WO2012132990A1 - ミキシング効率に優れる、結晶微粒子の製造方法およびその装置 - Google Patents

ミキシング効率に優れる、結晶微粒子の製造方法およびその装置 Download PDF

Info

Publication number
WO2012132990A1
WO2012132990A1 PCT/JP2012/056997 JP2012056997W WO2012132990A1 WO 2012132990 A1 WO2012132990 A1 WO 2012132990A1 JP 2012056997 W JP2012056997 W JP 2012056997W WO 2012132990 A1 WO2012132990 A1 WO 2012132990A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
cylindrical body
flow
reaction
fine particles
Prior art date
Application number
PCT/JP2012/056997
Other languages
English (en)
French (fr)
Inventor
満哉 下田
Original Assignee
国立大学法人九州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人九州大学 filed Critical 国立大学法人九州大学
Priority to EP12764796.4A priority Critical patent/EP2692427B1/en
Priority to US14/005,432 priority patent/US8979949B2/en
Publication of WO2012132990A1 publication Critical patent/WO2012132990A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/18Carbonates
    • C01F11/181Preparation of calcium carbonate by carbonation of aqueous solutions and characterised by control of the carbonation conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D9/00Crystallisation
    • B01D9/005Selection of auxiliary, e.g. for control of crystallisation nuclei, of crystal growth, of adherence to walls; Arrangements for introduction thereof
    • B01D9/0054Use of anti-solvent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • B01F23/45Mixing liquids with liquids; Emulsifying using flow mixing
    • B01F23/451Mixing liquids with liquids; Emulsifying using flow mixing by injecting one liquid into another
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/10Mixing by creating a vortex flow, e.g. by tangential introduction of flow components
    • B01F25/103Mixing by creating a vortex flow, e.g. by tangential introduction of flow components with additional mixing means other than vortex mixers, e.g. the vortex chamber being positioned in another mixing chamber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/314Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced at the circumference of the conduit
    • B01F25/3141Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced at the circumference of the conduit with additional mixing means other than injector mixers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/314Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced at the circumference of the conduit
    • B01F25/3142Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced at the circumference of the conduit the conduit having a plurality of openings in the axial direction or in the circumferential direction
    • B01F25/31421Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced at the circumference of the conduit the conduit having a plurality of openings in the axial direction or in the circumferential direction the conduit being porous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/2405Stationary reactors without moving elements inside provoking a turbulent flow of the reactants, such as in cyclones, or having a high Reynolds-number
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/2475Membrane reactors
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/18Carbonates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer

Definitions

  • the present invention (1) A swirl flow generating step of flowing a swirl flow of the liquid a containing the reaction substrate A into a cylindrical body in which a part or all of the circumferential surface is composed of a porous film, and the porous film through the porous film Production of crystal fine particles, including a reaction step in which liquid b containing reaction substrate B capable of reacting with reaction substrate A is supplied to the swirl flow and mixed, and reaction substrates A and B are reacted to precipitate crystal fine particles.
  • the present invention it is possible to provide a method for producing crystal fine particles and an apparatus thereof that are excellent in mixing efficiency.
  • low polydispersity crystal particles can be produced by the present invention.
  • FIG. 2 is a cross-sectional view of the YY cross section in FIG. 1 viewed from the direction of the arrow. It is a 1000 times SEM image of the calcium carbonate microparticles
  • Swirl flow generation step 1) Liquid a containing reaction substrate A
  • the liquid a containing the reaction substrate A is caused to flow into a cylindrical body in which a part or all of the circumferential surface is formed of a porous film.
  • the reaction substrate A is a substance that reacts with the reaction substrate B supplied in the next step.
  • the reaction substrate A may be either an inorganic substance or an organic substance.
  • the average pore size of the porous membrane is not limited as long as it is generally within the range of the pore size of the porous membrane, but in order to obtain an industrially suitable particle size when the compound is obtained as crystalline fine particles, 0.5% ⁇ 10 ⁇ m is preferable, and 1 to 5 ⁇ m is more preferable.
  • the porosity and average pore diameter of the porous membrane can be measured by a mercury intrusion method (using an automatic porosimeter).
  • the liquid a is preferably introduced from the circumferential surface of the cylindrical body substantially perpendicularly to the axis of the cylindrical body.
  • the entire circumferential surface of the cylindrical body is formed of a porous film, and the porous film in the vicinity where the liquid a is introduced is treated so that the liquid a does not leak out of the cylindrical body.
  • the liquid a can be prevented from leaking out of the cylindrical body by coating the inner wall surface or the outer wall of the portion of the porous membrane.
  • a cylindrical body whose circumferential surface is made of another material is connected to the end of the cylindrical body whose circumferential surface is made of a porous film to form an integral cylindrical body, which is used as the cylindrical body of the present invention. May be.
  • the shape and dimensions of the cylindrical body of the present invention are not particularly limited, but it is preferable that the cross-sectional area is constant in the length direction and the inner diameter is 5 to 100 mm. If the inner diameter is less than 5 mm, it may be difficult to generate a swirling flow in the cylinder. If the inner diameter exceeds 100 mm, the supply amount of the liquid a required to generate the swirling flow becomes excessive. There is.
  • the length of the cylindrical body is preferably 2 to 50 times the inner diameter. When the length of the cylinder is less than twice the inner diameter, the effective membrane area becomes small, so that the mixing efficiency can be lowered. On the other hand, if the length of the cylinder exceeds 50 times the inner diameter, the turning speed in the cylinder becomes non-uniform, and the mixing efficiency may be reduced.
  • FIG. 1 shows an outline of a preferred apparatus of the present invention.
  • 10 is a cylindrical body.
  • reference numeral 100 denotes a porous membrane portion whose circumferential surface is constituted by a porous membrane, and 101 is a non-porous membrane portion whose circumferential surface is constituted by another member.
  • 12 is an inlet for liquid a
  • 14 is a discharge port
  • 20 is an introduction pipe
  • 22 is a member constituting the introduction pipe
  • 30 is a discharge pipe
  • 32 is a member constituting the discharge pipe
  • 40 is a reservoir for liquid b
  • 42 Is an introduction pipe for the liquid b
  • 44 is a member constituting the reservoir.
  • 80 is a seal ring.
  • FIG. 3 is a sectional view of the YY section in FIG. 1 viewed from the direction of the arrow.
  • 16 is an inner wall surface of the cylindrical body 10.
  • the introduction pipe 20 extends in the tangential direction of the cylindrical body 10, and can introduce the liquid a from the tangential direction of the inner wall surface 16 of the cylindrical body 10. That is, a part of the inner wall surface of the introduction pipe 20 is flush with the tangent line of the inner wall surface 16 of the cylindrical body 10. Since the flow of the liquid a flows along the circumferential direction on the inner wall surface 16, it is pushed out toward the other end of the cylindrical body 10, thereby generating a swirling flow. That is, in this preferred embodiment of the present invention, the point that the liquid a flows in from the direction perpendicular to the axis of the cylindrical body 10 along the circumferential surface of the cylindrical body 10 to obtain a swirling flow is remarkably different from the conventional cross flow system. Different.
  • the speed in the circumferential direction of the swirling flow (hereinafter also referred to as “swirling speed”) and the speed in the axial direction of the cylindrical body (hereinafter also referred to as “axial speed”).
  • the inflow linear velocity should be optimized in relation to the inner diameter of the cylindrical body, but is preferably about 1 to 40 m / s, more preferably 2 to 20 m / s. When the inflow linear velocity is within this range, the mixing efficiency is improved. Moreover, crystal fine particles having a low polydispersity can be obtained.
  • the cross section of the introduction tube 20 may be an arbitrary shape such as a square or a circle, but a circle is preferable because it is easy to manufacture and makes the flow of the liquid a in the introduction tube 20 uniform.
  • the flow rate of the liquid a is preferably larger than the flow rate of the liquid b described later.
  • the ratio of the two is preferably 4 to 10.
  • the reaction substrate B contained in the liquid b may be less mobile in the reaction system than the reaction substrate A contained in the liquid a. This is because the diameter of the liquid column of the liquid b ejected from the porous membrane is considered to be about the same as the pore size of the porous membrane (usually about 2 ⁇ m), so that the diffusion distance for colliding with the reaction substrate A can be short. .
  • the reaction substrate A having high mobility to collide with the substrate B it is necessary to move in the liquid a for a long distance.
  • the reaction substrate B efficiently collides with the large mobility of the substrate A and vigorous stirring of the liquid a. can do. As a result, crystal fine particles having a smaller particle diameter are obtained.
  • the mobility of the reaction substrate A contained in the liquid a depends on the bulkiness including the solvation structure.
  • the mobility of carbonate ions is 7.2 ⁇ 10 ⁇ 4 (cm 2 s ⁇ 1 V ⁇ 1 )
  • the mobility of calcium ions is 6.2 ⁇ 10 ⁇ 4 (cm 2 s ⁇ 1 V ⁇ 1 ).
  • the supply rate is much lower than 50 to 250 mL / min, and the mixing efficiency decreases when the supply rate is increased.
  • high mixing efficiency can be obtained even if the supply speed is increased. It is considered that the liquid b supplied at this speed is jetted from the porous film and supplied into the swirling flow of the liquid a.
  • the temperature for supplying the liquid b is not particularly limited, but is preferably room temperature (20 to 30 ° C.) as described above.
  • the manufactured compound is extracted from the discharge port 14 provided at one end of the cylindrical body 10.
  • the discharge port is preferably provided in a circular shape having a constant inner diameter in the cross section of one end of the cylindrical body 10. Further, the compound may be removed through a discharge pipe 30 connected to the discharge port 14.
  • the mechanism by which high mixing efficiency is obtained and crystal fine particles having a low polydispersity are obtained is not limited, but is considered as follows.
  • the liquid b supplied through the porous film forms minute segments in the swirling flow of the liquid a.
  • This shape is a droplet or a liquid column.
  • the liquid column is a columnar flow composed of the liquid b, and its cross section is usually circular. Further, in the present invention, the liquid column includes those deformed into a distorted shape (such as a wavy shape) by a swirling flow.
  • the liquid a flows as a swirl flow. Since the swirling flow has a centrifugal acceleration according to the swirling speed, it is not separated from the porous membrane surface by the flow of the segment of the liquid b. Therefore, the liquid b is quickly dispersed as fine segments in the swirling flow without staying. Since the porous film has innumerable pores having a uniform pore diameter, a large number of fine segments of the liquid b having the same size are formed. Since the reaction substrate B diffuses from the fine segment and reacts with the reaction substrate A, a large number of reaction base points are formed at the same time.
  • the mixing efficiency is increased, and the reaction substrates A and B react quickly to obtain crystal particles having a low polydispersity.
  • the production volume can be scaled up without increasing the size of the apparatus. At this time, if the compatibility of the solvent of the liquid a and the solvent of the liquid b is high, the dispersibility of the minute segment of the liquid b and the diffusibility of the reaction substrate B in the liquid b are increased, so that the reaction proceeds more rapidly. .
  • the present invention can mix the liquid a and the liquid b with extremely high efficiency. Therefore, the present invention is particularly effective in diffusion-controlled reactions, that is, reactions in which improvement of mixing efficiency is a key.
  • Crystal Fine Particles Crystal fine particles obtained by the production method of the present invention can be isolated from the product mixture by a known method to obtain a final product.
  • examples of isolation methods include filtration.
  • the average particle size defined by the particle size (d 50 ) of the crystal fine particles produced according to the present invention is 50% or less, more preferably 50 ⁇ m or less. It is preferably 30 ⁇ m or less, particularly preferably 5 ⁇ m or less.
  • the lower limit of d 50 is preferably 0.01 ⁇ m or more, more preferably 0.1 ⁇ m or more, and further preferably 0.5 ⁇ m or more.
  • the polydispersity (hereinafter also referred to as “span”) defined by the following formula (1) is preferably 1.5 or less, and more preferably 1.0 or less.
  • the lower limit of the span is not limited, but is preferably 0.5 or more.
  • Span (d 90 -d 10 ) / d 50 (1)
  • d 10 Particle diameter in 10% cumulative distribution of particles
  • d 90 Particle diameter in 90% cumulative distribution of particles
  • d 50 Particle diameter in 50% cumulative distribution of particles
  • calcium carbonate fine particles can be produced.
  • Calcium carbonate is an inexpensive, non-toxic, opaque white fine powder, and is used as a filler for paper or plastic, an opacifying agent, and the like. Since the effect of addition varies depending on the particle diameter and shape of the calcium carbonate crystal, fine particles with low polydispersity are required. According to the present invention, such calcium carbonate fine particles can be efficiently produced.
  • the manufacturing method of the present invention is (1) a cylindrical body in which a part or all of the circumferential surface is formed of a porous film, and the liquid a inlet and the other are provided on the circumferential surface near one end.
  • a cylindrical body having a product outlet on one end cross section; (2) connected to the inlet so that the liquid a can flow in substantially perpendicular to the axis of the cylindrical body and from the tangential direction of the inner wall surface;
  • An introduction pipe extending substantially perpendicular to the axis of the cylindrical body and extending in a tangential direction of the cylindrical body; (3) a liquid b storage portion for storing the liquid b provided outside the circumferential surface of the cylindrical body (4) and a supply means for supplying the liquid b from the liquid b reservoir into the cylindrical body.
  • FIG. 1 shows a preferable example of this apparatus.
  • the member 44 it is preferable to arrange the member 44 so as to cover the outer periphery of the cylindrical body 10, and use the space formed between the inner wall of the member 44 and the outer wall of the cylindrical body 10 as the storage part 40. Since the storage part 40 can supply the liquid b from the whole porous membrane part 100 of the cylindrical body 10, production efficiency improves.
  • the gap interval that is, the difference between the inner radius of the member 44 and the outer radius of the cylindrical body 10 is preferably 1.0 to 10 mm, and more preferably 1.5 to 4.0 mm.
  • the gap is narrower than 1.0 mm, if the supply speed of the liquid b is increased, pressure distribution is generated in the reservoir 40, and the uniformity of the speed of the liquid b passing through the porous membrane pores may be impaired. There is. On the other hand, if this gap is larger than necessary, the amount of liquid b stored increases, and the amount of liquid b discarded during disassembly and cleaning of the apparatus increases, resulting in waste of resources.
  • the material of the member 44 is not particularly limited, but stainless steel is preferable in consideration of resistance to acids, alkalis, and organic solvents.
  • a seal ring for preventing liquid from leaking out of the apparatus may be disposed at a site where the cylindrical body 10, the member 44, and the member 22 are connected. Examples of seal rings include known O-rings.
  • the supply means is not particularly limited, but a pump that generates less pulsating flow is preferable.
  • the supply means is connected to the liquid b introducing pipe 42 provided in the member 44.
  • Discharge port and discharge pipe The apparatus of the present invention preferably has a discharge port 14 and a discharge pipe 30 at the other end of the cylindrical body 10.
  • the shape and dimensions of the discharge port 14 are as described above.
  • a discharge pipe 30 connected to the discharge port 14 is formed by preparing a cylindrical member 32 having a desired inner diameter and having a through-hole for discharge and arranging the end of the cylindrical body 10 to be capped. It is preferable to do.
  • the material of the member 32 is not particularly limited, but stainless steel is preferable in consideration of resistance to acids, alkalis, and organic solvents.
  • this member 22 is arranged so as to cap the end of the SPG membrane cylinder, and the end of the SPG membrane cylinder has a cylindrical shape with a circumferential surface made of stainless steel and having a length of 5 mm.
  • a cylindrical body 10 having a porous portion 100 and a non-porous 101 and having a total length of 155 mm was prepared.
  • the member 22 is provided with a through-hole that is perpendicular to the axis of the cylindrical body 10 and extends in the tangential direction of the cylindrical body 10.
  • the cross section of the introduction tube was a circle and the inner diameter was 2.0 mm.
  • a liquid mixture of equal amounts of boric acid and sodium hydroxide containing potassium iodide and potassium iodate (referred to as “boric acid buffer solution”) was prepared as the liquid a, and each time from the introduction pipe 20 of the apparatus manufactured in Example 1, Introduced at a flow rate of 0.5, 1.0, 1.5, 2.0, and 2.5 L / min, a swirling flow was generated in the internal space of the cylindrical body 10 (Experiment I-1 to I-5 and Experiment II-1 to II-5).
  • moderately diluted sulfuric acid as liquid b was ejected into a boric acid buffer solution swirling through a porous membrane.
  • the flow rate ratio (mixing ratio) of the borate buffer and dilute sulfuric acid solution was 10: 1 and 4: 1.
  • the concentration of the reaction solution used was as shown in Table 1, and the pH of the solution after mixing was adjusted to 8.5 to 9.5 so that the generated triiodide ions were stable. Triiodide ions were quantified at an absorption wavelength of 353 nm. When the absorbance was 1.7 or more, the reaction system was diluted with distilled water, the absorbance was measured, and the absorbance was obtained by multiplying by the dilution factor. The results are shown in Table 2.
  • Example 1 Production of Calcium Carbonate A 0.15M sodium carbonate solution as a liquid a and a 1.5M calcium chloride solution as a liquid b were prepared. The average pore diameter of the porous membrane (SPG membrane) was 2.1 ⁇ m.
  • the liquid a is flowed at a flow rate of 0.5 L, 1.0 L, and 1.5 L per minute, and the liquid b is 0.05 L, 0.1 L,. It was supplied into the cylindrical body 10 through the porous membrane at a flow rate of 15 L. As a result, a calcium carbonate suspension was obtained. The suspension was irradiated with ultrasonic waves for 12 minutes to remove and agglomerate fine particles and dispersed, and then the particle size distribution of the suspended particles was measured by a laser diffraction particle size distribution analyzer (device name wing-SALD 200, Inc.). (Manufactured by Shimadzu Corporation).
  • Example 1 the average particle diameter of calcium carbonate obtained when the flow rate of the swirling flow was 0.5 L, 1.0 L, and 1.5 L per minute was 1.5 ⁇ m, 1.2 ⁇ m, and 0.8 ⁇ m. . Therefore, it was clarified that calcium carbonate fine particles can be obtained by the present invention, and that the particle diameter generated can be controlled by the flow velocity of the swirling flow. Further, the particle size distribution span (D 90 -D 10 ) / D 50 of the obtained fine particles is 1.1 to 1.3 and the polydispersity is low, and the span is hardly affected by the swirling flow velocity. It became clear.
  • the SEM images of the calcium carbonate fine particles prepared in Experiment No. 3 of Example 1 are shown in FIGS.
  • Comparative Example 1 the average particle diameter of calcium carbonate obtained when the flow rate of the linear flow was 0.5 L, 1.0 L, and 1.5 L per minute was 9.4 ⁇ m, 8.0 ⁇ m, and 5.8 ⁇ m. It was revealed that the particle size was larger than the calcium carbonate obtained in Example 1. From a comparison between Example 1 and Comparative Example 1, it was found that the size of calcium carbonate particles can be reduced to 1/6 to 1/7 in terms of particle diameter and about 1/300 in terms of particle volume in the swirling flow method. SEM images of the calcium carbonate fine particles prepared in Experiment No. 6 of Comparative Example 1 are shown in FIGS.
  • Example 2 Production of calcium carbonate
  • the concentration of liquid a was 0.06, 0.09, 0.12, 0.15 mol / L
  • the concentration of liquid b was 0.00.
  • Calcium carbonate fine particles were produced in the same manner as in Example 1 except that the concentration was 6, 0.9, 1.2, and 1.5 mol / L. The production conditions and results are shown in Table 6.
  • Example 3 Production of calcium carbonate To study the influence of the flow ratio of liquid a and liquid b, the flow ratio was 1: 6, 1: 8 and 1:10, and stoichiometrically with respect to calcium carbonate production. Calcium carbonate fine particles were produced in the same manner as in Example 2 except that the concentration was adjusted so that the reaction proceeded without excess or deficiency. Production conditions and results are shown in Table 7.
  • Example 4 Production of calcium carbonate The effect of exchanging the reaction substrate supplied as the swirl flow and the reaction substrate supplied as the membrane permeation flow in Example 3 was examined. That is, in Example 3, the liquid a was a 0.15 mol / L Na 2 CO 3 aqueous solution, and the liquid b (membrane permeate) was a 1.5 mol / L CaCl 2 aqueous solution. The 15 mol / L CaCl 2 aqueous solution and the liquid b were 1.5 mol / L Na 2 CO 3 aqueous solution. The flow ratio of liquid a and liquid b and the flow rates of both liquids were the same as in Example 3. The production conditions and results are shown in Table 8.
  • Example 3 and Example 4 When the results of Example 3 and Example 4 were compared, it was found that the size and span of the microcrystalline particles produced by changing the reaction substrate of the swirl flow and the membrane permeate differed greatly. This is considered to be due to the difference in the mobility of calcium ions and carbonate ions in water. In other words, if the calcium ion, which has a lower mobility than the bicarbonate ion, is included in the membrane permeation flow that requires a shorter diffusion distance to collide with the bicarbonate ion, crystal particles with a smaller particle diameter can be obtained. You can see that

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

 ミキシング効率に優れる、結晶微粒子の製造方法およびその装置を提供することを課題とする。 円周面の一部または全部が多孔質膜で構成される円筒体内に、反応基質Aを含む液体aの旋回流を流す旋回流生成工程、および前記多孔質膜を介して、前記反応基質Aと反応しうる反応基質Bを含む液体bを前記旋回流に供給して混合し、前記反応基質AとBとを反応させて結晶微粒子を析出させる反応工程を含む、結晶微粒子の製造方法により前記課題を解決する。

Description

ミキシング効率に優れる、結晶微粒子の製造方法およびその装置
 本発明は、ミキシング効率に優れる、結晶微粒子の製造方法およびその装置に関する。
 二つ以上の反応基質を反応させる際、反応基質の濃度が局所的に不均一となると副生物を生成しやすい。また、濃度が不均一な状態は、生成物が反応系中に結晶微粒子として析出する場合に粒子径や結晶形態を不均一にする。そこで、簡略なプロセスにおいて、高い収率で化合物を得ることが必要となる。また、簡略なプロセスにおいて、均一な粒子径を有する結晶性の化合物を得るためには、反応基質を効率よく混合することが必要となる。
 ミキシングプロセス(混合工程)においては、反応基質の流体が層流あるいは乱流によって強制的に撹拌され、さらに反応基質の分子同士が拡散される。フィックの法則によれば、拡散時間は拡散距離の二乗に比例するので、拡散距離を短くすることで拡散時間を短縮できる。すなわち、ミキシングプロセスにおいて、強制撹拌により二以上の反応基質の流体を微小なセグメントに分割してこれらを効率的に接触させることにより、分子レベルでのミキシング速度を大幅に向上させることができる。
 近年、ミキシング速度を増大する手段としてマイクロリアクターが注目を浴びている。マイクロリアクターとは、数μm~数百μmの微小空間内を利用した化学反応装置である。微小空間を利用することにより反応系の単位体積当たりの反応基質の表面積が大きくなり、反応基質同士の接触面積が大きくなるため、効率的な混合や界面反応を行うことができる。また、マイクロリアクターではない通常のプラントではスケールアップにより撹拌効率が大きく変わるために、スケールアップに際して反応条件の再検討が必要であったが、マイクロリアクターではスケールアップ(サイズの拡大)ではなくナンバリングアップ(反応基点の数の増加)により、生産規模が拡大できるので、研究開発から工業的生産への迅速な移行が達成できる。しかしながら、現実的にはマイクロリアクターのナンバリングアップによる生産規模の拡大には限界があり、新たな装置および方法が求められていた。
 多孔質膜を介して液体bを液体aに供給して両者を反応させるメンブランリアクターは優れたミキシング性能を保持しつつ生産規模を拡大するのに有効な装置として期待されている。メンブランリアクターとしては、円筒型のシラス多孔質ガラス製の多孔質膜(Shiras porous glass、以下「SPG膜」ともいう)を用いたものが知られている(非特許文献1)。このメンブランリアクターは、液体aを円筒体の多孔質膜内部に、流線が円筒体の長手方向に平行な直線となるように流し、液体bを多孔質膜を介して液体aに供給する。つまり、液体aは液体bに直交するように流されるため、クロスフロー液とも呼ばれる。クロスフロー液は、液体bの流れによって膜表面から排除されやすい。その結果、液体bの液は膜表面近傍に滞留し、クロスフロー液とのミキシング効率は低下する。
 そこで、Yong Wuらはミキシング効率を高めるために、円筒状多孔質膜の円筒体内部に種々の形状の静止型撹拌子を配置して、クロスフロー液を効果的に撹拌することを提案している(非特許文献2)。しかしながら、この方法ではクロスフロー液の膜表面の境界層内での流れを精密に制御することは難しく、十分なミキシング効果は得られなかった。
Journal of Membrane Science, vol.299(2007),190-199 Journal of Membrane Science, vol.328(2009),219-227
 かかる事情を鑑み、本発明は、ミキシング効率に優れる、結晶微粒子の製造方法およびその装置を提供することを課題とする。
 発明者らは鋭意検討した結果、反応基質Aを含む液体aの旋回流に、反応基質Bを含む液体bを多孔質膜を介して供給して、反応基質AとBとを反応させることにより前記課題が解決できることを見出した。すなわち本発明は、
(1)円周面の一部または全部が多孔質膜で構成される円筒体内に、反応基質Aを含む液体aの旋回流を流す旋回流生成工程、および前記多孔質膜を介して、前記反応基質Aと反応しうる反応基質Bを含む液体bを前記旋回流に供給して混合し、前記反応基質AとBとを反応させて結晶微粒子を析出させる反応工程を含む、結晶微粒子の製造方法、
(2)円周面の一部または全部が多孔質膜で構成される円筒体であって、一方の端近傍の円周面に反応基質Aを含む液体aの流入口およびもう一方の端の断面に生成物の排出口を有する円筒体、前記液体aを前記円筒体の軸に略垂直かつ内壁面の接線方向から流入できるように、前記流入口に接続され、前記円筒体の軸に対して略垂直かつ前記円筒体の接線方向に延びる導入管、前記円筒体の円周面の外側に設けられた反応基質Bを含む液体bを貯留するための貯留部、ならびに前記貯留部から前記液体bを前記円筒体内に供給するための供給手段、を具備する装置を用いる(1)の方法、
を提供することで、前記課題を解決する。
 本発明によりミキシング効率に優れる、結晶微粒子の製造方法およびその装置が提供できる。特に、本発明により低い多分散度の結晶微粒子を製造できる。
本発明の好ましい装置の概念図である。 本発明の他の好ましい装置の概念図である。 図1におけるY-Y断面を矢印の方向から見た断面図である。 実施例で得た炭酸カルシウム微粒子の1000倍SEM像である。 実施例で得た炭酸カルシウム微粒子の20000倍SEM像である。 比較例で得た炭酸カルシウム微粒子の1000倍SEM像である。 比較例で得た炭酸カルシウム微粒子の7500倍SEM像である。
 1.製造方法
 本発明の製造方法は、円周面の一部または全部が多孔質膜で構成される円筒体内に、反応基質Aを含む液体aの旋回流を流す旋回流生成工程、および前記多孔質膜を介して、前記反応基質Aと反応しうる反応基質Bを含む液体bを前記旋回流に供給して混合し、前記反応基質AとBとを反応させて結晶微粒子を析出させる反応工程を含む。
 (1)旋回流生成工程
 1)反応基質Aを含む液体a
 本工程では、円周面の一部または全部が多孔質膜で構成される円筒体内に反応基質Aを含む液体aを流す。反応基質Aとは、次工程で供給される反応基質Bと反応する物質である。反応基質Aは、無機物質、有機物質のいずれであってもよい。無機物質は限定されないが、その例には、塩酸等の無機酸、水酸化ナトリウム等の無機塩基、炭酸ナトリウム等の炭酸塩、無機酸、無機塩基、無機還元剤、無機酸化剤、塩酸塩、炭酸塩、硝酸塩、硫酸塩、炭酸塩などが含まれる。有機物質も限定されないが、その例には、酢酸等の有機酸、アミン等の有機塩基、これらの有機塩、酢酸エチル等のエステル、エチルアルコール等のアルコール、各種カップリング試薬や白金(II)アセチルアセトナトなどの各種錯化合物が含まれる。反応基質Aとしては、一種類の基質を単独で使用してもよいし、複数種の基質を併用してもよい。
 液体aは反応基質Aを公知の溶媒に溶解または分散させて調製できる。溶媒は、水性、油性のいずれであってもよい。また反応基質Aが液体の場合は、そのまま液体aとしてもよい。液体aは円筒体に供される際に液体であればよい。従って、例えば室温では固体であるが、加熱することにより液体となる物質も液体aとして用いることができる。あるいは、室温で液体であるが、時間の経過とともに固体化する過冷却状態にある液体も使用できる。作業性を考慮すると、本工程は室温(20~30℃)で行われることが好ましいため、液体aは、室温で液体であることが好ましい。
 2)円筒体
 円筒体とは内部が空洞の円筒状の部材をいう。本発明の円筒体は、円周面の一部または全部が多孔質膜で構成される。多孔質膜とは多数の微小な貫通孔を有する膜をいう。このような膜として、ガラス製、セラミック製、ニッケル製等の公知の多孔質膜を使用してよい。本発明においてはガラス製の多孔質膜が好ましく、非特許文献1に記載のシラス多孔質ガラス製の多孔質膜(SPG膜)がより好ましい。多孔質膜の平均孔径は、一般に多孔質膜の孔径とされる範囲であれば限定されないが、化合物が結晶微粒子として得られる場合に工業的に好適な粒子径を得るためには、0.5~10μmが好ましく、1~5μmがより好ましい。多孔質膜の空隙率および平均孔径は水銀圧入法(自動ポロシメータ使用)により測定できる。
 円周面の一部または全部が多孔質膜で構成されるとは、円周面の液体bの供給に使用する部分が多孔質膜で構成されており、他の部分はこれ以外の材料で構成されていてもよいことを意味する。しかしながら本発明においては、化合物の製造に有効に使用できる膜面積(以下「有効膜面積」ともいう)を大きくするために、円周面の全部が多孔質膜で構成されていることが好ましい。
 また後述するとおり、本発明においては液体aが円筒体の円周面から、円筒体の軸に略垂直に導入されることが好ましい。このような場合、円筒体の円周面の全部を多孔質膜で構成して、液体aが導入される付近の多孔質膜に液体aが円筒体外へ漏れないような処理を施すことが好ましい。具体的には、多孔質膜の当該部分における内壁面または外壁をコーティングすることにより、液体aが円筒体外へ漏れないようにすることができる。あるいは、円周面が多孔質膜で構成されている円筒体の端部に円周面が他の材料からなる円筒体を接続して一体の円筒体とし、これを本発明の円筒体として用いてもよい。
 本発明の円筒体の形状および寸法は特に限定されないが、断面積が長さ方向において一定であって、内径が5~100mmであることが好ましい。内径が5mm未満であると、円筒内に旋回流を発生させるのが困難となる場合があり、内径が100mmを超えると、旋回流を発生させるのに要する液体aの供給量が過大となることがある。また、円筒体の長さは、内径の2~50倍であることが好ましい。円筒の長さが内径の2倍未満であると、有効膜面積が小さくなるためにミキシング効率が低下しうる。逆に、円筒の長さが内径の50倍を超えると円筒体内の旋回速度が不均一となり、ミキシング効率が低下しうる。
 3)旋回流
 旋回流とは、円筒体の軸に沿った流れと円周面に沿った流れを持ち合わせた流れをいう。旋回流は公知の方法で発生させることができる。例えば、円筒体の一方の端にスクリュウを設け、スクリュウを回転させながら液体aを円筒体に供給して円筒内に液体aの旋回流を流すことができる。しかしながら本発明においては図1に示すようにして旋回流を流すことが好ましい。このように旋回流を発生させると、旋回速度を制御しやすい等の利点がある。以下、この態様について図を参照しながら説明する。
 図1は本発明の好ましい装置の概要を示す。図1中、1は本発明の製造装置、10は円筒体である。円筒体10において、100は円周面が多孔質膜で構成された多孔質膜部分、101は円周面が他の部材で構成された非多孔質膜部分である。12は液体aの流入口、14は排出口、20は導入管、22は導入管を構成する部材、30は排出管、32は排出管を構成する部材、40は液体bの貯留部、42は液体bの導入管、44は貯留部を構成する部材を示す。図1において80はシールリングである。図3は、図1におけるY-Y断面を矢印の方向から見た断面図である。図3中、16は円筒体10の内壁面である。
 図1に示すように、円筒体10の一方の端近傍の円周面(すなわち非多孔質膜部分101の円周面)に流入口12が設けられており、この流入口12には円筒体の軸に対して略垂直に延びる導入管20が接続されている。ここでの近傍とは、円筒体の端を原点とし、円筒体の全長を1とした場合に、原点から0.1までの範囲をいう。略垂直とは、導入管20の軸と円筒体10の軸がなす角度が85~95°、好ましくは88~92°、より好ましくは90°(垂直)であることを意味する。導入管20は、図3に示すとおり、円筒体10の接線方向に延びており、円筒体10の内壁面16の接線方向から液体aを導入できるようになっている。すなわち、導入管20の内壁面の一部は円筒体10の内壁面16の接線と同一平面にある。この液体aの流れは、内壁面16を円周方向に沿って流れると同時に、円筒体10の他方の端に向かって押し出されるため、旋回流を生成する。すなわち、本発明のこの好ましい態様においては円筒体10の円周面に沿って円筒体10の軸に垂直な方向から液体aを流入して旋回流を得る点が、従来のクロスフロー方式と著しく異なる。
 本発明において旋回流の円周方向の速度(以下「旋回速度」ともいう)および円筒体の軸方向の速度(以下「軸速度」ともいう、また旋回速度と軸速度を合わせて単に「旋回流の速度」ともいう。)は、導入管20を流れる液体aの流量を導入管20の内径断面積で除した値、すなわち流入線速度で制御することが好ましい。その流入線速度は、円筒体の内径との関連のもとに最適化されるべきであるが、約1~40m/sが好ましく、2~20m/sがより好ましい。流入線速度がこの範囲にあると、ミキシング効率が向上する。また、多分散度の低い結晶微粒子が得られる。導入管20の断面は、四角または円等の任意の形状としてよいが、製造が容易であることと、導入管20内での液体aの流れを均一にしやすいことから、円が好ましい。
 また、本発明においては、導入管20の太さと円筒体10の太さが一定の関係にあると、円筒体10内で旋回流を効率よく発生することができるので好ましい。円筒体10と導入管20の太さの関係は、円筒体10の内径断面積をS1、導入管20の内径断面積をS2とするとき、面積比S1/S2が4~64であることが好ましい。内径断面積とは、例えば円筒体10においては、液体aが流れる部分の断面積をいい、具体的には内径を直径とする円の面積である。また、特に、円筒体10の内径がX1、導入管20の断面が内径X2の円である場合、内径比X1/X2が2~8であることが好ましい。
 さらに、排出口14の大きさにより円筒体10内の旋回流の態様および軸速度は影響を受ける(非特許文献3:日本機械学会論文集B編 58巻550号1668~1673頁(1992))。本発明の円筒体10が図1に示すような排出口14を有する場合、製造が容易である等の観点から、排出口14の断面は円形であることが好ましい。円形の排出口14の内径をX0とするとき、円筒体10の内径X1と排出口14の内径X0の比X1/X0は1~5が好ましく、1~3がより好ましい。X0は、円筒体10の端に配置される部材32の形状により調整できる。部材32については後述する。
 本製造方法において本発明の装置を設置する向きは限定されないが、円筒体10の軸が略鉛直となるように設置されることが好ましい。円筒体10の内部で旋回運動する液体aの旋回面が重力の方向と直交する方が、旋回運動は重力加速度の影響を受けにくいからである。略鉛直とは、水平線と円筒体10の軸がなす角度が85~95°、好ましくは88~92°、より好ましくは90°であることを意味する。
 このように発生させた液体aの旋回流を用いることにより、高いミキシング効率が得られ低多分散度の結晶微粒子が得られる。この機構については後で詳しく説明する。
 旋回流により両液体が激しく撹拌される。よって、液体aの有するエネルギーが大きいほど撹拌効率は高くなる。従って、液体aの流量は後述する液体bの流量よりも多いことが好ましい。具体的には、両者の比(液体aの流量/液体bの流量)は4~10が好ましい。
 また、液体bに含まれる反応基質Bは、液体aに含まれる反応基質Aよりも反応系での移動性が劣っていてもよい。多孔質膜から噴出される液体bの液柱の直径は多孔質膜孔径と同じ程度(通常は2μm程度)と考えられるので、反応基質Aと衝突するための拡散距離は短くて済むからである。移動性の大きい反応基質Aが基質Bと衝突するためには液体a中を長い距離移動する必要があるが、基質Aの大きな移動性と液体aの激しい撹拌により効率的に反応基質Bと衝突することができる。その結果、粒子径のより小さい結晶微粒子が得られる。
 一方、液体aに含まれる反応基質Aの移動性が反応基質Bよりも劣っていると、液体aは反応基質Aの移動性を高めにくいので、得られる結晶微粒子の粒子径は大きくなりやすい。反応基質の反応系での移動性は、溶媒和構造を含めた嵩高さ等に依存する。例えば炭酸イオンの移動度は7.2×10-4(cm-1-1)、カルシウムイオンの移動度は6.2×10-4(cm-1-1)である。
 イオンの移動度は、以下の式で求めることができる。
 u=λ/F
 ここでuはイオンiの移動度(cm-1-1)、λは当量イオン伝導率(Ω-1cmmol-1)、Fはファラデー定数である。
 (2)反応工程
 1)反応基質Bを含む液体b
 本工程では、多孔質膜を介して液体bを前記旋回流に供給する。液体bは反応基質Bを含む。反応基質Bは反応基質Aと反応して、反応系に析出する結晶を生成するものであればよく、その具体例には反応基質Aで例示したものが含まれる。反応基質Aと同様に反応基質Bも一種以上の物質であってよい。液体bは液体aと同様にして準備できるが、液体aと液体bの溶媒が共に相溶すると、反応基質Bがより速く拡散してミキシング効率をより高められるので好ましい。
 液体aとbの好ましい組み合わせとして、液体aを炭酸ナトリウム水溶液、液体bを塩化カルシウム水溶液とする組み合わせを例示できる。この場合、炭酸カルシウムが結晶微粒子として製造できる。
 2)供給方法
 液体bは多孔質膜を介して液体aの旋回流中へ供給される。その供給の方法は特に限定されない。しかしながら、図1に示すように、円筒体10の外周部の周りに部材44を配置して貯留部40を設けて、その貯留部40に液体bを充填し、その圧力を適切に調整するための圧力制御装置(図示せず)を用いて供給することが好ましい。円筒体10内部には液体aの旋回流が生じているため、液体bは、円筒体10内に供給されると速やかに液体aと混合される。本発明では、この際の供給速度を、50~250mL/分程度とすることが好ましい。非特許文献1に記載の方法においては、供給速度は50~250mL/分よりもはるかに低く、供給速度を高めるとミキシング効率が低下する。しかしながら本発明によれば、供給速度を高めても高いミキシング効率を得られる。この速度で供給された液体bは多孔質膜から噴流となって液体aの旋回流中へ供給されていると考えられる。液体bを供給する温度は、特に限定されないが、前述のとおり室温(20~30℃)が好ましい。
 (3)取出し工程
 製造された化合物は、円筒体10の一方の端に設けられた排出口14から取出される。排出口は、既に述べたとおり、円筒体10の一方の端の断面に、一定の内径を有する円形に設けられることが好ましい。さらに、化合物は排出口14に接続された排出管30を通って取出されてもよい。
 (4)作用機序
 本発明により、高いミキシング効率が得られ、さらに多分散度の低い結晶微粒子が得られる機序は、限定されないが次のように考えられる。まず、多孔質膜を介して供給された液体bは、液体aの旋回流中で微小なセグメントを形成する。この形状は液滴または液柱である。液柱とは液体bにより構成される柱状の流れであり、その断面は通常円形である。また本発明において液柱とは、旋回流によって歪んだ形状(波打った形状等)に変形されたものも含む。
 従来のように液体aをクロスフロー流として流す場合、当該クロスフローは液体bのセグメントの流れによって多孔質膜表面から押し離される。よって、液体bは多孔質膜表面近傍に滞留しやすい。液体bが噴流となって供給される場合、液体aをより膜表面から遠ざけやすくなるので、この現象はより顕著となる。このように液体bが滞留してしまうと、ミキシング効率は低下し、生成する結晶微粒子の粒子径にばらつきが生じる。
 一方、本発明では液体aを旋回流として流す。旋回流はその旋回速度に応じて遠心加速度をもつことから、液体bのセグメントの流れによって多孔質膜面から離されることはない。よって、液体bは滞留することなく旋回流中に微細なセグメントとして速やかに分散する。多孔質膜はある程度細孔径のそろった無数の細孔を有するので、寸法のそろった液体bの微細なセグメントが多数形成される。微細なセグメントから反応基質Bが拡散し、反応基質Aと反応するため、同時に多数の反応基点が形成される。このため、本発明においては、ミキシング効率は高くなり、速やかに反応基質AとBとが反応して、多分散度の低い結晶微粒子が得られる。さらに本発明の方法では、多数の反応基点を形成できるので、装置の寸法を拡大することなく生産量のスケールアップを実現できる。この際、液体aの溶媒と液体bの溶媒との相溶性が高いと液体bの微小セグメントの分散性、および液体b中の反応基質Bの拡散性が高まるので、反応はより速やかに進行する。
 このように、本発明は液体aと液体bとを極めて高い効率でミキシングできる。従って、本発明は、拡散律速反応すなわちミキシング効率の向上が鍵となる反応において、特に効果を発揮する。
 (5)その他
 上記では、液体aと液体bとが互いに反応する反応基質AとBとを含む場合を説明した。しかし本発明は、物質Bが溶媒b’に溶解している液体bと、前記物質Bを溶解しないが溶媒b’を溶解する液体aを用いることにより、生成混合物中に物質Bを沈殿させて物質Bの微粒子を製造することもできる。例えば、液体bがポリマーとその良溶媒(THF等)を含むポリマー溶液であり、液体aがポリマーの貧溶媒(メタノール等)である場合、低分散度のポリマー微粒子を製造できる。
 2.結晶微粒子
 本発明の製造方法により得られた結晶微粒子は公知の方法により生成混合物から単離して最終製造物とできる。例えば、単離の方法の例には、ろ過等が含まれる。本発明で製造された結晶微粒子の、レーザー回折散乱法により求めた粒子積算量が50%となる値の粒子径(d50)で定義される平均粒子径は100μm以下が好ましく、50μm以下がより好ましく、30μm以下がさらに好ましく、5μm以下が特に好ましい。d50の下限は、0.01μm以上が好ましく、0.1μm以上がより好ましく、0.5μm以上がさらに好ましい。また、以下の式(1)で定義される多分散度(以下「スパン」ともいう)は、1.5以下であることが好ましく、1.0以下であることがより好ましい。スパンの下限は限定されないが、0.5以上が好ましい。
 スパン=(d90-d10)/d50  ・・・(1)
  d10:粒子の積算分布10%における粒子径
  d90:粒子の積算分布90%における粒子径
  d50:粒子の積算分布50%における粒子径
 本発明においては、例えば炭酸カルシウム微粒子を製造できる。炭酸カルシウムは、安価、無毒、不透明な白色微粉末であり、紙やプラスチック等の充填剤、不透明化剤等として使用される。添加効果は炭酸カルシウム結晶の粒子径や形状によって異なるため、低多分散度の微粒子が求められている。本発明によればこのような炭酸カルシウム微粒子を効率よく製造できる。
 また、本発明により平均粒子径が50~100nm程度のナノサイズの結晶微粒子(例えばナノサイズの顔料)も製造できる。粒子径は、主として旋回流の速度により制御でき、旋回流速度が高いほど得られる微粒子の粒子径も小さくなる。特に、ナノレベルの結晶微粒子を得るには、液体aの流量2000mL/分以上、すなわち、旋回速度15000rpm以上とすることが好ましい。
 3.装置
 本発明の製造方法は、(1)円周面の一部または全部が多孔質膜で構成される円筒体であって、一方の端近傍の円周面に前記液体aの流入口およびもう一方の端の断面に生成物の排出口を有する円筒体、(2)前記液体aを前記円筒体の軸に略垂直かつ内壁面の接線方向から流入できるように、前記流入口に接続され、前記円筒体の軸に対して略垂直かつ前記円筒体の接線方向に延びる導入管、(3)前記円筒体の円周面の外側に設けられた前記液体bを貯留するための液体b貯留部、(4)ならびに前記液体b貯留部から液体bを前記円筒体内に供給するための供給手段、を具備する装置で実施されることが好ましい。以下、この装置の好ましい一例を示す図1を参照しながら説明する。
 (1)円筒体
 円筒体10は反応器としての機能を担う。円筒体を構成する材質、形状および寸法等は既に述べたとおりである。
 (2)導入管
 導入管20は旋回流を発生させる機能を担う。既に述べたとおり、導入管20は円筒体10の円周面に設けられた流入口12に接続され、前記円筒体の軸に対して略垂直かつ前記円筒体の接線方向に延びている。導入管20の太さを調整することにより、旋回流の速度を調整できる。導入管20は、図1および図2に示すように形成されることが好ましい。すなわち、円筒体10の内径とほぼ同じ内径を有し、一方の端が閉じられた肉厚の円筒状部材22を準備し、円筒体10の端をキャップするように配置する。次いで部材22に、円筒内10の軸に垂直であって、円筒体10の接線方向に延びる貫通孔を設け、この貫通孔を導入管20とする。液体aは、この導入管20を通って、部材22によって形成された円周面が多孔質膜以外の材料からなる非多孔質膜部分101の内壁に沿って流入し、効率よく旋回流を発生できる。また、旋回速度は、貫通孔の大きさにより容易に調整できる。部材22の材質は特に限定されないが、酸、アルカリ、有機溶媒に対する耐性を考慮してステンレス鋼が好ましい。
 また、図2に示すように、円筒体10の多孔質部分100に導入管20を設けてもよい。ただし、この場合、多孔質部分100の導入管20近傍の領域は、液体aが漏洩しないようにコーティング処理が施されることが好ましい。
 (3)液体b貯留部
 円筒体10の外周を覆うように部材44を配置し、部材44の内壁と円筒体10の外壁との間に形成された空間を貯留部40とすることが好ましい。貯留部40により円筒体10の多孔質膜部分100全体から液体bを供給できるため、生産効率が向上する。この場合、隙間の間隔、すなわち部材44の内半径と円筒体10の外半径の差は、1.0~10mmが好ましく、1.5~4.0mmがより好ましい。この隙間の間隔が1.0mmより狭い場合には、液体bの供給速度が大きくなると貯留部40内に圧力分布が生じ、液体bの多孔質膜細孔を通過する速度の均一性を損なうおそれがある。一方、この隙間が必要以上に大きい場合には、液体bの貯留量が大きくなり、装置の分解、洗浄に際して廃棄される液体bが多くなり、資源の無駄を招く。
 部材44の材質は特に限定されないが、酸、アルカリ、有機溶媒に対する耐性を考慮してステンレスが好ましい。また、円筒体10、部材44および部材22が接続される部位に、液体が装置の外に漏れることを防ぐためのシールリングを配置してもよい。シールリングの例には公知のO-リングが含まれる。
 (4)供給手段
 供給手段は特に限定されないが、脈流の発生が少ないポンプが好ましい。供給手段は、部材44に設けられた液体b導入管42に接続される。
 (5)排出口および排出管
 本発明の装置は、円筒体10のもう一方の端に排出口14および排出管30を有することが好ましい。排出口14の形状および寸法は既に述べたとおりである。排出口14に接続された排出管30は、所望の内径を有し、排出のための貫通孔を有する円筒状部材32を準備して、円筒体10の端をキャップするように配置して形成することが好ましい。部材32の材質は特に限定されないが、酸、アルカリ、有機溶媒に対する耐性を考慮してステンレス鋼が好ましい。
 [製造例1]装置の準備
 円周面の全部が平均孔径2.1μmのシラス多孔質ガラス製の多孔質膜(SPG膜)で構成され、外径10mm、内径9mm、長さ150mmの円筒体(SPGテクノ株式会社製、SPG膜、ロット番号PJN08J14)を準備した。このSPG膜円筒体よりも肉厚の部材であって、SPG膜円筒体と同じ内径を有し、かつ一方の端が閉じられたステンレス鋼製の円筒状部材22を準備した。図1に示すように、この部材22をSPG膜円筒体の端をキャップするように配置し、SPG膜円筒体の端部に、円周面がステンレス鋼で構成された長さ5mmの円筒状の空間を形成して、多孔質部分100と非多孔質101を有する、全長が155mmの円筒体10を準備した。部材22に、円筒体10の軸に垂直であって、円筒体10の接線方向に延びる貫通孔を設け、この貫通孔を導入管20とした。導入管の断面は円であり、内径は2.0mmであった。
 円筒体10の外周部を覆うように部材44を配置して貯留部40を形成した。貯留部40の高さ(部材44の内半径と円筒体10の外半径の差)は2.0mmであった。円筒体10のもう一方の端に、内径4.5mmの排出口を具備したステンレス鋼製の円筒状部材32を円筒体10の端をキャップするように配置して、排出口14および排出管30を形成した。図1に示すとおり、部材44と円筒体10の間の空間であって、部材44の両端部にO-リングを挿入した。このようにして、本発明の製造装置を準備した。この製造装置を、図1に示すとおり、円筒体の軸が略鉛直であって、導入管20が下に位置するように設置した。
 [参考例1]ミキシング効率の評価
 Villermaux-Dushman法により本発明のミキシング効率を評価した。当該方法は下記の反応(1)、(2)および(3)からなる競争的複合反応によってミキシング効率を評価する方法である。中和反応(1)との酸化還元反応(2)を競争的に行わせるとき、不十分なミキシング下で反応(1)の中和反応が局所的に進行し、水素イオンの局所的残留に起因して反応(2)が右に偏りヨウ素分子(I)が生成する。このヨウ素分子は反応(3)に示すように三ヨウ化物イオンと平衡下に存在することから、生成した三ヨウ化物イオンを定量することによりミキシング効率を評価できる。すなわち、三ヨウ化物イオンの量が多い場合は、ミキシング効率が低いと評価できる。
Figure JPOXMLDOC01-appb-C000001
 液体aとしてヨウ化カリウムとヨウ素酸カリウムを含むホウ酸と水酸化ナトリウムの等量混合液(「ホウ酸緩衝液」という)を準備して、実施例1で製造した装置の導入管20から毎分0.5、1.0、1.5、2.0、2.5Lの流量で導入し、円筒体10の内部空間に旋回流を発生させた(実験I-1~I-5および実験II-1~II-5)。一方、液体bとして適度に希釈した硫酸を多孔質膜を介して旋回運動しているホウ酸緩衝液中に噴出した。ホウ酸緩衝液と希硫酸溶液の流量比(混合比)は、10:1および4:1であった。以上の実験をそれぞれ3回繰り返し行った。
 本例では、使用する反応液濃度を表1のとおりとし、生成した三ヨウ化物イオンが安定するように混合後の溶液のpHが8.5~9.5になるように調製した。三ヨウ化物イオンは353nmの吸収波長において定量した。吸光度が1.7以上となる場合は、反応系を蒸留水で希釈して吸光度を測定した後、稀釈倍率を乗じて吸光度を求めた。結果を表2に示す。
 [参考例2]
 製造例1で製造した装置において、円筒体10の導入管20側の末端を開放端とし、比較用の製造装置を準備した。当該開放端からホウ酸緩衝液を円筒体10の長手方向に流した以外は、参考例1と同様にして実験を行い、三ヨウ化物イオンを定量した(実験I-6~I-10および実験II-6~II-10)。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表2の結果から、参考例1で定量された三ヨウ化物イオンの量は、参考例2で定量された三ヨウ化物イオンの量よりも小さいことが明らかである。この結果から、本発明はミキシング効率が高いことが明らかである。
 [参考例3]ミキシング効率に及ぼす多孔質膜孔径の影響
 液体aの流量を毎分0.5L、1.0L、1.5L、2.0L、2.5Lとし、多孔質膜の平均孔径を1.1μm、2.1μm、4.9μmおよび10.1μm(実験番号III~VI)として、参考例1と同様にミキシング効率を評価した。液体aと液体bとの流量比はすべて10:1とした。本実施例で使用した試薬の濃度は表3のとおりであった。各実験で得られた三ヨウ化物イオンの吸光度を表4に示した。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 表4から、平均孔径が1.1~10.1μmのいずれの多孔質膜を用いても、ほぼ同様のミキシング効率が得られることが明らかである。
 [実施例1] 炭酸カルシウムの製造
 液体aとして0.15Mの炭酸ナトリウム溶液を液体bとして1.5Mの塩化カルシウム溶液を準備した。多孔質膜(SPG膜)の平均孔径は2.1μmのものを使用した。
 参考例1で製造した装置の導入管20から、液体aを毎分0.5L、1.0L、1.5Lの流量で流し、液体bを毎分それぞれ0.05L、0.1L、0.15Lの流量で多孔質膜を介して円筒体10内へ供給した。その結果、炭酸カルシウム懸濁液が得られた。当該懸濁液を12分間の超音波を照射し、微粒子の凝集を除去して分散させた後、懸濁粒子の粒度分布をレーザー回折式粒度分布測定装置(装置名wing-SALD 200、株式会社島津製作所製)により測定した。さらに、当該懸濁液を乾燥して炭酸カルシウム微粒子を単離し、金を蒸着して走査型電子顕微鏡(SEM)(装置名:JSM-5310、日本電子株式会社製)にて観察した(図4および図5)。製造条件および結果を表5に示す。
 [比較例1] 炭酸カルシウムの製造
 参考例2のように液体aを直線流とした以外は、実施例1と同様にして炭酸カルシウムを製造し評価した。結果を表5に示す。
Figure JPOXMLDOC01-appb-T000006
 実施例1において、旋回流の流量が毎分0.5L、1.0L、1.5Lのときに得られた炭酸カルシウムの平均粒子径は1.5μm、1.2μm、0.8μmとなった。よって、本発明により炭酸カルシウム微粒子が得られ、さらに旋回流の流速により生成する粒子径を制御できることが明らかとなった。また、得られた微粒子の粒子径分布スパン(D90-D10)/D50は1.1~1.3と多分散度が低く、かつスパンは旋回流流速の影響をほとんど受けないことも明らかとなった。実施例1の実験番号3において調製した炭酸カルシウム微粒子のSEM像を図4および図5に示した。
 比較例1において、直線流の流量が毎分0.5L、1.0L、1.5Lのときに得られた炭酸カルシウムの平均粒子径は9.4μm、8.0μm、5.8μmとなり、実施例1で得た炭酸カルシウムよりも粒子径が大きいことが明らかとなった。実施例1と比較例1の比較から、旋回流方式では炭酸カルシウム粒子サイズを粒子径で1/6~1/7、粒子体積としては約1/300に微細化できることが明らかとなった。比較例1の実験番号6において調製した炭酸カルシウム微粒子のSEM画像を図6および図7に示した。
 [実施例2]炭酸カルシウムの製造
 反応基質濃度の影響を検討するために、液体aの濃度を0.06、0.09、0.12、0.15mol/L、液体bの濃度を0.6,0.9,1.2,1.5mol/Lとした以外は、実施例1と同様に炭酸カルシウム微粒子の製造を行った。製造条件および結果を表6に示す。
Figure JPOXMLDOC01-appb-T000007
 表6の結果から、液体aと液体bの双方の濃度が高いと、平均粒子径のより小さな結晶微粒子が得られることが分かる。すなわち、炭酸イオンとカルシウムイオンが衝突するための移動距離が小さい方が平均粒子径のより小さい結晶微粒子を得るのに効果的であることがわかる。
 [実施例3]炭酸カルシウムの製造
 液体aと液体bの流量比の影響を検討するために、流量比を1:6、1:8および1:10とし、炭酸カルシウム生成に関して化学量論的に過不足無く反応が進行するように濃度を調整した以外は、実施例2と同様に炭酸カルシウム微粒子の製造を行った。製造条件および結果を表7に示す。
Figure JPOXMLDOC01-appb-T000008
 表7の結果から、流量比a:bが6:1よりも8:1あるいは10:1である方が、平均粒子径のより小さな結晶微粒子が得られることが分かる。逆に、スパンは両液の流量比が6:1の方が小さくなった。この結果は、旋回流の運動エネルギーが膜透過液によって減衰させられる程度が小さい方が微細な結晶を調製するのに効果的であることを示す。
 [実施例4]炭酸カルシウムの製造
 実施例3における旋回流として供給される反応基質と膜透過流として供給される反応基質を交換した場合の影響を検討した。すなわち、実施例3では液体aを0.15mol/LのNaCO水溶液、液体b(膜透過液)を1.5mol/LのCaCl水溶液としたが、本例では液体aを0.15mol/LのCaCl水溶液、液体bを1.5mol/LのNaCO水溶液とした。液体aと液体bの流量比および両液の流量は実施例3と同様にした。製造条件および結果を表8に示す。
Figure JPOXMLDOC01-appb-T000009
 実施例3と実施例4の結果を比較すると、旋回流と膜透過液の反応基質を入れ替えることにより製造される微結晶粒子のサイズおよびそのスパンが大きく異なることが判明した。これはカルシウムイオンと炭酸イオンの水中での移動度の違いに起因すると考えられる。すなわち、重炭酸イオンに比べて移動度が小さいカルシウムイオンが、重炭酸イオンと衝突するのに必要な拡散距離が短くてすむ膜透過流に含まれる方が、より粒子径の小さな結晶微粒子が得られることが分かる。
 1 本発明の製造装置
 10 円筒体
 100 円周面が多孔質膜で構成された多孔質膜部分
 101 円周面が他の部材で構成された非多孔質膜部分
 12 流入口
 14 排出口
 16 内壁面
 20 導入管
 22 部材
 30 排出管
 32 部材
 40 貯留部
 42 液体b導入管
 44 部材
 80 シールリング

Claims (6)

  1.  円周面の一部または全部が多孔質膜で構成される円筒体内に、反応基質Aを含む液体aの旋回流を流す旋回流生成工程、および
     前記多孔質膜を介して、前記反応基質Aと反応しうる反応基質Bを含む液体bを前記旋回流に供給して混合し、前記反応基質AとBとを反応させて結晶微粒子を析出させる反応工程を含む、
    結晶微粒子の製造方法。
  2.  前記円筒体が、一方の端近傍の円周面に液体aの流入口と、前記流入口から前記円筒体の軸に対して略垂直かつ前記円筒体の接線方向に延びる導入管とを有し、
     前記旋回流生成工程が、前記導入管を用いて、前記円筒体の軸に対して略垂直であってかつ前記円筒体の内壁面の接線方向から前記液体aを流入することにより、旋回流を流す工程である、請求項1記載の製造方法。
  3.  前記反応工程における結晶微粒子の平均粒子径が0.5~5μmである、請求項1または2に記載の製造方法。
  4.  前記結晶微粒子が、以下の式(1)で定義される、0.5~1.5のスパン:
     スパン=(d90-d10)/d50  ・・・(1)
      d10:粒子の積算分布10%における粒子径
      d90:粒子の積算分布90%における粒子径
      d50:粒子の積算分布50%における粒子径
    を有する、請求項3に記載の製造方法。
  5.  前記液体aの流量と前記液体bの流量との比(液体aの流量/液体bの流量)が、4~10である、請求項1~4のいずれかに記載の製造方法。
  6.  (1)円周面の一部または全部が多孔質膜で構成される円筒体であって、一方の端近傍の円周面に反応基質Aを含む液体aの流入口およびもう一方の端の断面に生成物の排出口を有する円筒体、
     前記液体aを前記円筒体の軸に略垂直かつ内壁面の接線方向から流入できるように、前記流入口に接続され、前記円筒体の軸に対して略垂直かつ前記円筒体の接線方向に延びる導入管、
     前記円筒体の円周面の外側に設けられた反応基質Bを含む液体bを貯留するための貯留部、ならびに
     前記貯留部から前記液体bを前記円筒体内に供給するための供給手段、
     を具備する装置を準備する工程をさらに含み、
     (2)旋回流生成工程が、前記導入管から前記液体aを円筒体内に導入して旋回流を発生させる工程であり、
     (3)前記反応工程が、前記多孔質膜を介して、前記液体bを前記旋回流に供給して混合し、前記反応基質AとBとを反応させて、結晶微粒子を析出させる工程である、
     請求項1に記載の製造方法。
PCT/JP2012/056997 2011-03-31 2012-03-19 ミキシング効率に優れる、結晶微粒子の製造方法およびその装置 WO2012132990A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP12764796.4A EP2692427B1 (en) 2011-03-31 2012-03-19 Method for producing fine crystal particles having excellent mixing efficiency
US14/005,432 US8979949B2 (en) 2011-03-31 2012-03-19 Fine crystal particle production method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011077036A JP5709130B2 (ja) 2011-03-31 2011-03-31 ミキシング効率に優れる、結晶微粒子の製造方法およびその装置
JP2011-077036 2011-03-31

Publications (1)

Publication Number Publication Date
WO2012132990A1 true WO2012132990A1 (ja) 2012-10-04

Family

ID=46930722

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/056997 WO2012132990A1 (ja) 2011-03-31 2012-03-19 ミキシング効率に優れる、結晶微粒子の製造方法およびその装置

Country Status (4)

Country Link
US (1) US8979949B2 (ja)
EP (1) EP2692427B1 (ja)
JP (1) JP5709130B2 (ja)
WO (1) WO2012132990A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014104369A1 (ja) * 2012-12-28 2014-07-03 旭硝子株式会社 球状粒子の製造方法
US20220032243A1 (en) * 2019-04-25 2022-02-03 Jgc Japan Corporation Fluid mixing unit and fluid mixing method

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2692422A4 (en) * 2011-03-31 2014-09-03 Univ Kyushu Nat Univ Corp METHOD AND DEVICE FOR PRODUCING A COMPOSITION COMPRISING A FINALLY DISPERSED DISPERSED PHASE IN A CONTINUOUS PHASE
KR101567451B1 (ko) * 2014-03-05 2015-11-09 주식회사 케이씨텍 초임계 반응기, 이를 이용한 연마입자의 제조 방법 및 연마입자의 제조 방법으로 제조된 연마입자
CN108465264A (zh) * 2018-04-09 2018-08-31 大连理工大学 一种新型连续制备可控生物分子晶体的方法
PL3787774T3 (pl) * 2018-05-02 2023-12-27 Climate Solutions Aps Trwałe przechowywanie ditlenku węgla
GB202201007D0 (en) * 2022-01-26 2022-03-09 Micropore Tech Ltd Methods for reactive crystallisation

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007268350A (ja) * 2006-03-30 2007-10-18 Toshiba Corp 微粒子の製造装置、乳化剤保持部、微粒子の製造方法および分子膜の製造方法
WO2008038763A1 (fr) * 2006-09-28 2008-04-03 Nakata Coating Co., Ltd. Appareil de production d'un écoulement tourbillonnaire, procédé de production d'un écoulement tourbillonnaire, appareil de génération de phase vapeur, appareil de génération de microbulles, mélangeur de fluides et buse d'injection de fluides
JP2008510607A (ja) * 2004-08-23 2008-04-10 アイトゲネシッシェ テヒニッシェ ホーホシューレ チューリッヒ 狭い滴径分布を有する微細な分散マイクロナノエマルジョンを機械的に保護しつつ形成する方法およびこの方法を実行する装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5405497A (en) 1990-08-28 1995-04-11 Kamyr, Inc. Method of chemically reacting a liquid with a gas in a vortex
GB2419100A (en) 2004-10-15 2006-04-19 Protensive Ltd Spinning disc reactor with cross-flow filtration or solvation
JP2008104942A (ja) * 2006-10-25 2008-05-08 Ebara Corp 流体処理装置及び方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008510607A (ja) * 2004-08-23 2008-04-10 アイトゲネシッシェ テヒニッシェ ホーホシューレ チューリッヒ 狭い滴径分布を有する微細な分散マイクロナノエマルジョンを機械的に保護しつつ形成する方法およびこの方法を実行する装置
JP2007268350A (ja) * 2006-03-30 2007-10-18 Toshiba Corp 微粒子の製造装置、乳化剤保持部、微粒子の製造方法および分子膜の製造方法
WO2008038763A1 (fr) * 2006-09-28 2008-04-03 Nakata Coating Co., Ltd. Appareil de production d'un écoulement tourbillonnaire, procédé de production d'un écoulement tourbillonnaire, appareil de génération de phase vapeur, appareil de génération de microbulles, mélangeur de fluides et buse d'injection de fluides

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
JOURNAL OF MEMBRANE SCIENCE, vol. 299, 2007, pages 190 - 199
JOURNAL OF MEMBRANE SCIENCE, vol. 328, 2009, pages 219 - 227
See also references of EP2692427A4
TRANSACTIONS OF THE JAPAN SOCIETY OF MECHANICAL ENGINEERS, SERIES B, vol. 58, no. 550, 1992, pages 1668 - 1673

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014104369A1 (ja) * 2012-12-28 2014-07-03 旭硝子株式会社 球状粒子の製造方法
JPWO2014104369A1 (ja) * 2012-12-28 2017-01-19 旭硝子株式会社 球状粒子の製造方法
US20220032243A1 (en) * 2019-04-25 2022-02-03 Jgc Japan Corporation Fluid mixing unit and fluid mixing method

Also Published As

Publication number Publication date
JP5709130B2 (ja) 2015-04-30
EP2692427A4 (en) 2014-09-03
US8979949B2 (en) 2015-03-17
JP2012210562A (ja) 2012-11-01
EP2692427A1 (en) 2014-02-05
EP2692427B1 (en) 2016-02-03
US20140072503A1 (en) 2014-03-13

Similar Documents

Publication Publication Date Title
JP5709130B2 (ja) ミキシング効率に優れる、結晶微粒子の製造方法およびその装置
Parmar et al. Microbubble generation and microbubble-aided transport process intensification—A state-of-the-art report
CN205850620U (zh) 微气泡发生器
CN101433815B (zh) 一种膜分散式微通道反应器
Bao et al. Micelle-template synthesis of hollow silica spheres for improving water vapor permeability of waterborne polyurethane membrane
Luo et al. Recent developments in microfluidic device-based preparation, functionalization, and manipulation of nano-and micro-materials
Wang et al. Enhancement of mixing and mass transfer performance with a microstructure minireactor for controllable preparation of CaCO3 nanoparticles
Tavakoli et al. Nanofluid preparation, stability and performance for CO2 absorption and desorption enhancement: A review
WO2016136762A1 (ja) 微細気泡生成装置
JP4931001B2 (ja) キャビテーション反応の加速方法及びそれを用いた金属ナノ粒子の生成方法
Stolzenburg et al. Microfluidic synthesis of metal oxide nanoparticles via the nonaqueous method
EP1382384B1 (en) Process for producing inorganic spheres
Sun et al. Gas–liquid reactive crystallization of lithium carbonate by a falling film column
JPWO2012133736A1 (ja) 連続相中に分散相が微分散した組成物の製造方法およびその装置
Pellegrino et al. Membrane processes in nanoparticle production
Makki et al. Hollow Microtubes and Shells from Reactant‐Loaded Polymer Beads
Jia et al. Full life circle of micro-nano bubbles: Generation, characterization and applications
Zhang et al. Acoustofluidic bubble-driven micromixers for the rational engineering of multifunctional ZnO nanoarray
Yang et al. Influence of viscosity on micromixing efficiency in a rotating packed bed with premixed liquid distributor
XIANG et al. Modeling of the precipitation process in a rotating packed bed and its experimental validation
Zhang et al. Process intensification of the ozone-liquid mass transfer in ultrasonic cavitation-rotational flow interaction coupled-field: Optimization and application
Yuan et al. Performance of slotted pores in particle manufacture using rotating membrane emulsification
CN1301590A (zh) 利用膜反应器合成纳米粒子的方法和设备
Raji et al. Effects of the microchannel shape upon droplet formations during synthesis of nanoparticles
JP5843089B2 (ja) 球形あるいは非球形ポリマー粒子の合成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12764796

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012764796

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14005432

Country of ref document: US