WO2012133199A1 - 植物栽培器 - Google Patents
植物栽培器 Download PDFInfo
- Publication number
- WO2012133199A1 WO2012133199A1 PCT/JP2012/057541 JP2012057541W WO2012133199A1 WO 2012133199 A1 WO2012133199 A1 WO 2012133199A1 JP 2012057541 W JP2012057541 W JP 2012057541W WO 2012133199 A1 WO2012133199 A1 WO 2012133199A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- plant
- culture solution
- culture
- plant cultivation
- container
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01G—HORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
- A01G31/00—Soilless cultivation, e.g. hydroponics
Definitions
- the present invention relates to a plant cultivator, and particularly to a plant cultivator for growing a plant by hydroponics.
- Hydroponics is mainly classified into hydroponics and solid culture.
- Hydroponic methods include submerged circulation hydroponics in which all or part of the roots are immersed in the culture solution, and most of the roots are exposed to the air by immersing the roots in a shallow water stream. There is NFT plowing (Nutient Film Technique) and so on.
- solid medium cultivation is a cultivation method that uses a medium such as leki and rock wool and supplies nutrient solution to the medium.
- a medium such as leki and rock wool
- the medium to be used include an inorganic medium such as leki, sand, or perlite, an organic medium such as rice husk, peat moss, coconut husk, or sawdust, and an organic synthetic medium such as polyurethane, polyester, or polyvinyl.
- Patent Document 1 discloses a nutrient solution cultivation apparatus for solid medium cultivation.
- FIG. 9 is a cross-sectional view showing a nutrient solution cultivation container provided with a cartridge type nutrient solution tank disclosed in Patent Document 1.
- the liquid level of the hydroponic container 101 is adjusted to the highest nutrient level. If it falls from the liquid water level 153, a nutrient solution can be automatically supplied to the nutrient solution cultivation container 101 to the highest nutrient solution level 153.
- the nutrient solution cultivation container 101 and the liquid supply tray 193 are coupled by the connecting pipe 195, and the liquid level 194 of the liquid supply tray 193 is the height of the liquid level of the highest nutrient solution level 153 of the nutrient solution cultivation container 101. Adjust to meet. By doing in this way, from the cartridge type nutrient solution tank 192 filled with the culture solution 191, the culture solution is automatically transferred to the nutrient solution cultivation container 101 in accordance with a decrease in the level of the culture solution in the nutrient solution cultivation container 101. Can be replenished. In addition, the means for maintaining the nutrient solution cultivation container 101 not exceeding the maximum nutrient solution water level 153 is also used.
- Japanese Patent Publication Japanese Patent Laid-Open No. 2008-178387 (Released on August 7, 2008)”
- the nutrient solution cultivating apparatus described in Patent Document 1 is prepared in advance to have optimum concentrations and components because the culture solution 191 filled in the cartridge type nutrient solution tank 192 is supplied to the nutrient solution cultivation container 101 as it is. ing.
- the prepared culture solution 191 since the prepared culture solution 191 is used, the space occupied by the cartridge type nutrient solution tank 192 filled with the culture solution 191 is large.
- the cartridge-type nutrient solution tank 192 is made small, frequent replenishment to the cartridge-type nutrient solution tank 192 or frequent replacement of the cartridge-type nutrient solution tank 192 is required, which impairs convenience.
- the cartridge type nutrient solution tank 192 is connected to the nutrient solution cultivation container 101 via the liquid supply tray 193, algae and bacteria may enter the cartridge type nutrient solution tank 192 and propagate.
- the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a plant cultivator that can be reduced in size, can be easily replaced and managed, and can improve convenience. It is to be.
- the plant cultivator of the present invention is a plant cultivator for cultivating a plant with a culture solution, and a cartridge-like culture in which a concentrated solution serving as the culture solution is stored
- a liquid storage part and an insertion port for fitting the culture medium storage part are arranged, a plant cultivation container for storing a culture solution to be supplied to the plant, and a plant cultivation container, and the insertion port
- the culture medium reservoir is in the form of a cartridge and can be detached from the culture medium reservoir and can be easily replaced and managed.
- a concentrated solution is stored in the culture solution storage part fitted in the insertion port. And the said concentrated solution supplied from the said culture solution storage part is diluted with the said culture solution dilution part, Then, it becomes a culture solution with the said plant cultivation container.
- the space of the plant cultivation container for fitting the culture medium reservoir can be reduced, and the overall size can be reduced.
- the plant cultivator of the present invention is a plant cultivator for cultivating a plant with a culture solution, and a cartridge-like culture solution storage part in which a concentrated solution serving as the culture solution is stored, and the culture solution An insertion port for fitting the storage part is arranged, a plant cultivation container for storing the culture solution supplied to the plant, and a culture solution storage part arranged in the plant cultivation container and fitted in the insertion port And a culture solution diluting unit for obtaining the concentrated solution supplied from, and diluting the obtained concentrated solution to obtain the culture solution.
- the culture medium reservoir is in the form of a cartridge and can be detached from the culture medium reservoir and can be easily replaced and managed.
- a concentrated solution is stored in the culture solution storage part fitted in the insertion port. And the said concentrated solution supplied from the said culture solution storage part is diluted with the said culture solution dilution part, Then, it becomes a culture solution with the said plant cultivation container.
- the space of the plant cultivation container for fitting the culture medium reservoir can be reduced, and the overall size can be reduced.
- FIG. 2 is a perspective view which shows the whole structure of the domestic cultivation machine which concerns on Embodiment 1 of this invention.
- FIG. 2 (b) is a cross-sectional view showing the configuration of the cartridge in the household cultivation machine according to Embodiment 1 of the present invention.
- FIG. 2 (b) is a cross-sectional view showing the configuration of the cartridge in the household cultivation machine according to Embodiment 1 of the present invention.
- FIG. 2 (b) is a cross-sectional view showing the configuration of the cartridge in the household cultivation machine according to Embodiment 1 of the present invention.
- FIG. 2 is a diagram illustrating a configuration of a household cultivation machine according to the present embodiment
- FIG. 2A is a perspective view illustrating an overall configuration of the household cultivation machine according to the present embodiment
- FIG. 2B is a cross-sectional view showing the configuration of the cartridge in the household cultivation machine according to the present embodiment.
- the household cultivator according to the present embodiment cultivates a plant with a culture solution without using soil, and is particularly for cultivating a plant at home.
- a domestic cultivator (plant cultivator) 1 includes a plant cultivating container 2, a water tank (water storage unit) 3, and a plurality of cartridges (culture solution storage unit). ) 10 and the plant 5.
- the household cultivation machine 1 includes a dilution container (described later), an ion meter (component measurement unit), a control unit (component replenishment request unit), and the like arranged in the plant cultivation container 2. It has.
- a plurality of cartridge insertion portions (insertion ports) 4 are provided on the surface of the plant cultivation container 2 (upper surface in FIG. 2). By inserting the cartridge 10 into the cartridge insertion portion 4, the plant cultivation container 2 and the cartridge 10 are connected. In the present embodiment, four cartridge insertion portions 4 are provided on the surface of the plant cultivation container 2.
- a water tank 3 is provided on the surface of the plant cultivation container 2 by projecting a part of the structure.
- the water tank 3 is connected to the plant cultivation container 2 and is connected to the dilution container inside the plant cultivation container 2.
- the water tank 3 is for storing dilution water that is water for diluting the culture solution 6.
- the water tank 3 is fitted on the surface of the plant cultivation container 2 and fixed to the plant cultivation container 2.
- Diluted water is injected into the water tank 3 by a user or the like, and the injected diluted water is stored in the water tank 3. And the dilution water stored by the water tank 3 is supplied to the plant cultivation container 2 and the dilution container based on the instruction
- the cartridge 10 is injected with a culture solution 6 for cultivating the plant 5.
- the cartridge 10 is divided into two areas (first and second regions) A and B.
- a sponge 7 made of a porous material is stored in one area B.
- the culture solution 6 having a concentration higher than the optimum concentration for supplying the plant is injected.
- the culture solution 6 having a high concentration is absorbed by the sponge 7 and held in the sponge 7 by capillary force.
- the plurality of cartridges 10 are filled with at least one type of culture solution 6 used for cultivation of the plant 5 (for example, about 100 to 1000 times the use concentration).
- the plurality of cartridges 10 may be a plurality of cartridges 10 into which high-concentration culture solutions 6 of the same type of component are injected. As described later, high-concentration culture solutions of different types of components are used. A plurality of cartridges 10 into which 6 is injected may be used.
- cartridges 10 into which high-concentration culture solutions 6 of different types of components are injected are arranged in each of the cartridge insertion portions 4 provided on the surface of the plant cultivation container 2. The detailed description of the cartridge 10 will be described later.
- the culture solution 6 dropped from the cartridge 10 is dropped into a dilution container (not shown in FIG. 2) in the plant cultivation container 2 and diluted with dilution water. Then, the culture solution 6 diluted with dilution water is dropped into the plant cultivation container 2 and supplied to the plant 5.
- an ion meter (not shown in FIG. 2) is provided in the plant cultivation container 2, and the concentration of the diluted culture solution in the plant cultivation container 2 is measured by this ion meter. Based on the measurement result of the ion meter, when the concentration of the diluted culture solution is high, dilution water is supplied from the water tank 3 to the plant cultivation container 2, and when the concentration of the diluted culture solution is low, The culture solution is supplied from the dilution container, and the concentration of the culture solution is adjusted.
- FIG. 3 is a cross-sectional view showing the configuration of the cartridge and the dilution container in the household cultivation machine according to the present embodiment.
- a dropping tube 14 a dilution container (culture solution dilution part) 20, and an actuator 41 are arranged.
- the dropping tube 14 is a tube for supplying the culture solution 6 in the cartridge 10 inserted into the cartridge insertion portion 4 to the dilution container 20.
- the dripping pipe 14 is disposed so as to penetrate the bottom surface of the cartridge 10.
- One end portion of the dripping pipe 14 is disposed so as to protrude from the bottom surface of the cartridge insertion portion 4 to the inside of the cartridge 10, and the other end portion is disposed so as to protrude outside from the bottom surface of the cartridge 10, It is the inside of the dilution container 20 and is spaced apart from the inner surface of the dilution container 20.
- the actuator 41 is for vibrating the dropping tube 14.
- the actuator 41 is disposed on the side of the dripping pipe 14 on the bottom surface outside the cartridge 10.
- the actuator 41 is arranged at a position where the actuator 41 comes into contact with the dropping pipe 14 by operating.
- the dilution container 20 is arranged inside the plant cultivation container 2 and below each of the cartridge insertion portions 4.
- the dilution container 20 includes a solenoid valve 18 disposed on the bottom surface.
- a supply pipe (pipe) 15 is connected to the side surface of the dilution container 20 so that one end of the supply pipe 15 is arranged inside the dilution container 20.
- the supply pipe 15 is a pipe for supplying dilution water from the water tank 3 (see FIG. 1) to the dilution container 20, and the other end of the supply officer 15 is connected to the water tank 3. Yes.
- the cartridge 10 is divided into two areas (first and second areas) A and B by a partition wall 17, and a sponge (porous member) 7 made of a porous material is stored in one area B. In the other area A, a high concentration culture solution 6 is injected.
- the partition wall 17 is spaced apart from the bottom surface of the cartridge 10 so that a part of the partition wall 17 is opened to partition the inside of the cartridge 10 into two areas A and B.
- the part which the partition wall 17 and the bottom face are spaced apart is the opening 17a.
- the high-concentration culture solution 6 injected into the other area A in the cartridge 10 is absorbed by the sponge 7 made of a porous material through the opening 17a and held by capillary force.
- a foamed material made of a material such as polyurethane, polyethylene, or silicon rubber can be used.
- the porous member only needs to be made of a porous material, and may be a block or a non-woven fabric made of fibers such as rock wool in addition to the foamed material. Further, the porous member may be a sintered body filled with granular ceramics.
- the culture solution 6 supplied to the other area of the cartridge 10 can be held by the capillary force.
- an injection hole 11 is provided on the area A side where the high-concentration culture solution 6 is injected, and an air hole 12 is provided on the area B side where the sponge 7 is stored. Are provided respectively.
- Air is circulated in the cartridge 10 through the air hole 12.
- This air hole 12 is normally used in an open state.
- the culture solution 6 having a high concentration is supplied into the cartridge 10 through the injection hole 11.
- This injection hole 11 is normally used in a closed state, for example, by fitting a lid 11a.
- the high concentration culture solution 6 is injected (supplemented) into the cartridge 10, it is opened by removing the lid 11a. Become.
- the top surface of the cartridge 10 and the sponge 7 are spaced apart. That is, a space is provided between the top surface of the cartridge 10 and the sponge 7. For this reason, for example, even when the operator handles the cartridge 10, even if the cartridge 10 is tilted or turned upside down, the leakage of the culture solution 6 absorbed by the sponge 7 can be suppressed.
- a connection hole 13 is provided on the bottom surface of the cartridge 10 on the area B side where the sponge 7 is stored.
- connection hole 13 has a shape that fits with one end of the dropping tube 14 protruding from the bottom surface of the cartridge insertion portion 4 when the cartridge 10 is inserted into the cartridge insertion portion 4.
- the culture solution 6 absorbed by the sponge 7 passes through the connection hole 13 and is supplied into the dilution container 20.
- an actuator 41 (a motor, a piezo element, or the like) is installed beside the dropping tube 14 and applied with vibration, thereby applying an external force to the dropping tube 14 to induce the dropping of the culture solution 6 into the dilution container 20.
- the actuator 41 is driven and controlled by a control unit described later.
- an actuator 41 is installed beside the dropping tube 14 and an external force is applied by applying vibration to the dropping tube 14 to induce the dropping of the culture solution 6 into the dilution container 20.
- the configuration for applying an external force to the dropping pipe 14 is not limited to this, and heat or the like may be applied as the external force. That is, without using the actuator 41, for example, a heater is installed in the dropping tube 14, and the dilution vessel 20 is extruded by utilizing the thermal expansion of the dropping tube 14 due to heating or by the pressure of bubbles generated by heating. The dripping may be induced.
- the dilution container 20 is a container for diluting the high-concentration culture solution 6 dropped through the dropping tube 14 with the dilution water supplied from the water tank 3 through the supply tube 15.
- a culture solution 6 ⁇ / b> A obtained by diluting the high concentration culture solution 6 dropped from the cartridge 10 with dilution water supplied from the water tank 3 is stored.
- the high concentration culture solution 6 dropped from the cartridge 10 falls into a certain amount of diluted culture solution 6A in the dilution container 20, and the concentration of the culture solution 6A is adjusted.
- the concentration of the diluted culture solution 6A can be calculated from the amount of diluted water replenished from the water tank 3 and the dropping amount of the high concentration culture solution 6.
- an electromagnetic valve 18 that is controlled by a control unit described later based on the concentration of the components of the culture solution in the plant cultivation container 2.
- the solenoid valve 18 When the concentration of the components of the culture solution in the plant cultivation container 2 is higher than the desired concentration or the desired concentration, the solenoid valve 18 is closed and the dropping of the culture solution 6a from the dilution container 20 is stopped. On the other hand, when the density
- the solenoid valve 18 is a valve that can be opened only when electricity is supplied (or closed only when electricity is supplied) using a solenoid.
- the culture solution 6 having a high concentration is injected into the cartridge 10 and used, the replacement life of the cartridge 10 can be extended. Moreover, it can respond to the density
- FIG. 1 is a cross-sectional view showing a configuration of a domestic cultivation machine according to the present embodiment.
- the domestic cultivator 1 includes a plant cultivation container 2, a water tank 3, a plurality of cartridges 10, four cartridges 10 a, 10 b, 10 c, and 10 d, and a plant 5.
- the plant cultivation container 2 includes dilution containers 20 a, 20 b, 20 c, and 20 d as dilution containers 20, a control unit 40, an ion meter 42, and an air pump 43.
- a culture solution 6B whose concentration is adjusted to be supplied to the plant 5 is stored.
- dropping tubes 14a, 14b, 14c, and 14d as dilution tubes 14 and dilution containers 20a, 20b, 20c, and 20d are arranged below each of the four cartridge insertion portions 4.
- the dilution containers 20a, 20b, 20c, and 20d are injected into the cartridges 10a, 10b, 10c, and 10d inserted into the cartridge insertion portions 4 through the dropping pipes 14a, 14b, 14c, and 14d, respectively.
- the culture solution 6 is dripped.
- Actuators 41 a, 41 b, 41 c, and 41 d as actuators 41 are arranged near the end portions of the dropping pipes 14 a, 14 b, 14 c, and 14 d near the cartridge insertion portions 4.
- each of the supply pipes 15a, 15b, 15c, 15d as the supply pipe 15 is connected to each side surface of the dilution containers 20a, 20b, 20c, 20d.
- the other end of each of the supply pipes 15 a, 15 b, 15 c, and 15 d is connected to the side surface of the water tank 3.
- the water tank 3 is fixed by being fitted into the household cultivation device 2.
- a cultivation area 44 that is a medium for the plant 5 is arranged.
- the cultivation area 44 is made of a porous member such as a sponge 7.
- each cartridge 10 is divided into two areas A and B.
- a sponge 7 made of a porous material is stored, and in the other area A, a high-concentration culture solution is stored. 6 has been injected.
- the culture solution 6 injected into each of the cartridges 10 a, 10 b, 10 c, and 10 d in the household cultivation machine 1 the essential elements N, P, K, Ca, Mg, S, and others depending on the type of the plant 5 Supplied with an appropriate amount of trace elements.
- Ca which is an essential element, is added in the form of calcium nitrate, and at a high concentration, it reacts with other salts to cause precipitation.
- the cartridge 10a includes components other than calcium nitrate, such as potassium nitrate, magnesium sulfate, sodium dihydrogen phosphate, ammonium nitrate, potassium sulfate, FE-EDTA, boric acid, manganese chloride, zinc sulfate, copper sulfate (II), A high concentration culture solution 6a containing each component of sodium molybdate is injected.
- calcium nitrate such as potassium nitrate, magnesium sulfate, sodium dihydrogen phosphate, ammonium nitrate, potassium sulfate, FE-EDTA, boric acid, manganese chloride, zinc sulfate, copper sulfate (II), A high concentration culture solution 6a containing each component of sodium molybdate is injected.
- a high concentration culture solution 6b containing a calcium nitrate component is injected into the cartridge 10b.
- the cartridge 10c is injected with a culture solution 6c that is a pH adjusting solution (increase) containing components such as sodium hydroxide and potassium hydroxide, and the cartridge 10d is supplied with a pH adjusting solution (containing hydrochloric acid, phosphoric acid, etc.)
- the culture solution 6d that is descent) is injected.
- the amounts of essential elements and trace elements provided to the plant 5 are shown in Table 1 below.
- the component shown in Table 1 is an example, and it can change suitably with the kind of plant 5 to grow.
- the cartridge 10a contains components other than calcium nitrate, potassium nitrate, magnesium sulfate, sodium dihydrogen phosphate, ammonium nitrate, potassium sulfate, FE-EDTA, boric acid, manganese chloride, zinc sulfate, copper sulfate (II ), A high-concentration culture solution 6a containing sodium molybdate is injected, but the present invention is not limited to this, and depending on the type of plant 5, each element can be appropriately mixed and supplied. .
- the PH value can be easily adjusted by injecting the PH adjustment liquid (up) into the cartridge 10c and injecting the PH adjustment liquid (down) into the cartridge 10d.
- the component of the culture solution 6B that directly touches the root of the plant 5 can be easily controlled, and the concentration of the culture solution 6B that changes with the absorption of the plant 5 can always be maintained in an optimum state. As a result, promotion of the growth of the plant 5 can be expected.
- the culture solutions 6a, 6b, 6c, and 6d injected into the cartridges 10a, 10b, 10c, and 10d are absorbed by the sponges 7a, 7b, 7c, and 7d, respectively, and are held by capillary force.
- connection holes 13a, 13b, 13c, and 13d are provided on the bottom surfaces of the cartridges 10a, 10b, 10c, and 10d, respectively, on the area side where the sponges 7a, 7b, 7c, and 7d are stored.
- the dropping tubes 14a, 14b, 14c, and 14d are inserted into the connection holes 13a, 13b, 13c, and 13d, the culture solutions 6a, 6b, 6c, and 6d gathered at the bottom of the sponges 7a, 7b, 7c, and 7d A part is collected in the dropping pipes 14a, 14b, 14c, and 14d, and is held without dropping by surface tension.
- Actuators 41 a, 41 b, 41 c, and 41 d that apply external force by applying vibration are provided beside the dripping pipes 14 a, 14 b, 14 c, and 14 d.
- each actuator 41a * 41b * 41c * 41d induces dripping of culture solution 6a * 6b * 6c * 6d to dilution container 20a * 20b * 20c * 20d based on the instruction
- Electromagnetic valves 19a, 19b, 19c, and 19d that are opened and closed based on the above are provided.
- the electromagnetic valves 19a, 19b, 19c, and 19d When the electromagnetic valves 19a, 19b, 19c, and 19d are opened, the dilution water is supplied from the water tank 3 to the dilution containers 20a, 20b, 20c, and 20d via the supply pipes 15a, 15b, 15c, and 15d. On the other hand, when the electromagnetic valves 19a, 19b, 19c, and 19d are closed, the supply of dilution water from the water tank 3 to the dilution containers 20a, 20b, 20c, and 20d is stopped.
- a supply pipe 22 for supplying dilution water stored in the water tank 3 into the plant cultivation container 2 is disposed on the bottom surface of the water tank 3.
- the supply pipe 22 is provided with an electromagnetic valve 21 that is opened and closed based on an instruction from the control unit 40.
- the electromagnetic valve 21 is opened, dilution water is supplied from the water tank 3 to the plant cultivation container 2 via the supply pipe 22, and when the electromagnetic valve 21 is closed, dilution water is supplied from the water tank 3. Stopped.
- electromagnetic valves 18a, 18b, 18c, and 18d that are opened and closed based on instructions from the control unit 40 are provided.
- the solenoid valves 18a, 18b, 18c, and 18d When each of the solenoid valves 18a, 18b, 18c, and 18d is in an open state, the culture solution 6A diluted from the dilution containers 20a, 20b, 20c, and 20d to the plant cultivation container 2 is provided, and each of the solenoid valves 18a, 18b, 18c, and When 18d is in the closed state, the supply of the culture medium 6A from the dilution containers 20a, 20b, 20c, and 20d is stopped.
- the plant cultivation container 2 is provided with an ion meter 42, an air pump 43, and a control unit 40. Air is supplied to the plant 5 through the cultivation area 44 by the air pump 43.
- the concentration of the components of the culture solution 6B is measured by the ion meter 42.
- the control unit 40 controls the solenoid valves 18a, 18b, 18c, and 18d, the solenoid valves 19a, 19b, 19c, and 19d, the solenoid valve 21, and the actuators 41a and 41b. -41c and 41d are controlled. The operation of the control unit 40 will be described later.
- the plant cultivation container 2 is provided with an ion meter 42, and the concentration of the components of the culture solution 6B is measured.
- the cultivation in the plant cultivation container 2 is not limited to this. What is necessary is just to measure the density
- the air pump 43 is provided in the plant cultivation container 2, and the supply amount of oxygen to the plant 5 is increased by improving the oxygen concentration of the culture solution 6B.
- the concentration of the components of the culture solution 6B uniform for example, a screw or a water pump is provided in the plant cultivation container 2, and the components of the culture solution 6B in the plant cultivation container 2 are provided.
- the concentration may be uniform.
- control part 40 is provided in the plant cultivation container 2, and the operation
- control unit 40 may be provided outside the plant cultivation container 2 without being limited thereto.
- FIG. 4 is a flowchart for explaining the operation of the control unit in the household cultivation machine according to Embodiment 1 of the present invention
- FIG. 5 is a flowchart of the control unit in the household cultivation machine according to Embodiment 1 of the present invention. It is a block diagram explaining operation
- the control unit 40 acquires concentration data of components of the culture solution 6B in the plant cultivation container 2 measured by the ion meter 42 in step S11.
- the concentration data from the ion meter 42 is acquired every arbitrary time, and can be acquired every 12 hours or 24 hours, for example.
- step S11 after obtaining the density data, the process proceeds to step S12.
- step S12 the control unit 40 determines whether there is a component with a high concentration based on the concentration data acquired from the ion meter 42.
- control unit 40 controls the electromagnetic valve 21 provided in the water tank 3 to be in an open state in step S13. Thereby, dilution water is supplied to the plant cultivation container 2 from the water tank 3 via the supply pipe 22.
- control unit 40 determines that there is a component having a high concentration, the control unit 40 calculates a necessary amount of diluted water, and opens the electromagnetic valve 21 provided in the water tank 3 for a certain period of time so that the necessary amount of diluted water is supplied. Control to be in a state. Thereafter, the control unit 40 controls the electromagnetic valve 21 to be in a closed state. Then, it returns to step S11.
- step S12 determines that there is no high concentration component based on the concentration data acquired from the ion meter 42 in step S12 (NO in step S12). the process proceeds to step S14.
- step S14 the control unit 40 determines whether there is a low concentration component based on the concentration data acquired from the ion meter 42.
- step S15 an external force is applied to the dropping tube 14 containing the component having a low concentration so that the culture solution 6 is transferred from the dropping tube 14.
- the actuator 41 is controlled to drop.
- control unit 40 determines that there is a component having a low concentration
- the control unit 40 calculates the necessary amount of the culture solution 6 and controls so that the culture solution 6 is dropped into the necessary amount dilution container 20.
- the electromagnetic valve 18 provided on the bottom surface of the dilution container 20 is controlled to be opened, and a diluted culture solution 6A having an appropriate concentration is supplied to the plant cultivation container 2. Is done.
- step S17 the control unit 40 controls the electromagnetic valve 18 to be in a closed state.
- step S18 the control unit 40 controls the electromagnetic valve 19 provided in the water tank 3 to be in an open state so that a certain amount of dilution water is supplied from the water tank to the dilution container 20, and the container is Control to be satisfied. Then, it returns to step S11.
- the actuator 41a applies vibration to the dropping tube 14a. Control is performed so that the required amount of the culture solution 6a is dropped from the dropping tube 14a (step S15).
- the control unit 40 controls the electromagnetic valve 18a provided on the bottom surface of the dilution container 20 to be in an open state (step S16), and the diluted culture solution 6aA having an appropriate concentration is planted. Supplied to the cultivation container 2. Thereafter, the control unit 40 controls the electromagnetic valve 18a to be closed (step S17).
- control part 40 controls the solenoid valve 19a provided in the water tank 3, and a fixed amount of dilution water is supplied from the water tank to the dilution container 20a (step S18). And the control part 40 is controlled so that a container is satisfy
- control unit 40 determines that the concentration of the components contained in the culture solutions 6b, 6c, and 6d injected into the cartridges 10b, 10c, and 10d is low.
- step S14 when the control unit 40 determines in step S14 that there is no component having a low concentration based on the concentration data acquired from the ion meter 42 (NO in step S14), the control unit 40 returns to step S11.
- the control unit 40 is composed of a computer, for example, and the control in steps S11 to S18 can be realized by software.
- the control unit 40 may be provided outside the plant cultivation container 2 or may be provided inside the plant cultivation container 2.
- FIG. 6 is a cross-sectional view showing a configuration of a domestic cultivation machine according to the present embodiment.
- Each cartridge 10a, 10b, 10c, and 10d is divided into two areas A and B.
- sponges 7a, 7b, 7c, and 7d made of a porous material are stored, and the other area A is stored.
- Components other than calcium nitrate are injected into the cartridge 10a, and calcium nitrate is injected into the cartridge 10b.
- the culture solution 6c which is a PH adjustment solution (up)
- the culture solution 6d which is a PH adjustment solution (down)
- the culture solutions 6a, 6b, 6c, and 6d injected into the cartridges 10a, 10b, 10c, and 10d are absorbed by the sponges 7a, 7b, 7c, and 7d, respectively, and are held by capillary force.
- connection holes 13a, 13b, 13c, and 13d are provided on the bottom surfaces of the cartridges 10a, 10b, 10c, and 10d, respectively, on the area side where the sponges 7a, 7b, 7c, and 7d are stored.
- the dropping tubes 14a, 14b, 14c, and 14d are inserted into the connection holes 13a, 13b, 13c, and 13d, the culture solutions 6a, 6b, 6c, and 6d gathered at the bottom of the sponges 7a, 7b, 7c, and 7d A part is collected in the dropping pipes 14a, 14b, 14c, and 14d, and is held without dropping by surface tension.
- Actuators 41 a, 41 b, 41 c, and 41 d that apply external force by applying vibration are provided beside the dripping pipes 14 a, 14 b, 14 c, and 14 d.
- each actuator 41a * 41b * 41c * 41d induces dripping of culture solution 6a * 6b * 6c * 6d to dilution container 20a * 20b * 20c * 20d based on the instruction
- electromagnetic valves 18a, 18b, 18c, and 18d that are opened and closed at regular intervals based on instructions from the control unit 40 are provided.
- each solenoid valve 18a, 18b, 18c, 18d is in an open state, a diluted culture solution is provided from the dilution container 20a, 20b, 20c, 20d to the plant cultivation container 2, and each solenoid valve 18a, 18b, 18c, 18d is provided.
- the closed state the supply of the culture solution from the dilution containers 20a, 20b, 20c, and 20d is stopped.
- electromagnetic valves 18a, 18b, 18c, and 18d are respectively provided on the bottom surfaces of the respective dilution containers 20a, 20b, 20c, and 20d.
- an actuator for moving the valve body constituting the valve by a motor or the like may be provided on the bottom surface of each dilution container 20a, 20b, 20c, 20d.
- the plant cultivation container 2 is provided with an ion meter 42 and a control unit 40.
- the concentration of the components of the culture solution 6B is measured by the ion meter 42.
- the concentration of the component of the culture solution 6B measured by the ion meter 42 is fed back from the control unit 40 to the actuators 41a, 41b, 41c, and 41d provided in the dropping tubes 14a, 14b, 14c, and 14d.
- the actuators 41a, 41b, 41c, and 41d are controlled by the control unit 40 so that appropriate amounts of the culture solutions 6a, 6b, 6c, and 6d are dropped into the dilution containers 20a, 20b, 20c, and 20d.
- control unit 40 controls the electromagnetic valves 18a, 18b, 18c, and 18d so that the electromagnetic valves 18a, 18b, 18c, and 18d are opened, and the mixture is mixed with the culture solution 6B in the plant cultivation container 2.
- the solenoid valves 18a, 18b, 18c and 18d are controlled to be opened 10 seconds before the data acquisition of the ion meter 42 and closed simultaneously with the data acquisition.
- the acquisition of the data of the ion meter 42 is performed every arbitrary time, and can be acquired, for example, every 12 hours or 24 hours.
- the solenoid valves 18a, 18b, 18c, and 18d are controlled to be in the open state 10 seconds before the data acquisition of the ion meter 42 and to be closed simultaneously with the data acquisition. Without being limited to this, taking into account the diffusion of the liquid, it may be controlled to be in the open state at least 10 seconds before the data acquisition of the ion meter 42 and to be closed simultaneously with the data acquisition. it can.
- a replenishment hole 30 is provided on the top surface of the plant cultivation container 2, and dilution water is replenished by the user from the replenishment hole 30.
- an alert is given that water supply is necessary (alarm is issued), and dilution water is replenished from the outside by the user.
- the water tank 3 is not necessary, and space can be saved. Moreover, compared with the replenishment from the water tank 3, a component structure can be simplified and cost reduction is possible.
- the home cultivation machine 1A since the dilution containers 20a, 20b, 20c, and 20d are provided in the cartridges 10a, 10b, 10c, and 10d, the high-concentration culture solutions 6a, 6b, 6c, and 6d Contact can be avoided and calcium nitrate can be prevented from forming a precipitate.
- the dilution containers 20a, 20b, 20c, and 20d are not in direct contact with the cultivation area 44 of the plant 5, so that algae and microorganisms can be prevented from breeding in the dilution container 20.
- the solenoid valves 18a, 18b, 18c, and 18d are opened and closed at regular time intervals, so that the culture solution concentration in the dilution containers 20a, 20b, 20c, and 20d can be adjusted to the outside of the container. it can.
- Embodiment 3 Next, Embodiment 3 will be described with reference to FIGS.
- members having the same functions as those in the drawings described in Embodiment 1 are given the same reference numerals, and descriptions thereof are omitted.
- FIG. 7 is a cross-sectional view showing a configuration of a domestic cultivation machine according to the present embodiment.
- Each cartridge 10a, 10b, 10c, and 10d is divided into two areas A and B.
- sponges 7a, 7b, 7c, and 7d made of a porous material are stored, and the other area A is stored.
- the culture solutions 6a, 6b, 6c, and 6d injected into the cartridges 10a, 10b, 10c, and 10d are absorbed by the sponges 7a, 7b, 7c, and 7d, respectively, and are held by capillary force.
- connection holes 13a, 13b, 13c, and 13d are provided on the bottom surfaces of the cartridges 10a, 10b, 10c, and 10d, respectively, on the area side where the sponges 7a, 7b, 7c, and 7d are stored.
- the dropping tubes 14a, 14b, 14c, and 14d When the dropping tubes 14a, 14b, 14c, and 14d are respectively inserted into the connection holes 13a, 13b, 13c, and 13d, the culture solutions 6a, 6b, 6c, and 6d gathered under the sponges 7a, 7b, 7c, and 7d A part is collected in the dropping pipes 14a, 14b, 14c, and 14d, and is held without dropping by surface tension.
- Actuators 41 a, 41 b, 41 c, and 41 d that apply external force by applying vibration are provided beside the dripping pipes 14 a, 14 b, 14 c, and 14 d.
- the actuators 41a, 41b, 41c, and 41d are moved to the movable dilution containers (movable containers) 31a, 31b, 31c, and 31d of the culture solutions 6a, 6b, 6c, and 6d based on instructions from the control unit 40 described later. Induction of dripping.
- Each movable dilution container 31a / 31b / 31c / 31d has a tray shape.
- the surface of the container has a concave shape, and a space surrounded by the side walls inside the concave shape is formed. That is, the surfaces of the movable dilution containers 31a, 31b, 31c, and 31d have concave surfaces.
- Each movable dilution container 31a, 31b, 31c, 31d has its shaft rotated by the power of a motor or the like immediately before the culture solutions 6a, 6b, 6c, 6d are dropped from the dropping tubes 14a, 14b, 14c, 14d.
- the container is stopped at a position where the concave surface of the container faces upward (a position where the concave surface protrudes downward).
- the movable dilution containers 31a, 31b, 31c, and 31d are immersed in the culture solution 6B in the plant cultivation container 2.
- the culture fluids 6a, 6b, 6c, and 6d are dropped, the movable dilution containers 31a, 31b, 31c, and 31d are rotated again so that the concave surfaces of the containers face downward and enter.
- the diluted diluted culture solution is mixed with the culture solution 6B.
- the plant cultivation container 2 is provided with an ion meter 42 and a control unit 40.
- the concentration of the components of the culture solution 6B is measured by the ion meter 42.
- the concentration of the component of the culture solution 6B measured by the ion meter 42 is fed back to the actuators 41a, 41b, 41c, and 41d provided in the dropping tubes 14a, 14b, 14c, and 14d by the control unit 40.
- 41a, 41b, 41c, and 41d are controlled by the control unit 40 so that appropriate amounts of the culture solutions 6a, 6b, 6c, and 6d are dropped into the movable dilution containers 31a, 31b, 31c, and 31d.
- the shafts of the movable dilution containers 31a, 31b, 31c, and 31d are rotated by the power of a motor or the like. And the concave surface of the container faces up.
- the movable dilution containers 31a, 31b, 31c, and 31d are rotated again at the position where the concave surface of the container faces downward and mixed with the culture solution 6B in the plant cultivation container 2. .
- the top surface of the plant cultivation container 2 is provided with a supply hole 30, and the dilution water is supplied from the supply hole 30 by the user.
- concentration of the component of the culture solution 6B measured by the ion meter 42 is high, it is alerted that water supply is necessary, and dilution water is replenished from the outside by the user.
- FIG. 8 is a side view showing the configuration of the movable dilution container in the household cultivation machine according to the present embodiment.
- each of the movable dilution containers 31a, 31b, 31c, and 31d as the movable dilution container 31 has a saucer shape, and each container has a concave independent space.
- Each of the movable dilution containers 31a, 31b, 31c, and 31d is rotated about the axis when the axis is rotated by the power of a motor or the like.
- the household cultivator 1B according to the present embodiment has a simpler and more reliable configuration without using a solenoid valve or the like for the dilution container.
- the plant cultivator of the present invention is a plant cultivator for cultivating a plant with a culture solution, and a cartridge-like culture in which a concentrated solution serving as the culture solution is stored
- a liquid storage part and an insertion port for fitting the culture medium storage part are arranged, a plant cultivation container for storing a culture solution to be supplied to the plant, and a plant cultivation container, and the insertion port
- the culture medium reservoir is in the form of a cartridge and can be detached from the culture medium reservoir and can be easily replaced and managed.
- a concentrated solution is stored in the culture solution storage part fitted in the insertion port. And the said concentrated solution supplied from the said culture solution storage part is diluted with the said culture solution dilution part, Then, it becomes a culture solution with the said plant cultivation container.
- the space of the plant cultivation container for fitting the culture medium reservoir can be reduced, and the overall size can be reduced.
- the plant cultivator of the present invention includes a plurality of the culture solution storage units, and the concentrated solutions stored in the plurality of culture solution storage units have different components from each other. preferable.
- each of the concentrated solutions stored in each of the plurality of culture solution storage units is stored in the plant cultivation container by adjusting the replenishment amount to the plant cultivation container.
- the components of the culture solution can be adjusted. For this reason, it is easy to maintain the quality of the components of the culture solution stored in the plant cultivation container.
- the plant cultivator of the present invention includes a water storage unit in which water is stored, and the water storage unit and the culture solution dilution unit are connected by a pipe.
- water can be supplied from the water storage unit to the culture medium dilution unit through the pipe.
- the said concentrated solution supplied to the said culture solution dilution part from the said culture solution storage part can be diluted.
- the plant cultivation container is concentrated as described above, wherein one end of the plant cultivation container projects from the insertion port, and is stored in the culture solution storage unit fitted in the insertion port.
- a dropping tube for dropping and supplying the prepared solution from the other end to the culture medium diluting section, and the culture medium storing section is partially opened to the first area and the second area.
- the concentrated solution is stored in the first region, a porous member is disposed in the second region, and the one end of the dripping pipe is disposed on the bottom surface of the second region. It is preferable that a connection hole for connecting to the part is provided.
- the concentrated solution stored in the first region is gradually absorbed by the porous member through the opening. Then, the concentrated solution absorbed by the porous member is supplied to the culture medium dilution section through the dropping tube.
- the supply to the culture medium dilution section can be easily controlled using surface tension. Can do.
- a valve is provided in the culture solution dilution section, and the valve is closed when the concentrated solution is obtained from the culture solution storage section.
- the concentrated solution obtained from the reservoir is diluted and supplied into the plant cultivation container, it is preferably in an open state.
- the concentrated solution obtained from the culture solution storage unit can be stored in the culture solution dilution unit.
- the diluted concentrated solution can be supplied into the plant cultivation container.
- the concentrated solution obtained from the culture solution reservoir can be easily supplied to the plant cultivation container by controlling the opening and closing of the valve.
- the culture solution dilution section is a movable container having a concave surface, and the culture solution dilution section obtains the concentrated solution from the culture solution storage section.
- the concave surface is directed to the culture medium reservoir, and the culture medium dilution section dilutes the concentrated solution obtained from the culture medium reservoir and supplies it to the plant cultivation container, It is preferable that the concave surface of the container is rotated.
- the concentrated solution obtained from the culture solution storage unit can be diluted and supplied to the plant cultivation container by rotating the culture solution dilution unit.
- the plant cultivator which improved reliability can be obtained.
- the plant cultivation container among the components of the culture solution stored in the inside, the different concentration stored in each of the plurality of culture solution storage units. It is preferable that a component measuring unit for measuring the concentration of the same component as each of the prepared solutions is provided.
- the component balance of the culture solution can be monitored by the component measuring unit.
- the said culture solution can be maintained by fixed quality.
- the plant cultivator of the present invention has a plurality of culture solutions when the measured value of the component amount of a certain component is within an appropriate range among the components measured by the component measuring unit in the plant cultivation container. It is preferable that a component replenishment request unit for replenishing the culture medium with the certain component is provided in any of the storage units.
- the component replenishment request unit supplies insufficient components among the components of the culture solution, so that the quality control of the culture solution is easy.
- the water storage unit when the measured value of the component amount of a certain component among the components measured by the component measurement unit is within an appropriate range in the plant cultivation container of the plant cultivation container of the present invention, the water storage unit On the other hand, it is preferable that a component replenishment request unit for replenishing the water to the plant cultivation container is provided.
- the component measuring unit detects a component having a high concentration among the components of the culture solution. Then, the said component replenishment request
- the component replenishment requesting unit is configured such that the culture solution dilution unit supplies the concentrated solution to the plant cultivation container, and then the plant cultivation container with respect to the water storage unit. It is preferable to replenish the water.
- the concentrated solution supplied to the culture medium dilution section can be diluted to an appropriate concentration.
- the plant cultivator of the present invention is a component that replenishes each of the plurality of culture solution reservoirs with the different concentrated solutions stored in itself to the plant cultivation container at regular intervals. It is preferable that a replenishment request unit is provided.
- requirement part emits an alarm when the measured value of the component amount of a certain component is more than an appropriate range among the components which the said component measurement part measured for the plant cultivator of this invention.
- the component replenishment unit issues an alarm, so that the user can be notified.
- the quality control of the said culture solution is easy.
- the present invention can be applied to a nutrient solution supply container for cultivating a plant by nutrient solution cultivation, and a household cultivation machine.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Environmental Sciences (AREA)
- Hydroponics (AREA)
Abstract
培養液によって植物(5)を栽培するための家庭用栽培機(1)は、濃縮された培養液(6)が貯留されているカートリッジ(10)と、カートリッジ(10)をはめ込むためのカートリッジ挿入部(4)が配されており、植物(5)に供給する培養液を貯留する植物栽培容器(2)と、植物栽培容器(2)に配されており、カートリッジ挿入部(4)にはめ込まれたカートリッジ(10)から供給されてくる培養液(6)を取得し、当該取得した培養液(6)を希釈するための希釈容器(20)とを備えている。これにより、小型化することができ、また、交換・管理が容易で利便性を向上することができる植物栽培器を提供する。
Description
本発明は、植物栽培器に関するものであり、特に、植物を養液栽培により生育を行うための植物栽培器に関するものである。
従来から、家庭で植物を栽培することが盛んに行なわれている。
しかし、土を使った土耕栽培では、例えば、シャベルやスコップ、軍手、ジョウロ等の道具を揃え、使用する必要があり、手間がかかる。また、例えば、プランター等の容器に土を入れて植物を栽培すると重量や衛生面で問題が生じ、特に室内での栽培には適さない。
そこで、近年、土耕栽培に代わり、培養液を用いて養液栽培を行う方法が開発されている。養液栽培は、主に水耕と固形培地耕に分類される。
水耕には、根の全体又は一部を培養液に浸した状態で水耕栽培する湛液型循環式水耕や、浅い水流に根を浸すことで根の大部分が空気中に曝して水耕栽培するNFT耕(Nutient Film Technique)などがある。
また、固形培地耕は、レキ及びロックウールなど培地を用い、その培地に養液を供給する栽培法である。用いる培地としては、レキ、砂、又はパーライトなどの無機培地と、もみ殻、ピートモス、ヤシ殻、又はおがくずなどの有機培地、ポリウレタン、ポリエステル、又はポリビニールなどの有機合成培地などがある。
このような養液栽培方法では、培養液から養分を得るため、培養液の影響が大きく、培養液の液量をしっかり調整する必要がある。
特許文献1には、固形培地耕用の養液栽培装置が開示されている。
図9は、特許文献1に開示されたカートリッジ式養液タンクを設けた養液栽培容器を示す断面図である。
図9に示すように、養液栽培容器101の最高養液水位153に合わせて給液皿193の液面194の高さを調節することによって、養液栽培容器101の液面が、最高養液水位153より低下すると、最高養液水位153まで自動的に、養液を養液栽培容器101に給液することができる。
具体的には、養液栽培容器101と給液皿193とを連結管195により結合し、給液皿193の液面194を養液栽培容器101の最高養液水位153の液面の高さに会わせて調整する。このようにすることで、培養液191を充填したカートリッジ式養液タンク192から、養液栽培容器101の培養液の液面の低下に合せて、自動的に培養液を養液栽培容器101に補給することができる。なお、養液栽培容器101において、最高養液水位153を超えず維持するための手段も用いている。
しかしながら、特許文献1に記載された養液栽培装置は、カートリッジ式養液タンク192に充填された培養液191は、そのまま養液栽培容器101に供給するため、予め最適な濃度及び成分に調製されている。このように、調製済みの培養液191を使用しているので、培養液191を充填したカートリッジ式養液タンク192が占めるスペースが大きい。一方、カートリッジ式養液タンク192を小さくすると、カートリッジ式養液タンク192への頻繁な補給又はカートリッジ式養液タンク192の頻繁な交換が必要となり、利便性が損なわれる。
また、カートリッジ式養液タンク192は、給液皿193を介して養液栽培容器101と接続されているため、藻や細菌がカートリッジ式養液タンク192に侵入し、繁殖する可能性がある。
さらに、栽培中に培養液191の濃度が変わってしまうと、カートリッジ式養液タンク192内の培養液191を全て交換しなければならない。
本発明は、上記の問題点を解決するためになされたもので、その目的は、小型化することができ、また、交換・管理が容易で利便性を向上することができる植物栽培器を提供することである。
上記問題を解決するために、本発明の植物栽培器は、培養液によって植物を栽培するための植物栽培器であって、上記培養液となる濃縮された溶液が貯留されているカートリッジ状の培養液貯留部と、上記培養液貯留部をはめ込むための挿入口が配されており、上記植物に供給する培養液を貯留する植物栽培容器と、上記植物栽培容器に配されており、上記挿入口にはめ込まれた培養液貯留部から供給されてくる上記濃縮された溶液を取得し、当該取得した濃縮された溶液を希釈して上記培養液とするための培養液希釈部とを備えていることを特徴としている。
上記構成によると、上記培養液貯留部はカートリッジ状となっており、上記培養液貯留部と取り外しが可能であるので交換・管理が容易である。
また、上記挿入口にはめ込まれた上記培養液貯留部には、濃縮された溶液が貯留されている。そして、当該培養液貯留部から供給されてくる上記濃縮された溶液は、上記培養液希釈部で希釈されてから、上記植物栽培容器で培養液となる。
これにより、上記培養液貯留部をはめ込むための上記植物栽培容器のスペースを低減することができ、全体として小型化することができる。
このように、上記構成によると、小型化することができ、また、交換・管理が容易で利便性を向上させた植物栽培器を得ることができる。
本発明の植物栽培器は、培養液によって植物を栽培するための植物栽培器であって、上記培養液となる濃縮された溶液が貯留されているカートリッジ状の培養液貯留部と、上記培養液貯留部をはめ込むための挿入口が配されており、上記植物に供給する培養液を貯留する植物栽培容器と、上記植物栽培容器に配されており、上記挿入口にはめ込まれた培養液貯留部から供給されてくる上記濃縮された溶液を取得し、当該取得した濃縮された溶液を希釈して上記培養液とするための培養液希釈部とを備えていることを特徴とする。
上記構成によると、上記培養液貯留部はカートリッジ状となっており、上記培養液貯留部と取り外しが可能であるので交換・管理が容易である。
また、上記挿入口にはめ込まれた上記培養液貯留部には、濃縮された溶液が貯留されている。そして、当該培養液貯留部から供給されてくる上記濃縮された溶液は、上記培養液希釈部で希釈されてから、上記植物栽培容器で培養液となる。
これにより、上記培養液貯留部をはめ込むための上記植物栽培容器のスペースを低減することができ、全体として小型化することができる。
このように、上記構成によると、小型化することができ、また、交換・管理が容易で利便性を向上させた植物栽培器を得ることができる。
本発明の実施の形態について、詳細に説明する。
〔実施の形態1〕
以下、図1~図5に基づいて、実施の形態1について説明する。
以下、図1~図5に基づいて、実施の形態1について説明する。
(家庭用栽培機の全体構成)
まず、図2に基づいて家庭用栽培機の全体構成について説明する。
まず、図2に基づいて家庭用栽培機の全体構成について説明する。
図2は、本実施の形態に係る家庭用栽培機の構成を示す図であり、図2の(a)は、本実施の形態に係る家庭用栽培機の全体構成を示す斜視図であり、図2の(b)は、本実施の形態に係る家庭用栽培機におけるカートリッジの構成を示す断面図である。
本実施の形態に係る家庭用栽培機は、土を用いず、培養液によって植物を栽培するものであり、特に、家庭で植物を栽培するためのものである。
図2の(a)(b)に示すように、家庭用栽培機(植物栽培器)1は、植物栽培容器2と、水タンク(水貯留部)3と、複数のカートリッジ(培養液貯留部)10と、植物5とを備えている。また、家庭用栽培機1は、後述するように、植物栽培容器2の内部に配されている希釈容器(後述する)、イオンメータ(成分測定部)、及び制御部(成分補給要求部)等を備えている。
植物栽培容器2の表面(図2における上側の面)には、カートリッジ挿入部(挿入口)4が複数設けられている。このカートリッジ挿入部4にカートリッジ10がそれぞれ挿入されることにより、植物栽培容器2とカートリッジ10とは接続される。本実施の形態では、植物栽培容器2の表面には、4つのカートリッジ挿入部4が設けられている。
また、植物栽培容器2の表面には、水タンク3が、その一部構成を突出させることで設けられている。この水タンク3は、植物栽培容器2と接続されており、植物栽培容器2の内部で希釈容器と接続されている。
水タンク3は、培養液6を希釈するための水である希釈水を貯留しておくためのものである。水タンク3は、植物栽培容器2の表面に嵌め込まれて植物栽培容器2と固定されている。
水タンク3には、ユーザ等によって希釈水が注入され、当該注入された希釈水が、水タンク3に貯留される。そして水タンク3に貯留された希釈水は、後述する制御部からの指示に基づいて、植物栽培容器2および希釈容器に供給される。
カートリッジ10は、植物5を栽培するための培養液6が注入されたものである。
図2の(b)に示すように、カートリッジ10は、2つのエリア(第1及び第2領域)A・Bに区切られており、一方のエリアBには多孔質材料からなるスポンジ7が格納され、他方のエリアAには、植物に供給するための最適な濃度よりも高濃度の培養液6が注入されている。高濃度の培養液6は、スポンジ7に吸収され、毛細管力によりスポンジ7内に保持される。
複数のカートリッジ10には、植物5の栽培に使用する、少なくとも1種類の高濃度(一例として、使用濃度の100~1000倍程度)の培養液6が注入される。
なお、複数のカートリッジ10は、同一種類の成分の高濃度の培養液6が注入された複数のカートリッジ10であってもよく、後述するように、それぞれに異なる種類の成分の高濃度の培養液6が注入された複数のカーリッジ10であってもよい。
本実施の形態では、互いに異なる種類の成分の高濃度の培養液6が注入された4つのカートリッジ10が、植物栽培容器2の表面に設けられたカートリッジ挿入部4のそれぞれに配されている。なお、カートリッジ10の詳細な説明は後述する。
カートリッジ10から滴下される培養液6は、植物栽培容器2内の希釈容器(図2には図示せず)に落下されて、希釈水により希釈される。そして、希釈水により希釈された培養液6は、植物栽培容器2に滴下され、植物5に供給される。
また、植物栽培容器2内には、イオンメータ(図2には図示せず)が設けられ、このイオンメータにより植物栽培容器2内の希釈された培養液の濃度が測定される。イオンメータの測定結果に基づいて、希釈された培養液の濃度が高い場合には、水タンク3から植物栽培容器2に希釈水が供給され、希釈された培養液の濃度が低い場合には、希釈容器から培養液が供給され、培養液の濃度が調整される。
(カートリッジおよび希釈容器の構成)
以下、図3に基づいて、家庭用栽培機におけるカートリッジの詳細な説明および希釈容器の構成について、さらに詳細に説明する。
以下、図3に基づいて、家庭用栽培機におけるカートリッジの詳細な説明および希釈容器の構成について、さらに詳細に説明する。
図3は、本実施の形態に係る家庭用栽培機におけるカートリッジおよび希釈容器の構成を示す断面図である。
植物栽培容器2のカートリッジ挿入部4の下方には、滴下管14と、希釈容器(培養液希釈部)20と、アクチュエータ41とが配されている。
滴下管14は、カートリッジ挿入部4に挿入されたカートリッジ10内の培養液6を、希釈容器20に供給するための管である。滴下管14は、カートリッジ10の底面を貫通するように配されている。滴下管14の一方の端部は、カートリッジ挿入部4の底面からカートリッジ10の内部に突出して配されており、他方の端部はカートリッジ10の底面から外部に突出して配されており、さらに、希釈容器20の内部であって、希釈容器20の内面と離間して配されている。
アクチュエータ41は、滴下管14を振動させるためのものである。アクチュエータ41はカートリッジ10の外部の底面であって、滴下管14の横に配されている。アクチュエータ41は、稼働することで滴下管14と当接する位置に配されている。
希釈容器20は、植物栽培容器2の内部であって、カートリッジ挿入部4のそれぞれの下方に配されている。希釈容器20は、底面に配された電磁弁18を備えている。また、希釈容器20の側面には、補給管(配管)15が貫通して接続されており、当該補給管15の一方の端部が、希釈容器20の内部に配されている。
補給管15は、後述するように、水タンク3(図1参照)から希釈容器20に希釈水を供給するための管であり、補給官15の他方の端部は水タンク3と接続されている。
カートリッジ10は、仕切り壁17により、2つのエリア(第1及び第2エリア)A・Bに区切られており、一方のエリアBには多孔質材料からなるスポンジ(多孔質部材)7が格納され、他方のエリアAには高濃度の培養液6が注入されている。
仕切り壁17は、カートリッジ10の底面から離間して配されることで、一部を開口して、カートリッジ10内を2つのエリアA・Bのそれぞれに仕切る。このように、仕切り壁17と、底面とが離間している部分が開口17aである。
カートリッジ10内の他方のエリアAに注入された高濃度の培養液6は、開口17aを通って、多孔質材料からなるスポンジ7に吸収され、毛細管力により保持される。
スポンジ7としては、例えば、ポリウレタン、ポリエチレン、シリコンゴムなどの材質からなる発泡材を用いることができる。
また、上記多孔質部材は、多孔質材料から構成されていればよく、上記発泡材以外にも、例えば、ロックウールなどの繊維から構成されるブロックや不織布であってもよい。さらに、上記多孔質部材は、粒状のセラミックスを詰めた焼結体などを用いてもよい。
このように、多孔質部材を用いることで、カートリッジ10の他方のエリアに供給された培養液6を毛細管力により、保持することができる。
カートリッジ10の天面(図3における上側の面;表面)には、高濃度の培養液6が注入されたエリアA側に注入孔11が、スポンジ7が格納されたエリアB側に空気孔12が、それぞれ設けられている。
空気孔12を通って、カートリッジ10内に空気が流通される。この空気孔12は、通常は開状態で使用される。また、注入孔11を通って、カートリッジ10内に高濃度の培養液6が供給される。この注入孔11は、通常は蓋11aが嵌め込まれる等により閉状態で使用され、高濃度の培養液6をカートリッジ10に注入(補給)する際に、蓋11aが外されることで開状態になる。
カートリッジ10の天面とスポンジ7とは離間して配されている。すなわち、カートリッジ10の天面と、スポンジ7との間に空間が設けられている。このため、例えば、作業者がカートリッジ10を取り扱っている際に、カートリッジ10を傾けたり、逆さまにしたりしたとしても、スポンジ7が吸収している培養液6の液漏れを抑制することができる。
カートリッジ10の底面には、スポンジ7が格納されたエリアB側に接続孔13が設けられている。
接続孔13は、カートリッジ10が、カートリッジ挿入部4に挿入されたとき、カートリッジ挿入部4の底面から突出する滴下管14の一方の端部と嵌合する形状となっている。
カートリッジ10がカートリッジ挿入部4に挿入されると、スポンジ7に吸収されている培養液6は、接続孔13内を通って、希釈容器20内に供給される。
しかし、この接続孔13に滴下管14を挿入しただけでは、スポンジ7の下部に集まっていた培養液6の一部が滴下管14に集められ、表面張力で滴下せずに保持される。
そこで、滴下管14に外力等を与えることで、培養液6の希釈容器20への滴下を誘導する。具体的には、滴下管14の横にアクチュエータ41(モータやピエゾ素子など)を設置し振動を加えることにより、滴下管14に外力を与えて培養液6の希釈容器20への滴下を誘導する。このアクチュエータ41は後述する制御部によって駆動の制御がなされる。
本実施の形態においては、滴下管14の横にアクチュエータ41を設置し、滴下管14に振動を加えることにより外力を与えて、培養液6の希釈容器20への滴下を誘導している。しかし、滴下管14に外力を加える構成は、これに限定されるものではなく、外力として熱等を加えてもよい。すなわち、アクチュエータ41を用いず、例えば、滴下管14にヒータを設置し、加熱による滴下管14の熱膨張を利用して、または加熱により発生した気泡の圧力で培養液6を押し出して希釈容器20への滴下を誘導してもよい。
希釈容器20は、滴下管14内を通って滴下されてくる高濃度の培養液6を、補給管15内を通って水タンク3から供給されてくる希釈水で希釈するための容器である。希釈容器20内には、カートリッジ10から滴下された高濃度の培養液6を、水タンク3から供給されてくる希釈水で希釈した培養液6Aが貯留されている。
そして、カートリッジ10から滴下された高濃度の培養液6は、希釈容器20内の一定量の希釈された培養液6A中に落下し、培養液6Aの濃度が調製される。なお、希釈した培養液6Aの濃度は、水タンク3から補給された希釈水の量と高濃度の培養液6の滴下量から算出することができる。
希釈容器20の底面には、植物栽培容器2内の培養液の成分の濃度に基づいて、後述する制御部によって制御される電磁弁18が設けられている。
植物栽培容器2内の培養液の成分の濃度が所望の濃度、あるいは所望の濃度より濃い場合は、電磁弁18は閉状態になり、希釈容器20からの培養液6aの滴下が停止される。一方、植物栽培容器2内の培養液の成分の濃度が、所望の濃度より薄い場合は、電磁弁18は開状態になり、希釈容器20から培養液6Aが滴下される。電磁弁18は、一例として、ソレノイドを利用して、電気を流したときだけ開状態にする(または、その逆に電気を流したときだけ閉状態にする)ことができる弁である。
本実施の形態において、高濃度の培養液6をカートリッジ10に注入して使用するため、カートリッジ10の交換寿命を長くすることができる。また、栽培中の培養液の濃度変化に対応することができ、例えば、植物に供給している培養液が薄まった場合、高濃度の培養液6を加えて濃度調整して使用することができる。さらに、希釈容器20を小さくし、調製(成分調製、及び濃度の調整)回数を増やせば、省スペースかつ濃度管理の精度が高い家庭用栽培機1を実現することができる。
(家庭用栽培機の断面構成)
以下、図1に基づいて、家庭用栽培機の構成について、さらに詳細に説明する。
以下、図1に基づいて、家庭用栽培機の構成について、さらに詳細に説明する。
図1は、本実施の形態に係る家庭用栽培機の構成を示す断面図である。
図1に示すように、家庭用栽培機1は、植物栽培容器2と、水タンク3と、複数のカートリッジ10として4つのカートリッジ10a・10b・10c・10dと、植物5とを備えている。植物栽培容器2は、希釈容器20としての希釈容器20a・20b・20c・20dと、制御部40と、イオンメータ42と、エアポンプ43とを備えている。
また、植物栽培容器2の内部には、植物5に供給するための濃度調整がなされた培養液6Bが貯留されている。
図1に示すように、本実施の形態に係る家庭用栽培機1において、4つのカートリッジ挿入部4には、4つのカートリッジ10a・10b・10c・10dがそれぞれ挿入されている。
4つのカートリッジ挿入部4のそれぞれの下方には、滴下管14としての滴下管14a・14b・14c・14d及び希釈容器20a・20b・20c・20dが配されている。希釈容器20a・20b・20c・20dのそれぞれには、滴下管14a・14b・14c・14dのそれぞれを通じて、カートリッジ挿入部4のそれぞれに挿入されたカートリッジ10a・10b・10c・10dのそれぞれに注入されている培養液6が滴下されるようになっている。
滴下管14a・14b・14c・14dのそれぞれのカートリッジ挿入部4に近い側の端部近傍には、アクチュエータ41としてのアクチュエータ41a・41b・41c・41dがそれぞれ配されている。
希釈容器20a・20b・20c・20dのそれぞれの側面には、補給管15としての補給管15a・15b・15c・15dのそれぞれの一方の端部が接続されている。そして、補給管15a・15b・15c・15dのそれぞれの他方の端部は、水タンク3の側面と接続されている。
水タンク3は、家庭用栽培装置2に嵌め込まれて固定されている。植物栽培容器2内には、植物5の培地である栽培エリア44が配されている。栽培エリア44は、スポンジ7等の多孔質部材からなる。
上述したように、各カートリッジ10は、2つのエリアA・Bに区切られており、一方のエリアBには多孔質材料からなるスポンジ7が格納され、他方のエリアAには高濃度の培養液6が注入されている。家庭用栽培機1において、カートリッジ10a・10b・10c・10dのそれぞれに注入されている培養液6としては、植物5の種類によって、必須元素のN、P、K、Ca、Mg、Sとその他微量元素を適量配合して供給される。
ここで、必須元素のCaは、硝酸カルシウムの形で加えられ、高濃度では他の塩類と反応して沈殿を生じるため、別にする必要がある。
そこで、カートリッジ10aには、硝酸カルシウム以外の成分、例えば、硝酸カリウム、硫酸マグネシウム、リン酸二水素ナトリウム、硝酸アンモニウム、硫酸カリウム、FE-EDTA、ホウ酸、塩化マンガン、硫酸亜鉛、硫酸銅(II)、モリブデン酸ナトリウムのそれぞれの成分を含む高濃度の培養液6aが注入されている。
カートリッジ10bには、硝酸カルシウムの成分を含む高濃度の培養液6bが注入されている。
カートリッジ10cには、水酸化ナトリウム、水酸化カリウムなどの成分を含むPH調整液(上昇)である培養液6cが注入され、カートリッジ10dには、塩酸、リン酸などの成分を含むPH調整液(下降)である培養液6dが注入されている。本実施の形態において、植物5に提供される、必須元素と微量元素の量を以下の表1に示す。
なお、表1に示す成分は一例であり、栽培する植物5の種類によって適宜変更が可能である。
本実施の形態において、カートリッジ10aには、硝酸カルシウム以外の成分、硝酸カリウム、硫酸マグネシウム、リン酸二水素ナトリウム、硝酸アンモニウム、硫酸カリウム、FE-EDTA、ホウ酸、塩化マンガン、硫酸亜鉛、硫酸銅(II)、モリブデン酸ナトリウムが入っている高濃度の培養液6aが注入されているが、これに限定されることなく、植物5の種類に応じて、各元素を適宜配合して供給することができる。
硝酸カルシウム以外の成分をカートリッジ10aに注入し、硝酸カルシウムをカートリッジ10bに注入することにより、硝酸カルシウムが沈殿を形成するのを防ぐことができる。
また、PH調整液(上昇)をカートリッジ10cに注入し、PH調整液(下降)をカートリッジ10dに注入することにより、PH値を容易に調整することができる。さらに、植物5の根に直接触れる培養液6Bの成分を容易にコントロールすることができ、植物5の吸収とともに変わってしまう培養液6Bの濃度を、常に最適な状態に保つことができる。この結果、植物5の成長の促進が期待できる。
各カートリッジ10a・10b・10c・10dに注入されている培養液6a・6b・6c・6dは、それぞれスポンジ7a・7b・7c・7dに吸収され、毛細管力により保持される。
なお、各カートリッジ10a・10b・10c・10dの底面には、スポンジ7a・7b・7c・7dが格納されたエリア側に接続孔13a・13b・13c・13dがそれぞれ設けられている。この接続孔13a・13b・13c・13dに滴下管14a・14b・14c・14dをそれぞれ挿入すると、スポンジ7a・7b・7c・7dの下部に集まっていた各培養液6a・6b・6c・6dの一部が滴下管14a・14b・14c・14dに集められ、表面張力で滴下せずに保持される。
各滴下管14a・14b・14c・14dの横には、振動を加えることにより外力を与えるアクチュエータ41a・41b・41c・41dが設けられている。なお、各アクチュエータ41a・41b・41c・41dは、後述する制御部40の指示に基づいて、培養液6a・6b・6c・6dの希釈容器20a・20b・20c・20dへの滴下を誘導する。
水タンク3の側面であり、各希釈容器20a・20b・20c・20dのそれぞれと接続されている補給管15a・15b・15c・15dのそれぞれの他方の端部には、制御部40の指示に基づいて開閉される電磁弁19a・19b・19c・19dがそれぞれ設けられている。
各電磁弁19a・19b・19c・19dが開状態になると、各希釈容器20a・20b・20c・20dに補給管15a・15b・15c・15dを介して水タンク3から希釈水が補給される。一方、各電磁弁19a・19b・19c・19dが閉状態になると、水タンク3から各希釈容器20a・20b・20c・20dへの希釈水の補給が停止される。
また、水タンク3の底面には、水タンク3に貯留されている希釈水を植物栽培容器2内へ補給するための補給管22が配されている。補給管22には、制御部40の指示に基づいて開閉される電磁弁21が設けられている。電磁弁21が開状態になると、水タンク3から植物栽培容器2に、補給管22を介して希釈水が補給され、電磁弁21が閉状態になると、水タンク3からの希釈水の補給が停止される。
各希釈容器20a・20b・20c・20dの底面には、制御部40の指示に基づいて開閉される電磁弁18a・18b・18c・18dがそれぞれ設けられている。各電磁弁18a・18b・18c・18dが開状態になると、希釈容器20a・20b・20c・20dそれぞれから植物栽培容器2に希釈した培養液6Aが提供され、各電磁弁18a・18b・18c・18dが閉状態になると、希釈容器20a・20b・20c・20dからの培養液6Aの提供が停止される。
植物栽培容器2には、イオンメータ42、エアポンプ43、制御部40が設けられている。エアポンプ43により、栽培エリア44を介して植物5に空気が供給される。
また、イオンメータ42により、培養液6Bの成分の濃度が測定される。イオンメータ42により測定された培養液6Bの成分の濃度に基づいて、制御部40により電磁弁18a・18b・18c・18d、電磁弁19a・19b・19c・19d、電磁弁21、アクチュエータ41a・41b・41c・41dの制御がなされる。この制御部40の動作については後述する。
本実施の形態においては、植物栽培容器2に、イオンメータ42が設けられており、培養液6Bの成分の濃度を測定しているが、これに限定されることなく、植物栽培容器2における培養液6Bの成分の濃度を測定するものであればよく、例えば、ECメータが設けられ、培養液6Bの成分の濃度を測定してもよい。
また、本実施の形態においては、植物栽培容器2に、エアポンプ43が設けられており、培養液6Bの酸素濃度を向上させることで、植物5へ酸素の供給量を増加させている。
植物栽培容器2では、さらに、培養液6Bの成分の濃度を均一にするために、植物栽培容器2内に、例えば、スクリューやウォーターポンプなどを設け、植物栽培容器2において培養液6Bの成分の濃度を均一にしてもよい。
また、本実施の形態においては、植物栽培容器2内に、制御部40が設けられており、制御部40により、家庭用栽培機1における動作を制御している。しかし、これに限定されることなく、制御部40は植物栽培容器2の外部に設けてもよい。
(制御部の動作)
以下、図4、図5に基づいて、植物栽培容器2に設けられた制御部40の動作について詳細に説明する。
以下、図4、図5に基づいて、植物栽培容器2に設けられた制御部40の動作について詳細に説明する。
図4は、本発明の実施の形態1に係る家庭用栽培機において制御部の動作を説明するフローチャートであり、図5は、本発明の実施の形態1に係る家庭用栽培機において制御部の動作を説明するブロック図である。
図4、図5に示すように、先ず、制御部40は、ステップS11において、イオンメータ42により測定された、植物栽培容器2内の培養液6Bの成分の濃度データを取得する。なお、イオンメータ42からの濃度データの取得は、任意の時間ごとに行われ、例えば、12時間あるいは24時間ごとに取得することができる。ステップS11において、濃度データを取得した後に、ステップS12に進む。
次に、制御部40は、ステップS12において、イオンメータ42から取得した濃度データに基づいて、濃度が高い成分があるかないかを判断する。
制御部40は、濃度が高い成分があると判断した場合(ステップS12のYES)、ステップS13において、水タンク3に設けられた電磁弁21を開状態になるように制御する。これにより植物栽培容器2に補給管22を介して水タンク3から希釈水が補給される。
なお、制御部40は、濃度が高い成分があると判断した場合、必要な希釈水量を計算し、必要な希釈水量が補給されるように水タンク3に設けられた電磁弁21を一定時間開状態になるように制御する。その後、制御部40は、電磁弁21を閉状態になるように制御する。その後、ステップS11に戻る。
一方、ステップS12において、イオンメータ42から取得した濃度データに基づいて、制御部40は、濃度が高い成分がないと判断した場合(ステップS12のNO)は、ステップS14に進む。
制御部40は、ステップS14において、イオンメータ42から取得した濃度データに基づいて、濃度が低い成分があるないかを判断する。制御部40は、濃度が低い成分があると判断した場合(ステップS14のYES)、ステップS15において、濃度が低い成分が入っている滴下管14に外力を加えて滴下管14から培養液6が滴下するようにアクチュエータ41を制御する。
なお、制御部40は、濃度が低い成分があると判断した場合、必要な培養液6の量を計算し、培養液6が必要量希釈容器20に滴下されるように制御する。必要量の滴下が終われば、ステップS16において、希釈容器20の底面に設けられた電磁弁18が開状態になるように制御し、適切な濃度の希釈した培養液6Aが植物栽培容器2へ供給される。
その後、ステップS17において、制御部40は、電磁弁18を閉状態になるように制御する。
そして、ステップS18において、制御部40は、水タンク3に設けられた電磁弁19を開状態になるように制御して、水タンクから希釈容器20へ一定量の希釈用水が供給され、容器が満たされるように制御する。その後、ステップS11に戻る。
一方、制御部40は、例えば、カートリッジ10aに注入されている培養液6aに入っている成分の濃度が低いと判断した場合(ステップS14のYES)、アクチュエータ41aが滴下管14aに振動を加えて滴下管14aから培養液6aが必要量滴下するように制御する(ステップS15)。必要量の滴下が終われば、制御部40は、希釈容器20の底面に設けられた電磁弁18aが開状態になるように制御し(ステップS16)、適切な濃度の希釈した培養液6aAが植物栽培容器2へと供給される。その後、制御部40は、電磁弁18aを閉状態になるように制御する(ステップS17)。
そして、制御部40は、水タンク3に設けられた電磁弁19aを制御して、水タンクから希釈容器20aへ一定量の希釈用水が供給される(ステップS18)。そして、制御部40は、容器が満たされるように制御する。その後、ステップS11に戻る。
カートリッジ10b・10c・10dに注入されている培養液6b・6c・6dに入っている成分の濃度が低いと、制御部40が判断した場合でも同じである。
一方、制御部40は、ステップS14において、イオンメータ42から取得した濃度データに基づいて、濃度が低い成分がないと判断した場合(ステップS14のNO)は、ステップS11に戻る。
この制御部40は、例えばコンピュータからなり、ステップS11~S18における制御は、ソフトウェアにより実現することができる。なお、制御部40は、植物栽培容器2の外部に設けられていてもよく、植物栽培容器2の内部に設けられていてもよい。
〔実施の形態2〕
次に、図6に基づいて、実施の形態2について説明する。なお、説明の便宜上、実施の形態1にて説明した図面と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
次に、図6に基づいて、実施の形態2について説明する。なお、説明の便宜上、実施の形態1にて説明した図面と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
(家庭用栽培機の断面構成)
以下、図6に基づいて家庭用栽培機の断面構成について説明する。
以下、図6に基づいて家庭用栽培機の断面構成について説明する。
図6は、本実施の形態に係る家庭用栽培機の構成を示す断面図である。
図6に示す家庭用栽培機1Aは、水タンク3が設けられていない点で、実施の形態1の家庭用栽培機1と相違する。
図6に示すように、本実施の形態に係る家庭用栽培機1Aにおいて、カートリッジ10として4つのカートリッジ10a・10b・10c・10dが挿入されている。
各カートリッジ10a・10b・10c・10dは、2つのエリアA・Bに区切られており、一方のエリアBには多孔質材料からなるスポンジ7a・7b・7c・7dが格納され、他方のエリアAには高濃度の培養液6a・6b・6c・6dが注入されている。
カートリッジ10aには硝酸カルシウム以外の成分が注入され、カートリッジ10bには、硝酸カルシウムが注入されている。カートリッジ10cには、PH調整液(上昇)である培養液6cが注入され、カートリッジ10dには、PH調整液(下降)である培養液6dが注入されている。
各カートリッジ10a・10b・10c・10dに注入されている培養液6a・6b・6c・6dは、それぞれスポンジ7a・7b・7c・7dに吸収され、毛細管力により保持される。
なお、各カートリッジ10a・10b・10c・10dの底面には、スポンジ7a・7b・7c・7dが格納されたエリア側に接続孔13a・13b・13c・13dがそれぞれ設けられている。この接続孔13a・13b・13c・13dに滴下管14a・14b・14c・14dをそれぞれ挿入すると、スポンジ7a・7b・7c・7dの下部に集まっていた各培養液6a・6b・6c・6dの一部が滴下管14a・14b・14c・14dに集められ、表面張力で滴下せずに保持される。
各滴下管14a・14b・14c・14dの横には、振動を加えることにより外力を与えるアクチュエータ41a・41b・41c・41dが設けられている。なお、各アクチュエータ41a・41b・41c・41dは、後述する制御部40の指示に基づいて、培養液6a・6b・6c・6dの希釈容器20a・20b・20c・20dへの滴下を誘導する。
各希釈容器20a・20b・20c・20dの底面には、制御部40の指示に基づいて一定時間ごとに開閉される電磁弁18a・18b・18c・18dがそれぞれ設けられている。各電磁弁18a・18b・18c・18dが開状態になると、希釈容器20a・20b・20c・20dから植物栽培容器2に希釈した培養液が提供され、各電磁弁18a・18b・18c・18dが閉状態になると、希釈容器20a・20b・20c・20dからの培養液の提供が停止される。
本実施の形態において、各希釈容器20a・20b・20c・20dの底面には、電磁弁18a・18b・18c・18dがそれぞれ設けられているが、これに限定されることなく、例えば、液体中での使用性を考慮して、各希釈容器20a・20b・20c・20dの底面に、モータなどにより、弁を構成する弁体を動かして開閉するアクチュエータをそれぞれ設けてもよい。
植物栽培容器2には、イオンメータ42、制御部40が設けられている。イオンメータ42により、培養液6Bの成分の濃度が測定される。
そして、イオンメータ42により測定された培養液6Bの成分の濃度が制御部40から各滴下管14a・14b・14c・14dに設けられたアクチュエータ41a・41b・41c・41dにフィードバックされる。各アクチュエータ41a・41b・41c・41dは、適量の培養液6a・6b・6c・6dが希釈容器20a・20b・20c・20dに滴下するように、制御部40により制御される。
そして、適量が滴下された後は、電磁弁18a・18b・18c・18dが開状態になるように、制御部40により制御され、植物栽培容器2内の培養液6Bと混合される。
なお、電磁弁18a・18b・18c・18dは、イオンメータ42のデータの取得の10秒前に開状態になり、データの取得と同時に閉状態になるように制御される。イオンメータ42のデータの取得は、任意の時間ごとに行われ、例えば、12時間あるいは24時間ごとに取得することができる。
本実施の形態においては、電磁弁18a・18b・18c・18dは、イオンメータ42のデータの取得の10秒前に開状態になり、データの取得と同時に閉状態になるように制御されるが、これに限定されることなく、液体の拡散を考慮して、イオンメータ42のデータの取得の10秒以上前に開状態になり、データの取得と同時に閉状態になるように制御することもできる。
また、植物栽培容器2の天面には、補給孔30が設けられており、この補給孔30からユーザにより希釈水が補給される。イオンメータにより測定された培養液6Bの成分の濃度が高い場合は給水が必要であることをアラートし(警報を発し)、ユーザにより外部から希釈水が補給される。
本実施の形態に係る家庭用栽培機1Aにおいては、水タンク3が不要となり、省スペース化を図ることができる。また、水タンク3からの補給に比べ、部品構成を簡略化でき、低コスト化が可能である。
また、家庭用栽培機1Aにおいては、各カートリッジ10a・10b・10c・10dに、希釈容器20a・20b・20c・20dが設けられているため、高濃度培養液6a・6b・6c・6d同士の接触を避け、硝酸カルシウムが沈殿を形成するのを防ぐことができる。
また、家庭用栽培機1Aにおいては、希釈容器20a・20b・20c・20dは植物5の栽培エリア44と直接触れていないため、希釈容器20内での藻類や微生物の繁殖を防ぐことができる。
また、家庭用栽培機1Aにおいては、一定時間間隔で電磁弁18a・18b・18c・18dを開閉するため、希釈容器20a・20b・20c・20d内の培養液濃度を、容器外と合わせることができる。
〔実施の形態3〕
次に、図7~図8に基づいて、実施の形態3について説明する。なお、説明の便宜上、実施の形態1にて説明した図面と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
次に、図7~図8に基づいて、実施の形態3について説明する。なお、説明の便宜上、実施の形態1にて説明した図面と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
(家庭用栽培機の断面構成)
以下、図7に基づいて家庭用栽培機の断面構成について説明する。
以下、図7に基づいて家庭用栽培機の断面構成について説明する。
図7は、本実施の形態に係る家庭用栽培機の構成を示す断面図である。
図7に示す家庭用栽培機1Bは、実施の形態1、2で説明した家庭用栽培機1・1Aと、希釈容器の形状が相違する。
図7に示すように、本実施の形態に係る家庭用栽培機1Bにおいて、カートリッジ10として4つのカートリッジ10a・10b・10c・10dが挿入されている。
各カートリッジ10a・10b・10c・10dは、2つのエリアA・Bに区切られており、一方のエリアBには多孔質材料からなるスポンジ7a・7b・7c・7dが格納され、他方のエリアAには高濃度の培養液6a・6b・6c・6dが注入されている。各カートリッジ10a・10b・10c・10dに注入されている培養液6a・6b・6c・6dは、それぞれスポンジ7a・7b・7c・7dに吸収され、毛細管力により保持される。
なお、各カートリッジ10a・10b・10c・10dの底面には、スポンジ7a・7b・7c・7dが格納されたエリア側に接続孔13a・13b・13c・13dがそれぞれ設けられている。
この接続孔13a・13b・13c・13dに滴下管14a・14b・14c・14dをそれぞれ挿入すると、スポンジ7a・7b・7c・7dの下部に集まっていた各培養液6a・6b・6c・6dの一部が滴下管14a・14b・14c・14dに集められ、表面張力で滴下せずに保持される。
各滴下管14a・14b・14c・14dの横には、振動を加えることにより外力を与えるアクチュエータ41a・41b・41c・41dが設けられている。なお、各アクチュエータ41a・41b・41c・41dは、後述する制御部40の指示に基づいて、培養液6a・6b・6c・6dの可動希釈容器(可動式容器)31a・31b・31c・31dへの滴下を誘導する。
各可動希釈容器31a・31b・31c・31dは、受け皿形状である。換言すると、容器の表面は凹形状であり、凹形状内部の側壁に囲まれた空間が形成されている。すなわち、可動希釈容器31a・31b・31c・31dの表面は凹面を有している。
各可動希釈容器31a・31b・31c・31dは、各滴下管14a・14b・14c・14dから培養液6a・6b・6c・6dが滴下される直前には、モーターなどの動力によって軸が回転され、容器の凹面が上に向く位置(鉛直線下方に凸となる位置)で停止される。
この状態で、可動希釈容器31a・31b・31c・31dは、植物栽培容器2内の培養液6Bに浸される。培養液6a・6b・6c・6dが滴下された後は、各可動希釈容器31a・31b・31c・31dは、再び軸が回転され、容器の凹面が下を向く位置で停止され、中に入っていた希釈された培養液が培養液6Bと混合される。
植物栽培容器2には、イオンメータ42、制御部40が設けられている。イオンメータ42により、培養液6Bの成分の濃度が測定される。
そしてイオンメータ42により測定された培養液6Bの成分の濃度が、制御部40により、各滴下管14a・14b・14c・14dに設けられたアクチュエータ41a・41b・41c・41dにフィードバックされ、各アクチュエータ41a・41b・41c・41dは、適量の培養液6a・6b・6c・6dが可動希釈容器31a・31b・31c・31dに滴下するように制御部40により制御される。
なお、各滴下管14a・14b・14c・14dから培養液6a・6b・6c・6dが滴下される直前には、可動希釈容器31a・31b・31c・31dは、モーターなどの動力によって軸が回転され、容器の凹面が上に向く。適量が滴下された後は、可動希釈容器31a・31b・31c・31dは、再び軸が回転され、容器凹面が下を向く位置で停止され、植物栽培容器2内の培養液6Bと混合される。
植物栽培容器2の天面には、補給孔30が設けられており、この補給孔30からユーザにより希釈水が補給される。イオンメータ42により測定された培養液6Bの成分の濃度が高い場合は給水が必要であることをアラートし、ユーザにより外部から希釈水が補給される。
図8は、本実施の形態に係る家庭用栽培機において、可動希釈容器の構成を示す側面図である。
図8に示すように、可動希釈容器31としての各可動希釈容器31a・31b・31c・31dは、受け皿形状であり、容器のそれぞれに凹状の独立した空間を有している。
各可動希釈容器31a・31b・31c・31dは、モーターなどの動力によって軸が回転されることで、当該軸中心に回転する。
本実施の形態に係る家庭用栽培機1Bにおいては、希釈容器に電磁弁等の弁を使用せず、より簡易で信頼性の高い構成となる。
本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
上記問題を解決するために、本発明の植物栽培器は、培養液によって植物を栽培するための植物栽培器であって、上記培養液となる濃縮された溶液が貯留されているカートリッジ状の培養液貯留部と、上記培養液貯留部をはめ込むための挿入口が配されており、上記植物に供給する培養液を貯留する植物栽培容器と、上記植物栽培容器に配されており、上記挿入口にはめ込まれた培養液貯留部から供給されてくる上記濃縮された溶液を取得し、当該取得した濃縮された溶液を希釈して上記培養液とするための培養液希釈部とを備えていることを特徴としている。
上記構成によると、上記培養液貯留部はカートリッジ状となっており、上記培養液貯留部と取り外しが可能であるので交換・管理が容易である。
また、上記挿入口にはめ込まれた上記培養液貯留部には、濃縮された溶液が貯留されている。そして、当該培養液貯留部から供給されてくる上記濃縮された溶液は、上記培養液希釈部で希釈されてから、上記植物栽培容器で培養液となる。
これにより、上記培養液貯留部をはめ込むための上記植物栽培容器のスペースを低減することができ、全体として小型化することができる。
このように、上記構成によると、小型化することができ、また、交換・管理が容易で利便性を向上させた植物栽培器を得ることができる。
また、本発明の植物栽培器は、上記培養液貯留部を複数備えており、上記複数の培養液貯留部のそれぞれに貯留されている上記濃縮された溶液は、互いに成分が異なっていることが好ましい。
上記構成によると、上記複数の培養液貯留部のそれぞれに貯留されている上記濃縮された溶液それぞれの、上記植物栽培容器への補給量を調整することで、当該植物栽培容器に貯留されている培養液の成分調整を行うことができる。このため、上記植物栽培容器に貯留されている培養液の成分を一定の品質に保つことが容易である。
また、本発明の植物栽培器は、内部に水が貯留されている水貯留部を備え、上記水貯留部と、上記培養液希釈部とは配管で接続されていることが好ましい。
上記構成によると、上記水貯留部から、上記培養液希釈部に対して、上記配管を通って、水を供給することができる。これにより、上記培養液貯留部から上記培養液希釈部に供給される上記濃縮された溶液を希釈することができる。
また、本発明の植物栽培器は、上記植物栽培容器は、上記挿入口から一方の端部が突出して配され、当該挿入口にはめ込まれた上記培養液貯留部に貯留されている上記濃縮された溶液を、他方の端部から、上記培養液希釈部に滴下して供給するための滴下管を備え、上記培養液貯留部は、一部を開口して、第1領域および第2領域に仕切られ、上記第1領域には、上記濃縮された溶液が貯留され、上記第2領域には、多孔質部材が配され、上記第2領域の底面には、上記滴下管の上記一方の端部と接続するための接続孔が設けられていることが好ましい。
上記構成によると、上記第1領域に貯留されている上記濃縮された溶液は、上記開口を通って、上記多孔質部材に、徐々に吸収される。そして、当該多孔質部材に吸収された上記濃縮された溶液は、上記滴下管を通って、上記培養液希釈部に供給される。
このように、上記培養液希釈部に供給される上記濃縮された溶液は、上記多孔質部材に吸収されているので、表面張力を用いて上記培養液希釈部への供給を容易に制御することができる。
また、本発明の植物栽培器は、上記培養液希釈部に、弁が設けられ、上記弁は、上記培養液貯留部から上記濃縮された溶液を取得する際には閉状態となり、上記培養液貯留部から取得した上記濃縮された溶液を希釈して上記植物栽培容器内に供給する際には開状態となることが好ましい。
上記構成によると、上記弁を閉状態とすることで、上記培養液貯留部から取得した上記濃縮された溶液を上記培養液希釈部内に貯留させることができる。一方、上記弁を開状態とすることで、希釈した上記濃縮された溶液を、上記植物栽培容器内に供給することができる。
このように、弁の開閉制御を行うことで、容易に、上記植物栽培容器に対して、上記培養液貯留部から取得した上記濃縮された溶液を供給することができる。
また、本発明の植物栽培器では、上記培養液希釈部は、凹面を有する可動式容器であり、上記培養液希釈部は、上記培養液貯留部から上記濃縮された溶液を取得する際には、上記凹面が上記培養液貯留部に向く状態とし、上記培養液希釈部は、上記培養液貯留部から取得した上記濃縮された溶液を希釈して上記植物栽培容器内に供給する際には、上記容器の凹面が回転した状態とすることが好ましい。
上記構成によると、上記培養液希釈部を回転させることで、上記培養液貯留部から取得した上記濃縮された溶液を希釈して上記植物栽培容器に供給することができる。これにより、例えば、弁等を使用しなくて済むので、信頼性を向上させた植物栽培器を得ることができる。
また、本発明の植物栽培器では、上記植物栽培容器内には、上記内部に貯留されている培養液の成分のうち、上記複数の培養液貯留部のそれぞれに貯留されている上記互いに異なる濃縮された溶液のそれぞれと同成分の濃度を測定するための成分測定部が設けられていることが好ましい。
上記構成によると、上記成分測定部により、上記培養液の成分バランスを監視することができる。これにより、上記培養液を一定の品質に維持することができる。
また、本発明の植物栽培器は、上記植物栽培容器内には、上記成分測定部が測定した成分のうち、ある成分の成分量の測定値が適正範囲以下であるとき、上記複数の培養液貯留部の何れかに、上記ある成分を上記培養液に補給させる成分補給要求部が設けられていることが好ましい。
上記構成によると、上記成分補給要求部により、上記培養液の成分のうち、不足している成分の供給がなされるので、上記培養液の品質管理が容易である。
また、本発明の植物栽培器は、上記植物栽培容器内には、上記成分測定部が測定した成分のうち、ある成分の成分量の測定値が適正範囲以上であるとき、上記水貯留部に対し、上記植物栽培容器に上記水を補給させる成分補給要求部が設けられていることが好ましい。
上記構成によると、上記成分測定部により、上記培養液の成分のなかで濃度が濃い成分が検出される。その後、上記成分補給要求部により、上記水貯留部から上記植物栽培容器に水が補給される。これにより、上記培養液の品質管理が容易である。
また、本発明の植物栽培器は、上記成分補給要求部は、上記培養液希釈部が、上記濃縮された溶液を上記植物栽培容器に供給した後に、上記水貯留部に対し、上記植物栽培容器に上記水を補給させることが好ましい。
上記構成によると、上記培養液希釈部に供給された上記濃縮された溶液を、適切な濃度に希釈することができる。
また、本発明の植物栽培器は、上記複数の培養液貯留部のそれぞれに、自身に貯留されている上記互いに異なる濃縮された溶液を、上記植物栽培容器に対して一定時間ごとに補給させる成分補給要求部が設けられていることが好ましい。
上記構成によると、上記培養液の成分を一定に保つことができるので、当該培養液の品質管理が容易である。
また、本発明の植物栽培器は、上記成分測定部が測定した成分のうち、ある成分の成分量の測定値が適正範囲以上であるとき、上記成分補給要求部は、警報を発することが好ましい。
上記構成によると、上記ある成分の成分量の測定値が適正範囲以下であるとき、上記成分補給部は警報を発するので、ユーザに知らせることができる。これにより、当該ユーザに対して、上記水を補給させることができるので、上記培養液の品質管理が容易である。
本発明は、養液栽培によって植物を栽培するための養液供給容器、及び家庭用栽培機に適用することができる。
1・1A・1B 家庭用栽培機(植物栽培器)
2 植物栽培容器
3 水タンク(水貯留部)
4 カートリッジ挿入部(挿入口)
5 植物
6 培養液(濃縮された溶液)
6A・6B 培養液
6a・6b・6c・6d 培養液(濃縮された溶液)
6aA 培養液
7 スポンジ(多孔質部材)
7a・7b・7c・7d スポンジ(多孔質部材)
10 カートリッジ(培養液貯留部)
10a・10b・10c・10d カートリッジ(培養液貯留部)
11 注入孔
12 空気孔
13 接続孔
13a・13b・13c・13d 接続孔
14 滴下管
14a・14b・14c・14d 滴下管
15 補給管(配管)
15a・15b・15c・15d 補給管(配管)
17a 開口
18 電磁弁(弁)
18a・18b・18c・18d 電磁弁(弁)
19 電磁弁(弁)
19a・19b・19c・19d 電磁弁(弁)
20 希釈容器
20a・20b・20c・20d 希釈容器
21 電磁弁(弁)
22 補給管
30 補給孔
31a・31b・31c 可動希釈容器
40 制御部(成分補給要求部)
41 アクチュエータ
41a・41b・41c・41d アクチュエータ
42 イオンメータ(成分測定部)
43 エアポンプ
44 栽培エリア
A エリア(第1領域)
B エリア(第2領域)
2 植物栽培容器
3 水タンク(水貯留部)
4 カートリッジ挿入部(挿入口)
5 植物
6 培養液(濃縮された溶液)
6A・6B 培養液
6a・6b・6c・6d 培養液(濃縮された溶液)
6aA 培養液
7 スポンジ(多孔質部材)
7a・7b・7c・7d スポンジ(多孔質部材)
10 カートリッジ(培養液貯留部)
10a・10b・10c・10d カートリッジ(培養液貯留部)
11 注入孔
12 空気孔
13 接続孔
13a・13b・13c・13d 接続孔
14 滴下管
14a・14b・14c・14d 滴下管
15 補給管(配管)
15a・15b・15c・15d 補給管(配管)
17a 開口
18 電磁弁(弁)
18a・18b・18c・18d 電磁弁(弁)
19 電磁弁(弁)
19a・19b・19c・19d 電磁弁(弁)
20 希釈容器
20a・20b・20c・20d 希釈容器
21 電磁弁(弁)
22 補給管
30 補給孔
31a・31b・31c 可動希釈容器
40 制御部(成分補給要求部)
41 アクチュエータ
41a・41b・41c・41d アクチュエータ
42 イオンメータ(成分測定部)
43 エアポンプ
44 栽培エリア
A エリア(第1領域)
B エリア(第2領域)
Claims (12)
- 培養液によって植物を栽培するための植物栽培器であって、
上記培養液となる濃縮された溶液が貯留されているカートリッジ状の培養液貯留部と、
上記培養液貯留部をはめ込むための挿入口が配されており、上記植物に供給する培養液を貯留する植物栽培容器と、
上記植物栽培容器に配されており、上記挿入口にはめ込まれた培養液貯留部から供給されてくる上記濃縮された溶液を取得し、当該取得した濃縮された溶液を希釈して上記培養液とするための培養液希釈部とを備えていることを特徴とする植物栽培器。 - 上記培養液貯留部を複数備えており、
上記複数の培養液貯留部のそれぞれに貯留されている上記濃縮された溶液は、互いに成分が異なっていることを特徴とする請求項1に記載の植物栽培器。 - 内部に水が貯留されている水貯留部を備え、
上記水貯留部と、上記培養液希釈部とは配管で接続されていることを特徴とする請求項2に記載の植物栽培器。 - 上記植物栽培容器は、上記挿入口から一方の端部が突出して配され、当該挿入口にはめ込まれた上記培養液貯留部に貯留されている上記濃縮された溶液を、他方の端部から、上記培養液希釈部に滴下して供給するための滴下管を備え、
上記培養液貯留部は、一部を開口して、第1領域および第2領域に仕切られ、
上記第1領域には、上記濃縮された溶液が貯留され、
上記第2領域には、多孔質部材が配され、
上記第2領域の底面には、上記滴下管の上記一方の端部と接続するための接続孔が設けられていることを特徴とする請求項1~3の何れか1項に記載の植物栽培器。 - 上記培養液希釈部には、弁が設けられ、
上記弁は、上記培養液貯留部から上記濃縮された溶液を取得する際には閉状態となり、
上記培養液貯留部から取得した上記濃縮された溶液を希釈して上記植物栽培容器内に供給する際には開状態となることを特徴とする請求項1~4の何れか1項に記載の植物栽培器。 - 上記培養液希釈部は、凹面を有する可動式容器であり、
上記培養液希釈部は、上記培養液貯留部から上記濃縮された溶液を取得する際には、上記凹面が上記培養液貯留部に向く状態とし、
上記培養液希釈部は、上記培養液貯留部から取得した上記濃縮された溶液を希釈して上記植物栽培容器内に供給する際には、上記容器の凹面が回転した状態とすることを特徴とする請求項1~4の何れか1項に記載の植物栽培器。 - 上記植物栽培容器内には、上記内部に貯留されている培養液の成分のうち、上記複数の培養液貯留部のそれぞれに貯留されている上記互いに異なる濃縮された溶液のそれぞれと同成分の濃度を測定するための成分測定部が設けられていることを特徴とする請求項3に記載の植物栽培器。
- 上記植物栽培容器内には、上記成分測定部が測定した成分のうち、ある成分の成分量の測定値が適正範囲以下であるとき、上記複数の培養液貯留部の何れかに、上記ある成分を上記培養液に補給させる成分補給要求部が設けられていることを特徴とする請求項7に記載の植物栽培器。
- 上記植物栽培容器内には、上記成分測定部が測定した成分のうち、ある成分の成分量の測定値が適正範囲以上であるとき、上記水貯留部に対し、上記植物栽培容器に上記水を補給させる成分補給要求部が設けられていることを特徴とする請求項7に記載の植物栽培器。
- 上記成分補給要求部は、上記培養液希釈部が、上記濃縮された溶液を上記植物栽培容器に供給した後に、上記水貯留部に対し、上記植物栽培容器に上記水を補給させることを特徴とする請求項8又は9に記載の植物栽培器。
- 上記複数の培養液貯留部のそれぞれに、自身に貯留されている上記互いに異なる濃縮された溶液を、上記植物栽培容器に対して一定時間ごとに補給させる成分補給要求部が設けられていることを特徴とする請求項7に記載の植物栽培器。
- 上記成分測定部が測定した成分のうち、ある成分の成分量の測定値が適正範囲以上であるとき、上記成分補給要求部は、警報を発することを特徴とする請求項11に記載の植物栽培器。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011076487 | 2011-03-30 | ||
JP2011-076487 | 2011-03-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012133199A1 true WO2012133199A1 (ja) | 2012-10-04 |
Family
ID=46930922
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/057541 WO2012133199A1 (ja) | 2011-03-30 | 2012-03-23 | 植物栽培器 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2012133199A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3409102A1 (en) * | 2017-05-30 | 2018-12-05 | Natufia Labs OÜ | Locking and emptying system of refill cartridge |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5485927A (en) * | 1977-12-21 | 1979-07-09 | Matsushita Electric Ind Co Ltd | Feeding method of fertilizer in cultivation by culture solution |
JPS62226A (ja) * | 1985-06-25 | 1987-01-06 | 横河電機株式会社 | 養液栽培制御システム |
JPH03155718A (ja) * | 1989-11-15 | 1991-07-03 | Toshiba Corp | 植物養液栽培装置 |
JPH06178624A (ja) * | 1992-12-15 | 1994-06-28 | Masaki Ueno | 養液供給装置 |
JP2008178387A (ja) * | 2006-12-26 | 2008-08-07 | Katsuro Matsuda | 固形培地耕用の養液栽培装置及び養液栽培方法 |
-
2012
- 2012-03-23 WO PCT/JP2012/057541 patent/WO2012133199A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5485927A (en) * | 1977-12-21 | 1979-07-09 | Matsushita Electric Ind Co Ltd | Feeding method of fertilizer in cultivation by culture solution |
JPS62226A (ja) * | 1985-06-25 | 1987-01-06 | 横河電機株式会社 | 養液栽培制御システム |
JPH03155718A (ja) * | 1989-11-15 | 1991-07-03 | Toshiba Corp | 植物養液栽培装置 |
JPH06178624A (ja) * | 1992-12-15 | 1994-06-28 | Masaki Ueno | 養液供給装置 |
JP2008178387A (ja) * | 2006-12-26 | 2008-08-07 | Katsuro Matsuda | 固形培地耕用の養液栽培装置及び養液栽培方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3409102A1 (en) * | 2017-05-30 | 2018-12-05 | Natufia Labs OÜ | Locking and emptying system of refill cartridge |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPWO2003028439A1 (ja) | 植物栽培方法及び植物栽培具及び植栽容器 | |
KR102079443B1 (ko) | 기압차를 이용한 흡인량조절장치 | |
CN207400113U (zh) | 一种可监测植物幼苗根系生长的水培装置 | |
JP2007195514A (ja) | 植物の栽培方法及びその栽培装置 | |
KR100824272B1 (ko) | 수경재배화분 | |
WO2012133199A1 (ja) | 植物栽培器 | |
JP2010068735A (ja) | 自動給水プランター | |
JP2015039321A (ja) | 植物栽培装置 | |
Geilfus et al. | Hydroponic systems in horticulture | |
CN205623390U (zh) | 一种混合基质体系中培养植物的装置 | |
JP2007228801A (ja) | 栽培用給液装置 | |
JP2000125680A (ja) | 養液の自動供給装置と養液の自動制御方法 | |
WO2012014536A1 (ja) | 植物栽培容器、及び植物栽培システム | |
KR102070500B1 (ko) | 압력제어를 이용하는 관수시스템 | |
CN203181706U (zh) | 灌溉装置 | |
JPS61195629A (ja) | 栽培用給液方法およびその給液装置 | |
JP6284826B2 (ja) | 植物栽培器具 | |
WO1998053668A1 (en) | Fluid store and dispenser | |
US20020046492A1 (en) | Potting arrangement and method using pumice | |
JP2020099299A (ja) | 養液栽培システム | |
KR102564683B1 (ko) | 이온기반 양액 관리 시스템 및 방법 | |
JP4310785B2 (ja) | 果菜類の養液栽培方法及びその装置 | |
JP2003000080A (ja) | 簡易土壌水分調節供給装置 | |
JP4514765B2 (ja) | 植物栽培装置 | |
JP2747101B2 (ja) | 養液栽培装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12762750 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12762750 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |