0.5 g) prepared in Example 8, and hydrolysis was performed in the same procedure as in Example 1. The obtained sugar concentration and each recovered enzyme activity were measured. Tables 23 and 24 show the relationship between the amount of each water-soluble inorganic salt added and the amount of sugar produced. Up to 35 g / L of water-soluble inorganic salt was the same as in Comparative Example 4 (Table 21), but it was found that the amount of glucose and xylose produced decreased at 50 g / L or more. This was thought to be because the enzyme reaction was inhibited because the water-soluble inorganic salt concentration was too high. On the other hand, in the range of 5 to 35 g / L, no significant reduction in produced sugar was confirmed.
  • Example 10 Hydrolysis of cellulose pretreatment product to which water-soluble inorganic salt was added 4 Hydrolysis was performed in the same procedure as in Example 1 except that distilled water was added to the cellulose pretreatment product 3 (0.5 g) prepared in Example 8 and the Humicola genus-derived cellulase described in Reference Example 6 was used. The obtained sugar concentration and each recovered enzyme activity were measured. Tables 28 and 29 show the relationship between the amount of each water-soluble inorganic salt added and the amount of sugar produced. Up to 35 g / L of water-soluble inorganic salt was the same as Comparative Example 4 (Table 21), but it was found that the amount of glucose and xylose produced decreased at 50 g / L or more. This is probably because the enzyme reaction was inhibited because the water-soluble inorganic salt concentration was too high. On the other hand, in the range of 5 to 35 g / L, no significant reduction in produced sugar was confirmed.
  • Tables 29 to 31 show the results of hydrolysis by adding a water-soluble inorganic salt and recovering the enzyme from the obtained solution components.
  • cellobiose decomposition activity and xylan decomposition activity it was found that the recovered enzyme activity decreased when the water-soluble inorganic salt addition amount was 50 g / L or more.
  • cellobiose decomposition activity increased by 2 times or more, xylan decomposition activity by 1.2 times or more, and crystalline cellulose decomposition activity by 2 times or more in the range of 5 to 35 g / L of water-soluble inorganic salt.
  • the activity decreased when the amount of the water-soluble inorganic salt added was 50 g / L or more.
  • Example 11 Ethanol fermentation using sugar liquor as fermentation raw material Using the nanofiltration membrane concentrate 2 of Example 6 as a fermentation raw material, an ethanol fermentation test using yeast (Saccharomyces cerevisiae OC-2: wine yeast) was performed. . The yeast was precultured in YPD medium (2% glucose, 1% yeast extract (manufactured by Bacto Yeast Extract BD), 2% polypeptone (manufactured by Nippon Pharmaceutical Co., Ltd.) at 25 ° C. for 1 day. The obtained culture solution was added so as to be 1% (20 mL) with respect to the nanofiltration membrane concentrated liquid sugar solution (glucose concentration 74 g / L) adjusted to pH 6 with sodium hydroxide.
  • yeast Sacharomyces cerevisiae OC-2: wine yeast
  • Example 12 Lactic acid fermentation using a sugar solution as a fermentation raw material
  • the lactic acid fermentation test using Lactococcus lactis JCM7638 strain was performed using the nanofiltration membrane concentrate 2 of Example 6 as a fermentation raw material.
  • the aforementioned lactic acid bacteria were precultured at 37 ° C. for 1 day in a YPD medium (2% glucose, 1% yeast extract (Bacto Yeast Extract / BD), 2% polypeptone (Nippon Pharmaceutical Co., Ltd.).
  • the obtained culture broth was added to a nanofiltration membrane concentrated sugar solution adjusted to pH 7 with sodium hydroxide (glucose concentration 74 g / L) so as to be 1% (20 mL), and Lactococcus lactis JCM7638.
  • the strain was cultured for 24 hours at a temperature of 37 ° C.
  • the concentration of L-lactic acid contained in the culture was analyzed under the following conditions.
  • the method for producing a sugar liquid of the present invention can be used for producing a sugar liquid that is a fermentation raw material for producing a chemical product from biomass containing cellulose. Moreover, the sugar liquid manufactured by this invention can be used as a fermentation raw material of various chemical products.

Landscapes

  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

 以下の工程(1)および(2)含む糖液の製造方法によれば、セルロース含有バイオマスを加水分解して糖液を製造する際に加水分解で使用するセルラーゼの使用量を削減することができる。 工程(1):セルロース前処理物に水溶性無機塩を最終濃度5~35g/Lの範囲になるように添加したものを糸状菌由来セルラーゼにより加水分解を行う工程、 工程(2):前記加水分解物を固液分離し、得られた溶液成分を限外濾過膜に通じてろ過し、非透過液として糸状菌由来セルラーゼを回収し、透過液として糖液を得る工程。

Description

糖液の製造方法
 本発明は、セルロース含有バイオマスから糖液を製造する方法に関する。
 近年、セルロース含有バイオマスを酸、熱水、アルカリなどで前処理した後、セルラーゼを添加し加水分解することで糖液を製造する方法が広く検討されている。しかしながら、こうしたセルラーゼを使用する糖液の製造方法の欠点として、セルラーゼの使用量が多く、かつセルラーゼの価格も高いため、糖液製造コストが増大するという課題がある。
 本課題を解決する手法として、セルロース加水分解に使用したセルラーゼを回収再利用する方法が提案されている。例えば、スピンフィルターによる連続固液分離を行い、得られた糖液を限外濾過膜に通じて濾過し、セルラーゼを回収する方法(特許文献1)、酵素糖化の段階において界面活性剤を投入することでセルラーゼ吸着を抑制し回収効率を向上させる方法(特許文献2)、酵素糖化後の残さを通電処理することでセルラーゼ成分を回収する方法(特許文献3)などが知られているが根本的な課題解決には至っていない。
特開2006-87319号公報 特開昭63-87994号公報 特開2008-206484号公報
 本発明の解決しようとする課題は、前述の通りセルロース含有バイオマスから糖液を製造する際のセルロースの加水分解におけるセルラーゼの使用量を削減することにある。
 本発明者は、上記課題を解決するため鋭意研究を行った結果、セルロース加水分解物に水溶性無機塩を最終濃度5~35g/Lの範囲で添加することによって、セルロース加水分解物に含まれるセルラーゼの回収量を向上できることを見出し、本発明を完成するに至った。
 すなわち、本発明は以下の[1]~[7]の構成を有する。
[1]以下の工程(1)および(2)含む、糖液の製造方法。
工程(1):セルロース前処理物に水溶性無機塩を最終濃度5~35g/Lの範囲になるように添加したものを糸状菌由来セルラーゼにより加水分解を行う工程、
工程(2):前記加水分解物を固液分離し、得られた溶液成分を限外濾過膜に通じて濾過し、非透過液として糸状菌由来セルラーゼを回収し、透過液として糖液を得る工程。
[2]工程(1)の水溶性無機塩が、ナトリウム塩、カリウム塩、マグネシウム塩、カルシウム塩およびアンモニウム塩からなる群から選ばれる1種類以上である、[1]に記載の糖液の製造方法。
[3]工程(1)の水溶性無機塩が、塩化ナトリウム、塩化カリウム、硫酸ナトリウム、塩化マグネシウム、硫酸マグネシウム、塩化カルシウムおよび硫酸アンモニウムからなる群から選ばれる1種類以上である、[1]または[2]に記載の糖液の製造方法。
[4]工程(1)のセルロース前処理物が、水熱処理、希硫酸処理およびアルカリ処理の群から選ばれる1以上の処理物である、[1]から[3]のいずれかに記載の糖液の製造方法。
[5]糸状菌由来セルラーゼがトリコデルマ由来セルラーゼである、[1]から[4]のいずれかに記載の糖液の製造方法。
[6]さらに工程(2)の糖液をナノ濾過膜および/または逆浸透膜に通じて濾過し、透過液として発酵阻害物質を除去し、非透過液として糖濃縮液を得る工程を含む、[1]から[5]のいずれかに記載の糖液の製造方法。
[7]さらに工程(2)の糖液をナノ濾過膜に通じて濾過して得られる透過液を逆浸透膜に通じて濾過し、非透過液として得られる無機塩濃縮液を工程(1)の水溶性無機塩として再利用する工程を含む、[6]に記載の糖液の製造方法。
 本発明により、セルロース加水分解物からの糸状菌由来セルラーゼの酵素回収率が向上するため、糖液の製造工程に使用されるセルラーゼ使用量を削減できることができる。
本発明の工程(1)の実施形態一例を示す概略フローである。バイオマス前処理物に残存するアンモニア、酸に対し、中和剤を添加することで、水溶性無機塩を調製するプロセスフロー概略である。 本発明の工程(1)の実施形態一例を示す概略フローである。バイオマス前処理物を固液分離し、分離した希硫酸処理液もしくはアンモニア処理液を中和することで、水溶性無機塩を調製するプロセスフロー概略である。 本発明の糖液の製造方法を実施するための装置構成の一例を示す図面である。
1 保温装置
2 加水分解槽
3 投入口
4 攪拌装置
5 水溶性無機塩調製槽
6 加水分解物の投入口
7 プレスろ過
8 コンプレッサー
9 プレス濾過濾液槽
10 排出ライン
11 精密濾過膜
12 MFポンプ
13 精密濾過膜濾液槽
14 UFポンプ
15 限外濾過膜
16 糖液回収ライン
 本発明を実施するための形態に関し、工程ごとに詳細に説明する。
 [工程(1)]
 工程(1)におけるセルロース前処理物とは、セルロース含有バイオマスを加水分解のための前処理を行ったものを指す。セルロース含有バイオマスの具体例としては、バガス、スイッチグラス、ネピアグラス、エリアンサス、コーンストーバー、コーンコブ、稲わら、麦わら、椰子殻などの草本系バイオマス、あるいは樹木、ポプラ、ヤナギ、廃建材などの木質系バイオマス、さらに藻類、海草など水生環境由来のバイオマスのことを指す。こうしたバイオマスには、セルロースおよびヘミセルロース(以下、セルロースとヘミセルロースの総称として「セルロース」という。)の他に芳香族高分子であるリグニンを含有している。すなわち本発明では、糸状菌由来セルラーゼによるバイオマス加水分解効率を向上させるためにセルロース含有バイオマスの前処理を行い、その結果得られたものをセルロース前処理物という。
 セルロース含有バイオマスの前処理としては、酸処理、硫酸処理、希硫酸処理、アルカリ処理、水熱処理、亜臨界水処理、微粉砕処理、蒸煮処理、乾燥処理が挙げられるが、アルカリ処理、水熱処理または希硫酸処理は、他手法に比べ酵素糖化効率が優れ酵素使用量が少なくてすむことから、本発明においては水熱処理、希硫酸処理またはアルカリ処理であることが好ましい。
 水熱処理は、セルロース含有バイオマスが、0.1~50重量%となるよう水を添加後、100~400℃の温度で、1秒~60分処理する。こうした温度条件において処理することにより、セルロースの加水分解が起こる。処理回数は特に限定されず該処理を1回以上行えばよい。特に該処理を2回以上行う場合、1回目と2回目以降の処理を異なる条件で実施してもよい。
 希硫酸処理は、硫酸の濃度は0.1~15重量%であることが好ましく、0.5~5重量%であることがより好ましい。反応温度は100~300℃の範囲で設定することができ、120~250℃で設定することが好ましい。反応時間は1秒~60分の範囲で設定することができる。処理回数は特に限定されず前記処理を1回以上行えばよい。特に上記処理を2回以上行う場合、1回目と2回目以降の処理を異なる条件で実施してもよい。希硫酸処理によって得られた加水分解物は、酸を含んでおり、さらにセルラーゼによる加水分解反応を行うため、あるいは発酵原料として使用するために、中和を行う必要がある。
 アルカリ処理は、セルロース含有バイオマスに対して、水酸化ナトリウム、水酸化カルシウム、アンモニアから選ばれるアルカリを作用させる方法である。アルカリ処理における、使用するアルカリとして、特にアンモニアが好ましく使用できる。こうしたアンモニア処理は、特開2008-161125号公報や特開2008-535664号公報に記載の方法の手法で実施することができる。例えば、使用するアンモニア濃度はセルロース含有バイオマスに対して0.1~15重量%の範囲で添加し、4~200℃、好ましくは90~150℃で処理する。添加するアンモニアは液体状態、あるいは気体状態のどちらであってもよい。さらに添加する形態は純アンモニアでもアンモニア水溶液の形態でもよい。処理回数は特に限定されず前記処理を1回以上行えばよく、前記処理を2回以上行う場合は、1回目と2回目以降の処理を異なる条件で実施してもよい。なお、アンモニア処理によって得られた処理物は、さらに酵素による加水分解反応を行うため、アンモニアの中和あるいはアンモニアの除去を行う必要がある。中和は、加水分解物より固形分を固液分離により除去したアンモニアに対し行ってもよいし、固形分を含んだままの状態で行ってもよい。中和に使用する酸試薬は特に限定されない。アンモニアの除去は、アンモニア処理物を減圧状態に保つことでアンモニアを気体状態に揮発させて除去することができ、除去したアンモニアは回収・再利用してもよい。
 工程(1)では、前述のセルロース前処理物に水溶性無機塩を最終濃度5~35g/Lの範囲になるよう添加することを特徴としている。水溶性無機塩の最終濃度が5g/L未満である場合、後述の工程(2)における糸状菌セルラーゼの回収に効果はなく、一方で、35g/Lを超えると糸状菌セルラーゼそのものの活性が低下し、生成される糖量が減少するため好ましくない。
 一般的に塩とは、酸由来のアニオンと、塩基由来のカチオンがイオン結合した化合物のことを指し、特に、「無機塩」とは、「炭素原子を含まない塩」のことを指し、無機酸(鉱酸)由来の塩化物イオン(Cl)、硝酸イオン(NO )、燐酸イオン(PO 3-、HPO 、HPO 2-)、硫酸イオン(SO 2-)、などと、ナトリウムイオン(Na)、カリウムイオン(K)、アンモニウムイオン(NH )、カルシウムイオン(Ca2+)、マグネシウムイオン(Mg2+)などがイオン結合した化合物のことを指す。これらの内、「水溶性無機塩」とは、前述した無機塩のうち、水に対する溶解性(水溶性)が少なくとも「50g/L」以上である無機塩のことを指す。特に、硫酸カルシウム(石膏)(CaSO)、燐酸カルシウム(CaHPO、Ca(HPO、Ca(PO)に関しては、水溶性が「50g/L」未満であるため、水不溶性無機塩に分類され、本発明における水溶性無機塩からは除外される。
 水溶性無機塩に対して、有機塩(あるいは水溶性有機塩)が存在する。有機塩とは、カルボン酸など炭素原子を含む酸由来のアニオン(-COO)と他のカチオンがイオン結合した化合物のことを指し、本発明の無機塩とは区別される。例えば、セルロースの酵素による加水分解において、緩衝液として一般的に使用されている、酢酸塩(酢酸ナトリウムなど)、クエン酸塩(クエン酸ナトリウムなど)は有機塩であり、水溶性無機塩に対して、酵素回収に与える効果も異なる。水溶性無機塩は、有機塩に対して、それぞれの塩が解離した際のイオンサイズ(分子量)も小さく、それにより後述の工程(2)での酵素回収率が高くなるものと考えられる。
 本発明において使用される水溶性無機塩は特に制限されないが、ナトリウム塩、カリウム塩、マグネシウム塩、カルシウム塩およびアンモニウム塩からなる群から選ばれるものが好ましく使用できる。またこれらの内、塩化ナトリウム、硫酸ナトリウム、塩化マグネシウム、硫酸マグネシウム、塩化カリウム、塩化カルシウムおよび硫酸アンモニウムからなる群から選ばれるものは原料価格が安く、かつ高い酵素回収率を得られるためより好ましく使用される。また、特に塩化ナトリウム、塩化カリウムなどの1価の無機塩では、後段のナノ濾過膜処理と組み合わせることによって、必要量以上を除去できるという利点を有し、硫酸アンモニウムでは、ナノ濾過膜により除去されないが、糖液を微生物の発酵原料として用いる場合、微生物生育の窒素源として利用されるため、水溶性無機塩としてさらに好ましく用いられる。なお、添加される水溶性無機塩は、1種類であってもよいし、複数種類であってもよい。その場合、例えば、塩化ナトリウム2.1g/L、塩化マグネシウム0.2g/L、硫酸アンモニウム2.7g/Lの存在下での加水分解では、合計5g/L(=2.1+0.2+2.7)の前記無機塩を加水分解に添加したこととなる。
 前記水溶性無機塩の添加は、セルロース前処理物に糸状菌由来セルラーゼを添加する前、あるいは糸状菌由来セルラーゼ添加した後のいずれであってもよい。但し、糸状菌由来セルラーゼの添加前に無機塩を添加しておく方が、糸状菌由来セルラーゼによるバイオマス前処理物の加水分解における微生物汚染、およびこれに伴う生成糖収率の減少、など抑制できるため好ましい。
 前記水溶性無機塩は、粉体などの固形物、あるいは水溶液のいずれの状態で添加してもよいが、5~500g/L程度の濃縮された無機塩水溶液を予め調製しておき、これを加水分解時に添加する方法が好ましい。無機塩を固体状態で添加すると、局所的に極めて高い無機塩濃度の状態が形成されるため、糸状菌由来セルラーゼの失活を引き起こす可能性があり、また、操業性の観点からも水溶液の方が好ましい。
 前記水溶性無機塩の添加量は、水溶性無機塩の最終濃度が5~35g/Lになるように添加すればよい。セルロース前処理物には、本来のセルロース系バイオマス由来、あるいは前処理由来の無機塩(リン、ナトリウム、カリウムなどの塩)を含んでいる。こうしたセルロース系バイオマスに本来含まれる無機塩などを含む無機物を測定する方法として、灰分含量を測定する手法、具体的には、815℃の空気存在下でバイオマス燃焼試験を行い、得られた固体残さの恒量を測定することによって無機物を測定する手法が知られており、該手法で測定されるセルロース系バイオマス由来の灰分は、バイオマス重量対比で概ね3重量%未満の数値である。但し、この灰分の多くは、シリカ(Si)であり、これらシリカ系化合物の水溶性は極めて低く、水溶性無機塩とは異なる。セルロース前処理物をセルラーゼにより加水分解する場合、通常、固形物濃度が50~250g/Lの範囲に調製されるが、その場合、仮にバイオマス由来の灰分すべてが水溶性無機塩であると仮定しても、その加水分解時における水溶性無機塩の濃度は、1.5~3g/Lの範囲となる。すなわち、本発明では、通常のセルロース前処理物の加水分解時と比較して、格段に高い水溶性無機塩の最終濃度範囲での加水分解であると言える。
 水溶性無機塩の添加量、最終濃度は、イオンクロマトグラフィーを使用して測定すればよい。セルロース前処理物の加水分解反応において、若干の水溶性無機塩濃度の増大がある場合があるが、酵素投入前の水溶性無機塩の最終濃度を測定し、添加量を決定すればよい。
 本発明で使用する水溶性無機塩は、試薬の水溶性無機塩があれば好ましいが、海水由来の水溶性無機塩、セルロース含有バイオマスを燃焼させた灰分由来の水溶性無機塩なども代替物として使用することができる。
 海水中に含まれる水溶性無機塩は、採取地によって濃度は若干変動することが知られているが、一般的に、塩化ナトリウム24~27g/L、塩化マグネシウム2.5~4g/L、硫酸マグネシウム1~2.5g/L、塩化カリウム約0.7g/L、を組成として含む水溶性無機塩の混合物である。海水のpHは、その塩組成により概ね決定され、一般的にはpH8.2~8.5の範囲にある。したがって、糸状菌由来セルラーゼの加水分解に最適なpHに調整した後、水溶性無機塩として海水を使用することができる。特に糸状菌由来セルラーゼとしてトリコデルマ由来セルラーゼを使用する場合、そのpHを4~6の範囲に調整することが好ましく、この範囲外であると酵素の失活がおきることがある。pH調整には、硫酸、塩酸など一般的な酸を使用すればよく、特に限定されるものではない。
 また、セルロース含有バイオマス、その前処理物、あるいは加水分解後に得られる糖化残さなどをボイラー燃焼させた灰分を水溶性無機塩の代替として使用することができる。こうした灰分には、カリウムを多く含み、これを水に溶解させ、pH調整することで水溶性無機塩の水溶液を調整することができる。灰分を水溶解させた際、pHはアルカリ性となる。これはカリウムが、水酸化カリウムとなるためであり、硫酸、あるいは、塩酸で中和することによって、水溶性無機塩である塩化カリウムあるいは硫酸カリウムが形成される。また、灰分には、水不溶性のシリカを多く含むため、こうした水不溶性の無機物は、濾過など適当な手法で除去することが好ましい。
 また、セルロース含有バイオマスの前処理に使用した酸またはアルカリを中和し、中和によって生成した水溶性無機塩を利用することも可能である。例えば、セルロース含有バイオマスの前処理において、水酸化ナトリウム、アンモニアなどの水溶液を使用した場合、前処理後、固液分離をして得られたセルロース前処理物(固体)には、水酸化ナトリウム、アンモニア水溶液が残存する場合がある。こうしたセルロース前処理物(固体)中に残存したアルカリに対して、例えば、硫酸などで中和を行えば、硫酸ナトリウム、あるいは硫酸アンモニウムなどの無機塩を中和にて生成させることができる。すなわち、実際に「添加」した試薬はアルカリであるが、その中和によって必要量の水溶性無機塩が中和によって生成したことになる。このように酸を添加する糸状菌由来セルラーゼによる加水分解の工程によって水溶性無機塩の最終濃度5~35g/Lの範囲に調製する場合においても、本発明の「水溶性無機塩を添加する」と言える。同様に、セルロース含有バイオマスの前処理において硫酸を使用した場合、中和にアンモニア、水酸化ナトリウムを使用することで、水溶性無機塩である硫酸アンモニウム、硫酸ナトリウムを生成させることができる(図1)。
 また、セルロース含有バイオマスを酸またはアルカリで前処理した後に固液分離し、セルロース前処理物(固体)と溶液成分に分離した溶液成分や、セルロース前処理物(固体)を水などで洗浄して得られた溶液成分を中和して得られた水溶性無機塩を使用してもよい。当然ながら、中和により調製した無機塩を、セルロース前処理物(固体)に最終濃度5~35g/Lの範囲に調製する場合においても、本発明の「水溶性無機塩を添加する」と言える(図2)。
 表1に、前述した中和により水溶性無機塩を生成させる場合の、前処理と中和剤の組み合わせの例をまとめる。
Figure JPOXMLDOC01-appb-T000001
 一方、例えば、硫酸処理に対して、水酸化カルシウム(ライム)を中和剤として使用して、硫酸カルシウムを無機塩として生成させたとしても、水酸化カルシウムは水溶性無機塩ではないため、本発明から除外される。
 工程(1)における水溶性無機塩の添加は、後述の工程(2)での糸状菌由来セルラーゼ回収率を高めるという効果に加え、加水分解工程における微生物汚染およびこれに伴う糖収率の減少を抑制することができる。加水分解に糸状菌由来セルラーゼを使用した場合の反応温度は、40~60℃の範囲であるが、該温度範囲は処理物に含まれるバチルス属など乳酸菌、高温耐性酵母などの微生物の培養至適温度に相当するため、それら微生物によって、生成糖が消費されてしまう場合がある。本発明では、工程(1)において水溶性無機塩を添加することにより、こうした微生物のコンタミネーションに伴う生成糖の損失を大きく抑制することができる。すなわち、本発明では、水溶性無機塩を添加することによって、酵素回収率を高めるという効果に加え、糖収率が向上するというという別の効果も有する。
 前述のセルロース前処理物について、工程(1)では糸状菌由来セルラーゼにより加水分解を行い、加水分解物を得ることを特徴としている。セルロースの加水分解とは、セルロースを低分子量化せしめることを指す。また、セルロースの加水分解においては、キシラン、マンナン、アラビナン、などのヘミセルロース成分も同時に加水分解される。加水分解物に含まれる単糖成分として、グルコース、キシロース、マンノース、ガラクトースなどであり、主な単糖成分は、セルロースの加水分解物であるグルコースである。また加水分解が不十分な場合、セロビオース、キシロビオースなどの2糖、セロオリゴ糖、キシロオリゴ糖などが含まれている。
 工程(1)では、セルロース前処理物を糸状菌由来セルラーゼにより加水分解する。糸状菌の具体例としては、トリコデルマ属(Trichoderma)、アスペルギルス属(Aspergillus)、セルロモナス属(Cellulomonas)、クロストリジウム属(Clostridium)、ストレプトマイセス属(Streptomyces)、フミコラ属(Humicola)、アクレモニウム属(Acremonium)、イルペックス属(Irpex)、ムコール属(Mucor)、タラロマイセス属(Talaromyces)、ファネロカエーテ(Phanerochaete)属、白色腐朽菌、褐色腐朽菌、などが挙げられる。本発明では、こうした糸状菌由来セルラーゼの中でも、セルロース分解活性が高いトリコデルマ由来セルラーゼを使用することが好ましい。
 トリコデルマ由来セルラーゼとは、トリコデルマ属微生物由来のセルラーゼを主成分とする酵素組成物である。トリコデルマ属微生物は特に限定されないが、具体的にはトリコデルマ・リーセイQM9414(Trichoderma reesei QM9414)、トリコデルマ・リーセイQM9123(Trichoderma reeseiQM9123)、トリコデルマ・リーセイRutC-30(Trichoderma reeseiRut C-30)、トリコデルマ・リーセイPC3-7(Trichoderma reesei PC3-7)、トリコデルマ・リーセイATCC68589(Trichoderma reesei ATCC68589)、トリコデルマ・リーセイCL-847(Trichoderma reeseiCL-847)、トリコデルマ・リーセイMCG77(Trichoderma reesei MCG77)、トリコデルマ・リーセイMCG80(Trichoderma reeseiMCG80)、トリコデルマ・ビリデQM9123(Trichoderma viride9123)を例示することができる。また、前述のトリコデルマ属に由来する微生物であって、これらを変異剤あるいは紫外線照射などで変異処理を施し、セルラーゼ生産性が向上した変異株であってもよい。
 本発明で使用するトリコデルマ由来セルラーゼは、セロビオハイドラーゼ、エンドグルカナーゼ、エキソグルカナーゼ、βグルコシダーゼ、キシラナーゼ、キシロシダーゼなどの複数の酵素成分を含む、セルロースを加水分解して糖化する活性を有する酵素組成物である。トリコデルマ由来セルラーゼは、セルロース分解において複数の酵素成分の協奏効果あるいは補完効果により効率的なセルロースの加水分解を実施することができる。特に本発明に使用するセルラーゼは、トリコデルマ由来セロビオハイドラーゼおよびキシラナーゼを含むことが好ましい。
 セロビオハイドラーゼとは、セルロースの末端部分から加水分解していくことを特徴とするセルラーゼの総称であり、EC番号:EC3.2.1.91としてセロビオハイドラーゼに帰属される酵素群が記載されている。
 エンドグルカナーゼとは、セルロース分子鎖の中央部分から加水分解することを特徴とするセルラーゼの総称であり、EC番号:EC3.2.1.4、EC3.2.1.6、EC3.2.1.39、EC3.2.1.73としてエンドグルカナーゼに帰属される酵素群が記載されている。
 エキソグルカナーゼとは、セルロース分子鎖の末端から加水分解することを特徴とするセルラーゼの総称であり、EC番号:EC3.2.1.74、EC3.2.1.58としてエキソグルカナーゼに帰属される酵素群が記載されている。
 βグルコシダーゼとは、セロオリゴ糖あるいはセロビオースに作用することを特徴とするセルラーゼの総称であり、EC番号:EC3.2.1.21としてβグルコシダーゼに帰属される酵素群が記載されている。
 キシラナーゼとは、ヘミセルロースあるいは特にキシランに作用することを特徴とするセルラーゼの総称であり、EC番号:EC3.2.1.8としてキシラナーゼに帰属される酵素群が記載されている。
 キシロシダーゼとは、キシロオリゴ糖に作用することを特徴とするセルラーゼの総称であり、EC番号:EC3.2.1.37としてキシロシダーゼに帰属される酵素群が記載されている。
 トリコデルマ由来セルラーゼとしては、粗酵素物が好ましく使用される。粗酵素物は、トリコデルマ属の微生物がセルラーゼを産生するよう調製した培地中で、任意の期間該微生物を培養した培養上清に由来する。使用する培地成分は特に限定されないが、セルラーゼの産生を促進するために、セルロースを添加した培地が一般的に使用できる。そして、粗酵素物として、培養液をそのまま、あるいはトリコデルマ菌体を除去したのみの培養上清が好ましく使用される。
 粗酵素物中の各酵素成分の重量比は特に限定されるものではないが、例えば、トリコデルマ・リーセイ由来の培養液には、50~95重量%のセロビオハイドラーゼが含まれており、残りの成分にエンドグルカナーゼ、βグルコシダーゼ等が含まれている。また、トリコデルマ属の微生物は、強力なセルラーゼ成分を培養液中に生産する一方で、βグルコシダーゼに関しては、細胞内あるいは細胞表層に保持しているため培養液中のβグルコシダーゼ活性は低いため、粗酵素物に、さらに異種または同種のβグルコシダーゼを添加してもよい。異種のβグルコシダーゼとしては、アスペルギルス属由来のβグルコシダーゼが好ましく使用できる。アスペルギルス属由来のβグルコシダーゼとして、ノボザイム社より市販されている“Novozyme188”などを例示することができる。粗酵素物に異種または同種のβグルコシダーゼを添加する方法としては、トリコデルマ属の微生物に遺伝子を導入し、その培養液中に産生されるよう遺伝子組換えされたトリコデルマ属の微生物を培養し、その培養液を単離する方法でもよい。
 糸状菌由来セルラーゼの加水分解反応温度は、15~100℃の範囲が好ましく、40~60℃がより好ましく、50℃が最も好ましい。また、加水分解反応時のpHは、pH3~9の範囲が好ましく、pH4~5.5がより好ましく、pH5が最も好ましい。pH調整には、酸あるいはアルカリを目的のpHとなるように添加し調整することができる。また、適宜緩衝液を使用してもよい。
 その他、セルロース前処理物の加水分解では、セルロース前処理物と糸状菌由来セルラーゼの接触を促進させるため、また加水分解物の糖濃度を均一にするため攪拌混合を行うことが好ましい。セルロース前処理物の固形分濃度は、1~25重量%の範囲であることがより好ましい。また、固形物濃度を1~10重量%の低濃度で設定することは、セルロース前処理物の加水分解効率が向上するという効果を有しているため、さらに好ましい。これは、糸状菌由来セルラーゼが、加水分解による生物であるグルコース、セロビオースなどの糖生成物により酵素反応が阻害されるという性質を有するためである。
 [工程(2)]
 工程(2)では、まず、工程(1)で得られた加水分解物を固液分離して溶液成分を回収する。固液分離は、スクリューデカンタなどの遠心分離法、加圧・吸引濾過などの濾過法、あるいは精密濾過などの膜濾過法といった公知の固液分離手法により実施することができる。こうした固液分離は1以上の複数手法組み合わせて実施してもよく、効率的に固形物を除去する手段であれば限定されない。但し、後段限外濾過膜のファウリングを抑制するという観点において、固液分離後の溶液成分には極力固形物が含まれないことが好ましく、具体的には遠心分離法もしくはフィルタプレスなどの濾過法にて1回目の固液分離した後、得られた溶液成分を、さらに精密濾過膜によって膜濾過することで、完全に固形物を除去することが好ましい。精密濾過膜とは、メンブレンフィルトレーションとも呼ばれ、圧力差を駆動力として、微粒子懸濁液から0.01~10μm程度の粒子を分離除去できる分離膜である。精密濾過膜の表面には0.01~10μmの範囲の細孔を有し、その細孔以上の微粒子成分は膜側に分離除去することができる。精密濾過膜の材質は、酢酸セルロース、芳香族ポリアミド、ポリビニルアルコール、ポリスルホン、ポリフッ化ビニリデン、ポリエチレン、ポリアクリロニトリル、セラミック、ポリプロピレン、ポリカーボネート、ポリテトラフルオロエチレン(テフロン(登録商標))などが例示できるが特に限定されるものではないが、対汚性、薬品耐性、強度、濾過性といった観点において、ポリフッ化ビニリデン製の精密濾過膜であることが好ましい。
 次に、溶液成分を限外濾過膜処理する。限外濾過膜とは、一般的に細孔径1.5ナノメートルから250ナノメートルの範囲であって、分子量1,000~200,000の範囲の水溶性高分子を非透過液として阻止することが可能な分離膜のことを指す。限外濾過膜は、糸状菌由来セルラーゼを回収できる分画分子量であればよく、好ましい分画分子量は1,000~100,000Da、より好ましくは10,000~30,000Daである。限外濾過膜の素材としては、ポリエーテルサルホン(PES)、ポリフッ化ビニルデン(PVDF)、再生セルロースなどの素材の膜を使用することができるが、セルロースは、糸状菌由来セルラーゼによる分解を受けるため、PES、PVDFなどの合成高分子を素材とした限外濾過膜を使用することが好ましい。限外濾過膜形状は、チューブラー式、スパイラルエレメント、平膜などが好ましく使用できる。限外濾過膜の濾過は、クロスフロー方式、デッドエンド濾過方式が挙げられるが、ファウリングあるいはフラックスの面でクロスフロー濾過方式が好ましい。
 溶液成分を限外濾過膜に通じて濾過することにより、透過液として、糖液を得ることができる。得られる糖液は、糖液に本来含まれている固形物が固液分離によってほぼ完全に除去された液体である。一方、限外濾過膜に通じて濾過処理することで、非透過液側には、糖液中の着色物質、水溶性高分子が除去されるが、水溶性高分子に工程(1)で使用した糸状菌由来セルラーゼ成分が含まれる。回収される糸状菌由来セルラーゼ成分は、特に限定されないが、加水分解に使用した糸状菌由来セルラーゼ成分のうち、その全部の成分あるいは一部の成分に関して、非透過液として回収することができる。なお、非透過液には糖液由来の糖成分も含まれているため、こうした糖成分の回収を行うために、非透過液に加水して、さらに限外濾過膜に通じて濾過する操作を繰り返してもよい。
 工程(2)の結果として、従来技術よりも回収酵素に含まれる糸状菌由来セルラーゼ酵素量が顕著に増大する効果が見られ、特に糸状菌由来セルラーゼ成分のうち、セロビオハイドラーゼおよびキシラナーゼが高効率で回収される。回収された糸状菌由来セルラーゼは、セルロース前処理物の加水分解に再利用することによって、糸状菌由来セルラーゼの使用量を削減することが可能になる。回収された糸状菌由来セルラーゼは、単独で加水分解に再利用してもよく、また未使用の糸状菌由来セルラーゼと混合して再利用してもよい。また、場合によっては、セルロースの加水分解以外の用途に有効活用してもよい。
 工程(2)で得られた糖液は、さらにWO2010/067785号に記載される方法である、ナノ濾過膜および/または逆浸透膜に通じて濾過することにより、非透過液として、糖成分が濃縮された糖濃縮液を得ることができる。
 ナノ濾過膜とは、ナノフィルター(ナノフィルトレーション膜、NF膜)とも呼ばれるものであり、「一価のイオンは透過し、二価のイオンを阻止する膜」と一般に定義される膜である。数ナノメートル程度の微小空隙を有していると考えられる膜で、主として、水中の微小粒子や分子、イオン、塩類等を阻止するために用いられる。
 逆浸透膜とは、RO膜とも呼ばれるものであり、「一価のイオンを含めて脱塩機能を有する膜」と一般に定義される膜である。数オングストロームから数ナノメートル程度の超微小空隙を有していると考えられる膜で、主として海水淡水化や超純水製造などイオン成分除去に用いられる。
 本発明で使用されるナノ濾過膜あるいは逆浸透膜の素材には、酢酸セルロース系ポリマー、ポリアミド、ポリエステル、ポリイミド、ビニルポリマー、ポリサルホンなどの高分子素材を使用することができるが、前記1種類の素材で構成される膜に限定されず、複数の膜素材を含む膜であってもよい。
 本発明で用いるナノ濾過膜は、スパイラル型の膜エレメントが好ましく使用される。好ましいナノ濾過膜エレメントの具体例としては、例えば、酢酸セルロース系のナノ濾過膜エレメントであるGE Osmonics社製“GEsepa”、ポリアミドを機能層とするアルファラバル社製ナノ濾過膜エレメントのNF99またはNF99HF、架橋ピペラジンポリアミドを機能層とするフィルムテック社製ナノ濾過膜エレメントのNF-45、NF-90、NF-200、NF-270またはNF-400、あるいは架橋ピペラジンポリアミドを主成分とする東レ株式会社製ナノ濾過膜のUTC60を含む同社製ナノ濾過膜エレメントSU-210、SU-220、SU-600またはSU-610が挙げられ、より好ましくはNF99またはNF99HF、NF-45、NF-90、NF-200またはNF-400、あるいはSU-210、SU-220、SU-600またはSU-610であり、さらに好ましくはSU-210、SU-220、SU-600またはSU-610である。
 本発明で使用される逆浸透膜の素材としては、酢酸セルロース系のポリマーを機能層とした複合膜(以下、酢酸セルロース系の逆浸透膜ともいう)またはポリアミドを機能層とした複合膜(以下、ポリアミド系の逆浸透膜ともいう)が挙げられる。ここで、酢酸セルロース系のポリマーとしては、酢酸セルロース、二酢酸セルロース、三酢酸セルロース、プロピオン酸セルロース、酪酸セルロース等のセルロースの有機酸エステルの単独もしくはこれらの混合物並びに混合エステルを用いたものが挙げられる。ポリアミドとしては、脂肪族および/または芳香族のジアミンをモノマーとする線状ポリマーまたは架橋ポリマーが挙げられる。
 本発明で使用される逆浸透膜の具体例としては、例えば、東レ株式会社製ポリアミド系逆浸透膜モジュールである超低圧タイプのSUL-G10、SUL-G20、低圧タイプのSU-710、SU-720、SU-720F、SU-710L、SU-720L、SU-720LF、SU-720R、SU-710P、SU-720Pの他、逆浸透膜としてUTC80を含む高圧タイプのSU-810、SU-820、SU-820L、SU-820FA、同社酢酸セルロース系逆浸透膜SC-L100R、SC-L200R、SC-1100、SC-1200、SC-2100、SC-2200、SC-3100、SC-3200、SC-8100、SC-8200、日東電工株式会社製NTR-759HR、NTR-729HF、NTR-70SWC、ES10-D、ES20-D、ES20-U、ES15-D、ES15-U、LF10-D、アルファラバル製RO98pHt、RO99、HR98PP、CE4040C-30D、GE製GE Sepa、Filmtec製BW30-4040、TW30-4040、XLE-4040、LP-4040、LE-4040、SW30-4040、SW30HRLE-4040、KOCH製TFC-HR、TFC-ULP、TRISEP製ACM-1、ACM-2、ACM-4などが挙げられる。
 ナノ濾過膜および/または逆浸透膜を使用して、糖液を濃縮する効果として、糖液中の糖濃度を高めるとともに、透過液として発酵阻害物質を除去できるという利点を有する。ここでいう発酵阻害物質とは、後段発酵工程で発酵を阻害する糖以外の成分のことを指し、具体的には、芳香族化合物、フラン系化合物、有機酸、1価無機塩などを例示することができる。こうした代表的な、芳香族化合物およびフラン系化合物の例としては、フルフラール、ヒドロキシメチルフルフラール、バニリン、バニリン酸、シリンガ酸、コニフェリルアルデヒド、クマル酸、フェルラ酸などを例示できる。有機酸、酢酸、ギ酸、などを例示することができる。糖濃縮液の糖濃度は、ナノ濾過膜および/または逆浸透膜の処理条件によって、50~400g/Lの範囲で任意に設定することができ、糖濃縮液の用途等に応じて任意に設定すればよい。また前述した発酵阻害物質をより除去したい場合、糖液あるいは糖濃縮液に加水し、ナノ濾過膜および/または逆浸透膜で目的の糖濃度となるまで濃縮すればよく、この際、透過液として発酵阻害物質を除去することができる。なお、逆浸透膜に比べ、ナノ濾過膜を使用した方が、発酵阻害物質の除去効果が高いため好ましい。ナノ濾過膜を使用するか、あるいは逆浸透膜を使用するかは、糖液に含まれる発酵阻害物質の濃度、あるいは後段発酵で影響を鑑みて選択すればよい。
 糖液をナノ濾過膜に通じて濾過して糖濃縮液を得る場合、ナノ濾過膜透過液をさらに逆浸透膜に通じて濾過することにより、非透過液として無機塩濃縮液を得ることができる。無機塩濃縮液は工程(1)で添加された水溶性無機塩を主成分とするものであるため、工程(1)において好ましく再利用されうる。
 [糖液の用途]
 本発明により得られた糖液を発酵原料として化学品を生産する能力を有する微生物を生育させることで、各種化学品を製造することができる。ここでいう発酵原料として微生物を生育させるとは、糖液に含まれる糖成分あるいはアミノ源を微生物の栄養素として利用し、微生物の増殖、生育維持を行うことを意味している。化学品の具体例としては、アルコール、有機酸、アミノ酸、核酸など発酵工業において大量生産されている物質を挙げることができる。こうした化学品は、糖液中の糖成分を炭素源として、その代謝の過程において生体内外に化学品として蓄積生産する。微生物によって生産可能な化学品の具体例として、エタノール、1,3-プロパンジオール、1,4-ブタンジオール、グリセロールなどのアルコール、酢酸、乳酸、ピルビン酸、コハク酸、リンゴ酸、イタコン酸、クエン酸などの有機酸、イノシン、グアノシンなどのヌクレオシド、イノシン酸、グアニル酸などのヌクレオチド、カダベリンなどのアミン化合物を挙げることができる。さらに、本発明の糖液は、酵素、抗生物質、組換えタンパク質などの生産に適用することも可能である。こうした化学品の製造に使用する微生物に関しては、目的の化学品を効率的に生産可能な微生物であればよく、大腸菌、酵母、糸状菌、担子菌などの微生物を使用することができる。
 [装置構成]
 本発明の糖液の製造方法を実施するための装置構成の一例を図3に示す。加水分解槽(2)は、セルロース前処理物を加水分解するためのものであり、40℃~60℃の温度範囲にて保温可能な保温装置(1)、セルロース前処理物を投入する投入口(3)、セルロース前処理物を混合する攪拌装置(4)、水溶性無機塩を調製、保持および添加するための水溶性無機塩調製槽(5)有していればよい。加水分解物の固液分離を行うプレス濾過(7)は、加水分解物の投入口(6)、コンプレッサー(8)を有していればよい。プレス濾過の濾液は、プレス濾過濾液槽(9)に回収される。プレス濾過濾液槽(9)は、MFポンプ(12)を介して、精密濾過膜(11)と連結している。精密濾過膜(11)で分離された固形物は、プレス濾液槽(9)に濃縮され、排出ライン(10)にて排出される。精密濾過膜の濾液は、精密濾過膜濾液槽(13)に回収される。さらに精密濾過膜濾液槽は、UFポンプ(14)を介して、限外濾過膜(15)と連結しており、糸状菌由来セルラーゼを非透過液として分離・回収でき、糖液は限外濾過膜(15)の濾液として糖液回収ライン(16)より回収される。
 以下に、実施例を挙げて本発明を具体的に説明する。ただし、本発明はこれらに限定されるものではない。
 (参考例1)セルロース前処理物の調製
 1)セルロース前処理物1の調製(アンモニア処理)
 セルロースとして、稲藁を使用した。前記セルロースを小型反応器(耐圧硝子工業製、TVS-N2 30ml)に投入し、液体窒素で冷却した。この反応器にアンモニアガスを流入し、試料を完全に液体アンモニアに浸漬させた。リアクターの蓋を閉め、室温で15分ほど放置した。次いで、150℃のオイルバス中にて1時間処理した。処理後、反応器をオイルバスから取り出し、ドラフト中で直ちにアンモニアガスをリーク後、さらに真空ポンプで反応器内を10Paまで真空引きし乾燥させた。これをバイオマス前処理物2として以下実施例に使用した。
 2)セルロース前処理物2の調製(水熱処理)
 セルロースとして、稲藁を使用した。前記セルロースを水に浸し、撹拌しながら180℃で20分間オートクレーブ処理(日東高圧株式会社製)した。その際の圧力は10MPaであった。処理後は溶液成分(以下、水熱処理液)と固形分に遠心分離(3000G)を用いて固液分離し、固形分をセルロース前処理物3として以下実施例に使用した。
 (参考例2)糖濃度の測定
 糖液に含まれるグルコースおよびキシロース濃度は、下記に示すHPLC条件で標品との比較により定量した。
カラム:Luna NH(Phenomenex社製)
移動相:ミリQ:アセトニトリル=25:75(流速0.6mL/分)
反応液:なし
検出方法:RI(示差屈折率)
温度:30℃。
 (参考例3)トリコデルマ由来セルラーゼの調製
 トリコデルマ由来セルラーゼを以下の方法で調製した。
 [前培養]
 コーンスティップリカー5%(w/vol)、グルコース2%(w/vol)、酒石酸アンモニウム0.37%(w/vol)、硫酸アンモニウム0.14(w/vol)、リン酸二水素カリウム0.2%(w/vol)、塩化カルシウム二水和物0.03%(w/vol)、硫酸マグネシウム七水和物0.03%(w/vol)、塩化亜鉛0.02%(w/vol)、塩化鉄(III)六水和物0.01%(w/vol)、硫酸銅(II)五水和物0.004%(w/vol)、塩化マンガン四水和物0.0008%(w/vol)、ホウ酸0.0006%(w/vol)、七モリブデン酸六アンモニウム四水和物0.0026%(w/vol)となるよう蒸留水に添加し、100mLを500mLバッフル付き三角フラスコに張り込み、121℃で15分間オートクレーブ滅菌した。放冷後、これとは別にそれぞれ121℃で15分間オートクレーブ滅菌したPE-MとTween80をそれぞれ0.01%(w/vol)添加した。この前培養培地にトリコデルマ・リーセイATCC68589を1×10個/mLになるように植菌し、28℃、72時間、180rpmで振とう培養し、前培養とした(振とう装置:TAITEC社製 BIO-SHAKER BR-40LF)。
 [本培養]
 コーンスティップリカー5%(w/vol)、グルコース2%(w/vol)、セルロース(アビセル)10%(w/vol)、酒石酸アンモニウム0.37%(w/vol)、硫酸アンモニウム0.14%(w/vol)、リン酸二水素カリウム 0.2%(w/vol)、塩化カルシウム二水和物0.03%(w/vol)、硫酸マグネシウム七水和物0.03%(w/vol)、塩化亜鉛0.02%(w/vol)、塩化鉄(III)六水和物0.01%(w/vol)、硫酸銅(II)五水和物0.004%(w/vol)、塩化マンガン四水和物0.0008%(w/vol)、ホウ酸0.0006%(w/vol)、七モリブデン酸六アンモニウム四水和物0.0026%(w/vol)となるよう蒸留水に添加し、2.5Lを5L容撹拌ジャー(ABLE社製 DPC-2A)容器に張り込み、121℃で15分間オートクレーブ滅菌した。放冷後、これとは別にそれぞれ121℃で15分間オートクレーブ滅菌したPE-MとTween80をそれぞれ0.1%添加し、あらかじめ前記の方法にて液体培地で前培養したトリコデルマ・リーセイATCC68589を250mL接種した。その後、28℃、87時間、300rpm、通気量1vvmにて培養を行い、遠心分離後、上清を膜濾過(ミリポア社製 ステリカップ-GV 材質:PVDF)した。この前述条件で調製した培養液に対し、βグルコシダーゼ(Novozyme188)をタンパク質重量比として、1/100量添加し、これをトリコデルマ由来セルラーゼとして、以下、実施例に使用した。
 (参考例5)糸状菌由来セルラーゼの回収酵素量の測定方法
 工程(2)で回収できる糸状菌由来セルラーゼの回収酵素量は、1)結晶セルロース分解活性、2)セロビオース分解活性、3)キシラン分解活性、の3種の分解活性(以下、活性値という。)を測定することにより定量した。
 1)結晶セルロース分解活性
 酵素液に対し、結晶セルロースであるアビセル(Merch社製、Cellulose Microcrystalline)を1g/L、酢酸ナトリウム緩衝液(pH 5.0)を100mMとなるよう添加し、50℃で24時間反応させた。反応液は1mLチューブで調製し、前記条件にて回転混和しながら反応を行った。反応後、チューブを遠心分離し、その上清成分のグルコース濃度を測定した。グルコース濃度は、参考例2に記載の方法に準じて測定した。結晶セルロース分解活性は、生成したグルコース濃度(g/L)をそのまま活性量として使用し、回収酵素量の比較に使用した。
 2)セロビオース分解活性
 酵素液に対し、セロビオース(和光純薬工業株式会社製)500mg/L、酢酸ナトリウム緩衝液(pH 5.0)を100mMとなるよう添加し、50℃で0.5時間反応させた。反応液は1mLチューブで調製し、前記条件にて回転混和しながら反応を行った。反応後、チューブを遠心分離し、その上清成分のグルコース濃度を測定した。グルコース濃度は、参考例2に記載の方法に準じて測定した。セロビオース分解活性は、生成したグルコース濃度(g/L)をそのまま活性量として使用し、回収酵素量の比較に使用した。
 3)キシラン分解活性
 酵素液に対し、キシラン(Birch wood xylan、和光純薬工業株式会社製)10g/L、酢酸ナトリウム緩衝液(pH 5.0)を100mMとなるよう添加し、50℃で4時間反応させた。反応液は1mLチューブで調製し、前記条件にて回転混和しながら反応を行った。反応後、チューブを遠心分離し、その上清成分のキシロース濃度を測定した。キシロース濃度は、参考例2に記載の方法に準じて測定した。キシロース分解活性は、生成したキシロース濃度(g/L)をそのまま活性量として使用し、回収酵素量の比較に使用した。
 (参考例6)無機イオン濃度の測定
 糖液に含まれるカチオンおよびアニオン濃度は、下記に示すHPLC条件で、標品との比較により定量した。
 1)カチオン分析
カラム:Ion Pac AS22(DIONEX社製)
移動相:4.5mM NaCO/1.4mM NaHCO(流速1.0mL/分)
反応液:なし
検出方法:電気伝導度(サプレッサ使用)
温度:30℃。
 2)アニオン分析
カラム:Ion Pac CS12A(DIONEX社製)
移動相:20mMメタンスルホン酸(流速1.0mL/分)
反応液:なし
検出方法:電気伝導度(サプレッサ使用)
温度:30℃。
 (比較例1)セルロース前処理物の加水分解
 参考例1で調製したセルロース前処理物1および2(各0.5g)に蒸留水を加え、参考例3で調製したトリコデルマ由来セルラーゼ0.5mLを添加し、総重量が10gとなるようさらに蒸留水を添加した。さらに本組成物のpHが4.5~5.3の範囲となるよう希釈硫酸あるいは希釈苛性ソーダで調整した。pHを調整した本組成物を枝付試験管に移し(東京理化器械株式会社製 φ30 NS14/23)、50℃にて24時間保温および攪拌し加水分解を行った(東京理化社製:小型メカニカルスターラー CPS-1000、変換アダプター、三方コック付添加口、保温装置 MG-2200)。加水分解物を遠心分離(3000G、10分)にて固液分離し、溶液成分(6mL)と固形物に分離した。得られた溶液成分の糖濃度(グルコースおよびキシロース濃度)は、参考例2記載の方法で測定した。また、溶液成分は、さらにマイレクスHVフィルターユニット(33mm、PVDF製、細孔径0.45μm)を使用して濾過を行った。得られた濾液は、分画分子量10000の限外濾過膜(Sartorius stedim biotech社製 VIVASPIN 20 材質:PES)で濾過し、膜画分が1mLになるまで4500Gにて遠心した。蒸留水10mLを膜画分に添加し、再度膜画分が1mLになるまで4500Gにて遠心した。この後、膜画分から酵素を回収した。回収酵素の各活性は、参考例4に準じて測定した。
 (比較例2)酢酸ナトリウム(有機塩)を含むセルロース前処理物の加水分解1
 参考例1で調製したセルロース前処理物1および2(各0.5g)に蒸留水を加え、酢酸ナトリウム5M(pH5.2)を0.2mL(最終濃度100mM、8.2g/L)をさらに加え、参考例3で調製したトリコデルマ由来セルラーゼ0.5mLを添加し、総重量が10gとなるようさらに蒸留水を添加した。前記、酢酸緩衝液の添加する操作以外は、比較例1と同じ手順で行い、糖濃度および回収できた各酵素活性を測定した。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 (実施例1)水溶性無機塩を添加するセルロース前処理物の加水分解1
 参考例1で調製したセルロース前処理物1(0.5g)に蒸留水を加え、水溶性無機塩(塩化ナトリウム、塩化カリウム、硫酸ナトリウム、塩化マグネシウム、硫酸マグネシウム、塩化カルシウム、硫酸アンモニウム)を、それぞれ最終濃度5g/L、10g/L、25g/L、35g/L、50g/L、100g/Lになるように加え、参考例3で調製したトリコデルマ由来セルラーゼ0.5mLを添加し、総重量が10gとなるようさらに蒸留水を添加した。前記、酢酸緩衝液の添加する操作以外は、比較例1と同じ手順で行い、糖濃度および回収できた各酵素活性を測定した。
 各種水溶性無機塩の添加量と糖生成量との関係を表4、表5に示す。水溶性無機塩添加35g/Lまでは、グルコースおよびキシロースの生成量は、比較例1および2(表2および3)と同じであるが、50g/L以上になると生成糖が減少することが判明した。これは、水溶性無機塩濃度が高すぎるため、酵素反応が阻害されたためと考えられる。一方、5~35g/Lの範囲では、大きな生成糖の減少は確認されなかった。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 次に、水溶性無機塩を添加し加水分解を行い、得られた溶液成分より酵素を回収した結果を表6~8に示す。表5および表6に示すように、セロビオース分解活性およびキシラン分解活性は、水溶性無機塩濃度50g/L以上で活性が低下することが判明した。その一方で、表7に示すように、水溶性無機塩濃度5~35g/Lの範囲で、キシラン分解活性で1.2倍以上、結晶セルロース分解活性で2倍以上、高まることが判明した。また、水溶性無機塩濃度5~35g/Lの範囲でのセロビオース分解活性は大きな変化は確認されなかったが、水溶性無機塩濃度が50g/L以上になると活性は低下することが判明した。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 (実施例2)水溶性無機塩を添加するセルロース前処理物の加水分解2
 セルロース前処理物2(0.5g)に関して同様の蒸留水を加え、実施例1と同じ手順で加水分解を実施した。得られた糖濃度および回収できた各酵素活性を測定した。各種水溶性無機塩の添加量と糖生成量との関係を表9、表10に示す。水溶性無機塩添加35g/Lまでは、比較例1および2(表2および3)と同じであるが、50g/L以上になるとグルコースおよびキシロースの生成量が減少することが判明した。これは、水溶性無機塩濃度が高すぎるため、酵素反応が阻害されたためと考えられる。一方、5~35g/Lの範囲では、大きな生成糖の減少は確認されなかった。
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
 次に、水溶性無機塩を添加し加水分解を行い、得られた溶液成分より酵素を回収した結果を表11~13に示す。セロビオース分解活性およびキシラン分解活性は、水溶性無機塩添加量50g/L以上では回収酵素活性が低下することが判明した。その一方で、水溶性無機塩5~35g/Lの範囲で、セロビオース分解活性で、2倍以上、キシラン分解活性で1.2倍以上、結晶セルロース分解活性で2倍以上、高まることが判明した。一方、水溶性無機塩添加量が50g/L以上になると活性は低下することが判明した。
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
 (実施例3)水溶性無機塩としての海水利用
 実施例1および2において、水溶性無機塩5g/L~35g/L添加することにより回収酵素活性が高まることが確認できた。そこで、水溶性無機塩を含む水溶液として「海水」にて代替できるか検討した。海水は、神奈川県三崎漁港付近で採取した海水(pH8.3、固形物溶解量3.2%)を使用し、これをマイレクスHVフィルターユニット(33mm、PVDF製、細孔径0.45μm)を使用して濾過を行ったものを使用した。なお海水のpH調整には硫酸を使用し、pH5.0(海水1L当たり硫酸50mg添加)に調整した。この海水(pH5)の水溶性無機塩濃度を参考例6に準じて測定したところ、塩化ナトリウム25g/L、塩化マグネシウム3.2g/L、硫酸マグネシウム2g/Lであることが判明した。すなわち、実施例3で使用した海水は、水溶性無機塩を30.2g/Lの濃度で含むことが分かった。
 次に、前述の海水(pH5)を水溶性無機塩として使用して、参考例1で調製したバイオマス前処理物1および2の加水分解を行った。バイオマス前処理物1および2(0.5g)に蒸留水および海水(pH5)を加え、参考例3で調製したトリコデルマ由来セルラーゼ0.5mLを添加し、総重量が10gとなるようさらに蒸留水を添加した。海水は、最終濃度1/2希釈、すなわち水溶性無機塩濃度で15.1g/Lとなるように添加した。pH調整は、海水のpHを予め5に調整してあるので実施の必要はなかった。加水分解、固液分離、は、比較例1と同じ手順で実施した。得られた溶液成分の糖濃度(グルコースおよびキシロース濃度)は、参考例2記載の方法で測定した。また、溶液成分は、さらにマイレクスHVフィルターユニット(33mm、PVDF製、細孔径0.45μm)を使用して濾過を行い、比較例1と同じ手順で、回収酵素を得た。回収酵素の各活性は、参考例4に準じて測定した。その結果、表14、表15に示すように、比較例1に対し、海水の添加により、セロビオース分解活性、結晶セルロース分解活性、およびキシラン分解活性は海水添加においても向上することが判明した。
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
 (実施例4)加水分解工程における水溶性無機塩添加のタイミング
 水溶性無機塩の添加のタイミングを決定するために、セルラーゼ添加前、セルラーゼ添加直後、セルラーゼ添加後23時間、に関して糖生成量、回収酵素活性を比較した。水溶性無機塩は、塩化ナトリウムを使用し、添加濃度は10g/Lで実施した。その結果、表16に示すように、セルラーゼ添加前あるいは添加直後(例えば反応0時間)において、水溶性無機塩を添加する方が回収酵素活性、特に結晶セルロース分解活性を高める点で好ましいことが判明した。
Figure JPOXMLDOC01-appb-T000016
 (実施例5)ナノ濾過膜による糖濃縮および1価無機塩の除去
 ナノ濾過膜による糖濃縮および1価無機塩の除去を検討するために、糖液の大量調製を行った。糖液の大量調製は、セルロース前処理物1(1kg)にトリコデルマ由来セルラーゼ20gを添加し、さらに塩化ナトリウムを最終濃度10g/Lとなるように添加後、総重量が20kgとなるようさらに蒸留水を添加した。さらに本組成物のpHが4.5~5.3の範囲となるよう希釈硫酸あるいは希釈苛性ソーダで調整した。この液を液温が45~50℃を保つよう保温しながら、かつpHが4.5~5.3の範囲を保つように希釈硫酸、希釈苛性ソーダを添加して24時間酵素とバイオマス前処理物2を反応させた。次に得られた酵素糖化スラリー液10Lを用いて以下の手順でプレス濾過を実施した。プレス濾過は小型フィルタプレス装置(薮田産業製フィルタプレス MO-4)を用いた。ろ布はポリエステル製織布(薮田産業製 T2731C)を使用した。スラリー液10Lを小型タンクの中に入れて下から圧縮空気で曝気しながら液投入口を開いてエアーポンプ(タイヨーインタナショナル製 66053-3EB)で徐々に濾室内にスラリー液を投入した。次に濾室に付設されているダイヤフラムを膨らませて圧搾工程を行った。徐々に圧搾圧力を上昇させていき、0.5MPaまで上昇させてから約30分間放置して濾液を回収した。得られた溶液成分の総量は9.0Lであった。残りの液成分については装置デッドボリュームのために損失した。得られた溶液成分の糖濃度を測定したところグルコース濃度が16g/L、キシロース濃度が10g/Lであった。
 次に、固液分離の溶液成分を限外濾過膜に通じて濾過し、回収酵素と糖液成分に分離した。回収酵素は、分画分子量10000の限外濾過膜(GE製 SEPA PWシリーズ 機能面材質:ポリエーテルスルホン)の平膜をセットした小型平膜濾過装置(GE製 Sepa(登録商標) CF II Med/High Foulant System)を使用して実施した。原水側流速2.5L/分、膜フラックスが0.1m/Dと一定になるように操作圧力を制御しながら9Lのうち5Lを濾過した。
 得られた糖液1Lを使用してナノ濾過膜濃縮を実施した。ナノ濾過膜はDESAL-5L(デザリネーション社製)を使用し、このナノ濾過膜を小型平膜濾過装置(GE製 Sepa(登録商標) CF II Med/High Foulant System)にセットし、原水温度を25℃、高圧ポンプの圧力を3MPaで濾過処理を行った。この処理により、0.2Lのナノ濾過膜濃縮液および0.8Lの透過液を得た(5倍濃縮)。このときのグルコース、キシロース、ナトリウムイオン、塩化物イオン濃度は表17に示す通りであり、ナノ濾過膜の糖濃縮により糖濃度に対する塩化ナトリウム濃度を低減できることが判明した。
Figure JPOXMLDOC01-appb-T000017
 (実施例6)ナノ濾過膜による糖濃縮および1価無機塩の除去2(透析濾過)
 実施例6で得られたナノ濾過膜の濃縮液0.3LにRO水0.3Lを加水し、合計0.6Lに調整し、さらにこの溶液をナノ濾過膜に通じて濾過し、0.3Lの濃縮液(ナノ濾過膜濃縮液2)と0.3Lの透過液(ナノ濾過膜透過液2)を得た(2倍濃縮)。このときのグルコース、キシロース、ナトリウムイオン、塩化物イオン濃度は表18に示す通りであり、ナノ濾過膜濃縮液をさらにナノ濾過膜に通じて濾過することにより、1価無機塩濃度をさらに低減できることが判明した。
Figure JPOXMLDOC01-appb-T000018
 (実施例7)逆浸透膜による無機塩濃縮液の回収
 実施例5で得られたナノ濾過膜の透過液0.8LをRO膜処理に通じて、無機塩濃縮液の回収を行った。RO膜は架橋全芳香族系逆浸透膜“UTC80”(東レ株式会社製)を使用し、このRO膜を小型平膜濾過装置(GE製 “Sepa”(登録商標) CF II Med/High Foulant System)にセットし、原水温度を25℃、高圧ポンプの圧力を3MPaで濾過処理を行った。この処理により0.64Lの透過液を得た(5倍濃縮)。このときのグルコースおよびキシロース、ナトリウムイオン、塩化物イオン濃度は表19に示す通りであり、ナノ濾過膜の透過液として含まれる無機塩をさらに逆浸透膜に通じて濾過することにより、無機塩濃縮液を得られることが判明した。また透過液としては、無機塩および糖を含まない純水を得ることができた。
Figure JPOXMLDOC01-appb-T000019
 (実施例8)希硫酸処理セルロース前処理物の調製、アンモニア中和、糸状菌セルラーゼによる加水分解
 セルロース含有バイオマスとしてサトウキビバガスを希硫酸水(1wt%、10g/L、)に浸し、撹拌しながら190℃で10分間オートクレーブ処理(日東高圧株式会社製)した。その際の圧力は10MPaであった。処理後は小型フィルタプレス装置(薮田産業製フィルタプレス)を用いて固液分離し、溶液成分(以下、硫酸処理液という。)(0.5L)と固形分に分離した。固形物の固形物濃度は、約50%であった。固形物は、さらにRO水に再度懸濁させ、再度小型フィルタプレスを行うことで、固形物中に含まれる硫酸成分の除去を行った。この硫酸除去を行って得られた固形物を、以下、セルロース前処理物3と呼ぶ。
 次に、0.5Lの硫酸処理液に対し、アンモニア水(28%溶液、和光純薬工業株式会社製)6mLを徐々に添加し、pH7付近まで中和を行った。この際、硫酸イオンとアンモニウムイオンとの中和反応にて、水溶性無機塩である硫酸アンモニウム((NHSO)約13gが生成したものと推定できる。中和後の硫酸処理液に関して、糖成分を分析したところ、キシロースが23g/L、グルコースが1g/L含まれていた。以下、これを中和C5糖液と呼ぶ。
 次に、セルロース前処理物3と中和C5糖液の混合を行った。セルロース前処理物3の固形物1gに対して中和C5糖液を10mL添加し混合した(固形物濃度10wt%)。混合後、希硫酸および水酸化ナトリウム水溶液を使用して、pH5に調製した。その後、セルラーゼを添加して、加水分解反応を行った。セルラーゼは、ジェネンコア社の“アクセルレースDuet”を購入し使用した。添加量は、前記セルラーゼを0.2mL添加した。反応は比較例1と同じ条件で行い、50℃で24時間混合し実施した。得られた加水分解物に含まれる糖濃度(グルコース・キシロース)を表21に示す。
 次に、前記加水分解物より比較例1と同じ条件で酵素回収を行った。回収酵素の各活性(セロビオース分解活性、アビセル分解活性、キシラン分解活性)は、参考例4に準じて測定した。回収酵素活性を表20に示す。
 (比較例3)希硫酸処理セルロース前処理物の調製、水酸化カルシウム中和、糸状菌由来セルラーゼによる加水分解
 前記実施例8との比較のため、中和を水酸化カルシウムで行った場合の比較例を示す。なお、水酸化カルシウムで中和を行うことにより、硫酸イオンとカルシウムイオンの塩である硫酸カルシウム(CaSO)が生成する。硫酸カルシウム(石膏)は、水に対する溶解度が約2g/L程度(25℃)であるため、本比較例における加水分解は、水溶性無機塩を添加した加水分解ではない。
 本比較例では、硫酸処理液の中和に際し、アンモニア水ではなく、硫酸カルシウム粉末を添加し、pH7付近に調製すること、中和後に生成した硫酸アンモニウムを遠心にて除去すること以外は、実施例7に準じて実施した。具体的には、硫酸処理液、固形物(セルロース前処理物3)は実施例7に準じて実施した。
 次に、0.5Lの硫酸処理液に対し、水酸化カルシウム(和光純薬工業株式会社製)を3.7g、徐々に添加し、pH7付近まで中和を行った。この際、硫酸イオンとカルシウムイオンとの中和反応にて、水不溶性無機塩である硫酸カルシウム((NHSO)約7gが生成したものと推定できる。中和後の硫酸処理液は、さらに遠心分離(3000G、20分)を行い、水不溶性無機塩である硫酸カルシウムを除去し、その上澄み液を得た。この上済み液に関して、糖成分を分析したところ、キシロースが22g/L、グルコースが1g/L含まれていた。以下、これを中和C5糖液(比較例2)と呼ぶ。
 次に、セルロース前処理物3と中和C5糖液の混合(比較例2)を行い、さらにセルラーゼを添加して、実施例7と同じ手順で加水分解反応を行った。得られた加水分解物に含まれる糖濃度(グルコース・キシロース)を表20に示す。
 次に、加水分解物より比較例1と同じ条件で酵素回収を行った。回収酵素の各活性(セロビオース分解活性、アビセル分解活性、キシラン分解活性)は、参考例4に準じて測定した。回収酵素活性を表20に示す。その結果、実施例8と比較して糸状菌由来セルラーゼによる加水分解により生成する糖濃度は大きく差がないことが判明した。一方で、回収酵素活性に関しては、実施例8のアンモニアを使用した中和、すなわち硫酸アンモニウム存在下で加水分解を行う方がより向上することが判明した。
Figure JPOXMLDOC01-appb-T000020
 (参考例6)フミコラ属セルラーゼの調製
 フミコラ属セルラーゼは、フミコラ・グリセア(Humicola grisea NBRC31242)を参考例3の方法と同じ前培養、本培養にて調製した。この前述条件で調製した培養液に対し、βグルコシダーゼ(Novozyme188)をタンパク質重量比として、1/100量添加し、これをフミコラ属セルラーゼとして、以下の実施例および比較例に使用した。
 (比較例4)セルロース前処理物3の加水分解
 実施例8のセルロース前処理物3を使用して、比較例1の記載に準じて、水溶性無機塩を添加しない場合の加水分解と酵素の回収を実施した。その際、糸状菌由来セルラーゼとして、参考例3で調製したトリコデルマ属由来セルラーゼ、および参考例6で調製したフミコラ属由来セルラーゼを使用して加水分解を実施した。糖生成量と回収酵素活性を表21に示す。
Figure JPOXMLDOC01-appb-T000021
 (実施例9)水溶性無機塩を添加したセルロース前処理物の加水分解3
 実施例8で調製したセルロース前処理物3(0.5g)に蒸留水を加え、実施例1と同じ手順で加水分解を実施した。得られた糖濃度および回収できた各酵素活性を測定した。各種水溶性無機塩の添加量と糖生成量との関係を表23および24に示す。水溶性無機塩添加35g/Lまでは比較例4(表21)と同じであるが、50g/L以上になるとグルコースおよびキシロースの生成量が減少することが判明した。これは、水溶性無機塩濃度が高すぎるため、酵素反応が阻害されたためと考えられた。一方、5~35g/Lの範囲では、大きな生成糖の減少は確認されなかった。
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
 次に、水溶性無機塩を添加し加水分解を行い、得られた溶液成分より酵素を回収した結果を表24~26に示す。セロビオース分解活性およびキシラン分解活性は、水溶性無機塩添加量50g/L以上では回収酵素活性が低下することが判明した。その一方で、水溶性無機塩5~35g/Lの範囲で、セロビオース分解活性で、2倍以上、キシラン分解活性で1.2倍以上、結晶セルロース分解活性で2倍以上、高まることが判明した。但し、水溶性無機塩の添加量が50g/L以上になると活性は低下することが判明した。
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000026
 (実施例10)水溶性無機塩を添加したセルロース前処理物の加水分解4
 実施例8で調製したセルロース前処理物3(0.5g)に蒸留水を加え、参考例6記載のフミコラ属由来セルラーゼを使用する以外は、実施例1と同じ手順で加水分解を実施した。得られた糖濃度および回収できた各酵素活性を測定した。各種水溶性無機塩の添加量と糖生成量との関係を表28、表29に示す。水溶性無機塩添加35g/Lまでは、比較例4(表21)と同じであるが、50g/L以上になるとグルコースおよびキシロースの生成量が減少することが判明した。これは、水溶性無機塩濃度が高すぎるため、酵素反応が阻害されたためと考えられる。一方、5~35g/Lの範囲では、大きな生成糖の減少は確認されなかった。
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000028
 次に、水溶性無機塩を添加し加水分解を行い、得られた溶液成分より酵素を回収した結果を表29~31に示す。セロビオース分解活性およびキシラン分解活性は、水溶性無機塩添加量50g/L以上では回収酵素活性が低下することが判明した。その一方で、水溶性無機塩5~35g/Lの範囲で、セロビオース分解活性で、2倍以上、キシラン分解活性で1.2倍以上、結晶セルロース分解活性で2倍以上、高まることが判明した。但し、水溶性無機塩添加量が50g/L以上になると活性は低下することが判明した。
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000031
 (実施例11)糖液を発酵原料とするエタノール発酵
 実施例6のナノ濾過膜濃縮液2を発酵原料として使用して、酵母(Saccharomycecs cerevisiae OC-2:ワイン酵母)によるエタノール発酵試験を行った。前述酵母をYPD培地(2%グルコース、1%酵母エキス(Bacto Yeast Extract BD社製)、2%ポリペプトン(日本製薬株式会社製)にて、1日間25℃で前培養を行った。次に、得られた培養液を、pH6に水酸化ナトリウムにて調整したナノ濾過膜濃縮液糖液(グルコース濃度74g/L)に対し、1%(20mL)となるように添加した。微生物を添加後、25℃で2日間インキュベートした。この操作で得られた培養液に含まれるエタノール蓄積濃度は、ガスクロマトグラフ法(Shimadzu GC-2010キャピラリーGC TC-1(GL science) 15 meter L.*0.53mm I.D.,df1.5μmを用いて、水素塩イオン化検出器により検出・算出。)により定量した。その結果、培養液中には24g/Lのエタノールが含まれることが確認できた。すなわち、本発明により得られる糖液を発酵原料とすることによりエタノールが製造できることが確認できた。
 (実施例12)糖液を発酵原料とする乳酸発酵
 実施例6のナノ濾過膜濃縮液2を発酵原料として使用して、ラクトコッカス・ラクティスJCM7638株(乳酸菌)による乳酸発酵試験をおこなった。前述乳酸菌をYPD培地(2%グルコース、1%酵母エキス(Bacto Yeast Extract/BD社)、2%ポリペプトン(日本製薬株式会社製)にて、1日間37℃で前培養を行った。次に、得られた培養液を、pH7に水酸化ナトリウムにて調整したナノ濾過膜濃縮液糖液(グルコース濃度74g/L)に対し、1%(20mL)となるように添加し、ラクトコッカス・ラクティスJCM7638株を24時間、37℃の温度で静置培養した。培養液に含まれるL-乳酸濃度を以下条件で分析した。
カラム:Shim-Pack SPR-H(株式会社島津製作所製)
移動相:5mM p-トルエンスルホン酸(流速0.8mL/min)
反応液:5mM p-トルエンスルホン酸、20mM ビストリス、0.1mM EDTA・2Na(流速0.8mL/min)
検出方法:電気伝導度
温度:45℃。
 分析の結果、L-乳酸が65g/L蓄積していることが確認され、本発明により得られる糖液を発酵原料とすることにより乳酸を製造できることが確認できた。
産業上の利用の可能性
 本発明の糖液の製造方法は、セルロースを含むバイオマスから化学品を製造するための発酵原料となる糖液の製造に利用できる。また、本発明で製造した糖液は、各種化学品の発酵原料として使用することができる。

Claims (7)

  1.  以下の工程(1)および(2)含む、糖液の製造方法。
    工程(1):セルロース前処理物に水溶性無機塩を最終濃度5~35g/Lの範囲になるように添加したものを糸状菌由来セルラーゼにより加水分解を行う工程、
    工程(2):前記加水分解物を固液分離し、得られた溶液成分を限外濾過膜に通じて濾過し、非透過液として糸状菌由来セルラーゼを回収し、透過液として糖液を得る工程。
  2.  工程(1)の水溶性無機塩が、ナトリウム塩、カリウム塩、マグネシウム塩、カルシウム塩およびアンモニウム塩からなる群から選ばれる1種類以上である、請求項1に記載の糖液の製造方法。
  3.  工程(1)の水溶性無機塩が、塩化ナトリウム、塩化カリウム、硫酸ナトリウム、塩化マグネシウム、硫酸マグネシウム、塩化カルシウムおよび硫酸アンモニウムからなる群から選ばれる1種類以上である、請求項1または2に記載の糖液の製造方法。
  4.  工程(1)のセルロース前処理物が、水熱処理、希硫酸処理およびアルカリ処理の群から選ばれる1以上の処理物である、請求項1から3のいずれかに記載の糖液の製造方法。
  5.  糸状菌由来セルラーゼがトリコデルマ由来セルラーゼである、請求項1から4のいずれかに記載の糖液の製造方法。
  6.  さらに工程(2)の糖液をナノ濾過膜および/または逆浸透膜に通じて濾過し、透過液として発酵阻害物質を除去し、非透過液として糖濃縮液を得る工程を含む、請求項1から5のいずれかに記載の糖液の製造方法。
  7.  さらに工程(2)の糖液をナノ濾過膜に通じて濾過して得られる透過液を逆浸透膜に通じて濾過し、非透過液として得られる無機塩濃縮液を工程(1)の水溶性無機塩として再利用する工程を含む、請求項6に記載の糖液の製造方法。
PCT/JP2012/058076 2011-03-29 2012-03-28 糖液の製造方法 WO2012133495A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012521895A JP6136267B2 (ja) 2011-03-29 2012-03-28 糖液の製造方法
CA2831543A CA2831543C (en) 2011-03-29 2012-03-28 Method for producing sugar solution
BR112013024571-9A BR112013024571B1 (pt) 2011-03-29 2012-03-28 Método para a produção de um líquido de açúcar
US14/007,438 US10179924B2 (en) 2011-03-29 2012-03-28 Method for producing sugar solution

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011072021 2011-03-29
JP2011-072021 2011-03-29

Publications (1)

Publication Number Publication Date
WO2012133495A1 true WO2012133495A1 (ja) 2012-10-04

Family

ID=46931204

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/058076 WO2012133495A1 (ja) 2011-03-29 2012-03-28 糖液の製造方法

Country Status (5)

Country Link
US (1) US10179924B2 (ja)
JP (1) JP6136267B2 (ja)
BR (1) BR112013024571B1 (ja)
CA (1) CA2831543C (ja)
WO (1) WO2012133495A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014077264A1 (ja) * 2012-11-16 2014-05-22 独立行政法人産業技術総合研究所 バイオマス分解用組成物およびそれを用いた糖液の製造方法
WO2014208493A1 (ja) * 2013-06-25 2014-12-31 東レ株式会社 糖液の製造方法
JP2015029463A (ja) * 2013-08-02 2015-02-16 国立大学法人神戸大学 単糖類濃縮液の製造方法
WO2015099109A1 (ja) * 2013-12-27 2015-07-02 東レ株式会社 糖液の製造方法
KR20150076316A (ko) * 2013-12-26 2015-07-07 주식회사 포스코 목질계 바이오매스의 전처리 방법 및 장치
KR20150076346A (ko) * 2013-12-26 2015-07-07 주식회사 포스코 목질계 바이오매스의 발효 효율 향상 방법
US11006658B2 (en) 2018-08-15 2021-05-18 Cambridge Glycoscience Ltd Compositions, their use, and methods for their formation
US11248247B2 (en) 2018-02-21 2022-02-15 Cambridge Glycoscience Ltd Methods and systems of producing oligosaccharides
US11297865B2 (en) 2019-08-16 2022-04-12 Cambridge Glycoscience Ltd Methods of treating biomass to produce oligosaccharides and related compositions
US11871763B2 (en) 2019-12-12 2024-01-16 Cambridge Glycoscience Ltd Low sugar multiphase foodstuffs

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10519476B2 (en) * 2012-05-18 2019-12-31 Toray Industries, Inc. Method of producing sugar liquid
US9450609B1 (en) * 2015-03-31 2016-09-20 Altera Corporation Methods and apparatus for embedding an error correction code in memory cells
WO2024057333A1 (en) * 2022-09-16 2024-03-21 Rohit Khaitan A process for preparing bio products from biomass for a low carbon economy

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009189291A (ja) * 2008-02-14 2009-08-27 National Agriculture & Food Research Organization セルロースを含むバイオマスの糖化方法
WO2010067785A1 (ja) * 2008-12-09 2010-06-17 東レ株式会社 糖液の製造方法
WO2011111451A1 (ja) * 2010-03-10 2011-09-15 東レ株式会社 精製糖水溶液の製造方法および化学品の製造方法
WO2011115039A1 (ja) * 2010-03-15 2011-09-22 東レ株式会社 糖液の製造方法およびその装置
WO2012029842A1 (ja) * 2010-08-31 2012-03-08 王子製紙株式会社 リグノセルロース含有バイオマスの酵素糖化処理方法及びリグノセルロース含有バイオマスからのエタノール製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6387994A (ja) 1986-10-02 1988-04-19 Res Assoc Petroleum Alternat Dev<Rapad> 糖化液から糖液および酵素を得る方法
JP4554314B2 (ja) 2004-09-22 2010-09-29 財団法人地球環境産業技術研究機構 リグノセルロースの連続糖化法
JP5804666B2 (ja) 2005-04-12 2015-11-04 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company バイオマスの処理および利用における別の供給流れの集中
JP5109121B2 (ja) 2006-12-28 2012-12-26 国立大学法人 東京大学 糖の製造方法、エタノールの製造方法、及び乳酸の製造方法、並びにこれらに用いられる酵素糖化用セルロース及びその製造方法
JP2008206484A (ja) 2007-02-28 2008-09-11 Oji Paper Co Ltd 酵素回収方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009189291A (ja) * 2008-02-14 2009-08-27 National Agriculture & Food Research Organization セルロースを含むバイオマスの糖化方法
WO2010067785A1 (ja) * 2008-12-09 2010-06-17 東レ株式会社 糖液の製造方法
WO2011111451A1 (ja) * 2010-03-10 2011-09-15 東レ株式会社 精製糖水溶液の製造方法および化学品の製造方法
WO2011115039A1 (ja) * 2010-03-15 2011-09-22 東レ株式会社 糖液の製造方法およびその装置
WO2012029842A1 (ja) * 2010-08-31 2012-03-08 王子製紙株式会社 リグノセルロース含有バイオマスの酵素糖化処理方法及びリグノセルロース含有バイオマスからのエタノール製造方法

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014077264A1 (ja) * 2012-11-16 2014-05-22 独立行政法人産業技術総合研究所 バイオマス分解用組成物およびそれを用いた糖液の製造方法
WO2014208493A1 (ja) * 2013-06-25 2014-12-31 東レ株式会社 糖液の製造方法
JP2015029463A (ja) * 2013-08-02 2015-02-16 国立大学法人神戸大学 単糖類濃縮液の製造方法
KR20150076316A (ko) * 2013-12-26 2015-07-07 주식회사 포스코 목질계 바이오매스의 전처리 방법 및 장치
KR20150076346A (ko) * 2013-12-26 2015-07-07 주식회사 포스코 목질계 바이오매스의 발효 효율 향상 방법
KR101585747B1 (ko) * 2013-12-26 2016-01-15 주식회사 포스코 목질계 바이오매스의 전처리 방법 및 장치
WO2015099109A1 (ja) * 2013-12-27 2015-07-02 東レ株式会社 糖液の製造方法
JPWO2015099109A1 (ja) * 2013-12-27 2017-03-23 東レ株式会社 糖液の製造方法
US11155848B2 (en) 2013-12-27 2021-10-26 Toray Industries, Inc. Method of producing sugar liquid
US11248247B2 (en) 2018-02-21 2022-02-15 Cambridge Glycoscience Ltd Methods and systems of producing oligosaccharides
US11006658B2 (en) 2018-08-15 2021-05-18 Cambridge Glycoscience Ltd Compositions, their use, and methods for their formation
US11596165B2 (en) 2018-08-15 2023-03-07 Cambridge Glycoscience Ltd Compositions, their use, and methods for their formation
US11903399B2 (en) 2018-08-15 2024-02-20 Cambridge Glycoscience Ltd Compositions, their use, and methods for their formation
US11297865B2 (en) 2019-08-16 2022-04-12 Cambridge Glycoscience Ltd Methods of treating biomass to produce oligosaccharides and related compositions
US11771123B2 (en) 2019-08-16 2023-10-03 Cambridge Glycoscience Ltd Methods for treating biomass to produce oligosaccharides and related compositions
US11871763B2 (en) 2019-12-12 2024-01-16 Cambridge Glycoscience Ltd Low sugar multiphase foodstuffs

Also Published As

Publication number Publication date
CA2831543C (en) 2019-11-05
JP6136267B2 (ja) 2017-05-31
BR112013024571A2 (pt) 2016-08-16
JPWO2012133495A1 (ja) 2014-07-28
US20140017736A1 (en) 2014-01-16
BR112013024571B1 (pt) 2021-07-20
US10179924B2 (en) 2019-01-15
CA2831543A1 (en) 2012-10-04

Similar Documents

Publication Publication Date Title
JP6136267B2 (ja) 糖液の製造方法
JP5246379B2 (ja) 糖液の製造方法
JP6269061B2 (ja) 糖液の製造方法
CN106715704B (zh) 糖液的制造方法
JP6330972B2 (ja) キシロオリゴ糖の製造方法
US9909158B2 (en) Method of producing sugar solution including washing with aqueous alkaline and inorganic salt solutions
JP5728817B2 (ja) キシロース糖液の製造方法
EP3088530A1 (en) Method for producing sugar solution
WO2014208493A1 (ja) 糖液の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012521895

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12763748

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14007438

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2831543

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1301005490

Country of ref document: TH

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013024571

Country of ref document: BR

122 Ep: pct application non-entry in european phase

Ref document number: 12763748

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 112013024571

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130925