WO2012132903A1 - セルロースナノファイバーの製造方法 - Google Patents

セルロースナノファイバーの製造方法 Download PDF

Info

Publication number
WO2012132903A1
WO2012132903A1 PCT/JP2012/056557 JP2012056557W WO2012132903A1 WO 2012132903 A1 WO2012132903 A1 WO 2012132903A1 JP 2012056557 W JP2012056557 W JP 2012056557W WO 2012132903 A1 WO2012132903 A1 WO 2012132903A1
Authority
WO
WIPO (PCT)
Prior art keywords
cellulose
raw material
dispersion
oxidized
treatment
Prior art date
Application number
PCT/JP2012/056557
Other languages
English (en)
French (fr)
Inventor
志穂 辻
誠彦 深沢
宮脇 正一
知章 小柳
Original Assignee
日本製紙株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011074023A external-priority patent/JP5179616B2/ja
Application filed by 日本製紙株式会社 filed Critical 日本製紙株式会社
Priority to US14/008,682 priority Critical patent/US9139662B2/en
Priority to EP12764646.1A priority patent/EP2692739B1/en
Priority to CA2831897A priority patent/CA2831897C/en
Publication of WO2012132903A1 publication Critical patent/WO2012132903A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B15/00Preparation of other cellulose derivatives or modified cellulose, e.g. complexes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B15/00Preparation of other cellulose derivatives or modified cellulose, e.g. complexes
    • C08B15/02Oxycellulose; Hydrocellulose; Cellulosehydrate, e.g. microcrystalline cellulose
    • C08B15/04Carboxycellulose, e.g. prepared by oxidation with nitrogen dioxide
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F2/00Monocomponent artificial filaments or the like of cellulose or cellulose derivatives; Manufacture thereof
    • D01F2/02Monocomponent artificial filaments or the like of cellulose or cellulose derivatives; Manufacture thereof from solutions of cellulose in acids, bases or salts
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C9/00After-treatment of cellulose pulp, e.g. of wood pulp, or cotton linters ; Treatment of dilute or dewatered pulp or process improvement taking place after obtaining the raw cellulosic material and not provided for elsewhere
    • D21C9/001Modification of pulp properties
    • D21C9/002Modification of pulp properties by chemical means; preparation of dewatered pulp, e.g. in sheet or bulk form, containing special additives
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C9/00After-treatment of cellulose pulp, e.g. of wood pulp, or cotton linters ; Treatment of dilute or dewatered pulp or process improvement taking place after obtaining the raw cellulosic material and not provided for elsewhere
    • D21C9/001Modification of pulp properties
    • D21C9/007Modification of pulp properties by mechanical or physical means
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H11/00Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only
    • D21H11/16Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only modified by a particular after-treatment
    • D21H11/18Highly hydrated, swollen or fibrillatable fibres
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H11/00Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only
    • D21H11/16Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only modified by a particular after-treatment
    • D21H11/20Chemically or biochemically modified fibres

Definitions

  • the present invention relates to a method for efficiently producing cellulose nanofibers with low energy.
  • TEMPO 2,2,6,6-tetramethyl-1-piperidine-N-oxy radical
  • sodium hypochlorite an inexpensive oxidizing agent sodium hypochlorite
  • Carboxyl groups can be efficiently introduced onto the surface of cellulose microfibrils. It is known that when this cellulose-based raw material into which carboxyl groups have been introduced is treated with a mixer or the like in water, a highly viscous and transparent cellulose nanofiber aqueous dispersion can be obtained (Non-Patent Document 1, Patent Documents 1 and 2). ).
  • Cellulose nanofiber is a new biodegradable water-dispersed material. Moreover, since the carboxyl group is introduce
  • a dispersion of cellulose-based raw material oxidized using TEMPO is treated using a mixer, and the oxidized cellulose-based raw material is defibrated.
  • the viscosity of the dispersion becomes extremely high during the treatment and it is difficult to perform an efficient defibration treatment.
  • the dispersion proceeds only around the stirring blades of the mixer, which causes a problem of non-uniform dispersion.
  • the concentration of the oxidized cellulose raw material in the dispersion is as low as 0.3 to 0.5% (w / v)
  • the B-type viscosity (60 rpm, 20 ° C.) is 800 to 4000 mPa ⁇ s. It was sometimes high. For this reason, the present inventors tried defibrating using a homogenizer having higher defibrating and dispersing power than a mixer. However, it was still observed that the cellulosic raw material was remarkably thickened at the initial stage of dispersion to deteriorate the fluidity, and the power consumption required for the dispersion treatment was increased. Furthermore, since the cellulose nanofiber dispersion liquid adheres to the inside of the apparatus, sufficient dispersion cannot be performed, and operations such as taking out the dispersion liquid from the apparatus become difficult, and the yield of the dispersion liquid may be reduced.
  • cellulose nanofibers are applied to various applications in the state of dispersion.
  • the concentration of cellulose nanofibers in the cellulose nanofiber dispersion is preferably high from the viewpoint of increasing the amount of cellulose nanofibers in the coating film.
  • the concentration of cellulose nanofibers in the cellulose nanofiber dispersion is preferably high from the viewpoint of increasing the amount of cellulose nanofibers in the coating film.
  • the concentration of cellulose nanofibers in the cellulose nanofiber dispersion is preferably high from the viewpoint of increasing the amount of cellulose nanofibers in the coating film.
  • the present invention provides a low-cost and efficient method capable of producing a cellulose nanofiber dispersion having excellent fluidity, that is, low viscosity, and preferably high transparency, with low energy. Is an issue.
  • step A oxidizing a cellulosic material using an N-oxyl compound such as TEMPO
  • step B a step of defibrating
  • step C a step of treatment under alkaline conditions
  • (A) Cellulose-based raw material is oxidized using (a3) an oxidant in the presence of (a1) an N-oxyl compound and (a2) a compound selected from the group consisting of bromide, iodide or a mixture thereof.
  • (B) A cellulose nanofiber comprising a step of preparing a dispersion containing the oxidized cellulose-based material obtained in the step A, and defibrating the oxidized cellulose-based material while dispersing the oxidized cellulose-based material in a dispersion medium.
  • step C a step of treating under alkaline conditions, wherein the step C comprises: (C-1) a step of treating the cellulosic material in water having a hydroxide ion concentration of 0.75 to 3.75 mol / L before step A; and (C-2) step A and step B; A step of hydrolyzing the oxidized cellulose raw material obtained in step A in an alkaline solution having a pH of 8 to 14, The method of claim 1, wherein the method is at least one of:
  • a cellulose nanofiber dispersion having excellent fluidity, that is, low viscosity and preferably high transparency can be efficiently produced with low energy.
  • the production method of the present invention comprises (A) a cellulose-based raw material comprising (a1) an N-oxyl compound and (a2) a compound selected from the group consisting of bromide, iodide or a mixture thereof. In the presence, (a3) a step of oxidizing using an oxidizing agent, (B) preparing a dispersion containing the oxidized cellulose-based material obtained in the above-mentioned step A, and dispersing the oxidized cellulose-based material in a dispersion medium
  • the method comprising a step of defibrating to form a nanofiber, and further comprising a step of (C) a treatment under alkaline conditions.
  • Cellulose-based raw material The cellulose-based raw material used in the present invention is not particularly limited, and kraft pulp or sulfite pulp derived from various woods, powdered cellulose obtained by pulverizing them with a high-pressure homogenizer or a mill, or chemical treatment such as acid hydrolysis.
  • purified by can be used.
  • plant-derived cellulosic materials such as kenaf, hemp, rice, bacus, and bamboo can also be used. However, if a large amount of lignin remains in the cellulosic raw material, there is a risk of inhibiting the oxidation reaction of the raw material.
  • a cellulosic raw material obtained by a chemical pulp production method it is preferable to use a cellulosic raw material obtained by a chemical pulp production method.
  • a known bleaching treatment it is more preferable to subject the cellulosic raw material thus obtained to a known bleaching treatment.
  • chlorine treatment C
  • chlorine dioxide bleaching D
  • alkali extraction E
  • hypochlorite bleaching H
  • hydrogen peroxide bleaching P
  • alkaline hydrogen peroxide treatment stage Ep
  • alkaline hydrogen peroxide / oxygen treatment stage Eop
  • ozone treatment Z
  • chelate treatment Q
  • C C
  • DEHHD ZEDP
  • Z / D-Ep-D Z / D-Ep-DP
  • D-Ep-D D-Ep-DP
  • D-Ep-PD D-Eop-DD
  • Z / D-Eop-D Z / D-Eop-DED
  • Z chelate treatment
  • the amount of lignin in the cellulosic raw material is preferably small, and the cellulosic raw material (bleached kraft pulp, bleached sulfite pulp) obtained by using the pulping treatment and the bleaching treatment has a whiteness (ISO 2470) of 80. % Or more is more preferable.
  • powdered cellulose, microcrystalline cellulose powder, or bleached kraft pulp or bleached sulfite pulp having a whiteness (ISO 2470) of 80% or more it is preferable to use powdered cellulose or microcrystalline cellulose powder because cellulose nanofibers can be produced which give a dispersion having a lower viscosity even at a high concentration.
  • a cellulose-based raw material derived from hardwood is also preferable because it can produce cellulose nanofibers that give a low-viscosity dispersion with low power consumption.
  • Powdered cellulose is a rod-like particle made of microcrystalline cellulose obtained by removing a non-crystalline part of wood pulp by acid hydrolysis, and then pulverizing and sieving.
  • the degree of polymerization of cellulose in powdered cellulose is about 100 to 500
  • the degree of crystallinity of powdered cellulose by X-ray diffraction is 70 to 90%
  • the volume average particle size by a laser diffraction type particle size distribution analyzer is preferably 100 ⁇ m. Or less, more preferably 50 ⁇ m or less.
  • the volume average particle diameter is 100 ⁇ m or less, a cellulose nanofiber dispersion excellent in fluidity can be obtained.
  • the powdered cellulose used in the present invention for example, an undegraded residue obtained after acid hydrolysis of a selected pulp is dried, crushed and sieved, and a rod shaft shape having a certain particle size distribution is obtained.
  • the crystalline cellulose powder can be used.
  • commercially available products such as KC Flock (registered trademark) (manufactured by Nippon Paper Chemical Co., Ltd.), Theolas (trademark) (manufactured by Asahi Kasei Chemicals Corporation), and Avicel (registered trademark) (manufactured by FMC) may be used.
  • KC Flock registered trademark
  • Theolas trademark
  • Avicel registered trademark
  • step A the cellulosic material is used with (a3) an oxidizing agent in the presence of (a1) an N-oxyl compound and (a2) a compound selected from the group consisting of bromide, iodide or a mixture thereof. Oxidize.
  • N-oxyl compound (a1) An N-oxyl compound refers to a compound capable of generating a nitroxy radical.
  • any compound can be used as long as it promotes the target oxidation reaction.
  • the N-oxyl compound used in the present invention includes a compound represented by the following general formula (Formula 1).
  • R 1 to R 4 are the same or different and each represents an alkyl group having about 1 to 4 carbon atoms.
  • TEMPO 2,2,6,6-tetramethyl-1-piperidine-oxy radical
  • the N-oxyl compound represented by any one of the following formulas 2 to 4 that is, the hydroxyl group of 4-hydroxy TEMPO was etherified with alcohol or esterified with carboxylic acid or sulfonic acid to impart moderate hydrophobicity.
  • 4-Acetamide TEMPO which is obtained by acetylating the amino group of 4-hydroxy TEMPO derivative or 4-amino TEMPO represented by the following formula 5 and imparting appropriate hydrophobicity, is inexpensive and provides uniform oxidized cellulose. Is particularly preferable.
  • R is a straight or branched carbon chain having 4 or less carbon atoms.
  • an N-oxyl compound represented by the following formula 6, that is, an azaadamantane type nitroxy radical, is preferable because it can efficiently oxidize a cellulosic raw material in a short time and produce a cellulose nanofiber having a high degree of polymerization.
  • R 5 and R 6 are the same or different and each represents hydrogen or a C 1 -C 6 linear or branched alkyl group.
  • the amount of the N-oxyl compound used is not particularly limited as long as it is a catalyst amount that can promote the oxidation reaction to such an extent that the cellulose raw material can be converted into nanofibers.
  • 0.01 to 10 mmol is preferable, 0.01 to 1 mmol is more preferable, and 0.05 to 0.5 mmol is even more preferable with respect to 1 g of cellulosic raw material.
  • Bromide or iodide refers to a compound containing bromine, examples of which include alkali metal bromides that can dissociate and ionize in water.
  • iodide refers to a compound containing iodine, and examples thereof include alkali metal iodide.
  • the amount of bromide or iodide used can be selected as long as the oxidation reaction can be promoted.
  • the total amount of bromide and iodide is, for example, preferably from 0.1 to 100 mmol, more preferably from 0.1 to 10 mmol, and even more preferably from 0.5 to 5 mmol, based on 1 g of completely dry cellulosic raw material.
  • Oxidizing agent (a3) As the oxidizing agent used in oxidizing the cellulosic raw material, known ones can be used, for example, halogen, hypohalous acid, halous acid, perhalogen acid or salts thereof, halogen oxide, peroxide, etc. Can be used. Among these, from the viewpoint of cost, sodium hypochlorite, which is the most widely used in industrial processes and has a low environmental load, is particularly suitable. An appropriate amount of the oxidizing agent can be selected as long as the oxidation reaction can be promoted. For example, 0.5 to 500 mmol, preferably 0.5 to 50 mmol, more preferably 2.5 to 25 mmol, and more preferably about 5 to 20 mmol can be used for 1 g of cellulosic raw material.
  • Step A Conditions for oxidation reaction of cellulosic raw material
  • the reaction temperature may be a room temperature of about 15 to 30 ° C.
  • an alkaline solution such as an aqueous sodium hydroxide solution is added to maintain the pH of the reaction solution at about 9 to 12, preferably about 10 to 11.
  • the reaction medium is preferably water because it is easy to handle and hardly causes side reactions.
  • the reaction time in the oxidation reaction can be appropriately set according to the progress of the oxidation, and is usually 0.5 to 6 hours, for example, about 0.5 to 4 hours. However, when Step C-1 described below is performed, the oxidation time can be reduced, and therefore the reaction time is preferably 30 minutes to 120 minutes, more preferably 30 to 100 minutes, and even more preferably 30 to 70 minutes.
  • the oxidation reaction may be carried out in two stages. For example, oxidized cellulose obtained by filtration after the completion of the first-stage reaction is oxidized again under the same or different reaction conditions, so that the cellulose is not subject to reaction inhibition by a salt produced as a by-product in the first-stage reaction.
  • the carboxyl group can be efficiently introduced into the system material, and the oxidation of the cellulosic material can be promoted.
  • the amount of carboxyl groups of the oxidized cellulose raw material is 1.0 mmol / g or more with respect to the absolute dry mass of the cellulose raw material.
  • the carboxyl group amount is more preferably 1.0 mmol / g to 3.0 mmol / g, further preferably 1.4 mmol / g to 3.0 mmol / g, particularly preferably 1.5 mmol / g to 2.5 mmol. / G.
  • the amount of the carboxyl group can be adjusted by adjusting the oxidation reaction time, adjusting the oxidation reaction temperature, adjusting the pH during the oxidation reaction, adjusting the addition amount of the N-oxyl compound, bromide, iodide, or oxidizing agent.
  • step A From the standpoint of efficiently performing the next step B (or step C-2 when performing step C-2) and avoiding side reactions, the oxidized cellulose-based raw material obtained in step A is washed. It is preferable.
  • Step B a dispersion is prepared by dispersing the oxidized cellulose-based material obtained in Step A (or Step C-2 when Step C-2 is performed), and the oxidized cellulose-based material is used as a dispersion medium. While being dispersed, it is defibrated into nanofibers.
  • “To make nanofiber” means processing a cellulose-based raw material into cellulose nanofiber which is a single microfibril of cellulose having a width of 2 to 5 nm and a length of about 100 to 5000 nm, preferably about 1 to 5 ⁇ m. Means.
  • a dispersion is a liquid in which the oxidized cellulose-based material is dispersed in a dispersion medium.
  • the dispersion medium is preferably water.
  • a strong shearing force is applied to the dispersion using a high-speed rotating type, colloid mill type, high pressure type, roll mill type, ultrasonic type device, etc. It is preferable to apply.
  • a wet high-pressure or ultrahigh-pressure homogenizer that can apply a pressure of 50 MPa or more to the dispersion and can apply a strong shearing force.
  • the pressure is more preferably 100 MPa or more, and further preferably 140 MPa or more.
  • the concentration of the oxidized cellulose raw material in the dispersion used for defibration is preferably 0.3% (w / v) or more. More preferably, it is 1 to 50% (w / v).
  • the content is preferably 1 to 2% (w / v), more preferably 3 to 5% (w / v).
  • Step C-2 described later is carried out, even if the concentration of the oxidized cellulose raw material is increased, the viscosity of the system does not increase during defibration, so 2 to 10% (w / v) is more preferable.
  • Step C in addition to the said process A and B, the process of processing under (C) alkaline conditions is included.
  • Step C includes at least one of the following steps: (C-1) a step of treating the cellulosic raw material in water having a hydroxide ion concentration of 0.75 to 3.75 mol / L before step A; and (C-2) steps A and B In the meantime, a step of hydrolyzing the oxidized cellulose raw material obtained in step A in an alkaline solution having a pH of 8 to 14.
  • Step C-1 is a step performed before Step A, and the cellulosic material is treated in water having a hydroxide ion concentration of 0.75 to 3.75 mol / L.
  • this treatment is also simply referred to as “alkali treatment”.
  • the alkali treatment can be performed by dispersing the cellulose-based raw material in water, adding an alkali to the aqueous dispersion to adjust the hydroxide ion concentration in the water to the above range, and stirring the reaction solution.
  • the alkali treatment can be performed by dispersing the cellulose-based material in water having a hydroxide ion concentration prepared in advance.
  • Alkali treatment can efficiently produce cellulose nanofibers that give a dispersion with excellent transparency and low viscosity, and the mechanism is considered as follows.
  • cellulosic raw materials have a relatively strong bond between cellulose molecules and cellulose fibers via hydrogen bonds.
  • the cellulosic raw material When the cellulosic raw material is treated with an alkali, the cellulosic raw material swells to weaken hydrogen bonds, and a somewhat large void is formed between cellulose molecules and cellulose fibers.
  • the oxidant used in the next step A easily penetrates through the voids, and the oxidation of the cellulosic material is promoted.
  • bleached kraft pulp or bleached sulfite pulp is used as the cellulosic raw material, hemicellulose covering the cellulose microfibril surface is eluted with alkali.
  • the microfibril surface is exposed and oxidation in the next step A is promoted.
  • the oxidation reactivity of the cellulosic material is increased, the oxidation reaction proceeds in a short time, and many carboxyl groups are introduced.
  • the amount of carboxyl groups is increased in this way, the oxidized cellulose-based raw material can be easily defibrated and dispersed in a dispersion medium, and nanodispersibility is improved.
  • the transparency of the cellulose nanofiber dispersion is increased.
  • the oxidation reactivity becomes high in the step A, a portion where the carboxyl group is generated and the pH is locally reduced is generated.
  • hypochlorous acid is generated from sodium hypochlorite in the reaction solution.
  • Hypochlorous acid oxidizes and decomposes cellulose, so that the degree of polymerization is reduced.
  • the viscosity of the cellulose nanofiber dispersion is significantly reduced.
  • each condition in the step C-1 is selected so as to maximize the above-mentioned effect.
  • the alkali that can be used in Step C-1 is not particularly limited as long as it is water-soluble, and includes inorganic alkalis such as sodium hydroxide, potassium hydroxide, calcium hydroxide, and sodium carbonate, tetramethylammonium hydroxide, tetraethylammonium hydroxide, and the like.
  • An organic alkali etc. are mentioned.
  • sodium hydroxide is preferable because it is easily available and relatively inexpensive.
  • an aqueous solution containing a plurality of alkalis such as white liquor and green liquor produced in a pulp factory and other components can also be used.
  • the hydroxide ion concentration in the water is 0.75 to 3.75 mol / L, preferably 1.25 to 2.5 mol / L.
  • the hydroxide ion concentration exceeds 3.75 mol / L the alkali becomes excessive, and the cellulosic raw material is remarkably shortened after the oxidation reaction in the next step A, making cleaning difficult.
  • the condition that the hydroxide ion concentration exceeds 3.75 mol / L corresponds to the general condition (the sodium hydroxide concentration is 15% by mass or more) for producing carboxymethyl cellulose by mercerizing the cellulose-based raw material. Most of the cellulosic material is mercerized to produce carboxymethylcellulose.
  • the mercerized raw material becomes polyseurouronic acid by the oxidation reaction in the next step A and dissolves in water, so that cellulose nanofibers are not generated.
  • the hydroxide ion concentration is less than 0.75 mol / L, the alkali concentration is low and the removal of hemicellulose becomes insufficient.
  • the hydroxide ion concentration in the alkaline extraction (E), alkaline hydrogen peroxide treatment stage (Ep), and alkaline hydrogen peroxide / oxygen treatment stage (Eop) performed during bleaching of the pulp is 0.01 to 0. .About.08 mol / L, which is distinguished from the alkali treatment in Step C-1.
  • the alkali treatment may be carried out under atmospheric pressure, under pressure, or under reduced pressure.
  • the treatment temperature is preferably 0 ° C. to 100 ° C., more preferably 10 ° C. to 60 ° C., and further preferably 20 ° C. to 40 ° C.
  • the treatment time is preferably 5 minutes to 24 hours, more preferably 15 minutes to 12 hours, and even more preferably 30 minutes to 6 hours.
  • the concentration of the cellulose-based raw material is preferably 0.1 to 50% by mass in the reaction mixture, more preferably 1 to 30% by mass, and further preferably 2 to 20% by mass.
  • the cellulosic raw material treated in step C-1 is preferably neutralized and washed.
  • Step C-2 is a step performed after Step A and before Step B.
  • the oxidized cellulose-based material obtained in Step A (hereinafter also simply referred to as “oxidized cellulose-based material”) is adjusted to pH 8-14. Hydrolyzes in alkaline solution.
  • step C-2 water is preferably used as a reaction medium in order to suppress side reactions.
  • an oxidizing agent or a reducing agent is preferably used as an auxiliary agent.
  • the oxidizing agent or reducing agent those having activity in the alkaline region of pH 8-14 can be used.
  • the oxidizing agent include oxygen, ozone, hydrogen peroxide, and hypochlorite, and two or more of these may be used in combination.
  • an oxidizing agent that generates radicals such as ozone
  • oxygen, hydrogen peroxide, hypochlorite and the like that do not easily generate radicals are preferable, and hydrogen peroxide is particularly preferable from the viewpoint of preventing coloring.
  • hydrogen peroxide is more preferably used alone.
  • the reducing agent used in the present invention include sodium borohydride, hydrosulfite, and sulfite, and two or more of these may be used in combination.
  • the amount of the auxiliary added is preferably 0.1 to 10% by mass, more preferably 0.3 to 5% by mass, and more preferably 0.5 to 2% by mass with respect to the absolutely dry oxidized cellulose raw material. Is more preferable.
  • the pH of the reaction solution in the hydrolysis reaction is preferably 8 to 14, more preferably 9 to 13, and still more preferably 10 to 12. If the pH is less than 8, sufficient hydrolysis does not occur, and the energy required for Step B may not be reduced. Moreover, when pH exceeds 14, although a hydrolysis will progress, the problem that the oxidized cellulose raw material after a hydrolysis may color arises.
  • the alkali used for adjusting the pH may be water-soluble, but sodium hydroxide is optimal from the viewpoint of production cost.
  • the temperature is preferably 40 to 120 ° C, more preferably 50 to 100 ° C, and further preferably 60 to 90 ° C. If the temperature is low, sufficient hydrolysis does not occur, and the energy required for Step B may not be reduced.
  • the reaction time for hydrolysis is preferably 0.5 to 24 hours, more preferably 1 to 10 hours, and further preferably 2 to 6 hours.
  • the concentration of the oxidized cellulose raw material in the reaction solution is preferably 1 to 20% by mass, more preferably 3 to 15% by mass, and further preferably 5 to 10% by mass.
  • Hydrolysis in an alkaline solution having a pH of 8 to 14 can reduce the energy required for defibration in Step B.
  • the reason is presumed as follows. A carboxyl group is scattered in the amorphous region of the cellulose-based raw material oxidized with the N-oxyl compound, and the hydrogen at the C6 position where the carboxyl group is present is attracted by the carboxyl group. As a result, the electric charge is deficient. Therefore, the hydrogen is easily extracted by hydroxide ions under alkaline conditions of pH 8-14. Then, the cleavage reaction of the glucoside bond by ⁇ elimination proceeds, and the oxidized cellulose raw material is shortened.
  • the viscosity of the dispersion containing the raw material can be lowered.
  • the energy required for defibration in step B is reduced.
  • the hydrolysis is simply carried out under alkaline conditions, the cellulosic material tends to be colored yellow. This is thought to be because a double bond is generated during ⁇ elimination.
  • this double bond can be removed by oxidation or reduction, so that coloring can be suppressed.
  • coloring is unlikely to occur.
  • step A and step B steps A and step B
  • the oxidized cellulose-based raw material obtained in step A or the hydrolyzed product obtained in step C-2).
  • the decomposed oxidized cellulose-based raw material may be subjected to a viscosity reduction treatment by a method different from the method of Step C.
  • the low viscosity treatment is to further moderately break the cellulose chain of the oxidized cellulose raw material (shortening the cellulose chain).
  • the viscosity reduction treatment can be said to be a treatment for obtaining a cellulosic raw material that gives a low-viscosity dispersion.
  • the viscosity-reducing treatment may be any treatment that lowers the viscosity of the oxidized cellulose-based raw material, such as a treatment of irradiating the oxidized cellulose-based raw material with ultraviolet rays, a treatment of oxidizing and decomposing the raw material with hydrogen peroxide and ozone, Examples thereof include a treatment for hydrolyzing the raw material with an acid, and combinations thereof.
  • the wavelength of the ultraviolet rays is preferably 100 to 400 nm, more preferably 100 to 300 nm.
  • ultraviolet rays having a wavelength of 135 to 260 nm are particularly preferred because they directly act on cellulose and hemicellulose to cause low molecular weight and shorten the oxidized cellulose raw material.
  • a light source capable of irradiating light in a wavelength region of 100 to 400 nm may be used.
  • Specific examples thereof include a xenon short arc lamp, an ultra-high pressure mercury lamp, a high-pressure mercury lamp, a low-pressure mercury lamp, a deuterium lamp, a metal halide lamp, and the like, and one or more of these can be used in any combination.
  • ultraviolet rays having different wavelengths can be simultaneously irradiated to increase the number of cellulose chains and hemicellulose chains to be cut, thereby facilitating shortening of the fibers.
  • a container made of hard glass can be used as a container for containing the oxidized cellulose-based raw material when performing ultraviolet irradiation.
  • ultraviolet rays having a shorter wavelength In this case, it is preferable to use a quartz glass container that transmits UV light more.
  • a material having little deterioration with respect to the wavelength of the ultraviolet rays may be appropriately selected.
  • the concentration of the oxidized cellulose-based raw material in the dispersion is preferably 0.1% by mass or more.
  • the concentration is preferably 12% by mass or less in order to maintain good fluidity of the oxidized cellulose-based raw material in the ultraviolet irradiation apparatus and increase the reaction efficiency. Therefore, the concentration of the oxidized cellulose raw material in the dispersion is preferably 0.1 to 12% by mass, more preferably 0.5 to 5% by mass, and further preferably 1 to 3% by mass.
  • the reaction temperature is preferably 20 ° C or higher.
  • the reaction temperature is preferably 95 ° C. or lower. Accordingly, the reaction temperature is preferably 20 to 95 ° C, more preferably 20 to 80 ° C, and further preferably 20 to 50 ° C. Further, when the reaction temperature is within this range, there is an advantage that it is not necessary to design an apparatus in consideration of pressure resistance.
  • the pH of the system in the reaction is not limited, but in view of simplification of the process, a neutral region, for example, about pH 6.0 to 8.0 is preferable.
  • the degree of ultraviolet irradiation can be arbitrarily set by adjusting the residence time of the oxidized cellulose raw material in the irradiation reaction apparatus or the energy amount of the irradiation light source. For example, by adjusting the concentration of the oxidized cellulose-based material dispersion in the irradiation device with water, etc., or by diluting with an inert gas such as air or nitrogen, the amount of ultraviolet radiation received by the oxidized cellulose-based material is adjusted. it can. These conditions are appropriately selected in order to obtain the desired quality of the raw material after treatment (fiber length, cellulose polymerization degree, etc.).
  • the ultraviolet irradiation treatment is carried out in the presence of an auxiliary agent such as oxygen, ozone, or peroxide (hydrogen peroxide, peracetic acid, sodium percarbonate, sodium perborate, etc.), the efficiency of the photooxidation reaction is further improved. Since it can raise, it is preferable.
  • an auxiliary agent such as oxygen, ozone, or peroxide (hydrogen peroxide, peracetic acid, sodium percarbonate, sodium perborate, etc.)
  • ozone is generated from oxygen in the air normally present in the gas phase around the light source, and this ozone is preferably used as an auxiliary agent.
  • the ozone generated by continuously supplying air to the periphery of the light source is continuously extracted, and ozone is supplied from outside the system by injecting the extracted ozone into the oxidized cellulose raw material.
  • ozone can be used as an auxiliary for the photo-oxidation reaction.
  • a larger amount of ozone can be generated in the system by supplying oxygen to the gas phase around the light source.
  • ozone that is secondarily generated in the ultraviolet irradiation reactor can be used.
  • the ultraviolet irradiation treatment can be repeated multiple times.
  • the number of repetitions can be appropriately set according to the quality of the raw material after the treatment and the relationship with the post-treatment such as bleaching.
  • ultraviolet rays of 100 to 400 nm, preferably 135 to 260 nm can be irradiated 1 to 10 times, preferably 2 to 5 times.
  • the irradiation time per time is preferably 0.5 to 10 hours, and more preferably 0.5 to 3 hours.
  • Oxidative decomposition with hydrogen peroxide and ozone Ozone used in the treatment can be generated by a known method using an ozone generator using air or oxygen as a raw material.
  • a dispersion obtained by dispersing an oxidized cellulose-based material in a dispersion medium such as water for the reaction it is preferable to use a dispersion obtained by dispersing an oxidized cellulose-based material in a dispersion medium such as water for the reaction.
  • the amount (mass) of ozone used in the present invention is preferably 0.1 to 3 times the absolute dry mass of the oxidized cellulose raw material.
  • the amount of ozone used is at least 0.1 times the absolute dry mass of the oxidized cellulose-based material, the amorphous part of the cellulose can be sufficiently decomposed, greatly increasing the energy required for defibration and dispersion treatment in Step B. Can be reduced.
  • the amount of ozone used is excessively large, excessive decomposition of cellulose can occur, but when the amount used is three times or less the absolute dry mass of the oxidized cellulose-based raw material, excessive decomposition can be suppressed. Therefore, the amount of ozone used is more preferably 0.3 to 2.5 times, and even more preferably 0.5 to 1.5 times the absolute dry mass of the oxidized cellulose raw material.
  • the amount (mass) of hydrogen peroxide used is preferably 0.001 to 1.5 times the absolute dry mass of the oxidized cellulose material.
  • hydrogen peroxide is used in an amount 0.001 times or more that of the oxidized cellulose raw material, a synergistic action between ozone and hydrogen peroxide occurs, and an efficient reaction becomes possible.
  • the amount of hydrogen peroxide used is more preferably 0.1 to 1.0 times the absolute dry mass of the oxidized cellulose raw material.
  • the pH of the system in the oxidative decomposition treatment with ozone and hydrogen peroxide is preferably 2 to 12, more preferably 4 to 10, and even more preferably 6 to 8.
  • the temperature is preferably 10 to 90 ° C, more preferably 20 to 70 ° C, and further preferably 30 to 50 ° C.
  • the treatment time is preferably 1 to 20 hours, more preferably 2 to 10 hours, and further preferably 3 to 6 hours.
  • a device for performing treatment with ozone and hydrogen peroxide a commonly used device can be used. Examples include a conventional reactor equipped with a reaction chamber, a stirrer, a chemical injector, a heater, and a pH electrode.
  • the treatment with ozone and hydrogen peroxide is carried out immediately before the process B, the ozone and hydrogen peroxide remaining in the aqueous solution effectively work even in the defibrating process in the process B, so that the cellulose nanometer that gives a dispersion having a lower viscosity Fiber can be produced and is preferred.
  • an acid is added to the oxidized cellulose raw material to hydrolyze the cellulose chain (acid hydrolysis treatment).
  • the acid it is preferable to use a mineral acid such as sulfuric acid, hydrochloric acid, nitric acid, or phosphoric acid.
  • a dispersion in which an oxidized cellulose-based raw material is dispersed in a dispersion medium such as water.
  • the conditions for the acid hydrolysis treatment may be any conditions that allow the acid to act on the amorphous part of the cellulose.
  • the amount of acid added is preferably 0.01 to 0.5% by mass, more preferably 0.1 to 0.5% by mass, based on the absolutely dry mass of the oxidized cellulose raw material. It is preferable for the amount of acid added to be 0.01% by mass or more since the hydrolysis of cellulose proceeds and the processing efficiency in step B is improved. Moreover, the excessive hydrolysis of a cellulose can be prevented as the said addition amount is 0.5 mass% or less, and the fall of the yield of a cellulose nanofiber can be prevented.
  • the pH of the reaction solution during acid hydrolysis is preferably 2.0 to 4.0, more preferably 2.0 or more and less than 3.0.
  • the alkali used in Step C-2 remains in the dispersion medium of the oxidized cellulose raw material, it is preferable to adjust the pH of the system within the above range by appropriately increasing the amount of acid added. From the viewpoint of reaction efficiency, the reaction is preferably carried out at a temperature of 70 to 120 ° C. for 1 to 10 hours.
  • the reason why the reduced viscosity of the oxidized cellulose raw material can be efficiently carried out by the acid hydrolysis treatment is presumed as follows. As described above, the carboxyl group is localized on the surface of the cellulosic raw material oxidized with the N-oxyl compound, a hydration layer is formed, and the raw materials are close to each other to form a network. ing. When an acid is added to the raw material and hydrolysis is performed, the balance of charges in the network is lost, a strong network of cellulose molecules is lost, the specific surface area of the raw material is increased, and shortening of the raw material is promoted. Cellulosic raw materials are reduced in viscosity.
  • Cellulose nanofibers produced by the present invention are single microfibrils of cellulose having a width of 2 to 5 nm and a length of about 1000 to 5000 nm, preferably about 1 to 5 ⁇ m.
  • the cellulose nanofiber obtained by the present invention has a B-type viscosity (60 rpm, 20 ° C.) in an aqueous dispersion having a concentration of 1.0% (w / v) of 1000 mPa ⁇ s or less, preferably 700 mPa ⁇ s or less, preferably 500 mPa ⁇ s or less, preferably 300 mPa ⁇ s or less, more preferably 100 mPa ⁇ s or less.
  • the B-type viscosity in an aqueous dispersion having a concentration of 2% (w / v) is preferably 2000 mPa ⁇ s or less, and more preferably 1000 mPa ⁇ s or less.
  • the B-type viscosity in an aqueous dispersion having a concentration of 2% (w / v) is 2000 mPa ⁇ s or less, it has excellent miscibility with various pigments, binders, and resins, and is further 1000 mPa ⁇ s or less.
  • a coating layer having a certain thickness or more and excellent surface properties can be obtained efficiently.
  • the lower limit of the B-type viscosity is not particularly limited, but is usually about 1 mPa ⁇ s or more, or about 5 mPa ⁇ s or more.
  • the B-type viscosity can be measured using a normal B-type viscometer. For example, it can be measured using a TV-10 viscometer manufactured by Toki Sangyo Co., Ltd. under the conditions of 20 ° C. and 60 rpm.
  • the transparency of the resulting dispersion of cellulose nanofibers is high.
  • the dispersion medium in the dispersion is preferably water.
  • the transparency is evaluated by the transmittance of light having a wavelength of 660 nm. Specifically, using a UV / visible spectrophotometer, a 0.1% dispersion is put in a quartz cell (optical path 10 mm). It is calculated
  • the cellulose nanofibers obtained by the present invention preferably have a light transmittance (wavelength of 660 nm) of 90% or more in a 0.1% (w / v) concentration aqueous dispersion, more preferably 94% or more. Preferably, it is 95% or more, more preferably 97% or more, and further preferably 99% or more. If the transparency is 95% or more, cellulose nanofibers can be used without problems for general film applications, and if it is 99% or more, high optical properties (transparency) such as displays and touch panels are required. It can be used without problems for film applications.
  • the amount of carboxyl groups of the cellulose nanofiber obtained by the present invention is preferably 1.2 mmol / g or more.
  • the amount of carboxyl groups was prepared by preparing 60 ml of 0.5% by weight slurry (aqueous dispersion) of cellulose nanofibers, adding 0.1M hydrochloric acid aqueous solution to pH 2.5, and then dropping 0.05N aqueous sodium hydroxide solution dropwise. Then, the electrical conductivity is measured until the pH reaches 11, and the amount of sodium hydroxide consumed in the neutralization step of the weak acid whose change in electrical conductivity is gradual can be calculated using the following equation. it can.
  • Carboxyl group amount [mmol / g pulp] a [ml] ⁇ 0.05 / cellulose nanofiber mass [g]
  • the cellulose nanofibers obtained by the present invention have a large amount of carboxyl groups on the fiber surface, the fibers are less likely to aggregate with each other and the dispersion into the dispersion medium is good. .
  • the cellulose nanofibers produced according to the present invention are preferably those that are less colored. Colored cellulose nanofibers may have low strength.
  • a coating containing cellulose nanofibers with little coloring is coated on a transparent film and dried, it is difficult to discolor (color) due to heat during drying, and thus a transparent film with few appearance defects can be obtained.
  • Such cellulose nanofibers are, for example, those having a high whiteness as a cellulose-based raw material, and using a oxidizing agent or a reducing agent in Step C-2, in particular, peroxidation that hardly generates radicals. It can be obtained by using hydrogen as an oxidizing agent.
  • the cellulose nanofibers produced according to the present invention are excellent in fluidity and transparency, and also excellent in barrier properties and heat resistance, so that they can be used for various applications such as packaging materials in addition to the above. .
  • Step C-1 20 g of bleached unbeaten kraft pulp (whiteness 85%) derived from coniferous tree (absolutely dry) was charged into an aqueous sodium hydroxide solution having a hydroxide ion concentration of 2.5 mol / L, and the pulp concentration was It adjusted so that it might become 10 mass%. The mixture was stirred at room temperature (20 ° C.) for 1 hour, then neutralized with an acid, and washed with water.
  • Step A Add 5 g (ultra-dry) of the pulp treated with alkali in Step C-1 to 500 ml of an aqueous solution in which 94 mg (0.5 nmol) of TEMPO (Sigma Aldrich) and 755 mg (5 mmol) of sodium bromide are dissolved. Until dispersed. After adding 18 ml of aqueous sodium hypochlorite solution (effective chlorine 5%) to the reaction solution, the pH was adjusted to 10.3 with 0.5N aqueous hydrochloric acid solution to initiate the oxidation reaction. During the reaction, the pH of the reaction solution was lowered, but a 0.5N aqueous sodium hydroxide solution was successively added to adjust the pH to 10.
  • aqueous sodium hypochlorite solution effective chlorine 5%
  • the reaction was terminated when sodium hypochlorite was consumed and the pH of the reaction solution no longer changed.
  • the reaction mixture was filtered through a glass filter to separate the pulp, and the pulp was thoroughly washed with water to obtain an oxidized pulp.
  • the time required for the oxidation reaction was 85 minutes.
  • Viscosity reduction treatment An aqueous dispersion 2L having a concentration of the oxidized pulp of 1% by mass was prepared. While the aqueous dispersion was flowing, ultraviolet rays were irradiated for 6 hours with a 20 W low-pressure ultraviolet lamp.
  • Step B The above-mentioned aqueous dispersion subjected to the viscosity reduction treatment was treated 10 times with an ultrahigh pressure homogenizer (20 ° C., 140 MPa) to obtain a transparent gel dispersion.
  • Example 2 A cellulose nanofiber aqueous dispersion was obtained and evaluated in the same manner as in Example 1 except that the cellulose-based raw material was changed to hardwood kraft pulp (whiteness 85%). The results are shown in Table 1.
  • Example 3 A cellulose nanofiber aqueous dispersion was obtained and evaluated in the same manner as in Example 1 except that the cellulose-based raw material was changed to softwood sulfite pulp (whiteness 85%). The results are shown in Table 1.
  • Example 4 A cellulose nanofiber aqueous dispersion was obtained and evaluated in the same manner as in Example 1 except that the cellulose-based raw material was changed to hardwood sulfite pulp (whiteness 85%). The results are shown in Table 1.
  • Example 5 A cellulose nanofiber aqueous dispersion was obtained and evaluated in the same manner as in Example 1 except that the hydroxide ion concentration of the aqueous sodium hydroxide solution in Step C-1 was 1.25 mol / L. The results are shown in Table 1.
  • Example 6 A cellulose nanofiber aqueous dispersion was obtained and evaluated in the same manner as in Example 1 except that the hydroxide ion concentration of the aqueous sodium hydroxide solution in Step C-1 was 3.25 mol / L. The results are shown in Table 1.
  • Example 7 A cellulose nanofiber aqueous dispersion was obtained and evaluated in the same manner as in Example 1 except that the hydroxide ion of the aqueous sodium hydroxide solution in Step C-1 was changed to 0.8 mol / L. The results are shown in Table 1.
  • Example 2 A cellulose nanofiber aqueous dispersion was obtained and evaluated in the same manner as in Example 1 except that bleached unbeaten kraft pulp (whiteness 86%) derived from hardwood was used and Step C-1 was not performed. did. The results are shown in Table 1.
  • Example 3 A cellulose nanofiber aqueous dispersion was obtained in the same manner as in Example 1 except that bleached unbeaten sulfite pulp (whiteness 86%) derived from conifers was used and Step C-1 was not performed. evaluated. The results are shown in Table 1.
  • Example 4 A cellulose nanofiber aqueous dispersion was obtained in the same manner as in Example 1 except that bleached unbeaten sulfite pulp (whiteness 87%) derived from hardwood was used and Step C-1 was not performed. evaluated. The results are shown in Table 1.
  • Example 5 A cellulose nanofiber aqueous dispersion was obtained and evaluated in the same manner as in Example 1 except that the hydroxide ion concentration of the aqueous sodium hydroxide solution in Step C-1 was 0.5 mol / L. The results are shown in Table 1.
  • Step C-1 and Step A were carried out in the same manner as in Example 1 except that the hydroxide ion concentration of the aqueous sodium hydroxide solution in Step C-1 was 5.0 mol / L. Although the time required for the oxidation reaction was 30 minutes, the pulp gradually dissolved as the oxidation progressed, and washing and recovery became impossible, and neither oxidized pulp nor cellulose nanofibers were obtained. The results are shown in Table 1.
  • Step A Bleached unbeaten kraft pulp derived from coniferous tree (manufactured by Nippon Paper Industries Co., Ltd., whiteness 84%) 5 g (absolutely dry) 78 mg (0.5 mmol) of TEMPO (Sigma Aldrich) and 755 mg (7 mmol) of sodium bromide was added to 500 ml of the dissolved aqueous solution and stirred until the pulp was uniformly dispersed. After adding 18 ml of aqueous sodium hypochlorite solution (effective chlorine 5%) to the reaction solution, the pH was adjusted to 10.3 with 0.5N aqueous hydrochloric acid solution to initiate the oxidation reaction.
  • Step C-2 A 5% (w / v) aqueous dispersion of an oxidized cellulosic material is prepared, and 1% (w / v) peroxidation of the oxidized cellulosic material with respect to the oxidized cellulosic material Hydrogen was added and the pH was adjusted to 12 with 1M sodium hydroxide. This aqueous dispersion was heated at 80 ° C. for 2 hours to hydrolyze the oxidized cellulose-based raw material, and then filtered through a glass filter and sufficiently washed with water.
  • the coloration of the obtained dispersion of oxidized cellulose raw material was visually evaluated according to the following criteria: 3 Not colored at all 2 Not colored at all 1 Colored.
  • Step B A water-based dispersion having a cellulose-based raw material concentration of 2% (w / v) obtained in Step C-2 was prepared, and treated with an ultra-high pressure homogenizer (treatment pressure 140 MPa) 10 times to obtain a transparent gel dispersion A liquid was obtained.
  • the B-type viscosity (60 rpm, 20 ° C.) of the obtained 2% (w / v) cellulose nanofiber aqueous dispersion was measured using a TV-10 viscometer (manufactured by Toki Sangyo Co., Ltd.).
  • the obtained 2% (w / v) cellulose nanofiber dispersion was diluted with water to prepare a 0.1% (w / v) cellulose nanofiber aqueous dispersion, and UV-VIS spectrophotometer
  • the transmittance of 660 nm light was measured using UV-265FS (Shimadzu Corporation).
  • the power consumption required for defibration and dispersion treatment was determined by (power during processing) ⁇ (processing time) / (amount of processed sample). The results are shown in Table 2.
  • Step C-2 a nanofiber dispersion was obtained in the same manner as in Example 8, except that sodium hypochlorite was added in place of hydrogen peroxide at 1% (w / v) with respect to the oxidized cellulose raw material. evaluated. The results are shown in Table 2.
  • Example 10 A nanofiber dispersion was obtained and evaluated in the same manner as in Example 8 except that the treatment was performed under the oxygen pressure condition of 0.6 MPa in Step C-2. The results are shown in Table 2.
  • step C-2 a nanofiber dispersion was obtained and evaluated in the same manner as in Example 8, except that 2% (w / v) ozone was further added to the oxidized cellulose-based raw material. The results are shown in Table 2.
  • Example 12 A nanofiber dispersion was obtained and evaluated in the same manner as in Example 8 except that hydrogen peroxide was not added in Step C-2. The results are shown in Table 2.
  • Step C-2 when adding hydrogen peroxide, a nanofiber dispersion was obtained and evaluated in the same manner as in Example 8, except that the pH was adjusted to 8, 10, and 14 with 1M sodium hydroxide, respectively. . The results are shown in Table 2.
  • Example 16 to 19 A nanofiber dispersion was obtained and evaluated in the same manner as in Example 8 except that the temperatures in Step C-2 were 50 ° C., 60 ° C., 90 ° C., and 100 ° C., respectively. The results are shown in Table 2.
  • Example 20 Before Step B, an aqueous dispersion containing 2% (w / v) of the cellulosic material obtained in Step C-2 was prepared, and while flowing the aqueous dispersion, a 254 nm film was formed using a 20 W low-pressure ultraviolet lamp. A nanofiber dispersion was obtained and evaluated in the same manner as in Example 8 except that the step of irradiating with ultraviolet rays for 6 hours was performed. The results are shown in Table 2.
  • Example 21 A nanofiber dispersion was prepared in the same manner as in Example 8, except that bleached unbeaten kraft pulp derived from hardwood was used instead of bleached unbeaten kraft pulp derived from conifers (whiteness 85%, manufactured by Nippon Paper Industries Co., Ltd.). Obtained and evaluated. The results are shown in Table 3.
  • Step C-2 a nanofiber dispersion was obtained and evaluated in the same manner as in Example 21, except that 1% (w / v) sodium hypochlorite was added to the oxidized pulp instead of hydrogen peroxide. .
  • the results are shown in Table 3.
  • Example 23 A nanofiber dispersion was obtained and evaluated in the same manner as in Example 21 except that the treatment was performed under the oxygen pressure condition of 0.6 MPa in Step C-2. The results are shown in Table 3.
  • Example 24 A nanofiber dispersion was obtained and evaluated in the same manner as in Example 8, except that bleached unbeaten sulfite pulp (whiteness of 86%) derived from hardwood was used instead of bleached unbeaten kraft pulp derived from softwood. . The results are shown in Table 3.
  • aqueous dispersion having a concentration of 2% (w / v) was prepared using the oxidized cellulosic raw material obtained in Step A of Example 8. Without carrying out Step C-2, a viscosity reduction treatment was performed by irradiating ultraviolet rays at 254 nm for 6 hours using a 20 W low-pressure ultraviolet lamp while flowing the aqueous dispersion. Using the aqueous dispersion obtained by this treatment, Step B of Example 8 was performed to obtain and evaluate a nanofiber dispersion. The results are shown in Table 2.
  • Example 8 An aqueous dispersion having a concentration of 2% (w / v) was prepared using the oxidized cellulosic raw material obtained in Step A of Example 8. Without carrying out Step C-2, 2% by mass of commercially available cellulase (Novozyme 476, Novozyme 476) was added to the aqueous dispersion and kept at 50 ° C. did. Using the aqueous dispersion obtained by this treatment, Step B of Example 8 was performed to obtain and evaluate a nanofiber dispersion. The results are shown in Table 2.
  • aqueous dispersion having a concentration of 2% (w / v) was prepared using the oxidized cellulosic raw material obtained in Step A of Example 8. Without performing Step C-2, ozone and hydrogen peroxide were added to the aqueous dispersion, and the mixture was stirred at room temperature for 6 hours to reduce the viscosity.
  • the amounts of ozone and hydrogen peroxide used are respectively an ozone concentration of 6 g / L (corresponding to 0.6 times the absolute dry mass of the oxidized cellulose raw material), and a hydrogen peroxide concentration of 3 g / L (oxidized cellulose system). Equivalent to 0.3 times the absolute dry mass of the raw material).
  • Step B of Example 8 was performed to obtain and evaluate a nanofiber dispersion. The results are shown in Table 2.
  • Example 10 A 0.1% aqueous hydrochloric acid solution was added to the oxidized cellulose raw material obtained in Step A of Example 8 to prepare a 5% (w / v) aqueous dispersion having a pH of 2.8. Without performing Step C-2, the aqueous dispersion was stirred at 90 ° C. for 2 hours for acid hydrolysis treatment. The amount of hydrochloric acid added was 0.1% by mass with respect to the oxidized cellulose raw material. Using the aqueous dispersion obtained by this treatment, Step B of Example 8 was performed to obtain and evaluate a nanofiber dispersion. The results are shown in Table 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • Wood Science & Technology (AREA)
  • Textile Engineering (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)

Abstract

(A)セルロース系原料をN-オキシル化合物等の存在下で酸化する工程、及び(B)酸化セルロース系原料を解繊してナノファイバー化する工程、を含み、さらに、(C-1)工程Aの前にセルロース系原料を水酸化物イオン濃度が0.75~3.75mol/Lの水中で処理する工程及び(C-2)工程Aと工程Bとの間に、工程Aで得た酸化セルロース系原料を、pH8~14のアルカリ性溶液中で加水分解する工程、から選択される少なくとも1つの工程Cを含む方法でセルロースナノファイバーを製造する。

Description

セルロースナノファイバーの製造方法
 本発明は、セルロースナノファイバーを低エネルギーで効率よく製造する方法に関する。
 セルロース系原料を2,2,6,6-テトラメチル-1-ピペリジン-N-オキシラジカル(以下、TEMPOと称する)と安価な酸化剤である次亜塩素酸ナトリウムとの共存下で処理すると、セルロースのミクロフィブリルの表面にカルボキシル基を効率よく導入することができる。このカルボキシル基を導入したセルロース系原料を水中にてミキサー等で処理すると、高粘度で透明なセルロースナノファイバー水分散液が得られることが知られている(非特許文献1、特許文献1及び2)。
 セルロースナノファイバーは、生分解性の水分散型新規素材である。またセルロースナノファイバーの表面には酸化反応によりカルボキシル基が導入されているため、セルロースナノファイバーを、カルボキシル基を基点として、自由に改質することができる。さらに、上記の方法により得られたセルロースナノファイバーは、分散液の形態であるため各種水溶性ポリマーとブレンド、あるいは有機及び/又は無機系顔料と複合化してさらに改質することもできる。さらにまた、セルロースナノファイバーをシート化または繊維化することも可能である。セルロースナノファイバーのこれらの特性を活かし、環境循環型素材として、高機能包装材料、透明有機基板部材、高機能繊維、分離膜、再生医療材料などに応用した高機能商品の開発が期待されている。
特開2008-001728号公報 特開2010-235679号公報
Saito,T.,et al.,Cellulose Commun.,14(2),62(2007)
 従来のセルロースナノファイバーを得る方法では、TEMPOを用いて酸化したセルロース系原料の分散液をミキサーを用いて処理し、酸化されたセルロース系原料を解繊する。しかし、当該処理中に分散液の粘度が著しく高くなり、効率のよい解繊処理が行ないにくいという問題があった。特に分散液の粘度が高すぎると、ミキサーの撹拌羽周辺のみで分散が進行するため、分散が不均一となってしまう問題があった。例えば、分散液中の酸化セルロース系原料の濃度が0.3~0.5%(w/v)と低い場合であっても、B型粘度(60rpm、20℃)が800~4000mPa・sといった高い値を示すことがあった。このため、本発明者らはミキサーよりも解繊及び分散力の高いホモジナイザーを用いて解繊処理を試みた。しかし、分散初期にセルロース系原料が顕著に増粘して流動性が悪化し、分散処理時に要する消費電力量が増大することが依然として見られた。さらに、装置内部にセルロースナノファイバー分散液が付着するので十分な分散が行なえない、装置から分散液を取り出すなどの操作が困難となり分散液の歩留りが低下することもあった。
 通常、セルロースナノファイバーは分散液の状態で種々の用途に適用される。特に分散液を塗布用の液として用いる場合には、塗布膜中のセルロースナノファイバー量を多くする観点から、セルロースナノファイバー分散液中のセルロースナノファイバー濃度は高いことが好ましい。例えば、セルロースナノファイバーの分散液を基材に塗布して基材上にフィルムを形成させる場合、セルロースナノファイバー濃度が低いと塗布回数を増やさなければならず、作業効率が低下する。このため、高濃度の分散液を与えるセルロースナノファイバーが望まれるが、前述のとおり高濃度の分散液を得ようとすると増粘がみられるため、高濃度のセルロースナノファイバー分散液の製造には多大なエネルギーを要する。
 また、光学用途への展開が期待できる透明度の高いセルロースナノファイバーの分散液の製造も望まれている。
 上記を鑑み、本発明は、流動性に優れる、すなわち低粘度であり、好ましくは透明度も高いセルロースナノファイバー分散液を低エネルギーで製造することができる、低コストで効率のよい方法を提供することを課題とする。
 本発明者らは鋭意検討した結果、セルロース系原料をTEMPO等のN-オキシル化合物を用いて酸化する工程(工程A)、及び、解繊する工程(工程B)を含むセルロースナノファイバーの製造方法において、さらに、アルカリ性条件下において処理する工程(工程C)を行うことにより、上記課題が解決できることを見出し、本発明を完成させた。すなわち、前記課題は以下の本発明により解決される。
(A)セルロース系原料を、(a1)N-オキシル化合物、及び(a2)臭化物、ヨウ化物もしくはこれらの混合物からなる群から選択される化合物の存在下で、(a3)酸化剤を用いて酸化する工程、及び、
(B)前記工程Aで得た酸化セルロース系原料を含む分散液を調製し、当該酸化セルロース系原料を分散媒中に分散させながら解繊してナノファイバー化する工程、を含む、セルロースナノファイバーの製造方法であって、さらに、(C)アルカリ性条件下で処理する工程を含み、前記工程Cが:
 (C-1)工程Aの前に、セルロース系原料を、水酸化物イオン濃度が0.75~3.75mol/Lの水中で処理する工程;及び
 (C-2)工程Aと工程Bとの間に、工程Aで得た酸化セルロース系原料を、pH8~14のアルカリ性溶液中で加水分解する工程、
のうちの少なくとも1つである、上記方法。
 本発明により、流動性に優れる、すなわち低粘度であり、好ましくは透明度も高いセルロースナノファイバー分散液を低エネルギーで効率よく製造できる。
 以下、本発明を詳細に説明する。本明細書において数値範囲を表す際に用いられる「~」は両端の値を含む。
 1.セルロースナノファイバーの製造方法
 本発明の製造方法は、(A)セルロース系原料を、(a1)N-オキシル化合物、および(a2)臭化物、ヨウ化物もしくはこれらの混合物からなる群から選択される化合物の存在下で、(a3)酸化剤を用いて酸化する工程、(B)前記工程Aで得た酸化セルロース系原料を含む分散液を調製し、当該酸化セルロース系原料を分散媒中に分散させながら解繊してナノファイバー化する工程、を含む方法であり、さらに、(C)アルカリ性条件下で処理する工程を含む。
 1-1.セルロース系原料
 本発明で用いるセルロース系原料は特に限定されず、各種木材由来のクラフトパルプまたはサルファイトパルプ、それらを高圧ホモジナイザーやミル等で粉砕した粉末セルロース、あるいはそれらを酸加水分解などの化学処理により精製した微結晶セルロース粉末等を使用できる。この他、ケナフ、麻、イネ、バカス、竹等の植物由来のセルロース系原料も使用できる。しかしながら、セルロース系原料中にリグニンが多く残留してしまうと当該原料の酸化反応を阻害する恐れがあるので、本発明においては、化学パルプの製造方法により得られたセルロース系原料を用いることが好ましい。リグニンをさらに除去するために、このようにして得られたセルロース系原料に公知の漂白処理を施すことがより好ましい。
 漂白処理方法としては、塩素処理(C)、二酸化塩素漂白(D)、アルカリ抽出(E)、次亜塩素酸塩漂白(H)、過酸化水素漂白(P)、アルカリ性過酸化水素処理段(Ep)、アルカリ性過酸化水素・酸素処理段(Eop)、オゾン処理(Z)、キレート処理(Q)などを組合せて、たとえば、C/D-E-H-D、Z-E-D-P、Z/D-Ep-D、Z/D-Ep-D-P、D-Ep-D、D-Ep-D-P、D-Ep-P-D、Z-Eop-D-D、Z/D-Eop-D、Z/D-Eop-D-E-Dなどのシーケンスで行なうことができる。シーケンス中の「/」は、「/」の前後の処理を洗浄なしで連続して行なうことを意味する。セルロース系原料中のリグニン量は少ないことが好ましく、パルプ化処理及び漂白処理を用いて得られたセルロース系原料(漂白済みクラフトパルプ、漂白済みサルファイトパルプ)は、白色度(ISO 2470)が80%以上であることがより好ましい。
 また、量産化やコストの観点から、粉末セルロース、微結晶セルロース粉末、あるいは白色度(ISO 2470)が80%以上の漂白済みクラフトパルプまたは漂白済みサルファイトパルプを用いることも好ましい。特に、粉末セルロースまたは微結晶セルロース粉末を用いると、高濃度であってもより低い粘度を有する分散液を与えるセルロースナノファイバーを製造できるので好ましい。また、広葉樹由来のセルロース系原料も、低い消費電力量で低粘度の分散液を与えるセルロースナノファイバーを製造できるので、好ましい。
 粉末セルロースとは、木材パルプの非結晶部分を酸加水分解処理で除去した後、粉砕及び篩い分けすることで得られる微結晶性セルロースからなる棒軸状粒子である。粉末セルロースにおけるセルロースの重合度は100~500程度であり、X線回折法による粉末セルロースの結晶化度は70~90%であり、レーザー回折式粒度分布測定装置による体積平均粒子径は好ましくは100μm以下であり、より好ましくは50μm以下である。体積平均粒子径が100μm以下であると、流動性に優れるセルロースナノファイバー分散液を得ることができる。本発明で用いる粉末セルロースとしては、例えば、精選パルプを酸加水分解した後に得られる未分解残渣を精製して乾燥し、粉砕及び篩い分けして得られる、一定の粒径分布を有する棒軸状の結晶性セルロース粉末を用いることができる。あるいは、KCフロック(登録商標)(日本製紙ケミカル株式会社製)、セオラス(商標)(旭化成ケミカルズ株式会社製)、アビセル(登録商標)(FMC社製)などの市販品を用いてもよい。 
 1-2.工程A
 工程Aでは、セルロース系原料を、(a1)N-オキシル化合物、及び(a2)臭化物、ヨウ化物もしくはこれらの混合物からなる群から選択される化合物の存在下で、(a3)酸化剤を用いて酸化する。
 (1)N-オキシル化合物(a1)
 N-オキシル化合物とは、ニトロキシラジカルを発生しうる化合物をいう。本発明で用いるN-オキシル化合物としては、目的の酸化反応を促進する化合物であれば、いずれの化合物も使用できる。例えば、本発明で使用されるN-オキシル化合物としては、下記一般式(式1)で示される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000001
 式1中、R~Rは、同一または異なって、炭素数1~4程度のアルキル基を示す。
 式1で表される物質のうち、2,2,6,6-テトラメチル-1-ピペリジン-オキシラジカル(以下TEMPOと称する)が好ましい。また、下記式2~4のいずれかで表されるN-オキシル化合物、すなわち、4-ヒドロキシTEMPOの水酸基をアルコールでエーテル化、またはカルボン酸もしくはスルホン酸でエステル化し、適度な疎水性を付与した4-ヒドロキシTEMPO誘導体や、下記式5で表される4-アミノTEMPOのアミノ基をアセチル化し、適度な疎水性を付与した4-アセトアミドTEMPOは、安価であり、かつ均一な酸化セルロースを得ることができるため、とりわけ好ましい。
Figure JPOXMLDOC01-appb-C000002
 式2~4中、Rは炭素数4以下の直鎖または分岐状炭素鎖である。
 さらに、下記式6で表されるN-オキシル化合物、すなわち、アザアダマンタン型ニトロキシラジカルは、短時間で効率よくセルロース系原料を酸化でき、重合度の高いセルロースナノファイバーを製造できるので好ましい。
Figure JPOXMLDOC01-appb-C000003
 式6中、R及びRは、同一または異なって、水素またはC~Cの直鎖もしくは分岐鎖アルキル基を示す。
 N-オキシル化合物の使用量は、セルロース系原料をナノファイバー化できる程度に酸化反応を促進できる触媒量であれば特に制限されない。例えば、絶乾1gのセルロース系原料に対して、0.01~10mmolが好ましく、0.01~1mmolがより好ましく、0.05~0.5mmolがさらに好ましい。
 (2)臭化物またはヨウ化物(a2)
 臭化物とは臭素を含む化合物をいい、その例には、水中で解離してイオン化可能な臭化アルカリ金属が含まれる。また、ヨウ化物とはヨウ素を含む化合物をいい、その例には、ヨウ化アルカリ金属が含まれる。臭化物またはヨウ化物の使用量は、酸化反応を促進できる範囲で選択できる。臭化物及びヨウ化物の合計量は、例えば、絶乾1gのセルロース系原料に対して、0.1~100mmolが好ましく、0.1~10mmolがより好ましく、0.5~5mmolがさらに好ましい。
 (3)酸化剤(a3)
 セルロース系原料の酸化の際に用いる酸化剤としては、公知のものを使用でき、例えば、ハロゲン、次亜ハロゲン酸、亜ハロゲン酸、過ハロゲン酸またはそれらの塩、ハロゲン酸化物、過酸化物などを使用できる。中でも、コストの観点から、現在工業プロセスにおいて最も汎用されている安価で環境負荷の少ない次亜塩素酸ナトリウムが特に好適である。酸化剤の適切な使用量は、酸化反応を促進できる範囲で選択できる。例えば、絶乾1gのセルロース系原料に対して、0.5~500mmol、好ましくは0.5~50mmol、さらに好ましくは2.5~25mmol、さらに好ましくは5~20mmol程度を用いることができる。
 (4)セルロース系原料の酸化反応の条件
 酸化工程(工程A)では、副反応を抑制するために、反応媒体として水を用いることが好ましい。工程Aは、比較的温和な条件であっても反応を効率よく進行させられる。そのため、反応温度は15~30℃程度の室温であってもよい。なお、反応の進行に伴ってセルロース中にカルボキシル基が生成するため、反応液のpHの低下が認められる。酸化反応を効率よく進行させるためには、水酸化ナトリウム水溶液などのアルカリ性溶液を添加して反応液のpHを9~12、好ましくは10~11程度に維持することが好ましい。反応媒体は、取り扱い性の容易さや、副反応が生じにくいこと等から、水が好ましい。酸化反応における反応時間は、酸化の進行の程度に従って適宜設定することができ、通常は0.5~6時間、例えば0.5~4時間程度である。しかしながら、後述する工程C-1を実施する場合には、酸化時間を低減できるので、反応時間は30分以上120分が好ましく、30~100分がより好ましく、30~70分がさらに好ましい。
 また、酸化反応は、2段階に分けて実施してもよい。例えば、1段目の反応終了後に濾別して得られた酸化セルロースを、再度、同一または異なる反応条件で酸化させることにより、1段目の反応で副生する塩による反応阻害を受けることなく、セルロース系原料に効率よくカルボキシル基を導入でき、セルロース系原料の酸化を促進することができる。
 本工程では、酸化されたセルロース系原料のカルボキシル基量が、セルロース系原料の絶乾質量に対して、1.0mmol/g以上となるように条件を設定することが好ましい。この場合のカルボキシル基量は、より好ましくは1.0mmol/g~3.0mmol/g、さらに好ましくは1.4mmol/g~3.0mmol/g、特に好ましくは1.5mmol/g~2.5mmol/gである。カルボキシル基量は、酸化反応時間の調整、酸化反応温度の調整、酸化反応時のpHの調整、N-オキシル化合物や臭化物、ヨウ化物、酸化剤の添加量の調整などを行なうことにより調製できる。
 次の工程B(または工程C-2を実施する場合には、工程C-2)を効率よく行う、及び副反応を避ける等の観点から、工程Aで得られた酸化セルロース系原料は洗浄することが好ましい。
 1-3.工程B
工程Bでは、前記工程A(または工程C-2を実施する場合には、工程C-2)で得た、酸化セルロース系原料を分散した分散液を調製し、当該酸化セルロース系原料を分散媒中に分散させながら解繊してナノファイバー化する。「ナノファイバー化する」とは、セルロース系原料を、幅2~5nm、長さ100~5000nm程度、好ましくは長さ1~5μm程度のセルロースのシングルミクロフィブリルであるセルロースナノファイバーへと加工することを意味する。分散液とは、前記酸化セルロース系原料が分散媒に分散している液である。取り扱い容易性から、分散媒は水であることが好ましい。酸化セルロース系原料を分散媒中に分散させながら解繊するには、高速回転式、コロイドミル式、高圧式、ロールミル式、超音波式などの装置を用いて前記分散液に強力なせん断力を印加することが好ましい。特に、前記分散液に50MPa以上の圧力を印加し、かつ強力なせん断力を印加できる湿式の高圧または超高圧ホモジナイザーを用いることが好ましい。前記圧力は、より好ましくは100MPa以上であり、さらに好ましくは140MPa以上である。この処理により、工程Bで得たセルロース系原料が解繊してセルロースナノファイバーが形成され、かつセルロースナノファイバーが分散媒中に分散する。
 解繊に供する分散液中の酸化セルロース系原料の濃度は0.3%(w/v)以上が好ましい。さらに好ましくは1~50%(w/v)である。特に後述する工程C-1を実施する場合には、好ましくは1~2%(w/v)、より好ましくは3~5%(w/v)である。また、特に後述する工程C-2を実施する場合には、酸化セルロース系原料の濃度を高くしても、解繊時に系の粘度が上昇しないので、2~10%(w/v)がより好ましい。
 1-4.工程C
 本発明では、前記工程A及びBに加えて、(C)アルカリ性条件下で処理する工程を含む。前記工程Cは、次の工程のうちの少なくとも1つを含む:
 (C-1)工程Aの前に、セルロース系原料を、水酸化物イオン濃度が0.75~3.75mol/Lの水中で処理する工程;及び
 (C-2)工程Aと工程Bの間に、工程Aで得た酸化セルロース系原料を、pH8~14のアルカリ性溶液中で加水分解する工程。
(1)工程C-1
 工程C-1は、前記工程Aの前に行われる工程であり、前記セルロース系原料を水酸化物イオン濃度が0.75~3.75mol/Lの水中で処理する。以下、当該処理を単に「アルカリ処理」ともいう。アルカリ処理は、前記セルロース系原料を水に分散させ、当該水分散液にアルカリを添加して水中の水酸化物イオン濃度を前記範囲に調整し、反応液を撹拌して行なうことができる。あるいはアルカリ処理は、予め調製された水酸化物イオン濃度の水に前記セルロース系原料を分散させて行なうことができる。
 アルカリ処理により、透明性に優れ、かつ低粘度の分散液を与えるセルロースナノファイバーを効率良く製造できるが、その機構は次のように考えられる。
 一般にセルロース系原料は、セルロース分子間及びセルロース繊維間が水素結合を介して比較的強固に結合している。セルロース系原料をアルカリで処理すると、セルロース系原料が膨潤して水素結合が弱まり、セルロース分子間及びセルロース繊維間にやや大きな空隙が形成される。この空隙を介して次の工程Aで使用する酸化剤が浸透しやすくなり、セルロース系原料の酸化が促進される。また、特にセルロース系原料として漂白済みクラフトパルプまたは漂白済みサルファイトパルプを用いた場合は、アルカリによってセルロースミクロフィブリル表面を被覆しているヘミセルロースが溶出される。このためミクロフィブリル表面が露出して次の工程Aにおける酸化が促進される。これらの結果、セルロース系原料の酸化反応性が高まり、酸化反応が短時間で進行し、かつ多くのカルボキシル基が導入される。このようにカルボキシル基量が多くなると、酸化されたセルロース系原料の解繊及び分散媒体中への分散が容易となりナノ分散性が向上する。この結果、セルロースナノファイバー分散液の透明性が高くなる。さらに、工程Aにおいて酸化反応性が高くなるため、カルボキシル基が生成して局所的にpHが低下する部分が生じる。するとその場所では反応液中の次亜塩素酸ナトリウムから次亜塩素酸が生成する。次亜塩素酸はセルロースを酸化分解するので重合度低下が促進される。この結果、セルロースナノファイバーの分散液の粘度が著しく低下する。
 よって、工程C-1における各条件は、前記効果を最大限に発揮するように選択されるのが好ましい。工程C-1で使用できるアルカリは水溶性であれば特に限定されず、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、炭酸ナトリウムなどの無機アルカリ、水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウムなどの有機アルカリ等が挙げられる。中でも、入手が容易で比較的安価である水酸化ナトリウムが好ましい。また、パルプ工場で生成する白液、緑液のような複数のアルカリやその他成分を含む水溶液を用いることもできる。
 前記水中の水酸化物イオン濃度は0.75~3.75mol/Lであり、好ましくは1.25~2.5mol/Lである。水酸化物イオン濃度が3.75mol/Lを超えるとアルカリが過剰となり、次の工程Aにおける酸化反応後にセルロース系原料が顕著に短繊維化してしまい洗浄が困難となる。また、水酸化物イオン濃度が3.75mol/Lを超える条件は、セルロース系原料をマーセル化してカルボキシメチルセルロースを製造する一般的な条件(水酸化ナトリウム濃度が15質量%以上)に相当するので、セルロース系原料の大部分がマーセル化してカルボキシメチルセルロースが生成する。マーセル化した原料は、次の工程Aにおける酸化反応によってポリセロウロン酸となり水に溶解してしまいセルロースナノファイバーを生成しない。一方、水酸化物イオン濃度が0.75mol/Lを下回るとアルカリ濃度が低く、ヘミセルロースの除去が不十分となる。なお、パルプの漂白の際に行われるアルカリ抽出(E)、アルカリ性過酸化水素処理段(Ep)、及びアルカリ性過酸化水素・酸素処理段(Eop)における水酸化物イオン濃度は0.01~0.08mol/L程度であり、これらは工程C-1におけるアルカリ処理とは区別される。
 アルカリ処理は大気圧下、加圧下、減圧下のいずれで実施してもよい。処理温度は0℃~100℃が好ましく、10℃~60℃がより好ましく、20℃~40℃がさらに好ましい。処理時間は5分~24時間が好ましく、15分~12時間がより好ましく、30分~6時間がさらに好ましい。セルロース系原料の濃度は、反応混合物中0.1~50質量%が好ましく、1~30質量%がより好ましく、2~20質量%がさらに好ましい。
 次の工程Aでの副反応等を避ける観点から、工程C-1で処理されたセルロース系原料は、中和及び洗浄することが好ましい。
(2)工程C-2
 工程C-2は、工程Aの後、工程Bの前に行われる工程であり、工程Aで得た酸化されたセルロース系原料(以下単に「酸化セルロース系原料」ともいう)をpH8~14のアルカリ性溶液中で加水分解する。
 工程C-2では、副反応を抑制するために、反応媒体として水を用いることが好ましい。
 工程C-2では助剤として酸化剤または還元剤を用いることが好ましい。酸化剤または還元剤としては、pH8~14のアルカリ性領域で活性を有するものを使用できる。酸化剤の例には、酸素、オゾン、過酸化水素、次亜塩素酸塩が含まれ、これらの2種以上を組み合わせて使用してもよい。ただし、オゾンのようなラジカルを発生する酸化剤を使用した場合には、発生するラジカルにより加水分解後の酸化セルロース系原料が着色する問題が生じうる。したがって、本発明に用いる酸化剤としては、ラジカルを発生しにくい酸素、過酸化水素、次亜塩素酸塩などが好ましく、特に、着色防止の観点から、過酸化水素が好ましい。これらは、オゾンのようなラジカルを発生する酸化剤と併用しないことがさらに好ましく、過酸化水素を単独で用いることがより好ましい。本発明に用いる還元剤の例には、水素化ホウ素ナトリウム、ハイドロサルファイト、亜硫酸塩が含まれ、これらの2種以上を併用して使用してもよい。反応効率の観点から、助剤の添加量は絶乾した酸化セルロース系原料に対して0.1~10質量%が好ましく、0.3~5質量%がより好ましく、0.5~2質量%がさらに好ましい。
 加水分解反応における反応液のpHは、8~14が好ましく、9~13がより好ましく、10~12がさらに好ましい。pHが8未満であると十分な加水分解が起こらず、工程Bに要するエネルギーの低減につながらないことがある。また、pHが14を超えると、加水分解は進行するが、加水分解後の酸化セルロース系原料が着色するという問題が生じうる。pHの調整に用いるアルカリは水溶性であればよいが、製造コストの観点から、水酸化ナトリウムが最適である。また反応効率の観点から、温度は40~120℃が好ましくは、50~100℃がより好ましく、60~90℃がさらに好ましい。温度が低いと十分な加水分解が起こらず、工程Bに要するエネルギーの低減につながらないことがある。一方、温度が高いと加水分解は進行するが、加水分解後の酸化セルロース系原料が着色するという問題が生じうる。加水分解の反応時間は0.5~24時間が好ましく、1~10時間がより好ましく、2~6時間がさらに好ましい。反応効率の観点から、反応液中の酸化されたセルロース系原料の濃度は、1~20質量%が好ましく、3~15質量%がより好ましく、5~10質量%がさらに好ましい。
 pH8~14のアルカリ性溶液中で加水分解することにより、工程Bにおける解繊に要するエネルギーを低減できる。この理由は次のように推察される。N-オキシル化合物を用いて酸化されたセルロース系原料の非晶質領域にはカルボキシル基が散在しており、当該カルボキシル基が存在しているC6位の水素は、カルボキシル基により電子が吸引されているので電荷が欠乏している状態にある。そのため、pH8~14のアルカリ性条件下では当該水素は水酸化物イオンで容易に引き抜かれる。するとβ脱離によるグルコシド結合の開裂反応が進行して、酸化されたセルロース系原料は短繊維化される。このように、酸化されたセルロース系原料の繊維長を短くすることで、当該原料を含む分散液の粘度を低下できる。その結果、工程Bにおいて解繊に要するエネルギーが低減される。ただし、単にアルカリ性条件下で加水分解すると、セルロース系原料は黄色に着色しやすい。この原因は、β脱離の際に二重結合が生成するためと考えられる。そこで、pH8~14のアルカリ性条件下での加水分解において、酸化剤や還元剤を用いるとこの二重結合を酸化または還元して除去できるので着色を抑制できる。特に、ラジカルを発生しにくい過酸化水素などを酸化剤として用いると、着色が起こりにくい。
 1-5.低粘度化処理
 解繊に要するエネルギーをより低減させ、かつ、セルロースナノファイバー分散液としたときの粘度を低下させて取り扱い性を高めるために、工程Aと工程Bとの間(工程C-2を実施する場合には、工程Aと工程C-2との間または工程C-2と工程Bとの間)に、工程Aで得た酸化セルロース系原料(または工程C-2で得た加水分解された酸化セルロース系原料)を、工程Cの方法とは別の方法で低粘度化処理してもよい。低粘度化処理とは、酸化セルロース系原料のセルロース鎖をさらに適度に切断することである(セルロース鎖の短繊維化)。このように処理された原料は分散液としたときの粘度が低くなるので、低粘度化処理とは、低粘度の分散液を与えるセルロース系原料を得る処理ともいえる。低粘度化処理は、酸化セルロース系原料の粘度が低下するような処理であればよく、例えば、酸化セルロース系原料に紫外線を照射する処理、同原料を過酸化水素及びオゾンで酸化分解する処理、同原料を酸で加水分解する処理、ならびにこれらの組み合わせなどが挙げられる。
 (1)紫外線照射
 酸化セルロース系原料に紫外線を照射して低粘度化処理を行なう場合、紫外線の波長は、好ましくは100~400nmであり、より好ましくは100~300nmである。このうち、波長135~260nmの紫外線は、直接セルロースやヘミセルロースに作用して低分子化を引き起こし、酸化セルロース系原料を短繊維化することができるので特に好ましい。
 紫外線を照射する光源としては、100~400nmの波長領域の光を照射できるものを使用すればよい。その具体例には、キセノンショートアークランプ、超高圧水銀ランプ、高圧水銀ランプ、低圧水銀ランプ、重水素ランプ、メタルハライドランプ等が含まれ、これらの1種あるいは2種以上を任意に組合せて使用できる。特に波長特性の異なる複数の光源を組合せて使用すると、異なる波長の紫外線を同時に照射してセルロース鎖やヘミセルロース鎖の切断箇所を増加させられるので短繊維化を促進できる。
 紫外線照射を行う際の酸化セルロース系原料を収容する容器としては、例えば、300nmより長波長の紫外線を用いる場合は、硬質ガラス製容器を用いることができるが、それより短波長の紫外線を用いる場合は、紫外線をより透過させる石英ガラス製容器を用いることが好ましい。容器における紫外線による反応に関与しない部分の材質は、紫外線の波長に対して劣化の少ない材質を適宜選択してよい。
 反応を効率よく行なうために、酸化セルロース系原料は分散媒に分散させて分散液とし、当該分散液に紫外線を照射することが好ましい。分散媒は、副反応を抑制する観点等から水が好ましい。エネルギー効率を高める観点から、分散液中の酸化セルロース系原料の濃度は0.1質量%以上が好ましい。また紫外線照射装置内での酸化セルロース系原料の流動性を良好に保って反応効率を高めるために、当該濃度は12質量%以下が好ましい。従って、分散液中の酸化セルロース系原料の濃度は0.1~12質量%が好ましく、0.5~5質量%がより好ましく、1~3質量%がさらに好ましい。
 反応効率の観点から、反応温度は20℃以上が好ましい。一方、温度が高すぎると酸化セルロース系原料の劣化や、反応装置内の圧力が大気圧を超えるおそれが生じるので、反応温度は95℃以下が好ましい。従って、反応温度は20~95℃が好ましく、20~80℃がより好ましく、20~50℃がさらに好ましい。さらに反応温度がこの範囲であると、耐圧性を考慮した装置設計を行なう必要性がないという利点もある。当該反応における系のpHは限定されないが、プロセスの簡素化を考えると中性領域、例えばpH6.0~8.0程度が好ましい。
 紫外線照射の程度は、照射反応装置内での酸化セルロース系原料の滞留時間や照射光源のエネルギー量を調節すること等により、任意に設定できる。例えば、照射装置内の酸化セルロース系原料分散液の濃度を水等によって希釈する、あるいは空気や窒素等の不活性気体を吹き込んで希釈することにより、酸化セルロース系原料が受ける紫外線の照射量を調整できる。これらの条件は、処理後の原料の品質(繊維長やセルロース重合度等)を所望の値とするために適宜選択される。
 紫外線照射処理は、酸素、オゾン、または、過酸化物(過酸化水素、過酢酸、過炭酸Na、過ホウ酸Na等)などの助剤の存在下で行なうと、光酸化反応の効率をより高めることができるので好ましい。特に135~242nmの波長領域の紫外線を照射する場合、光源周辺の気相部に通常存在する空気中の酸素からオゾンが生成するが、このオゾンを助剤として用いることが好ましい。本発明においては、この光源周辺部に連続的に空気を供給して生成するオゾンを連続的に抜き出し、この抜き出したオゾンを酸化セルロース系原料へと注入することにより、系外からオゾンを供給すること無しに、光酸化反応の助剤としてオゾンを利用することができる。さらに、光源周辺の気相部に酸素を供給することにより、より大量のオゾンを系内に発生させることもできる。このように、本発明においては、紫外線照射反応装置で副次的に発生するオゾンを利用することができる。
 紫外線照射処理は、複数回繰り返すことができる。繰り返しの回数は、処理後の原料の品質や、漂白などの後処理などとの関係に応じて適宜設定できる。例えば、100~400nm、好ましくは135~260nmの紫外線を、1~10回、好ましくは2~5回程度照射することができる。この際、1回あたりの照射時間は0.5~10時間が好ましく、0.5~3時間が好ましい。
 (2)過酸化水素及びオゾンによる酸化分解
 当該処理で使用するオゾンは、空気あるいは酸素を原料としてオゾン発生装置にて公知の方法で発生させることができる。前述のとおり、酸化反応を効率よく行なうためには酸化セルロース系原料を水等の分散媒に分散させた分散液を反応に用いることが好ましい。本発明におけるオゾンの使用量(質量)は、酸化セルロース系原料の絶乾質量の0.1~3倍が好ましい。オゾンの使用量が酸化セルロース系原料の絶乾質量の0.1倍以上であればセルロースの非晶部を十分に分解することができ、工程Bでの解繊及び分散処理に要するエネルギーを大幅に削減できる。一方、オゾンの使用量が過度に多くなるとセルロースの過度の分解が起こりうるが、当該使用量が酸化セルロース系原料の絶乾質量の3倍以下であると、過度の分解を抑制できる。よって、オゾン使用量は、酸化セルロース系原料の絶乾質量の0.3~2.5倍がより好ましく、0.5~1.5倍がさらに好ましい。
 過酸化水素の使用量(質量)は、酸化セルロース系原料の絶乾質量の0.001~1.5倍が好ましい。酸化セルロース系原料の0.001倍以上の量で過酸化水素を使用すると、オゾンと過酸化水素との相乗作用が生じ、効率のよい反応が可能となる。一方、酸化セルロース系原料の分解には、酸化セルロース系原料の1.5倍以下程度の量の過酸化水素を使用すれば十分であり、それより多い使用量はコストアップにつながる。よって、過酸化水素の使用量は、酸化セルロース系原料の絶乾質量の0.1~1.0倍がより好ましい。
 反応効率の観点から、オゾン及び過酸化水素による酸化分解処理における系のpHは2~12が好ましく、pH4~10がより好ましく、pH6~8がさらに好ましい。温度は10~90℃が好ましく、20~70℃がより好ましく、30~50℃がさらに好ましい。処理時間は、1~20時間が好ましく、2~10時間がより好ましく、3~6時間がさらに好ましい。
 オゾン及び過酸化水素による処理を行なうための装置は、通常使用される装置を用いることができる。その例には、反応室、撹拌機、薬品注入装置、加熱器、及びpH電極を備えた通常の反応器が含まれる。
 オゾン及び過酸化水素による処理を工程Bの直前に行う場合、水溶液中に残留するオゾンや過酸化水素は工程Bにおける解繊処理でも有効に作用するので、より低粘度の分散液を与えるセルロースナノファイバーを製造でき、好ましい。
 過酸化水素及びオゾンにより、酸化セルロース系原料の低粘度化処理を効率よく実施できる理由は以下のように推察される。N-オキシル化合物を用いて酸化されたセルロース系原料の表面にはカルボキシル基が局在しており、水和層が形成されている。そのため、当該原料同士は近接して存在しネットワークを形成しているので当該原料を含む分散液の粘度は高い。しかし、原料同士の間にはカルボキシル基同士の電荷反発力の作用で通常のパルプでは見られない微視的隙間が存在しており、当該原料をオゾン及び過酸化水素で処理すると、オゾン及び過酸化水素から酸化力に優れるヒドロキシラジカルが発生し、微視的隙間に浸透して当該原料中のセルロース鎖を効率よく酸化分解して原料を短繊維化する。
 (3)酸による加水分解
 本処理では、酸化セルロース系原料に酸を添加してセルロース鎖の加水分解(酸加水分解処理)を行なう。酸としては、硫酸、塩酸、硝酸、またはリン酸のような鉱酸を使用することが好ましい。前述のとおり、反応を効率よく行なうために、酸化セルロース系原料を水等の分散媒に分散させた分散液を用いることが好ましい。酸加水分解処理の条件としては、酸がセルロースの非晶部に作用するような条件であればよい。例えば、酸の添加量としては、酸化セルロース系原料の絶乾質量に対して0.01~0.5質量%が好ましく、0.1~0.5質量%がさらに好ましい。酸の添加量が0.01質量%以上であると、セルロースの加水分解が進行し、工程Bでの処理効率が向上するので好ましい。また、当該添加量が0.5質量%以下であるとセルロースの過度の加水分解を防ぐことができ、セルロースナノファイバーの収率の低下を防止することができる。酸加水分解時の反応液のpHは、2.0~4.0が好ましく、2.0以上3.0未満がより好ましい。ただし、酸化セルロース系原料の分散媒中に工程C-2で使用したアルカリが残存している場合は、酸の添加量を適宜増やして系のpHを前記範囲に調整することが好ましい。反応効率の観点から、反応は温度70~120℃で、1~10時間行なうことが好ましい。
 次の工程BまたはC-2の処理を効率よく行なうために、酸加水分解処理後は水酸化ナトリウム等のアルカリを添加して中和することが好ましい。
 酸加水分解処理により、酸化セルロース系原料の低粘度化処理を効率よく実施できる理由は以下のように推察される。前述のとおり、N-オキシル化合物を用いて酸化されたセルロース系原料の表面にはカルボキシル基が局在しており、水和層が形成され、当該原料同士は近接して存在しネットワークを形成している。当該原料に、酸を添加して加水分解を行なうと、ネットワーク中の電荷のバランスが崩れてセルロース分子の強固なネットワークが崩れ、当該原料の比表面積が増大し、原料の短繊維化が促進され、セルロース系原料が低粘度化する。
 2.本発明で製造されるセルロースナノファイバー
 本発明により製造されるセルロースナノファイバーは、幅2~5nm、長さ1000~5000nm程度、好ましくは長さ1~5μm程度のセルロースのシングルミクロフィブリルである。本発明により得られたセルロースナノファイバーは、濃度1.0%(w/v)の水分散液におけるB型粘度(60rpm、20℃)が1000mPa・s以下、好ましくは700mPa・s以下、好ましくは500mPa・s以下、好ましくは300mPa・s以下、さらに好ましくは100mPa・s以下である。また濃度2%(w/v)の水分散液におけるB型粘度は、2000mPa・s以下が好ましく、1000mPa・s以下がより好ましい。濃度2%(w/v)の水分散液におけるB型粘度が2000mPa・s以下であると種々の顔料やバインダー、及び樹脂などと優れた混和性を有し、さらに1000mPa・s以下であると一定以上の膜厚及び優れた表面性を有する塗工層を効率よく得ることができる。B型粘度の下限値は特に限定されないが、通常、1mPa・s以上、または5mPa・s以上程度である。B型粘度は、通常のB型粘度計を用いて測定することができ、例えば、東機産業株式会社製のTV-10型粘度計を用いて、20℃、60rpmの条件で測定できる。
 本発明の製造方法によれば、セルロースナノファイバーを分散媒中に良好に分散できるので光の拡散が生じにくく、得られるセルロースナノファイバーの分散液の透明度は高い。分散液における分散媒は、好ましくは水である。本発明において、透明度は波長660nmの光の透過率で評価され、具体的には、紫外・可視分光光度計を用いて、石英セル(光路10mm)に0.1%分散液を入れた試験体を透過する光の量を測定することで求められる。本発明により得られたセルロースナノファイバーは、濃度0.1%(w/v)水分散液における光透過率(波長660nm)が90%以上であることが好ましく、94%以上であることがより好ましく、95%以上であることがより好ましく、97%以上であることがより好ましく、99%以上であることがさらに好ましい。前記透明度が95%以上であるとセルロースナノファイバーを一般的なフィルム用途などにも問題なく使用することができ、99%以上であるとディスプレイやタッチパネルのような高い光学特性(透明度)を求められるフィルム用途などにも問題なく使用できる。
 本発明により得られたセルロースナノファイバーのカルボキシル基量は1.2mmol/g以上が好ましい。カルボキシル基量は、セルロースナノファイバーの0.5質量%スラリー(水分散液)60mlを調製し、0.1M塩酸水溶液を加えてpH2.5とした後、0.05Nの水酸化ナトリウム水溶液を滴下してpHが11になるまで電気伝導度を測定し、電気伝導度の変化が緩やかな弱酸の中和段階において消費された水酸化ナトリウム量(a)から、下式を用いて算出することができる。
 カルボキシル基量〔mmol/gパルプ〕=a〔ml〕×0.05/セルロースナノファイバー質量〔g〕
 本発明により得られたセルロースナノファイバーは、繊維表面のカルボキシル基の量が多いため、繊維同士が凝集しにくく分散媒への分散が良好であるので、前記のとおり透明度の高い水分散液を与える。
 本発明により製造されるセルロースナノファイバーとしては、着色の少ないものが好ましい。着色したセルロースナノファイバーは強度が低いことがある。また、例えば、着色の少ないセルロースナノファイバーを含む塗料を透明フィルム上に塗工して乾燥させた場合、乾燥時の熱によって変色(着色)しにくいため、外観不良の少ない透明フィルムが得られるという利点がある。そのようなセルロースナノファイバーは、例えば、セルロース系原料として高い白色度を有するものを用いたり、また、工程C-2において酸化剤または還元剤を用いることにより、特に、ラジカルを発生しにくい過酸化水素を酸化剤として用いることにより、得ることができる。
 本発明により製造されるセルロースナノファイバーは、流動性と透明性に優れ、さらにバリヤー性及び耐熱性にも優れるので、上記以外にも、包装材料等の様々な用途に使用することが可能である。
 以下に実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらの実施例によって限定されない。
 [実施例1]
 工程C-1:針葉樹由来の漂白済み未叩解クラフトパルプ(白色度85%)20g(絶乾)を水酸化物イオン濃度が2.5mol/Lの水酸化ナトリウム水溶液に装入し、パルプ濃度が10質量%となるように調整した。当該混合物を室温(20℃)にて1時間撹拌した後、酸で中和し、水洗した。
 工程A:前記工程C-1でアルカリ処理したパルプ5g(絶乾)をTEMPO(Sigma Aldrich社)94mg(0.5nmol)と臭化ナトリウム755mg(5mmol)を溶解した水溶液500mlに加え、パルプが均一に分散するまで撹拌した。反応液に次亜塩素酸ナトリウム水溶液(有効塩素5%)18mlを添加した後、0.5N塩酸水溶液でpHを10.3に調整し、酸化反応を開始した。反応中は反応液のpHは低下するが、0.5N水酸化ナトリウム水溶液を逐次添加し、pH10に調整した。次亜塩素ナトリウムが消費され、反応液のpHが変化しなくなった時点で反応を終了した。反応後の混合物をガラスフィルターで濾過してパルプを分離し、パルプを十分に水洗することで酸化されたパルプを得た。酸化反応に要した時間は85分であった。
 低粘度化処理:前記酸化パルプの濃度が1質量%である水分散液2Lを調製した。当該水分散液を流動させながら20W低圧紫外線ランプで6時間紫外線を照射した。
 工程B:前記低粘度化処理した水分散液を、超高圧ホモジナイザー(20℃、140MPa)で10回処理して、透明なゲル状分散液を得た。
 得られた1%(w/v)のセルロースナノファイバー水分散液のB型粘度(60rpm、20℃)を、TV-10型粘度計(東機産業株式会社製)を用いて測定したところ、896mPa・sであった。また、0.1%(w/v)のセルロースナノファイバー水分散液の660nm光の透過率(透明度)を、UV-VIS分光光度計 UV-265FS(島津製作所社)を用いて測定したところ、96.6%であった。また、得られたセルロースナノファイバーのカルボキシル基量は、1.93mmol/gであった。結果を表1に示す。
 [実施例2]
 セルロース系原料を広葉樹クラフトパルプ(白色度85%)に変更した以外、実施例1と同様にしてセルロースナノファイバー水分散液を得て評価した。結果を表1に示す。
 [実施例3]
 セルロース系原料を針葉樹サルファイトパルプ(白色度85%)に変更した以外、実施例1と同様にしてセルロースナノファイバー水分散液を得て評価した。結果を表1に示す。
 [実施例4]
 セルロース系原料を広葉樹サルファイトパルプ(白色度85%)に変更した以外、実施例1と同様にしてセルロースナノファイバー水分散液を得て評価した。結果を表1に示す。
 [実施例5]
 工程C-1における水酸化ナトリウム水溶液の水酸化物イオン濃度を1.25mol/Lとした以外、実施例1と同様にしてセルロースナノファイバー水分散液を得て評価した。結果を表1に示す。
 [実施例6]
 工程C-1における水酸化ナトリウム水溶液の水酸化物イオン濃度を3.25mol/Lとした以外、実施例1と同様にしてセルロースナノファイバー水分散液を得て評価した。結果を表1に示す。
 [実施例7]
 工程C-1における水酸化ナトリウム水溶液の水酸化物イオンを0.8mol/Lとした以外、実施例1と同様にしてセルロースナノファイバー水分散液を得て評価した。結果を表1に示す。
 [比較例1]
 工程C-1を行わなかった以外は、実施例1と同様にしてセルロースナノファイバー水分散液を得て評価した。結果を表1に示す。
 [比較例2]
 広葉樹由来の漂白済み未叩解クラフトパルプ(白色度86%)を用いたことと、工程C-1を行わなかったこと以外は、実施例1と同様にしてセルロースナノファイバー水分散液を得て評価した。結果を表1に示す。
 [比較例3]
 針葉樹由来の漂白済み未叩解サルファイトパルプ(白色度86%)を用いたことと、工程C-1を行わなかったこと以外は、実施例1と同様にしてセルロースナノファイバー水分散液を得て評価した。結果を表1に示す。
 [比較例4]
 広葉樹由来の漂白済み未叩解サルファイトパルプ(白色度87%)を用いたことと、工程C-1を行わなかったこと以外は、実施例1と同様にしてセルロースナノファイバー水分散液を得て評価した。結果を表1に示す。
 [比較例5]
 工程C-1における水酸化ナトリウム水溶液の水酸化物イオン濃度を0.5mol/Lとした以外、実施例1と同様にしてセルロースナノファイバー水分散液を得て評価した。結果を表1に示す。
 [比較例6]
 工程C-1における水酸化ナトリウム水溶液の水酸化物イオン濃度を5.0mol/Lとした以外、実施例1と同様に工程C-1及び工程Aを実施した。酸化反応に要した時間は30分であったが、酸化が進むにつれて徐々にパルプが溶解し、洗浄・回収が不可能となり、酸化パルプもセルロースナノファイバーも得られなかった。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000004
 実施例と比較例との比較から、本発明により透明性に優れ、かつ低粘度の分散液を与えるセルロースナノファイバーを効率良く製造できることが明らかである。特に、実施例1及び5~7と比較例5及び6との比較から、工程Aにおける水酸化物イオン濃度が0.75~3.75mol/Lであることにより、所期の効果が奏されることも明らかである。
 [実施例8]
 工程A:針葉樹由来の漂白済み未叩解クラフトパルプ(日本製紙株式会社製、白色度84%)5g(絶乾)をTEMPO(Sigma Aldrich社)78mg(0.5mmol)と臭化ナトリウム755mg(7mmol)を溶解した水溶液500mlに加え、パルプが均一に分散するまで撹拌した。反応液に次亜塩素酸ナトリウム水溶液(有効塩素5%)18mlを添加した後、0.5N塩酸水溶液でpHを10.3に調整し、酸化反応を開始した。反応中は反応液のpHは低下するが、0.5N水酸化ナトリウム水溶液を逐次添加し、pH10に調整した。2時間反応させた後、ガラスフィルターで濾過し、十分に水洗することで、酸化されたセルロース系原料を得た。
 工程C-2:酸化されたセルロース系原料の5%(w/v)水分散液を調製し、当該分散液に、酸化されたセルロース系原料に対して1%(w/v)の過酸化水素を添加し、1M水酸化ナトリウムでpHを12に調整した。この水分散液を80℃で2時間加熱して酸化されたセルロース系原料を加水分解した後、ガラスフィルターで濾過し、十分に水洗した。
 得られた酸化セルロース系原料の分散液の着色を、下記の基準で目視評価した:
 3  全く着色していない
 2  ほとんど着色していない
 1  着色している。
 工程B:工程C-2で得たセルロース系原料濃度が2%(w/v)である水分散液を調整し、超高圧ホモジナイザー(処理圧140MPa)で10回処理して透明なゲル状分散液を得た。
 得られた2%(w/v)のセルロースナノファイバー水分散液のB型粘度(60rpm、20℃)をTV-10型粘度計(東機産業株式会社製)を用いて測定した。また、得られた2%(w/v)のセルロースナノファイバー分散液を水で希釈して0.1%(w/v)のセルロースナノファイバー水分散液を調整し、UV-VIS分光光度計 UV-265FS(株式会社島津製作所社)を用いて660nm光の透過率を測定した。さらに、解繊及び分散処理に要した消費電力を(処理時における電力)×(処理時間)/(処理したサンプル量)により求めた。結果を表2に示す。
 [実施例9]
 工程C-2において、過酸化水素の代わりに次亜塩素酸ナトリウムを酸化セルロース系原料に対して1%(w/v)添加した以外、実施例8と同様にしてナノファイバー分散液を得て評価した。結果を表2に示す。
 [実施例10]
 工程C-2において、0.6MPaの酸素加圧条件で処理した以外、実施例8と同様にしてナノファイバー分散液を得て評価した。結果を表2に示す。
 [実施例11]
 工程C-2において、さらに酸化セルロース系原料に対して2%(w/v)のオゾンを添加した以外、実施例8と同様にしてナノファイバー分散液を得て評価した。結果を表2に示す。
 [実施例12]
 工程C-2において、過酸化水素を添加しなかった以外、実施例8と同様にしてナノファイバー分散液を得て評価した。結果を表2に示す。
 [実施例13~15]
 工程C-2において、過酸化水素を添加する際に、1M水酸化ナトリウムでpHをそれぞれ8、10、及び14に調整した以外、実施例8と同様にしてナノファイバー分散液を得て評価した。結果を表2に示す。
 [実施例16~19]
 工程C-2において、温度をそれぞれ50℃、60℃、90℃、及び100℃とした以外、実施例8と同様にしてナノファイバー分散液を得て評価した。結果を表2に示す。
 [実施例20]
 工程Bの前に、工程C-2で得たセルロース系原料を2%(w/v)含む水分散液を調製し、当該水分散液を流動させながら、20W低圧紫外線ランプを用いて254nmの紫外線を6時間照射する工程を実施した以外は、実施例8と同様にしてナノファイバー分散液を得て評価した。結果を表2に示す。
 [実施例21]
 針葉樹由来の漂白済み未叩解クラフトパルプの代わりに広葉樹由来の漂白済み未叩解クラフトパルプ(日本製紙株式会社製、白色度85%)を用いた以外、実施例8と同様にしてナノファイバー分散液を得て評価した。結果を表3に示す。
 [実施例22]
 工程C-2において、過酸化水素の代わりに次亜塩素酸ナトリウムを酸化パルプに対して1%(w/v)添加した以外、実施例21と同様にしてナノファイバー分散液を得て評価した。結果を表3に示す。
 [実施例23]
 工程C-2において、0.6MPaの酸素加圧条件で処理した以外、実施例21と同様にしてナノファイバー分散液を得て評価した。結果を表3に示す。
 [実施例24]
 針葉樹由来の漂白済み未叩解クラフトパルプの代わりに広葉樹由来の漂白済み未叩解サルファイトパルプ(白色度86%を)を用いた以外、実施例8と同様にしてナノファイバー分散液を得て評価した。結果を表3に示す。
 [比較例7]
 実施例8の工程Aで得た酸化されたセルロース系原料を用いて濃度2%(w/v)の水分散液を調製した。工程C-2を実施せずに、当該水分散液を流動させながら、20W低圧紫外線ランプを用いて254nmの紫外線を6時間照射する低粘度化処理を実施した。この処理で得た水分散液を用いて実施例8の工程Bを実施し、ナノファイバー分散液を得て評価した。結果を表2に示す。
 [比較例8]
 実施例8の工程Aで得た酸化されたセルロース系原料を用いて濃度2%(w/v)の水分散液を調製した。工程C-2を実施せずに、当該水分散液に市販のセルラーゼ(ノボザイムズジャパン社製、Novozyme 476)を、酸化されたセルロース系原料に対して2質量%添加して50℃で保持した。この処理で得た水分散液を用いて実施例8の工程Bを実施し、ナノファイバー分散液を得て評価した。結果を表2に示す。
 [比較例9]
 実施例8の工程Aで得た酸化されたセルロース系原料を用いて濃度2%(w/v)の水分散液を調製した。工程C-2を実施せずに、当該水分散液にオゾン及び過酸化水素を添加して室温で6時間撹拌して、低粘度化処理を行った。オゾン及び過酸化水素の使用量は、それぞれ、オゾン濃度6g/L(酸化されたセルロース系原料の絶乾質量の0.6倍に相当)、過酸化水素濃度3g/L(酸化されたセルロース系原料の絶乾質量の0.3倍に相当)とした。この処理で得た水分散液を用いて実施例8の工程Bを実施し、ナノファイバー分散液を得て評価した。結果を表2に示す。
 [比較例10]
 実施例8の工程Aで得た酸化されたセルロース系原料に、0.1Nの塩酸水溶液を加えてpH2.8の5%(w/v)水分散液を調製した。工程C-2を実施せずに、当該水分散液を90℃で2時間撹拌して酸加水分解処理した。塩酸の添加量は、酸化されたセルロース系原料に対して0.1質量%となるようにした。この処理で得た水分散液を用いて実施例8の工程Bを実施し、ナノファイバー分散液を得て評価した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 表2及び3の結果より、酸化されたセルロース系原料をアルカリ性溶液中で加水分解する工程C-2を実施した実施例8~24では、工程C-2を実施しない比較例7~10に比べて、低粘度で透明度が高い水分散液を与えるセルロースナノファイバーを、低い消費電力で製造できることが明らかである。

Claims (6)

  1.  (A)セルロース系原料を、(a1)N-オキシル化合物、及び(a2)臭化物、ヨウ化物もしくはこれらの混合物からなる群から選択される化合物の存在下で、(a3)酸化剤を用いて酸化する工程、及び、
     (B)前記工程Aで得た酸化セルロース系原料を含む分散液を調製し、当該酸化セルロース系原料を分散媒中に分散させながら解繊してナノファイバー化する工程、
    を含む、セルロースナノファイバーの製造方法であって、さらに、(C)アルカリ性条件下で処理する工程を含み、前記工程Cが:
     (C-1)工程Aの前に、セルロース系原料を、水酸化物イオン濃度が0.75~3.75mol/Lの水中で処理する工程;及び
     (C-2)工程Aと工程Bとの間に、工程Aで得た酸化セルロース系原料を、pH8~14のアルカリ性溶液中で加水分解する工程、
    のうちの少なくとも1つである、上記方法。
  2.  前記工程C-2を少なくとも含み、前記工程C-2において、前記アルカリ性溶液中に酸化剤または還元剤を添加する、請求項1に記載の方法。
  3.  前記工程C-2を少なくとも含み、前記工程C-2における加水分解を、温度40~120℃の条件下で、0.5~24時間行なう、請求項1または2に記載の方法。
  4.  前記工程C-2を少なくとも含み、前記工程C-2で用いる分散液中の前記酸化セルロース系原料の濃度が1~50%(w/v)である、請求項1~3のいずれかに記載の方法。
  5.  前記セルロース系原料が、ISO 2470に規定する白色度が80%以上の漂白済みクラフトパルプまたは漂白済みサルファイトパルプである、請求項1~4のいずれかに記載の方法。
  6.  前記セルロース系原料が、広葉樹由来のセルロース系原料である、請求項1~5のいずれかに記載の方法。
PCT/JP2012/056557 2011-03-30 2012-03-14 セルロースナノファイバーの製造方法 WO2012132903A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/008,682 US9139662B2 (en) 2011-03-30 2012-03-14 Method for producing cellulose nanofibers
EP12764646.1A EP2692739B1 (en) 2011-03-30 2012-03-14 Method for producing cellulose nanofibers
CA2831897A CA2831897C (en) 2011-03-30 2012-03-14 Method for producing cellulose nanofibers

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011074023A JP5179616B2 (ja) 2011-03-30 2011-03-30 セルロースナノファイバーの製造方法
JP2011-073987 2011-03-30
JP2011073987 2011-03-30
JP2011-074023 2011-03-30

Publications (1)

Publication Number Publication Date
WO2012132903A1 true WO2012132903A1 (ja) 2012-10-04

Family

ID=46930641

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/056557 WO2012132903A1 (ja) 2011-03-30 2012-03-14 セルロースナノファイバーの製造方法

Country Status (4)

Country Link
US (1) US9139662B2 (ja)
EP (1) EP2692739B1 (ja)
CA (1) CA2831897C (ja)
WO (1) WO2012132903A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015221844A (ja) * 2014-05-22 2015-12-10 凸版印刷株式会社 複合体の製造方法、及び複合体、微細セルロース繊維の分散液
JP2016030809A (ja) * 2014-07-30 2016-03-07 ハイモ株式会社 セルロースナノファイバーの製造方法
JP2017099364A (ja) * 2015-12-04 2017-06-08 国立大学法人愛媛大学 極小セルロースの製造方法
JP2018048235A (ja) * 2016-09-20 2018-03-29 大王製紙株式会社 セルロースナノファイバーの製造装置及びセルロースナノファイバーの製造方法
JP2020164710A (ja) * 2019-03-29 2020-10-08 王子ホールディングス株式会社 微細繊維状セルロース含有組成物およびその製造方法
JP2020164712A (ja) * 2019-03-29 2020-10-08 王子ホールディングス株式会社 微細繊維状セルロース含有組成物およびその製造方法
JP2020164709A (ja) * 2019-03-29 2020-10-08 王子ホールディングス株式会社 微細繊維状セルロース含有組成物およびその製造方法
WO2022030609A1 (ja) * 2020-08-07 2022-02-10 東亞合成株式会社 微粒子用バインダー組成物、加工液、及び繊維製品

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102032035B1 (ko) 2014-07-28 2019-11-08 아노메라 아이엔씨. 관능화된 나노결정질 셀룰로스의 제조 방법 및 이로써 제조된 관능화된 나노결정질 셀룰로스
GB2534338B (en) * 2014-10-08 2021-10-20 Univ Brunel Method of producing nanocellulose
US11578142B2 (en) 2016-12-21 2023-02-14 Nippon Paper Industries Co., Ltd. Acid type carboxylated cellulose nanofiber
AU2018257311B2 (en) * 2017-04-25 2020-03-12 Wood One Co., Ltd. Adhesive
CN111944065B (zh) * 2019-05-14 2022-04-19 中国科学技术大学 一种生物质板材及其制备方法
CA3145553C (en) * 2019-07-03 2023-10-10 Kansai Paint Co., Ltd. Effect paint for automobile
CN111206449A (zh) * 2020-01-16 2020-05-29 天津科技大学 一种氧化法预处理植物纤维制备纤维素纳米纤维的方法
CN111395031A (zh) * 2020-03-23 2020-07-10 华南理工大学 一种同步制备纤维素纳米晶须和纤维素纳米纤丝的方法
JPWO2022009980A1 (ja) * 2020-07-09 2022-01-13
US20230250197A1 (en) * 2020-07-09 2023-08-10 Toagosei Co., Ltd. Oxidized cellulose, nanocellulose, and their dispersions
WO2023235269A1 (en) * 2022-05-31 2023-12-07 University Of Washington Producing nanofibers, microfibers, and lignin from lignocellulosic biomass
CN117920150A (zh) * 2024-03-22 2024-04-26 北京大学 一种纤维素多孔纳米复合材料及其制备方法以及应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008001728A (ja) 2006-06-20 2008-01-10 Asahi Kasei Corp 微細セルロース繊維
WO2010116826A1 (ja) * 2009-03-30 2010-10-14 日本製紙株式会社 セルロースナノファイバーの製造方法
JP2010235681A (ja) * 2009-03-30 2010-10-21 Nippon Paper Industries Co Ltd セルロースナノファイバーの製造方法
JP2010235669A (ja) * 2009-03-30 2010-10-21 Nippon Paper Industries Co Ltd 酸化パルプ中に残留する有機系酸化触媒の除去方法
JP2010235679A (ja) 2009-03-30 2010-10-21 Nippon Paper Industries Co Ltd セルロースナノファイバーの製造方法
JP2010275659A (ja) * 2009-05-28 2010-12-09 Nippon Paper Industries Co Ltd セルロースナノファイバーの製造方法
WO2011089709A1 (ja) * 2010-01-22 2011-07-28 第一工業製薬株式会社 粘稠な組成物

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2314840B (en) * 1996-06-28 2000-09-06 Johnson & Johnson Medical Oxidized oligosaccharides and pharmaceutical compositions
CN101903572B (zh) * 2007-12-28 2012-11-07 日本制纸株式会社 纤维素纳米纤维的制造方法、纤维素的氧化催化剂以及纤维素的氧化方法
JP5351417B2 (ja) * 2007-12-28 2013-11-27 日本製紙株式会社 セルロースの酸化方法、セルロースの酸化触媒及びセルロースナノファイバーの製造方法
WO2013047218A1 (ja) * 2011-09-30 2013-04-04 日本製紙株式会社 セルロースナノファイバーの製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008001728A (ja) 2006-06-20 2008-01-10 Asahi Kasei Corp 微細セルロース繊維
WO2010116826A1 (ja) * 2009-03-30 2010-10-14 日本製紙株式会社 セルロースナノファイバーの製造方法
JP2010235681A (ja) * 2009-03-30 2010-10-21 Nippon Paper Industries Co Ltd セルロースナノファイバーの製造方法
JP2010235669A (ja) * 2009-03-30 2010-10-21 Nippon Paper Industries Co Ltd 酸化パルプ中に残留する有機系酸化触媒の除去方法
JP2010235679A (ja) 2009-03-30 2010-10-21 Nippon Paper Industries Co Ltd セルロースナノファイバーの製造方法
JP2010275659A (ja) * 2009-05-28 2010-12-09 Nippon Paper Industries Co Ltd セルロースナノファイバーの製造方法
WO2011089709A1 (ja) * 2010-01-22 2011-07-28 第一工業製薬株式会社 粘稠な組成物

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SAITO, T. ET AL., CELLULOSE COMMUN., vol. 14, no. 2, 2007, pages 62
See also references of EP2692739A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015221844A (ja) * 2014-05-22 2015-12-10 凸版印刷株式会社 複合体の製造方法、及び複合体、微細セルロース繊維の分散液
JP2016030809A (ja) * 2014-07-30 2016-03-07 ハイモ株式会社 セルロースナノファイバーの製造方法
JP2017099364A (ja) * 2015-12-04 2017-06-08 国立大学法人愛媛大学 極小セルロースの製造方法
JP2018048235A (ja) * 2016-09-20 2018-03-29 大王製紙株式会社 セルロースナノファイバーの製造装置及びセルロースナノファイバーの製造方法
JP2020164710A (ja) * 2019-03-29 2020-10-08 王子ホールディングス株式会社 微細繊維状セルロース含有組成物およびその製造方法
JP2020164712A (ja) * 2019-03-29 2020-10-08 王子ホールディングス株式会社 微細繊維状セルロース含有組成物およびその製造方法
JP2020164709A (ja) * 2019-03-29 2020-10-08 王子ホールディングス株式会社 微細繊維状セルロース含有組成物およびその製造方法
WO2022030609A1 (ja) * 2020-08-07 2022-02-10 東亞合成株式会社 微粒子用バインダー組成物、加工液、及び繊維製品

Also Published As

Publication number Publication date
CA2831897A1 (en) 2012-10-04
US9139662B2 (en) 2015-09-22
US20140053828A1 (en) 2014-02-27
CA2831897C (en) 2017-07-25
EP2692739A1 (en) 2014-02-05
EP2692739A4 (en) 2014-10-08
EP2692739B1 (en) 2019-07-03

Similar Documents

Publication Publication Date Title
JP5178931B2 (ja) セルロースナノファイバーの製造方法
WO2012132903A1 (ja) セルロースナノファイバーの製造方法
JP5285197B1 (ja) セルロースナノファイバーの製造方法
JP5330882B2 (ja) セルロースゲル分散液の製造方法
KR102033640B1 (ko) 셀룰로오스 나노 파이버
JP5731253B2 (ja) セルロースナノファイバーの製造方法
JP5381338B2 (ja) セルロースナノファイバーの製造方法
WO2010116826A1 (ja) セルロースナノファイバーの製造方法
JP5329279B2 (ja) セルロースナノファイバーの製造方法
JP5179616B2 (ja) セルロースナノファイバーの製造方法
JPWO2011118748A1 (ja) セルロースナノファイバーの製造方法
WO2013137140A1 (ja) アニオン変性セルロースナノファイバー分散液の製造方法
WO2011118746A1 (ja) セルロースナノファイバーの製造方法
JP6276900B2 (ja) セルロースナノファイバーの製造方法
JP5404131B2 (ja) セルロースナノファイバーの製造方法
JP6015232B2 (ja) 酸化セルロース及びセルロースナノファイバーの製造方法
JP6877136B2 (ja) カルボキシル化セルロースナノファイバーの製造方法
WO2012132663A1 (ja) セルロースナノファイバーの製造方法
JP6015233B2 (ja) 酸化セルロース及びセルロースナノファイバーの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12764646

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2831897

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012764646

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14008682

Country of ref document: US