WO2012132825A1 - 定置用内燃機関の吸気冷却装置 - Google Patents

定置用内燃機関の吸気冷却装置 Download PDF

Info

Publication number
WO2012132825A1
WO2012132825A1 PCT/JP2012/056022 JP2012056022W WO2012132825A1 WO 2012132825 A1 WO2012132825 A1 WO 2012132825A1 JP 2012056022 W JP2012056022 W JP 2012056022W WO 2012132825 A1 WO2012132825 A1 WO 2012132825A1
Authority
WO
WIPO (PCT)
Prior art keywords
intake air
cooling water
cooling
cooler
air cooler
Prior art date
Application number
PCT/JP2012/056022
Other languages
English (en)
French (fr)
Inventor
正仁 小宮山
宏 福士
究 井上
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to US14/007,007 priority Critical patent/US9316185B2/en
Priority to EP12764077.9A priority patent/EP2693039B1/en
Priority to CN201280014051.9A priority patent/CN103443438B/zh
Priority to KR1020137025126A priority patent/KR101518159B1/ko
Publication of WO2012132825A1 publication Critical patent/WO2012132825A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M31/00Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture
    • F02M31/20Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture for cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/20Cooling circuits not specific to a single part of engine or machine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M5/00Heating, cooling, or controlling temperature of lubricant; Lubrication means facilitating engine starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P9/00Cooling having pertinent characteristics not provided for in, or of interest apart from, groups F01P1/00 - F01P7/00
    • F01P9/06Cooling having pertinent characteristics not provided for in, or of interest apart from, groups F01P1/00 - F01P7/00 by use of refrigerating apparatus, e.g. of compressor or absorber type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • F02B29/0412Multiple heat exchangers arranged in parallel or in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • F02B29/0437Liquid cooled heat exchangers
    • F02B29/0443Layout of the coolant or refrigerant circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N5/00Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy
    • F01N5/02Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy the devices using heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/02Intercooler
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a water-saving intake air cooling device that is suitable for a stationary internal combustion engine and is installed in an area where water is not abundant and the outside air temperature is high.
  • the intake air supplied to the combustion chamber formed in the cylinder of the internal combustion engine is once cooled by a cooler before being supplied to the combustion chamber in order to improve the charging efficiency.
  • a cooler since the intake air pressurized by the compressor of the supercharger normally rises to 100 to 200 ° C., it is cooled by providing a heat exchanger at the outlet side intake passage of the compressor. is doing. The heat taken from the intake air by the heat exchanger was radiated to the atmosphere by a radiator or the like.
  • Patent Document 1 discloses an intake air cooling device for an internal combustion engine provided with an absorption refrigerator that supplies a low-temperature refrigerant to a cooler that cools intake air.
  • this apparatus will be described with reference to FIG. 3 (FIG. 2 of Patent Document 1).
  • an exhaust pipe 102 and an intake pipe 104 are connected to the diesel engine 100.
  • the exhaust pipe 102 is connected to an exhaust path 106 for releasing the exhaust gas of the diesel engine 100 to the outside
  • the intake pipe 104 is connected to an intake path 108 for introducing outside air.
  • a supercharger 110 is provided across the exhaust pipe 102 and the intake pipe 104.
  • an exhaust turbine 112 provided in the exhaust pipe 102 and a compressor 114 provided in the intake pipe 104 are integrally formed via a shaft 116.
  • a heat exchanger 118 is interposed in the intake pipe 104.
  • a pipe line 120 is installed between the heat exchanger 118 and the absorption refrigerator 122. The pipe line 120 is led to a heat exchanger 124 of an evaporator constituting the absorption refrigerator 122. Cooling water is supplied from the absorption chiller 122 to the heat exchanger 118 via the pipe line 120.
  • the exhaust path 106 and the generator heat exchanger 126 constituting the absorption refrigerator 122 are connected by a pipe 128.
  • An exhaust heat exchanger 130 connected to the pipe line 128 is provided in the exhaust path 106.
  • the heat energy recovered from the exhaust gas e flowing through the exhaust passage 106 by the exhaust heat exchanger 130 is sent to the generator heat exchanger 126 through the pipe 128 using steam as a medium.
  • the absorption refrigerator 122 is operated by this heat energy and cooling water sent from a cooling tower or the like.
  • the cooling water flowing through the heat exchanger 124 in the evaporator is cooled by the operation of the absorption refrigerator 122.
  • the cooling water cooled by the heat exchanger 124 is sent to the air cooler 118 and cools the intake air a flowing through the intake pipe 104.
  • FIG. 3 of Patent Document 1 discloses an example in which the retained heat of the cooling water after cooling the diesel engine 100 is used as a heat source of the absorption chiller.
  • a cooling tower is provided together with an absorption refrigerator, and the cooling water supplied to the evaporator and the absorber is cooled by using the latent heat of water evaporation in the cooling tower. Therefore, a large amount of water is required in the cooling tower. Further, in a region where the outside air temperature is high, such as a tropical region, when high temperature outside air is used as the intake air, the intake air pressurized by the supercharger rises to a high temperature. Therefore, a means for cooling the hot intake air with high efficiency is required. Therefore, it is difficult to obtain a sufficient output even if a stationary internal combustion engine is installed in a region where water is not abundant or a region where the temperature is high such as a tropical region.
  • the present invention consumes less water even when a stationary internal combustion engine is installed in an area where water is not abundant and water tends to be insufficient, or where the outside air temperature is high.
  • the purpose is to realize a water-saving intake air cooling device that can reduce the intake air temperature with high efficiency.
  • an intake air cooling apparatus for a stationary internal combustion engine is an intake air cooling apparatus for a stationary internal combustion engine having a supercharger in an intake passage and an exhaust passage.
  • a first intake air cooler that is provided in the upstream intake passage and primarily cools the intake air; a second intake air cooler that secondarily cools the compressor outlet-side intake air that has been pressurized and heated by the compressor; and a stationary internal combustion engine
  • An absorption refrigerator that supplies the first intake air cooler and the second intake air cooler with cooling water for intake air cooling using the retained heat of the exhaust gas of the engine as a heat source, and cools the cooling water by exchanging heat with the outside air.
  • a heat exchanger that supplies the cooling water to the absorption chiller as a cooling heat source, and cools the intake air supplied to the combustion chamber of the stationary internal combustion engine by the first intake air cooler and the second intake air cooler. It is comprised so that it may do.
  • the outside air introduced into the intake passage is firstly cooled by the first intake cooler upstream of the supercharger. Therefore, even a considerably high temperature outside air, for example, outside air having a temperature around 50 ° C., can be cooled and introduced into the supercharger.
  • a considerably high temperature outside air for example, outside air having a temperature around 50 ° C.
  • the intake air pressurized by the compressor constituting the supercharger and heated to a high temperature is cooled by the second intake air cooler on the downstream side of the supercharger, it is supplied to the combustion chamber of the stationary gas engine.
  • the cooling water for cooling the intake air of the first intake air cooler and the second intake air cooler is cooled by an absorption refrigerator.
  • an absorption chiller with low power consumption is used, and the heat source supplied to the absorption chiller is covered with the heat stored in the exhaust gas. Because it is able to cover, no extra heat source is required. Therefore, energy saving and cooling efficiency can be improved.
  • the heat exchanger that cools the cooling water that is the cooling heat source of the absorption chiller uses outside air as the cooling heat source and does not require water. Therefore, it will not cause any trouble even in areas where water is scarce. Therefore, according to the device of the present invention, the intake air cooling device can be operated with energy saving and high efficiency even in an area where water is not abundant and the outside air temperature is high.
  • the second intake air cooler further cools the high-temperature side intake air cooler that cools the high-temperature intake air pressurized by the supercharger and the intake air cooled by the high-temperature side intake air cooler.
  • the low-temperature side intake air cooler is provided with a second heat exchanger for supplying cooling water that is cooled by exchanging heat with the outside air, and is absorbed by the low-temperature side intake air cooler.
  • the cooling water is supplied from the refrigerating machine, and the cooling water after being subjected to the intake air cooling by the high temperature side intake air cooler is returned to the second heat exchanger via the cooling water jacket of the stationary internal combustion engine. Good.
  • the cooling water cooled by the absorption chiller is supplied to the low temperature side intake air cooler, and the cooling water cooled by the second heat exchanger is supplied to the high temperature side intake air cooler, thereby sharing the cooling target. Therefore, even an absorption chiller having a cooling capacity smaller than that of a vapor compression chiller or the like can sufficiently cope with it. Further, since the high-temperature side intake cooler exchanges heat with the high-temperature intake air on the downstream side of the compressor, it does not require much low-temperature cooling water. Therefore, the second heat exchanger that uses the outside air as a cold heat source can sufficiently cope. Furthermore, since the second heat exchanger uses outside air as a cold heat source, it does not require water and can operate even in an area where water is insufficient.
  • the apparatus of the present invention comprises an exhaust gas boiler provided in an exhaust path of a stationary internal combustion engine, and a steam supply path for supplying at least a part of the steam obtained by the exhaust gas boiler to an absorption refrigeration machine. It is good to supply as a heat source of a refrigerator. As a result, the retained heat of the exhaust gas can be efficiently recovered and used as a heat source for the absorption refrigerator. Further, the remainder of the water vapor can be used as a heat source for other equipment.
  • a cooling water circulation path for circulating cooling water between the second intake air cooler or the low temperature side intake air cooler and the absorption chiller, and a forward path and a return path of the cooling water circulation path are connected.
  • the cooling water discharged from the second intake air cooler or the low-temperature side intake air cooler is exchanged with the intake air that has been pressurized by the supercharger and becomes high temperature, and the second intake air cooling is performed without passing through the absorption refrigerator.
  • Bypass passage for returning to the cooler or the low-temperature side intake air cooler, a valve mechanism for changing the flow rate of the cooling water flowing through the bypass passage, an absorption refrigerator that controls the valve mechanism, and that depends on the load of the stationary internal combustion engine And a controller for controlling the amount of cooling water supplied to. Accordingly, the controller can control the temperature and flow rate of the cooling water supplied to the second intake air cooler or the low temperature side intake air cooler according to the load of the stationary internal combustion engine.
  • a temperature sensor for detecting the temperature of the cooling water supplied from the absorption chiller to the second intake air cooler or the low temperature side intake air cooler, and the detected value of the temperature sensor to be a target value.
  • a controller for controlling the operation of the absorption refrigerator.
  • a third heat exchanger for exchanging heat between the lubricating oil circulating in the lubricating oil space formed in the housing of the stationary internal combustion engine and the outside air and cooling the lubricating oil, and the lubricating oil space And a lubricating oil circuit that leads the lubricating oil to the third heat exchanger.
  • the lubricating oil circulating through each part in the housing can be cooled by the third heat exchanger.
  • the third heat exchanger does not use water as a cold heat source, it can be operated even in an area where water is insufficient.
  • the intake air is primarily cooled by being provided in an upstream intake passage of a compressor constituting the supercharger.
  • a first intake air cooler, a second intake air cooler that secondary-cools the compressor outlet side intake air that has been pressurized and heated by the compressor, and the heat retained in the exhaust gas of the stationary internal combustion engine is used as a heat source
  • An absorption chiller for supplying intake cooling water to the intake air cooler and the second intake air cooler, cooling the cooling water by exchanging heat with outside air, and using the cooling water as a cooling heat source for the absorption chiller
  • a heat exchanger to be supplied, and the intake air supplied to the combustion chamber of the stationary internal combustion engine is cooled by the first intake air cooler and the second intake air cooler.
  • FIG. 1 is an overall configuration diagram of an embodiment in which the present invention is applied to a stationary gas engine. It is a flowchart which shows the operation
  • a housing 12 of a stationary gas engine 10 includes a combustion chamber 13 formed in a plurality of cylinders, a lubricating oil circulation path 14 for supplying lubricating oil to each part in the housing 12, A cooling water jacket 16 is provided for cooling each of these parts with cooling water.
  • the combustion chamber 13, the lubricating oil circulation path 14, and the cooling water jacket 16 are schematically shown in FIG.
  • the stationary gas engine 10 is connected to the generator 20 via a flywheel.
  • the intake system of the stationary gas engine 10 includes a primary intake air cooler 22 that primarily cools the taken-in outside air a.
  • a compressor 26 a constituting the supercharger 26 is provided in the downstream intake passage 24 of the primary intake cooler 22.
  • a high temperature side intake cooler 28 and a low temperature side intake cooler 30 are interposed in the intake passage 24 downstream of the compressor 26a.
  • the intake air s pressurized and heated by the compressor 26 a is secondarily cooled by the high temperature side intake cooler 28 and then thirdly cooled by the low temperature side intake air cooler 30, and then entered into the combustion chamber 13 of the stationary gas engine 10. Supplied.
  • the exhaust gas e exhausted from the combustion chamber 13 of the stationary gas engine 10 to the exhaust passage 32 drives an exhaust turbine 26b provided in the exhaust passage 32.
  • the exhaust turbine 26b and the compressor 26a are connected by a shaft 26c, and the compressor 26a and the exhaust turbine 26b constitute a supercharger 26.
  • An exhaust heat boiler 34 is provided in the downstream exhaust passage 32 of the exhaust turbine 26b. Raw water w is supplied to the exhaust heat boiler 34, and steam is produced by the retained heat of the exhaust gas e.
  • the steam produced by the exhaust heat boiler 34 is supplied as a heat source to a generator (not shown) of an absorption chiller 50 described later via pipes 36 and 38.
  • a part of the water vapor is supplied to other devices as a heat source through the pipe 40 branched from the pipe 36.
  • a three-way valve 42 is provided at a branch portion of the pipe lines 36 and 40, and the three-way valve 42 enables water vapor to be distributed to the pipe lines 38 or 40.
  • a cooling water circulation path 46 for circulating cooling water to the cooling water jacket 16, the high temperature side intake cooler 28, and the second radiator 44 is provided.
  • the second radiator 44 includes a mechanism for taking in the outside air a such as a fan, and a heat exchanging section for exchanging heat between the outside air a and the cooling water, and has a function of cooling the cooling water with the outside air a.
  • the cooling water cooled by the second radiator 44 is circulated through the cooling water circulation path 46 in the direction of the arrow by the pump 48.
  • the intake air s is cooled by the high temperature side intake air cooler 28 with this cooling water.
  • the cooling water used for cooling the intake air s by the high-temperature side intake cooler 28 is then sent to the cooling water jacket 16 to cool each part in the housing 12.
  • the 1st radiator 52 which supplies the cooling water used as the cold heat source of the absorption refrigerator 50 with the absorption refrigerator 50 is provided.
  • the first radiator 52 has the same configuration as the second radiator 44. That is, an outside air intake mechanism and a heat exchanging part that exchanges heat between the outside air a and the cooling water are provided, and has a function of cooling the cooling water with the outside air a.
  • the first radiator 52 and the absorption chiller 50 are connected by cooling water circulation paths 54a and 54b, and a cooling water is connected between the first radiator 52 and the absorption chiller 50 by a pump 56 interposed in the cooling water circulation path 54a. Circulates.
  • the absorption chiller 50 is supplied with water vapor as a heat source via the pipes 36 and 38, and from the first radiator 52 to the condenser and the absorber (not shown) as a cold heat source. Cooling water is supplied.
  • the absorption refrigerator 50 and the low-temperature side intake cooler 30 are connected via cooling water circulation paths 58a and 58b.
  • the cooling water cooled by the absorption chiller 50 is circulated through the cooling water circulation paths 58a and 58b by the pump 60 interposed in the cooling water circulation path 58a, and the intake air s is cooled by the low temperature side intake cooler 30.
  • a cooling water circulation path 74a for supplying cooling water to the primary intake air cooler 22 is connected to the cooling water circulation path 58a.
  • Lubricating oil circulation passages 70 a and 70 b that communicate with the lubricating oil circulation space 14 and lead out the lubricating oil to the outside of the housing 12 are provided.
  • the lubricating oil circulation passages 70 a and 70 b are provided outside the housing 12 and are connected to the third radiator 72. It is connected to the.
  • the third radiator 72 has the same configuration as the first radiator 52 and the second radiator 44, and has an outside air intake mechanism and a heat exchange unit.
  • the third radiator 72 has a function of taking outside air a, exchanging heat between the taken outside air a and the lubricating oil, and cooling the lubricating oil.
  • a bypass path 62 is provided on the absorption chiller 50 side from the connection of the cooling water circulation paths 74a and 74b.
  • a three-way valve 64 is provided at a branch portion between the cooling water circulation path 58 a and the bypass path 62.
  • the cooling water circulation path 58a is provided with a temperature sensor 66 for detecting the cooling water temperature.
  • a controller 68 that controls the operation of the absorption chiller 50 is provided. The controller 68 inputs the detection value of the temperature sensor 66 and controls the operation of the absorption refrigerator 50 based on the detection value.
  • the controller 68 controls the flow rate of water vapor supplied to the absorption chiller 50 by controlling the opening degree of the three-way valve 42. Furthermore, the distribution amount of the cooling water distributed to the cooling water circulation path 58 a and the bypass path 62 is controlled by controlling the opening degree of the three-way valve 64 according to the load of the stationary gas engine 10.
  • the flow rate and temperature of the cooling water supplied to the low temperature side intake air cooler 30 are made constant by controlling the opening degree of the three-way valve 64 by the controller 68 and controlling the amount of cooling water that bypasses the absorption chiller 50. I try to control it.
  • the controller 68 controls the operation of the absorption chiller 50 based on the detection value of the temperature sensor 66, and controls the three-way valves 42 and 64 according to the load of the stationary gas engine 10.
  • the cooling water temperature and the flow rate supplied to the primary intake air cooler 22 and the low temperature side intake air cooler 30 can be kept constant.
  • set temperatures such as outside air a, intake air s, exhaust gas e, and cooling water are appended to each part.
  • the temperature of the outside air a is set to 50 ° C.
  • the exhaust gas e exhausted from the combustion chamber 13 of the stationary gas engine 10 is introduced into the exhaust heat boiler 34.
  • steam is produced with the retained heat of the exhaust gas e.
  • This water vapor is supplied to the absorption refrigerator 50 as a heat source via the pipes 36 and 38.
  • the absorption refrigerator 50 is supplied with cooling water as a cooling heat source from the first radiator 52, and is operated by these heat sources and the cooling heat source. Cooling water at 32 ° C. is produced by the absorption chiller 50, and this cooling water is sent to the primary intake air cooler 22 and the low-temperature side intake air cooler 30. Cool down.
  • the cooling water cooled by the second radiator 44 is sent to the cooling water jacket 16 on the downstream side of the high temperature side intake air cooler 28 to cool each part in the housing 12. Further, the lubricating oil in the housing 12 is sent from the lubricating oil circulation space 14 to the third radiator 72 via the lubricating oil circulation path 70a and cooled. The lubricating oil cooled by the third radiator 72 is returned to the lubricating oil circulation space 14 via the lubricating oil circulation path 70b.
  • the control is terminated (S18).
  • the controller 68 controls the operation of the absorption chiller 50 (S20) so that the detected value is within the set range.
  • the outside air a introduced into the intake passage 24 is cooled in three stages in the upstream and downstream intake passages 24 of the supercharger 26, the outside air a having a temperature of 50 ° C. Even so, it can be supplied to the combustion chamber 13 of the stationary gas engine 10 at a set temperature of 40 ° C. Further, the primary intake air cooler 22 and the low temperature side intake air cooler 30 into which the low-temperature intake air s is introduced have low power consumption, absorption refrigeration using the retained heat of the exhaust gas e as a heat source and the outside air as a cold heat source. Since the cooling water produced by the machine 50 is supplied, a special heat source is not required, and energy-saving and highly efficient cooling efficiency can be achieved.
  • the intake air cooling device can operate with high efficiency even in a tropical dry area where water is not abundant and is scarce and the outside air temperature is high.
  • the second radiator 44 using the outside air a as a cold heat source can sufficiently cope with it.
  • the absorption refrigeration has a cooling capacity smaller than that of the vapor compression chiller. The machine can also handle it.
  • the exhaust heat boiler 34 is provided in the exhaust passage 32, steam is produced with the retained heat of the exhaust gas e, and this steam is used as the heat source of the absorption chiller 50, the retained heat of the exhaust gas e is efficiently used. Can be recovered. The remainder of the water vapor can also be used as a heat source for other equipment.
  • a three-way valve 42 is provided in the pipeline 36, and a bypass passage 62 and a three-way valve 64 are provided in the cooling water circulation paths 58a and 58b. Therefore, the temperature of the cooling water supplied to the primary intake air cooler 22 and the low-temperature side intake air cooler 30 can be controlled according to the load of the stationary gas engine 10.
  • a temperature sensor 66 for detecting the temperature of the cooling water is provided in the cooling water circulation path 58a, and the controller 68 uses the absorption value of the cooling water so that the temperature of the cooling water becomes the target temperature based on the detection value of the temperature sensor 66 Since the operation of 50 is controlled, the temperature of the cooling water supplied to the primary intake air cooler 22 and the low temperature side intake air cooler 30 can be accurately controlled to the target value. Further, the temperature of the lubricating oil that lubricates the inside of the housing 12 can be cooled by the third radiator 72 that does not use water.
  • the stationary gas engine 10 is connected to the generator 20 via the flywheel.
  • a pump or a compressor is connected to drive these devices. May be.
  • the present invention can also be applied to stationary internal combustion engines other than stationary gas engines.
  • an intake air cooling device for a stationary internal combustion engine that is suitable for a high-temperature region where energy saving and cooling efficiency are high and water is not abundant.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Supercharger (AREA)
  • Lubrication Of Internal Combustion Engines (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Sorption Type Refrigeration Machines (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

過給機26の上流側及び下流側の吸気路24に一次吸気冷却器22、高温側吸気冷却器28及び低温側吸気冷却器30を設け、一次吸気冷却器22及び低温側吸気冷却器30に冷却水を送る吸収式冷凍機50と、高温側吸気冷却器28に冷却水を送る第2ラジエータ44とを設けている。吸収式冷凍機50に冷却水を送る第1ラジエータ52を設け、排気路32に設けた排熱ボイラ34で水蒸気を製造し、この水蒸気を吸収式冷凍機50に熱源として供給している。潤滑油循環空間14を流れる潤滑油を冷却する第3ラジエータ72を設けている。第1ラジエータ52、第2ラジエータ44及び第3ラジエータ72を設けることで、冷熱源として水を必要としない。

Description

定置用内燃機関の吸気冷却装置
 本発明は、定置用内燃機関において、水が豊富でなくかつ外気温が高い地域に設置されて好適な節水型吸気冷却装置に関する。
 内燃機関のシリンダ内に形成される燃焼室に供給される吸気は、充填効率を向上させるため、燃焼室に供給される前に、冷却器で一旦冷却される。特に、過給機を備えた内燃機関では、過給機のコンプレッサで加圧された吸気は、通常100~200℃に昇温するため、コンプレッサの出口側吸気路に熱交換器を設けて冷却している。該熱交換器で吸気から奪った熱は、放熱器等により大気へ放熱していた。
 特許文献1には、吸気を冷却する冷却器に低温冷媒を供給する吸収式冷凍機を備えた内燃機関の吸気冷却装置が開示されている。以下、この装置を図3(特許文献1の図2)により説明する。図3において、ディーゼル機関100に排気管102と吸気管104が接続されている。排気管102には、ディーゼル機関100の排気ガスを外部へ放出する排気路106が接続され、吸気管104には、外気を導入する吸気路108が接続されている。
 排気管102及び吸気管104に跨って過給機110が設けられている。過給機110は、排気管102に設けられた排気タービン112と、吸気管104に設けられたコンプレッサ114とが軸116を介して一体に構成されている。吸気管104には熱交換器118が介設されている。熱交換器118と吸収式冷凍機122との間に管路120が架設されている。管路120は、吸収式冷凍機122を構成する蒸発器の熱交換器124に導設されている。熱交換器118に管路120を介して吸収式冷凍機122から冷却水が供給される。
 排気路106と、吸収式冷凍機122を構成する発生器用熱交換器126との間は、管路128で接続されている。排気路106には、管路128に接続された排気熱交換器130が設けられている。
 排気熱交換器130で排気路106を流れる排気ガスeより回収された熱エネルギは、水蒸気を媒体とし、管路128を経て発生器用熱交換器126に送られる。吸収式冷凍機122は、この熱エネルギ及び冷却塔等から送られる冷却水によって稼動する。吸収式冷凍機122の稼動により、蒸発器内の熱交換器124を流れる冷却水を冷却する。熱交換器124で冷却された冷却水は、空気冷却器118に送られ、吸気管104を流れる吸気aを冷却する。
 この吸気冷却装置では、消費電力が少ない吸収式冷凍機122を用い、かつ吸収式冷凍機122の熱源として排気ガスeの保有熱を利用するので、熱効率を向上できる。
 なお、特許文献1の図3には、ディーゼル機関100を冷却した後の冷却水の保有熱を、吸収式冷凍機の熱源として利用するようにした例が開示されている。
特開昭58-79618号公開公報
 通常、吸収式冷凍機と共に冷却塔を設け、前記蒸発器や吸収器に供給する冷却水を、冷却塔で水の蒸発潜熱を利用して冷却している。そのため、冷却塔では大量の水を必要とする。また、熱帯地域のように、外気温度が高い地域では、高温の外気を吸気として用いると、過給機で加圧された吸気は高い温度まで昇温する。そのため、高温の吸気を高効率で冷却する手段が必要となる。従って、水が豊富でない地域や、熱帯地域等のように気温が高い地域では、定置用内燃機関を設置しても十分な出力を得ることが難しい。
 本発明は、かかる従来技術の課題に鑑み、水が豊富でなく、水不足しがちな地域、あるいは外気温度が高い地域に、定置用内燃機関を設置する場合でも、水の消費量が少なく、かつ吸気温度を高効率で低減可能な節水型吸気冷却装置を実現することを目的とする。
 かかる目的を達成するため、本発明の定置用内燃機関の吸気冷却装置は、吸気路及び排気路に過給機を備えた定置用内燃機関の吸気冷却装置において、過給機を構成するコンプレッサの上流側吸気路に設けられ、吸気を一次冷却する第1の吸気冷却器と、該コンプレッサで加圧され昇温したコンプレッサ出口側吸気を二次冷却する第2の吸気冷却器と、定置用内燃機関の排気ガスの保有熱を熱源とし、第1の吸気冷却器及び第2の吸気冷却器に吸気冷却用冷却水を供給する吸収式冷凍機と、冷却水を外気と熱交換させて冷却し、該冷却水を吸収式冷凍機に冷熱源として供給する熱交換器と、を備え、定置用内燃機関の燃焼室に供給する吸気を第1の吸気冷却器及び第2の吸気冷却器で冷却するように構成したものである。
 本発明装置では、吸気路に導入した外気を、まず、過給機の上流側で第1の吸気冷却器で一次冷却する。そのため、相当に高温の外気、例えば、50℃前後の温度を有する外気であっても、冷却して過給機に導入できる。次に、過給機を構成するコンプレッサで加圧され高温となった吸気を、過給機の下流側で第2の吸気冷却器で冷却した後、定置用ガスエンジンの燃焼室に供給する。
 第1の吸気冷却器及び第2の吸気冷却器の吸気冷却用冷却水を、吸収式冷凍機で冷却するようにする。吸気冷却用冷却水の冷却手段として、消費電力が少ない吸収式冷凍機を用い、かつ吸収式冷凍機に供給する熱源を排気ガスの保有熱でまかない、吸収式冷凍機に供給する冷熱源を外気でまかなうようにしているので、余分な熱源を必要としない。そのため、省エネ化でき、かつ冷却効率を向上できる。
 また、吸収式冷凍機の冷熱源である冷却水を冷却する熱交換器は、冷熱源として外気を用いており、水を必要としない。そのため、水が不足した地域でも支障をきたさない。従って、本発明装置によれば、水が豊富でなく、かつ外気温が高い地域であっても、省エネかつ高効率で吸気冷却装置を稼動できる。
 本発明装置において、第2の吸気冷却器は、過給機で加圧された高温の吸気を冷却する高温側吸気冷却器と、該高温側吸気冷却器で冷却された吸気をさらに冷却してシリンダ内に供給する低温側吸気冷却器とからなり、高温側吸気冷却器に外気と熱交換して冷却された冷却水を供給する第2の熱交換器を備え、低温側吸気冷却器に吸収式冷凍機から冷却水を供給すると共に、高温側吸気冷却器で吸気冷却に供した後の冷却水を、定置用内燃機関の冷却水ジャケットを経て、第2の熱交換器に戻すように構成するとよい。
 かかる構成では、吸収式冷凍機で冷却した冷却水を低温側吸気冷却器に供給し、第2の熱交換器で冷却した冷却水を高温側吸気冷却器に供給することで、冷却対象を分担しているので、蒸気圧縮式冷凍機等と比べて冷却能力が小さい吸収式冷凍機でも十分対応できる。
 また、高温側吸気冷却器は、コンプレッサ下流側の高温吸気との熱交換であるので、さほど低温の冷却水を必要としない。そのため、外気を冷熱源とする第2の熱交換器でも、十分対応できる。さらに、第2の熱交換器は、外気を冷熱源としているので、水を必要とせず、水が不足した地域でも稼動できる。
 本発明装置において、定置用内燃機関の排気路に設けられた排ガスボイラと、排ガスボイラで得た水蒸気の少なくとも一部を吸収式冷凍機に供給する水蒸気供給路とを備え、該水蒸気を吸収式冷凍機の熱源として供給するようにするとよい。これによって、排気ガスの保有熱を効率良く回収して、吸収式冷凍機の熱源として利用できる。また、該水蒸気の残りを他の機器の熱源として充当できる。
 本発明装置において、第2の吸気冷却器又は低温側吸気冷却器と吸収式冷凍機との間に冷却水を循環する冷却水循環路と、該冷却水循環路の往路と復路との間に接続され、過給機で加圧され高温となった吸気と熱交換され第2の吸気冷却器又は低温側吸気冷却器から排出される冷却水を、吸収式冷凍機を経ずに第2の吸気冷却器又は低温側吸気冷却器に戻すバイパス路と、該バイパス路を流れる冷却水の流量を可変とする弁機構と、該弁機構を制御し、定置用内燃機関の負荷に応じて吸収式冷凍機に供給される冷却水量を制御するコントローラと、を備えているとよい。これによって、前記コントローラによって、定置用内燃機関の負荷に応じて、第2の吸気冷却器又は低温側吸気冷却器に供給する冷却水の温度及び流量を制御できる。
 本発明装置において、吸収式冷凍機から第2の吸気冷却器又は低温側吸気冷却器に供給される冷却水の温度を検出する温度センサと、該温度センサの検出値が目標値になるように吸収式冷凍機の運転を制御するコントローラと、を備えているとよい。これによって、吸収式冷凍機又は低温側吸気冷却器に供給する冷却水の温度を目標温度に制御できる。
 本発明装置において、定置用内燃機関のハウジング内に形成された潤滑油空間を循環する潤滑油と外気とを熱交換させ、該潤滑油を冷却する第3の熱交換器と、該潤滑油空間に連通し該潤滑油を該第3の熱交換器に導く潤滑油循環路と、を備えているとよい。これによって、ハウジング内の各部位を循環する潤滑油を第3の熱交換器で冷却できる。しかも、第3の熱交換器は冷熱源として水を使用しないので、水不足の地域でも稼動できる。
 本発明装置によれば、吸気路及び排気路に過給機を備えた定置用内燃機関の吸気冷却装置において、過給機を構成するコンプレッサの上流側吸気路に設けられ、吸気を一次冷却する第1の吸気冷却器と、該コンプレッサで加圧され昇温したコンプレッサ出口側吸気を二次冷却する第2の吸気冷却器と、定置用内燃機関の排気ガスの保有熱を熱源とし、第1の吸気冷却器及び第2の吸気冷却器に吸気冷却用冷却水を供給する吸収式冷凍機と、冷却水を外気と熱交換させて冷却し、該冷却水を吸収式冷凍機に冷熱源として供給する熱交換器と、を備え、定置用内燃機関の燃焼室に供給する吸気を第1の吸気冷却器及び第2の吸気冷却器で冷却するように構成したので、吸収式冷凍機を稼動するのに特別な熱源を必要とせず、省エネかつ高効率で稼動できると共に、吸気を2段階で冷却しているので、吸気として高温の外気を導入しても、燃焼室に供給する吸気を目標温度に冷却できる。また、吸収式冷凍機の冷熱源として水を用いないので、水が豊富でない地域でも、支障を来すことなく稼動できる。従って、水が豊富でなくかつ外気温が高い地域に好適な吸気冷却装置を実現できる。
本発明を定置用ガスエンジンに適用した一実施形態の全体構成図である。 前記実施形態の動作手順を示すフローチャートである。 従来の内燃機関の吸気冷却装置の構成図である。
 以下、本発明を図に示した実施形態を用いて詳細に説明する。但し、この実施形態に記載されている構成部品の寸法、材質、形状、その相対配置などは特に特定的な記載がない限り、この発明の範囲をそれのみに限定する趣旨ではない。
 本発明を、気温が高く、かつ水が不足しがちな地域、例えば、熱帯の乾燥地域に設置される定置用ガスエンジンに適用した一実施形態を図1及び図2に基づいて説明する。図1において、定置用ガスエンジン10のハウジング12には、複数のシリンダ内に形成される燃焼室13と、ハウジング12内の各部位に潤滑油を供給する潤滑油循環路14と、ハウジング12内の各部位を冷却水で冷却するための冷却水ジャケット16とが設けられている。なお、燃焼室13、潤滑油循環路14及び冷却水ジャケット16は、図1中で模式的に図示されている。定置用ガスエンジン10は、はずみ車を介して発電機20に接続されている。
 定置用ガスエンジン10の吸気系統は、取り込んだ外気aを一次冷却する一次吸気冷却器22を備えている。一次吸気冷却器22の下流側吸気路24には、過給機26を構成するコンプレッサ26aが設けられている。コンプレッサ26aの下流側で、吸気路24には、高温側吸気冷却器28及び低温側吸気冷却器30が介設されている。コンプレッサ26aで加圧され昇温した吸気sは、高温側吸気冷却器28で二次冷却され、次に低温側吸気冷却器30で三次冷却された後、定置用ガスエンジン10の燃焼室13に供給される。
 定置用ガスエンジン10の燃焼室13から排気路32に排気された排気ガスeは、排気路32に設けられた排気タービン26bを駆動する。排気タービン26bとコンプレッサ26aとは軸26cで接続され、コンプレッサ26aと排気タービン26bとで過給機26を構成している。排気タービン26bの下流側排気路32に排熱ボイラ34が設けられている。排熱ボイラ34には原料水wが供給され、排気ガスeの保有熱で水蒸気を製造する。排熱ボイラ34で製造された水蒸気は、管路36及び38を経て後述する吸収式冷凍機50の発生器(図示省略)に熱源として供給される。
 管路36から分岐した管路40を経て、水蒸気の一部が他の機器類に熱源として供給される。管路36及び40の分岐部には三方弁42が設けられ、三方弁42によって水蒸気を管路38又は40に分配可能にしている。
 冷却水ジャケット16、高温側吸気冷却器28、及び第2ラジエータ44に冷却水を循環する冷却水循環路46が設けられている。第2ラジエータ44は、ファン等の外気aを取り入れる機構と、外気aと冷却水とを熱交換させる熱交換部を備え、外気aで冷却水を冷却する機能をもつ。第2ラジエータ44で冷却された冷却水は、ポンプ48により冷却水循環路46を矢印方向に循環する。この冷却水によって、高温側吸気冷却器28で吸気sを冷却する。高温側吸気冷却器28で吸気sの冷却に供した冷却水は、次に冷却水ジャケット16に送られ、ハウジング12内の各部位を冷却する。
 吸収式冷凍機50と共に、吸収式冷凍機50の冷熱源となる冷却水を供給する第1ラジエータ52が設けられている。第1ラジエータ52は、第2ラジエータ44と同様の構成を有している。即ち、外気取入れ機構と、外気aと冷却水とを熱交換させる熱交換部とを備え、外気aで冷却水を冷却する機能をもつ。第1ラジエータ52と吸収式冷凍機50とは、冷却水循環路54a及び54bで接続され、冷却水循環路54aに介設されたポンプ56によって、第1ラジエータ52及び吸収式冷凍機50間を冷却水が循環する。
 前述のように、吸収式冷凍機50には、管路36及び38を介して熱源となる水蒸気が供給されると共に、第1ラジエータ52から、凝縮器及び吸収器(図示省略)に冷熱源として冷却水が供給される。吸収式冷凍機50と低温側吸気冷却器30とは、冷却水循環路58a及び58bを介して接続されている。吸収式冷凍機50で冷却された冷却水は、冷却水循環路58aに介設されたポンプ60によって、冷却水循環路58a、58bを循環し、低温側吸気冷却器30で吸気sを冷却する。
 冷却水循環路58aには、一次吸気冷却器22に冷却水を供給する冷却水循環路74aが接続されている。冷却水循環路58bには、一次吸気冷却器22で外気aを冷却した後の冷却水を冷却水循環路58bに戻す冷却水循環路74bが接続されている。そのため、冷却水循環路58aから分岐した冷却水循環路74aによって、一次吸気冷却器22にも冷却水が供給され、外気aを冷却する。
 また、潤滑油循環空間14に連通し、潤滑油をハウジング12の外部へ導出する潤滑油循環路70a及び70bが設けられ、潤滑油循環路70a、70bは、ハウジング12の外部で第3ラジエータ72に接続されている。第3ラジエータ72は、第1ラジエータ52及び第2ラジエータ44と同様の構成をもち、外気取入れ機構と、熱交換部とをもつ。第3ラジエータ72で外気aを取り入れ、取り入れた外気aと潤滑油とを熱交換させ、潤滑油を冷却する機能をもつ。
 冷却水循環路58a、58b間には、冷却水循環路74a、74bの接続部より吸収式冷凍機50側に、バイパス路62が設けられている。冷却水循環路58aとバイパス路62との分岐部には、三方弁64が設けられている。冷却水循環路58aには、冷却水温を検出する温度センサ66が設けられている。また、吸収式冷凍機50の運転を制御するコントローラ68が設けられている。コントローラ68は、温度センサ66の検出値を入力し、該検出値に基づいて吸収式冷凍機50の運転を制御する。
 コントローラ68は、三方弁42の開度を制御することで、吸収式冷凍機50に供給される水蒸気の流量を制御する。さらに、定置用ガスエンジン10の負荷に応じて、三方弁64の開度を制御することで、冷却水循環路58a及びバイパス路62に分配される冷却水の分配量を制御する。
 低温側吸気冷却器30には32℃で一定量の冷却水を供給する必要がある。低温側吸気冷却器30から排出される冷却水の温度は、定置用ガスエンジン10の負荷に応じて35℃より低温になるなど変動しやすい。そのため、そのまま吸収式冷凍機50に供給すると、低温側吸気冷却器30に供給される冷却水温度を32℃に保持しにくくなる。そこで、コントローラ68によって三方弁64の開度を制御し、吸収式冷凍機50をバイパスする冷却水量を制御することにより、低温側吸気冷却器30に供給される冷却水の流量及び温度を一定に制御するようにしている。
 このように、コントローラ68によって、温度センサ66の検出値に基づいて吸収式冷凍機50の運転を制御し、また、定置用ガスエンジン10の負荷に応じて、三方弁42及び64を制御することで、一次吸気冷却器22及び低温側吸気冷却器30に供給される冷却水温と流量を一定保持することができる。
 図1中、各部位に、外気a、吸気s、排気ガスe、冷却水等の設定温度が付記されている。本実施形態は、外気aの温度を50℃と設定した例である。
 かかる構成において、50℃の外気aは、コンプレッサ26aの吸引力で一次吸気冷却器22に吸入される。一次吸気冷却器22には、冷却水循環路74aを介して32℃の冷却水が送られており、吸入された外気aは、一次吸気冷却器22で、吸収式冷凍機50から供給される冷却水と熱交換し、40℃に一次冷却される。外気aの冷却に供した後の冷却水は、冷却水循環路74b及び58bを介して、吸収式冷凍機50に戻される。
 一次冷却された吸気sは、過給機26のコンプレッサ26aで加圧され、200℃に昇温する。200℃に昇温した吸気sは、高温側吸気冷却器28で第2ラジエータ44から供給された冷却水と熱交換し、二次冷却される。二次冷却された吸気sは、低温側吸気冷却器30で吸収式冷凍機50から供給された32℃の冷却水と熱交換し、40℃に三次冷却される。40℃に三次冷却された吸気sは、定置用ガスエンジン10の燃焼室13に供給される。
 定置用ガスエンジン10の燃焼室13から排出された排気ガスeは、排熱ボイラ34に導入される。排熱ボイラ34で、排気ガスeの保有熱で水蒸気が製造される。この水蒸気は、管路36及び38を介し、熱源として吸収式冷凍機50に供給される。吸収式冷凍機50には第1ラジエータ52から冷熱源として冷却水が供給され、これらの熱源及び冷熱源によって稼動する。吸収式冷凍機50で32℃の冷却水が製造され、この冷却水は一次吸気冷却器22及び低温側吸気冷却器30に送られ、一次吸気冷却器22及び低温側吸気冷却器30で吸気sを冷却する。
 第2ラジエータ44で冷却された冷却水は、高温側吸気冷却器28の下流側で、冷却水ジャケット16に送られ、ハウジング12内の各部位を冷却する。また、ハウジング12の潤滑油は、潤滑油循環空間14から潤滑油循環路70aを経て第3ラジエータ72に送られ冷却される。第3ラジエータ72で冷却された潤滑油は、潤滑油循環路70bを経て、潤滑油循環空間14に戻される。
 次に、図2のフローチャートにより、コントローラ68の制御手順を説明する。図2において、吸収式冷凍機50の運転開始後(S12)、定置用ガスエンジン10の負荷状態に合わせて、三方弁42及び64の動作を制御し、一次吸気冷却器22及び低温側吸気冷却器30に供給する冷却水の温度を調整する(S14)。
 次に、コントローラ68に入力される温度センサ66の検出値が設定範囲(A≦温度検出値≦B)で内であるなら(S16)、制御を終了する(S18)。該設定範囲外であるとき、コントローラ68で吸収式冷凍機50の運転を制御し(S20)、該検出値が設定範囲内になるようにする。
 本実施形態によれば、吸気路24に導入した外気aを過給機26の上流側及び下流側吸気路24で、3段階に亘って冷却しているので、50℃の温度を有する外気aであっても、設定温度である40℃にして定置用ガスエンジン10の燃焼室13に供給できる。また、低温の吸気sが導入される一次吸気冷却器22及び低温側吸気冷却器30には、消費電力が少なく、かつ排気ガスeの保有熱を熱源とし、外気を冷熱源とした吸収式冷凍機50で製造した冷却水を供給するようにしているので、特別な熱源を必要とせず、省エネかつ高効率な冷却効率を達成できる。
 また、第1ラジエータ52、第2ラジエータ44及び第3ラジエータ72は、いずれも外気aを用いているので、水を必要としない。そのため、水が不足した地域でも作動可能である。従って、本実施形態の吸気冷却装置は、水が豊富でなく不足気味で、かつ外気温が高い熱帯の乾燥地域であっても、高効率で稼動できる。
 また、高温側吸気冷却器28に供給する冷却水は、さほど低温である必要はないので、外気aを冷熱源とした第2ラジエータ44で十分対応できる。また、一次吸気冷却器22及び低温側吸気冷却器30に供給する冷却水のみを吸収式冷凍機50で冷却するようにしているので、蒸気圧縮式冷凍機と比べて冷却能力が小さい吸収式冷凍機でも十分対応可能である。これらの組み合わせによって、特別なエネルギ源を必要とせず、省エネかつ高効率な冷却効率を実現している。
 また、排気路32に排熱ボイラ34を設け、排気ガスeの保有熱で水蒸気を製造し、この水蒸気を吸収式冷凍機50の熱源として用いているので、排気ガスeの保有熱を効率良く回収できる。水蒸気の残りは、他の機器の熱源としても利用できる。
 また、管路36に三方弁42を設けると共に、冷却水循環路58a、58bにバイパス路62と三方弁64とを設け、コントローラ68によって、定置用ガスエンジン10の負荷状態に応じて、三方弁42及び64の開度を制御するようにしたので、定置用ガスエンジン10の負荷に応じて、一次吸気冷却器22及び低温側吸気冷却器30に供給する冷却水の温度を制御できる。
 また、冷却水循環路58aに冷却水の温度を検出する温度センサ66を設け、コントローラ68によって、温度センサ66の検出値に基づいて、冷却水の温度が目標温度になるように、吸収式冷凍機50の運転を制御するようにしたので、一次吸気冷却器22及び低温側吸気冷却器30に供給する冷却水の温度を精度良く目標値に制御できる。
 また、ハウジング12の内部を潤滑する潤滑油の温度を水を用いない第3ラジエータ72で冷却できる。
 なお、前記実施形態では、定置用ガスエンジン10ははずみ車を介して発電機20に連結されていたが、発電機20の代わりに、ポンプやコンプレッサが連結され、これらの機器を駆動するものであってもよい。また、本発明は、定置用ガスエンジン以外の定置用内燃機関にも適用できる。
 本発明によれば、省エネかつ冷却効率が高く、水が豊富でない高気温の地域に好適な定置用内燃機関の吸気冷却装置を実現できる。

Claims (6)

  1.  吸気路及び排気路に過給機を備えた定置用内燃機関の吸気冷却装置において、
     前記過給機を構成するコンプレッサの上流側吸気路に設けられ、吸気を一次冷却する第1の吸気冷却器と、
     該コンプレッサで加圧され昇温したコンプレッサ出口側吸気を二次冷却する第2の吸気冷却器と、
     定置用内燃機関の排気ガスの保有熱を熱源とし、前記第1の吸気冷却器及び第2の吸気冷却器に吸気冷却用冷却水を供給する吸収式冷凍機と、
     冷却水を外気と熱交換させて冷却し、該冷却水を前記吸収式冷凍機に冷熱源として供給する熱交換器と、を備え、
     定置用内燃機関の燃焼室に供給する吸気を前記第1の吸気冷却器及び第2の吸気冷却器で冷却するように構成したことを特徴とする定置用内燃機関の吸気冷却装置。
  2.  前記第2の吸気冷却器は、前記過給機で加圧された高温の吸気を冷却する高温側吸気冷却器と、該高温側吸気冷却器で冷却された吸気をさらに冷却してシリンダ内に供給する低温側吸気冷却器とからなり、
     前記高温側吸気冷却器に外気と熱交換して冷却された冷却水を供給する第2の熱交換器を備え、
     前記低温側吸気冷却器に前記吸収式冷凍機から冷却水を供給すると共に、前記高温側吸気冷却器で吸気冷却に供した後の冷却水を、定置用内燃機関の冷却水ジャケットを経て、前記第2の熱交換器に戻すように構成したことを特徴とする請求項1に記載の定置用内燃機関の吸気冷却装置。
  3.  定置用内燃機関の排気路に設けられた排ガスボイラと、
     該排ガスボイラで得た水蒸気の少なくとも一部を前記吸収式冷凍機に供給する水蒸気供給路とを備え、
     該水蒸気を吸収式冷凍機の熱源として供給するようにしたことを特徴とする請求項1又は2に記載の定置用内燃機関の吸気冷却装置。
  4.  前記第2の吸気冷却器又は前記低温側吸気冷却器と前記吸収式冷凍機との間に冷却水を循環する冷却水循環路と、
     該冷却水循環路の往路と復路との間に接続され、過給機で加圧され高温となった吸気と熱交換され第2の吸気冷却器又は低温側吸気冷却器から排出される冷却水を、吸収式冷凍機を経ずに第2の吸気冷却器又は低温側吸気冷却器に戻すバイパス路と、
     該バイパス路を流れる冷却水の流量を可変とする弁機構と、
     該弁機構を制御し、定置用内燃機関の負荷に応じて吸収式冷凍機に供給される冷却水温度を制御するコントローラと、を備えていることを特徴とする請求項1又は2に記載の定置用内燃機関の吸気冷却装置。
  5.  前記吸収式冷凍機から前記第2の吸気冷却器又は前記低温側吸気冷却器に供給される冷却水の温度を検出する温度センサと、
     該温度センサの検出値が目標値になるように吸収式冷凍機の運転を制御するコントローラと、を備えていることを特徴とする請求項1又は2に記載の定置用内燃機関の吸気冷却装置。
  6.  定置用内燃機関のハウジング内に形成された潤滑油空間を循環する潤滑油と外気とを熱交換させ、該潤滑油を冷却する第3の熱交換器と、
     該潤滑油空間に連通し該潤滑油を該第3の熱交換器に導く潤滑油循環路と、を備えていることを特徴とする請求項1又は2に記載の定置用内燃機関の吸気冷却装置。
PCT/JP2012/056022 2011-03-31 2012-03-08 定置用内燃機関の吸気冷却装置 WO2012132825A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/007,007 US9316185B2 (en) 2011-03-31 2012-03-08 Intake air cooling apparatus for stationary internal combustion engine
EP12764077.9A EP2693039B1 (en) 2011-03-31 2012-03-08 Intake cooling device of stationary internal combustion engine
CN201280014051.9A CN103443438B (zh) 2011-03-31 2012-03-08 固定用内燃机的吸气冷却装置
KR1020137025126A KR101518159B1 (ko) 2011-03-31 2012-03-08 정치용 내연 기관의 흡기 냉각 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-077389 2011-03-31
JP2011077389A JP5325254B2 (ja) 2011-03-31 2011-03-31 定置用内燃機関の吸気冷却装置

Publications (1)

Publication Number Publication Date
WO2012132825A1 true WO2012132825A1 (ja) 2012-10-04

Family

ID=46930565

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/056022 WO2012132825A1 (ja) 2011-03-31 2012-03-08 定置用内燃機関の吸気冷却装置

Country Status (7)

Country Link
US (1) US9316185B2 (ja)
EP (1) EP2693039B1 (ja)
JP (1) JP5325254B2 (ja)
KR (1) KR101518159B1 (ja)
CN (1) CN103443438B (ja)
SA (1) SA112330409B1 (ja)
WO (1) WO2012132825A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5993759B2 (ja) * 2013-02-27 2016-09-14 カルソニックカンセイ株式会社 エンジンの吸気冷却装置
JP2014169681A (ja) * 2013-03-05 2014-09-18 Yanmar Co Ltd エンジン
JP6327199B2 (ja) * 2015-05-07 2018-05-23 株式会社デンソー 内燃機関の低水温冷却装置
JP6642321B2 (ja) * 2016-07-21 2020-02-05 株式会社豊田自動織機 エンジン
JP6760879B2 (ja) * 2017-03-30 2020-09-23 東邦瓦斯株式会社 ガスエンジン及びガスエンジンの運転方法
DE102018118179A1 (de) * 2018-07-27 2020-01-30 Fahrenheit Gmbh Brennkraftmaschine mit Ladelufttemperierung mittels einer Sorptionsvorrichtung
WO2020211916A2 (fr) * 2019-04-18 2020-10-22 Touil Salah Eddine Système de gestion de la température d'air d'admission par absorption de chaleur par un compresseur pour moteur à combustion interne suralimenté
DE102019206450B4 (de) * 2019-05-06 2021-03-04 Ford Global Technologies, Llc Motorsystem
WO2021064980A1 (ja) * 2019-10-04 2021-04-08 株式会社Ihi原動機 冷却システム
JP2021076073A (ja) * 2019-11-11 2021-05-20 川崎重工業株式会社 ガスエンジンシステム

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5879618A (ja) * 1981-11-06 1983-05-13 Mitsubishi Heavy Ind Ltd 内燃機関の吸気冷却装置
JPH0395028U (ja) * 1990-01-17 1991-09-27
JPH094510A (ja) * 1995-06-12 1997-01-07 Waertsilae Diesel Internatl Ltd:Oy 燃焼エンジンプラント、燃焼エンジンプラント用過給燃焼エンジン装置および燃焼エンジンプラントの効率を改善する方法
JPH0988742A (ja) * 1995-09-27 1997-03-31 Calsonic Corp 自動車用燃料冷却装置
JP2001050055A (ja) * 1999-08-05 2001-02-23 Osaka Gas Co Ltd エンジンシステム及びエンジンの給気冷却方法
JP2006249942A (ja) * 2005-03-08 2006-09-21 Osaka Gas Co Ltd 過給機付き往復式内燃機関の排熱回収システム
GB2432205A (en) * 2005-10-28 2007-05-16 Repsole Ltd Internal combustion engine intercooler utilising absorption cooling.

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4270365A (en) * 1979-07-24 1981-06-02 Sampietro Achilles C Refrigeration apparatus
JP2001132538A (ja) * 1999-11-04 2001-05-15 Hideo Kawamura エネルギ回収装置を備えたエンジン
US6681171B2 (en) * 2001-12-18 2004-01-20 Detroit Diesel Corporation Condensation control for internal combustion engines using EGR
US20090031999A1 (en) * 2007-08-02 2009-02-05 Donald Charles Erickson Charge air chiller
US7762054B2 (en) * 2007-08-21 2010-07-27 Donald Charles Erickson Thermally powered turbine inlet air chiller heater
DE102007051505A1 (de) * 2007-10-29 2009-04-30 Volkswagen Ag Brennkraftmaschine mit Abgasturbolader und Ladeluftkühler
SE531705C2 (sv) 2007-11-16 2009-07-14 Scania Cv Ab Arrangemang hos en överladdad förbränningsmotor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5879618A (ja) * 1981-11-06 1983-05-13 Mitsubishi Heavy Ind Ltd 内燃機関の吸気冷却装置
JPH0395028U (ja) * 1990-01-17 1991-09-27
JPH094510A (ja) * 1995-06-12 1997-01-07 Waertsilae Diesel Internatl Ltd:Oy 燃焼エンジンプラント、燃焼エンジンプラント用過給燃焼エンジン装置および燃焼エンジンプラントの効率を改善する方法
JPH0988742A (ja) * 1995-09-27 1997-03-31 Calsonic Corp 自動車用燃料冷却装置
JP2001050055A (ja) * 1999-08-05 2001-02-23 Osaka Gas Co Ltd エンジンシステム及びエンジンの給気冷却方法
JP2006249942A (ja) * 2005-03-08 2006-09-21 Osaka Gas Co Ltd 過給機付き往復式内燃機関の排熱回収システム
GB2432205A (en) * 2005-10-28 2007-05-16 Repsole Ltd Internal combustion engine intercooler utilising absorption cooling.

Also Published As

Publication number Publication date
EP2693039A1 (en) 2014-02-05
CN103443438A (zh) 2013-12-11
EP2693039A4 (en) 2014-08-27
US20140007853A1 (en) 2014-01-09
JP5325254B2 (ja) 2013-10-23
EP2693039B1 (en) 2016-04-27
CN103443438B (zh) 2015-12-09
KR101518159B1 (ko) 2015-05-06
JP2012211545A (ja) 2012-11-01
SA112330409B1 (ar) 2015-08-16
US9316185B2 (en) 2016-04-19
KR20130125394A (ko) 2013-11-18

Similar Documents

Publication Publication Date Title
JP5325254B2 (ja) 定置用内燃機関の吸気冷却装置
EP2959145B1 (en) System for recuperating heat from the exhaust gases in an internal combustion engine, with two heat exchangers on a gas recirculation circuit
KR101508327B1 (ko) 차량에서 열 에너지를 기계 에너지로 변환하는 시스템
KR101310964B1 (ko) 선박의 폐열을 이용한 에너지 절감 장치
US20090211253A1 (en) Organic Rankine Cycle Mechanically and Thermally Coupled to an Engine Driving a Common Load
CN108431376B (zh) 热力循环和热源的功能协同效应
WO2013172293A1 (ja) 廃熱利用装置
WO2013046853A1 (ja) 廃熱回生システム
KR20130122946A (ko) 내연기관의 배기가스 터보차저
WO2014103977A1 (ja) 内燃機関の廃熱利用装置
US11371393B2 (en) Arrangement for converting thermal energy from lost heat of an internal combustion engine
JP2015121395A (ja) 冷熱供給システム、熱電併給システム及び制御方法
JP2017120067A (ja) 車両用冷却システムの制御装置
JP2013068137A (ja) 廃熱利用装置
JP3664587B2 (ja) 冷房装置
JP5372473B2 (ja) 空気調和装置
RU2466289C1 (ru) Система для охлаждения свежего заряда и отработавших газов судового дизеля, подаваемых на впуск
RU108107U1 (ru) Система для охлаждения свежего заряда и отработавших газов судового дизеля, подаваемых на впуск
WO2020211916A9 (fr) Système de gestion de la température d'air d'admission par absorption de chaleur par un compresseur pour moteur à combustion interne suralimenté
JP2013072295A (ja) 廃熱利用装置
JPS58143116A (ja) エンジン冷却装置
JP2013068139A (ja) 廃熱利用装置
RU2004106900A (ru) Энергохолодильная система "стирлинг-стирлинг" для мобильных комплексов

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12764077

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012764077

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137025126

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14007007

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE