WO2012132414A1 - バランス補正装置および蓄電システム - Google Patents

バランス補正装置および蓄電システム Download PDF

Info

Publication number
WO2012132414A1
WO2012132414A1 PCT/JP2012/002123 JP2012002123W WO2012132414A1 WO 2012132414 A1 WO2012132414 A1 WO 2012132414A1 JP 2012002123 W JP2012002123 W JP 2012002123W WO 2012132414 A1 WO2012132414 A1 WO 2012132414A1
Authority
WO
WIPO (PCT)
Prior art keywords
storage cell
switching element
inductor
balance correction
electrically connected
Prior art date
Application number
PCT/JP2012/002123
Other languages
English (en)
French (fr)
Inventor
中尾 文昭
小池 哲夫
Original Assignee
電動車両技術開発株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 電動車両技術開発株式会社 filed Critical 電動車両技術開発株式会社
Priority to CN201280015549.7A priority Critical patent/CN103460549B/zh
Priority to EP12764104.1A priority patent/EP2693595B1/en
Publication of WO2012132414A1 publication Critical patent/WO2012132414A1/ja
Priority to US14/032,198 priority patent/US9083188B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0016Circuits for equalisation of charge between batteries using shunting, discharge or bypass circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0018Circuits for equalisation of charge between batteries using separate charge circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a balance correction device and a power storage system.
  • Patent Document 1 JP 2006-067748 (Patent Document 2) JP 2008-017655 (Patent Document 3) JP 2009-232660
  • an object of one aspect of the present invention is to provide a balance correction device and a power storage system that can solve the above-described problems. This object is achieved by a combination of features described in the independent claims.
  • the dependent claims define further advantageous specific examples of the present invention.
  • a balance correction device for equalizing voltages of a first power storage cell and a second power storage cell connected in series, wherein one end of the first power storage cell and the second power storage cell An inductor having one end electrically connected to a connection point with one end of the storage cell, and a first switching element electrically connected between the other end of the inductor and the other end of the first storage cell; A second switching element electrically connected between the other end of the inductor and the other end of the second storage cell, and a first reference voltage electrically connected to the other end of the first storage cell A control signal having a second reference voltage input terminal electrically connected to the input terminal and the other end of the second storage cell, and for controlling the on / off operation of the first switching element and the second switching element.
  • First switching element and second switch Between the first reference voltage input terminal and the second reference voltage input terminal, and a control signal generator that supplies the switching element to alternately turn on and off the first switching element and the second switching element. And a voltage stabilizing circuit that maintains the voltage difference within a predetermined range.
  • the voltage stabilization circuit may include a shunt regulator, and one end of the shunt regulator may be electrically connected to the other end of the inductor, and the other end of the control signal generation unit.
  • the second reference voltage input terminal may be electrically connected.
  • the shunt regulator allows current to flow from one end of the shunt regulator to the other end of the shunt regulator when the voltage difference between the one end and the other end of the shunt regulator is larger than a predetermined value. Good.
  • the voltage stabilization circuit may include a shunt regulator, and one end of the shunt regulator may be electrically connected to the first reference voltage input terminal of the control signal generator, and the other end. However, it may be electrically connected to the other end of the inductor.
  • the shunt regulator allows current to flow from one end of the shunt regulator to the other end of the shunt regulator when the voltage difference between the one end and the other end of the shunt regulator is larger than a predetermined value. Good.
  • the first switching element is arranged in parallel with the first switching element, and includes a first diode that flows current in a direction from the other end of the inductor to the other end of the first storage cell.
  • the second switching element may be provided in parallel with the second switching element, and may include a second diode that allows current to flow in the direction from the other end of the second storage cell to the other end of the inductor. You can do it.
  • the voltage stabilization circuit may include a shunt regulator, and the shunt regulator may have one end electrically connected to the first reference voltage input terminal and the other end connected to the second reference voltage input terminal. You may electrically connect with a reference voltage input terminal.
  • the shunt regulator causes a current to flow from one end of the shunt regulator to the other end of the shunt regulator when the voltage difference between the one end and the other end of the shunt regulator is larger than a predetermined value. Good.
  • the shunt regulator may include a Zener diode.
  • the first and second power storage cells connected in series, and the balance correction device for equalizing the voltages of the first and second power storage cells Is provided.
  • An example of apparatus 100 provided with accumulation-of-electricity system 110 is shown roughly.
  • An example of the electrical storage system 210 is shown schematically.
  • movement of the electrical storage system 210 is shown schematically.
  • An example of the electrical storage system 410 is shown schematically.
  • FIG. 1 schematically shows an example of a device 100 including a power storage system 110.
  • Device 100 includes a motor 102 and a power storage system 110.
  • the device 100 may be a transportation device such as an electric vehicle, a hybrid vehicle, an electric motorcycle, a railway vehicle, and an elevator.
  • the device 100 may be an electrical device such as a PC or a mobile phone.
  • the power storage system 110 includes a terminal 112, a terminal 114, a plurality of power storage cells connected in series including a power storage cell 122, a power storage cell 124, a power storage cell 126, and a power storage cell 128, a balance correction circuit 132, and a balance correction circuit 134. And a plurality of balance correction circuits including a balance correction circuit 136.
  • the balance correction circuit 132, the balance correction circuit 134, and the balance correction circuit 136 may be an example of a balance correction device.
  • “Electrically connected” is not limited to a case where a certain element is directly connected to another element.
  • a third element may be interposed between one element and another element.
  • it is not limited to when a certain element and another element are physically connected.
  • the input winding and output winding of the transformer are not physically connected, but are electrically connected.
  • an element and another element are electrically connected. Including the case of connection.
  • “connected in series” indicates that an element and another element are electrically connected in series.
  • the motor 102 is electrically connected to the power storage system 110 and uses power supplied from the power storage system 110.
  • the motor 102 may be an example of a power load.
  • the motor 102 may be used as a regenerative brake.
  • the power storage system 110 is electrically connected to the motor 102 and supplies power to the motor 102.
  • the power storage system 110 is electrically connected to a charging device (not shown) and stores electrical energy.
  • the terminals 112 and 114 electrically connect the power storage system 110 to devices outside the system such as the motor 102 and the charging device.
  • Power storage cell 122, power storage cell 124, power storage cell 126, and power storage cell 128 are connected in series.
  • the power storage cell 122, the power storage cell 124, the power storage cell 126, and the power storage cell 128 may be secondary batteries or capacitors.
  • Each of power storage cell 122, power storage cell 124, power storage cell 126, and power storage cell 128 may include a plurality of power storage cells.
  • battery characteristics include battery capacity or discharge voltage characteristics indicating the relationship of battery voltage to discharge time. For example, as the storage cell deteriorates, the battery voltage decreases with a shorter discharge time.
  • the storage cell 122 and the storage cell 124 have a predetermined range of charge levels (sometimes referred to as “State of Charge” or “SOC”), when the voltages of the storage cell 122 and the storage cell 124 vary.
  • SOC state of Charge
  • the utilization efficiency of the power storage system 110 is deteriorated. Therefore, the use efficiency of the power storage system 110 can be improved by equalizing the voltages of the power storage cell 122 and the power storage cell 124.
  • the balance correction circuit 132 has an inductor and equalizes the voltages of the storage cell 122 and the storage cell 124.
  • the balance correction circuit 132 includes one end (sometimes referred to as a positive electrode side) of the storage cell 122 on the terminal 112 side, one end (sometimes referred to as a negative electrode side) on the terminal 114 side of the storage cell 122, and the positive electrode of the storage cell 124. It is electrically connected to the connection point 143 with the side. Thereby, a circuit including the storage cell 122 and the inductor is formed.
  • the balance correction circuit 132 is electrically connected to a connection point 143 and a connection point 145 between the negative electrode side of the storage cell 124 and the positive electrode side of the storage cell 126. Thereby, a circuit including the storage cell 124 and the inductor is formed.
  • the balance correction circuit 132 causes a current to alternately flow through the circuit including the storage cell 122 and the inductor and the circuit including the storage cell 124 and the inductor. Thereby, electrical energy can be transferred between the storage cell 122 and the storage cell 124 via the inductor. As a result, the voltages of the storage cell 122 and the storage cell 124 can be equalized.
  • the balance correction circuit 134 equalizes the voltages of the storage cell 124 and the storage cell 126.
  • the balance correction circuit 134 is electrically connected to a connection point 143, a connection point 145, and a connection point 147 between the negative electrode side of the storage cell 126 and the positive electrode side of the storage cell 128.
  • the balance correction circuit 136 equalizes the voltages of the storage cell 126 and the storage cell 128.
  • the balance correction circuit 136 is electrically connected to the connection point 145, the connection point 147, and the negative electrode side of the storage cell 128.
  • the balance correction circuit 134 and the balance correction circuit 136 may have the same configuration as the balance correction circuit 132.
  • FIG. 2 schematically shows an example of the power storage system 210.
  • the power storage system 210 includes a terminal 212, a terminal 214, a power storage cell 222 and a power storage cell 224 connected in series, and a balance correction circuit 232.
  • the balance correction circuit 232 may be an example of a balance correction device.
  • the power storage cell 222 may be an example of a first power storage cell.
  • the power storage cell 224 may be an example of a second power storage cell.
  • the terminal 212 and the terminal 214 may have the same configuration as the terminal 112 and the terminal 114 of the power storage system 110, respectively.
  • the power storage cell 222 and the power storage cell 224 may have the same configuration as the power storage cell 122, the power storage cell 124, the power storage cell 126, or the power storage cell 128.
  • the power storage system 110 may have a configuration similar to that of the power storage system 210.
  • the balance correction circuit 132, the balance correction circuit 134, and the balance correction circuit 136 may have the same configuration as the balance correction circuit 232.
  • the balance correction circuit 232 equalizes the voltages of the storage cell 222 and the storage cell 224.
  • the balance correction circuit 232 includes an inductor 250, a switching element 252, a switching element 254, a control signal generation unit 272, a diode 282, a diode 284, a Zener diode 292, and a Zener diode 294.
  • the switching element 252 may be an example of a first switching element.
  • the switching element 254 may be an example of a second switching element.
  • Each of the Zener diode 292 and the Zener diode 294 may be an example of a shunt regulator and a voltage stabilization circuit.
  • the balance correction circuit 232 is electrically connected to the positive electrode side of the energy storage cell 222 and the connection point 243 between the negative electrode side of the energy storage cell 222 and the positive electrode side of the energy storage cell 224. As a result, a first switching circuit including the storage cell 222, the switching element 252, and the inductor 250 is formed. The balance correction circuit 232 is electrically connected to the connection point 243 and the negative electrode side of the storage cell 224. Thus, a second switching circuit including the storage cell 224, the inductor 250, and the switching element 254 is formed.
  • the connection point 243 may be an example of a connection point between one end of the first power storage cell and one end of the second power storage cell.
  • One end of the inductor 250 is electrically connected to the connection point 243.
  • the other end of the inductor 250 may be electrically connected to a connection point 263 between the switching element 252 and the switching element 254.
  • an inductor current IL is generated in the inductor 250.
  • the switching element 252 is electrically connected between the other end of the inductor 250 and the positive electrode side of the storage cell 222.
  • the switching element 252 receives the control signal ⁇ 22 from the control signal generator 272, and performs an on operation or an off operation based on the control signal ⁇ 22. This opens and closes the first open / close circuit.
  • the switching element 252 may be a MOSFET. Switching element 252 may be an element that turns off when control signal ⁇ 22 is not received.
  • the switching element 254 is electrically connected between the other end of the inductor 250 and the negative electrode side of the storage cell 224.
  • the switching element 254 receives the control signal ⁇ 24 from the control signal generator 272 and performs an on operation or an off operation based on the control signal ⁇ 24. As a result, the second open / close circuit is opened and closed.
  • the switching element 254 may be a MOSFET.
  • the switching element 254 may be an element that performs an off operation when the control signal ⁇ 24 is not received.
  • the control signal generator 272 generates a control signal ⁇ 22 that controls the on / off operation of the switching element 252 and a control signal ⁇ 24 that controls the on / off operation of the switching element 254.
  • the control signal generator 272 supplies the control signal ⁇ 22 to the switching element 252.
  • the control signal generator 272 supplies the control signal ⁇ 24 to the switching element 254.
  • the control signal generation unit 272 may generate the control signal ⁇ 22 and the control signal ⁇ 24 so that the switching element 252 and the switching element 254 repeat ON / OFF operations alternately. Thereby, the switching element 252 and the switching element 254 can be alternately turned on and off.
  • Control signal ⁇ 22 and control signal ⁇ 24 may each be a square wave with a duty ratio of 50%. The duty ratio can be calculated as the ratio of the ON period to the period of the square wave.
  • the control signal generator 272 may be a pulse generator that generates a pulse train having a predetermined cycle.
  • Control signal generator 272 may be a variable pulse generator that variably controls the duty ratio of at least one of control signal ⁇ 22 and control signal ⁇ 24.
  • the control signal generator 272 may be formed on the same substrate as the switching element 252 and the switching element 254.
  • the control signal generator 272 has a reference voltage input terminal 274 that is electrically connected to the positive electrode side of the storage cell 222 and a reference voltage input terminal 276 that is electrically connected to the negative electrode side of the storage cell 224.
  • the reference voltage input terminal 274 may be an example of a first reference voltage input terminal.
  • the reference voltage input terminal 276 may be an example of a second reference voltage input terminal.
  • the diode 282 is arranged in parallel with the switching element 252. One end of the diode 282 is electrically connected to the other end of the inductor 250. The other end of the diode 282 is electrically connected to the positive electrode side of the storage cell 222. The diode 282 flows current in the direction from the other end of the inductor 250 to the positive electrode side of the storage cell 222.
  • the diode 284 is arranged in parallel with the switching element 254. One end of the diode 284 is electrically connected to the negative electrode side of the storage cell 224. The other end of the diode 284 is electrically connected to the other end of the inductor 250. The diode 284 flows current in the direction from the negative electrode side of the storage cell 224 to the other end of the inductor 250.
  • the diode 282 and the diode 284 may be parasitic diodes formed equivalently between the source and drain of the MOSFET.
  • the inductor current I L diode 282 or diode 284 can continue to flow through.
  • the inductor current I L generated once the inductor 250 can be utilized without waste. Further, it is possible to suppress the generation of a surge voltage that occurs when the inductor current IL is cut off.
  • Zener diode 292 maintains the voltage difference between the reference voltage input terminal 274 and the reference voltage input terminal 276 within a predetermined range. Zener diode 292 may be arranged in parallel with control signal generator 272.
  • Zener diode 292 may be electrically connected to the other end of the inductor 250.
  • the other end of the Zener diode 292 may be electrically connected to the reference voltage input terminal 276 of the control signal generator 272.
  • the Zener diode 292 is arranged in such a direction that current flows from one end of the Zener diode 292 to the other end of the Zener diode 292 when the voltage difference between the one end and the other end of the Zener diode 292 is larger than a predetermined value. It's okay.
  • the voltage difference between the reference voltage input terminal 274 and the reference voltage input terminal 276 can be maintained within a predetermined range. As a result, damage to the control signal generator 272 can be prevented.
  • Zener diode 294 maintains the voltage difference between the reference voltage input terminal 274 and the reference voltage input terminal 276 within a predetermined range. Zener diode 294 may be arranged in parallel with control signal generator 272.
  • Zener diode 294 may be electrically connected to the reference voltage input terminal 274 of the control signal generator 272.
  • the other end of the Zener diode 292 may be electrically connected to the other end of the inductor 250.
  • the Zener diode 294 is arranged in such a direction that current flows from one end of the Zener diode 294 to the other end of the Zener diode 294 when the voltage difference between one end and the other end of the Zener diode 294 is larger than a predetermined value. It's okay.
  • the voltage difference between the reference voltage input terminal 274 and the reference voltage input terminal 276 can be maintained within a predetermined range. As a result, damage to the control signal generator 272 can be prevented.
  • the balance correction circuit 232 includes the Zener diode 292 and the Zener diode 294 has been described.
  • the balance correction circuit 232 is not limited to this.
  • the balance correction circuit 232 may include at least one of a Zener diode 292 and a Zener diode 294.
  • FIG. 3 schematically shows an example of the operation of the power storage system 210.
  • FIG. 3 shows a graph 302, a graph 304, and a graph 306 in association with examples of the waveforms of the control signal ⁇ 22 and the control signal ⁇ 24.
  • the horizontal axis indicates the passage of time.
  • the vertical axis shows the magnitude of the inductor current I L.
  • the magnitude of the inductor current I L represents the current flowing from the connection point 263 toward the connecting point 243 (. Indicated by the solid line arrow in FIG. 2) as a positive.
  • Graph 302 illustrates an example of a temporal change of the inductor current I L when the voltage E 2 of the energy storage cell 222 is greater than the voltage E 4 of the electric storage cell 224 schematically.
  • Graph 304 illustrates an example of a temporal change of the inductor current I L when the voltage E 2 of the energy storage cell 222 is smaller than the voltage E 4 of the electric storage cell 224 schematically.
  • Graph 306 illustrates an example of a temporal change of the inductor current I L when the voltage E 2 of the energy storage cell 222 and the voltage E 4 storage cells 224 are substantially the same schematically.
  • control signal ⁇ 22 and the control signal ⁇ 24 are square waves having a duty ratio of 50%. As shown in FIG. 3, control signal ⁇ 22 and control signal ⁇ 24 have complementary logic or phase polarities so that one of switching element 252 and switching element 254 is in the off state while the other is in the on state.
  • the switching element 252 is turned off, the switching element 254 is turned on, the inductor current I L is charged in the inductor 250 of the inductor 250 at one end - the connection point 243- storage cell 224-switching element 254- connection Point 263 is discharged through the current path at the other end of the inductor 250. This discharge is performed while charging the storage cell 224. As shown in FIG. 3, the inductor current I L decreases with time due to the discharge, the discharge current becomes zero, the inductor 250, to flow the opposite direction of the charge current and the discharge current.
  • the switching element 254 is turned off, the switching element 252 is turned on, the inductor current I L is charged in the inductor 250 of the inductor 250 and the other end - the connection point 263- switching element 25 2 storage cells 222-
  • the node 243 is discharged through a current path at one end of the inductor 250. This discharge is performed while charging the storage cell 222.
  • the balance correction circuit 232 causes a current to flow alternately between the first switching circuit and the second switching circuit, whereby electric energy is passed between the storage cell 122 and the storage cell 124 via the inductor 250. Can be exchanged. As a result, the voltages of the storage cell 122 and the storage cell 124 can be equalized.
  • control signal ⁇ 22 and the control signal ⁇ 24 are 50% for the purpose of simplifying the description.
  • control signal ⁇ 22 and the control signal ⁇ 24 are not limited to this.
  • the duty ratio of control signal ⁇ 22 and control signal ⁇ 24 may be changed according to the voltage difference between power storage cell 222 and power storage cell 224.
  • Zener diode 292 when the voltage E 2 of the energy storage cell 222 is smaller than the voltage E 4 of the electric storage cell 224, a switching element 252 is turned on, the switching element 254 is off, the inductor current I L Figure 2, the control signal generator 272 is protected when the connection between the storage cell 222 and the balance correction device is disconnected.
  • Zener diode 294 is placed when the voltage E 2 of the energy storage cell 222 is greater than the voltage E 4 of the electric storage cell 224, the switching element 252 is off, the switching element 254 is in the ON state, the inductor current I L In the state of flowing in the direction of the solid line arrow in FIG. 2, the control signal generation unit 272 is protected when the connection between the storage cell 224 and the balance correction device is disconnected.
  • the function of the Zener diode 292 will be described. Even when the voltage E 2 of the energy storage cell 222 is smaller than the voltage E 4 of the electric storage cell 224, the switching element 252 is in the ON state, the broken line switching device 254 are off, the inductor current I L in FIG. 2 Consider a state of flowing in the direction of the arrow.
  • FIG. 4 schematically shows an example of the power storage system 410.
  • the power storage system 410 includes a terminal 212, a terminal 214, a power storage cell 222 and a power storage cell 224 connected in series, and a balance correction circuit 432.
  • the balance correction circuit 432 may be an example of a balance correction device.
  • the balance correction circuit 432 equalizes the voltages of the storage cell 222 and the storage cell 224.
  • the balance correction circuit 432 includes an inductor 250, a switching element 252, a switching element 254, a control signal generation unit 272, a diode 282, a diode 284, and a Zener diode 490.
  • the balance correction circuit 432 is different from the balance correction circuit 232 in that a Zener diode 490 is provided instead of the Zener diode 292 and the Zener diode 294. Other points may have the same configuration as the balance correction circuit 232. Portions that are the same as or similar to the respective portions of the balance correction circuit 232 are denoted by the same reference numerals, and redundant description is omitted.
  • the power storage system 110 may have a configuration similar to that of the power storage system 410.
  • the balance correction circuit 132, the balance correction circuit 134, and the balance correction circuit 136 may have the same configuration as the balance correction circuit 432.
  • Zener diode 490 maintains the voltage difference between reference voltage input terminal 274 and reference voltage input terminal 276 within a predetermined range.
  • One end of the Zener diode 490 is electrically connected to the reference voltage input terminal 274.
  • the other end of the Zener diode 490 is electrically connected to the reference voltage input terminal 276.
  • Zener diode 490 may be arranged in parallel with control signal generator 272.
  • Zener diode 490 may be electrically connected between the positive electrode side of the storage cell 222 and the switching element 252.
  • the other end of the Zener diode 490 may be electrically connected between the negative electrode side of the storage cell 224 and the switching element 254.
  • the Zener diode 490 is arranged in such a direction that current flows from one end of the Zener diode 490 to the other end of the Zener diode 294 when the voltage difference between the one end and the other end of the Zener diode 490 is larger than a predetermined value. It's okay.
  • the switching element 252 is in the ON state, the switching element 254 is off, the inductor current I L 4
  • the inductor current IL is the other end of the inductor 250 ⁇ Connection point 263-diode 282-Zener diode 490-storage cell 224-connection point 243-flows through the current path at one end of the inductor 250. Thereby, damage to the control signal generator 272 can be prevented.
  • the Zener diode 490 can maintain the voltage difference between the reference voltage input terminal 274 and the reference voltage input terminal 276 within a predetermined range. As a result, damage to the control signal generator 272 can be prevented.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

 インダクタの逆起電力により、スイッチング素子の駆動回路が破損されることを抑制する。インダクタと、第1のスイッチング素子と、第2のスイッチング素子と、第1の蓄電セルの他端と電気的に接続する第1の基準電圧入力端子および第2の蓄電セルの他端と電気的に接続する第2の基準電圧入力端子を有し、第1のスイッチング素子と第2のスイッチング素子とを交互にオン・オフ動作させる制御信号発生部と、第1の基準電圧入力端子と第2の基準電圧入力端子との間の電圧差を予め定められた範囲に維持する電圧安定化回路とを備える、

Description

バランス補正装置および蓄電システム
 本発明は、バランス補正装置および蓄電システムに関する。
 直列接続された多数の蓄電セルを使用するときに、蓄電セル間の電圧にバラつきが生じると、蓄電セルの寿命が短くなる場合がある。そこで、インダクタ、スイッチング素子およびスイッチング素子の駆動回路を備え、蓄電セル間の電圧を均等化させるバランス補正回路が提案されている(特許文献1~3を参照。)。
 [先行技術文献]
 [特許文献]
 (特許文献1)特開2006-067748号公報
 (特許文献2)特開2008-017605号公報
 (特許文献3)特開2009-232660号公報
 例えば、検査装置とバランス補正装置とを接触ピンで接続して製品検査を実施していると、チャタリングにより検査装置とバランス補正装置との接続が切断される場合がある。バランス補正装置の稼動中に、電源とバランス補正装置との接続が切断されると、インダクタの逆起電力により、スイッチング素子の駆動回路が破損する場合がある。そこで本発明の1つの側面においては、上記の課題を解決することのできるバランス補正装置および蓄電システムを提供することを目的とする。この目的は請求の範囲における独立項に記載の特徴の組み合わせにより達成される。また従属項は本発明の更なる有利な具体例を規定する。
 本発明の第1の態様においては、直列に接続された第1の蓄電セルおよび第2の蓄電セルの電圧を均等化させるバランス補正装置であって、第1の蓄電セルの一端と第2の蓄電セルの一端との接続点に、一端が電気的に接続されるインダクタと、インダクタの他端と第1の蓄電セルの他端との間に電気的に接続される第1のスイッチング素子と、インダクタの他端と第2の蓄電セルの他端との間に電気的に接続される第2のスイッチング素子と、第1の蓄電セルの他端と電気的に接続する第1の基準電圧入力端子および第2の蓄電セルの他端と電気的に接続する第2の基準電圧入力端子を有し、第1のスイッチング素子および第2のスイッチング素子のオン・オフ動作を制御する制御信号を、第1のスイッチング素子および第2のスイッチング素子に供給し、第1のスイッチング素子と第2のスイッチング素子とを交互にオン・オフ動作させる制御信号発生部と、第1の基準電圧入力端子と第2の基準電圧入力端子との間の電圧差を予め定められた範囲に維持する電圧安定化回路とを備えるバランス補正装置が提供される。
 上記のバランス補正装置において、電圧安定化回路は、シャントレギュレータを有してよく、シャントレギュレータは、一端が、インダクタの他端と電気的に接続してよく、他端が、制御信号発生部の第2の基準電圧入力端子と電気的に接続してよい。当該バランス補正装置において、シャントレギュレータは、シャントレギュレータの一端と他端との間の電圧差が予め定められた値よりも大きい場合に、シャントレギュレータの一端からシャントレギュレータの他端に電流を流してよい。
 上記のバランス補正装置において、電圧安定化回路は、シャントレギュレータを有してよく、シャントレギュレータは一端が、制御信号発生部の第1の基準電圧入力端子と電気的に接続してよく、他端が、インダクタの他端と電気的に接続してよい。当該バランス補正装置において、シャントレギュレータは、シャントレギュレータの一端と他端との間の電圧差が予め定められた値よりも大きい場合に、シャントレギュレータの一端からシャントレギュレータの他端に電流を流してよい。
 上記のバランス補正装置において、第1のスイッチング素子は、第1のスイッチング素子と並列に配され、インダクタの他端から第1の蓄電セルの他端への方向に電流を流す第1のダイオードを有してよく、第2のスイッチング素子は、第2のスイッチング素子と並列に配され、第2の蓄電セルの他端からインダクタの他端への方向には電流を流す第2のダイオードを有してよい。当該バランス補正装置において、電圧安定化回路は、シャントレギュレータを有してよく、シャントレギュレータは、一端が、第1の基準電圧入力端子と電気的に接続してよく、他端が、第2の基準電圧入力端子と電気的に接続してよい。当該バランス補正装置において、シャントレギュレータは、シャントレギュレータの一端と他端との間の電圧差が予め定められた値よりも大きい場合に、シャントレギュレータの一端からシャントレギュレータの他端に電流を流してよい。
 上記のバランス補正装置において、シャントレギュレータは、ツェナーダイオードを含んでよい。
 本発明の第2の態様においては、直列に接続された第1の蓄電セルおよび第2の蓄電セルと、第1の蓄電セルおよび第2の蓄電セルの電圧を均等化させる上記のバランス補正装置とを備える蓄電システムが提供される。
 なお、上記の発明の概要は、本発明の必要な特徴の全てを列挙したものではない。また、これらの特徴群のサブコンビネーションもまた、発明となりうる。
蓄電システム110を備える装置100の一例を概略的に示す。 蓄電システム210の一例を概略的に示す。 蓄電システム210の動作の一例を概略的に示す。 蓄電システム410の一例を概略的に示す。
 以下、発明の実施の形態を通じて本発明の(一)側面を説明するが、以下の実施形態は請求の範囲にかかる発明を限定するものではない。実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。また、図面を参照して、実施形態について説明するが、図面の記載において、同一または類似の部分には同一の参照番号を付して重複する説明を省く場合がある。
 図1は、蓄電システム110を備える装置100の一例を概略的に示す。装置100は、モータ102と、蓄電システム110とを備える。装置100は、電気自動車、ハイブリッド自動車、電気二輪車、鉄道車両、昇降機などの輸送装置であってよい。装置100は、PC、携帯電話などの電気機器であってよい。
 蓄電システム110は、端子112と、端子114と、蓄電セル122、蓄電セル124、蓄電セル126および蓄電セル128を含む直列に接続された複数の蓄電セルと、バランス補正回路132、バランス補正回路134およびバランス補正回路136を含む複数のバランス補正回路とを有する。バランス補正回路132、バランス補正回路134およびバランス補正回路136は、バランス補正装置の一例であってよい。
 「電気的に接続される」とは、ある要素と他の要素とが直接接続される場合に限定されない。ある要素と他の要素との間に、第三の要素が介在してもよい。また、ある要素と他の要素とが物理的に接続されている場合に限定されない。例えば、変圧器の入力巻線と出力巻線とは物理的には接続されていないが、電気的には接続されている。さらに、ある要素と他の要素とが現実に電気的に接続されている場合だけでなく、蓄電セルとバランス補正回路とが電気的に接続されたときに、ある要素と他の要素とが電気的に接続される場合をも含む。また、「直列に接続される」とは、ある要素と他の要素とが直列に電気的に接続されていることを示す。
 モータ102は、蓄電システム110に電気的に接続され、蓄電システム110の供給する電力を利用する。モータ102は、電力負荷の一例であってよい。モータ102は、回生ブレーキとして使用されてもよい。蓄電システム110は、モータ102に電気的に接続され、モータ102に電力を供給する。蓄電システム110は、図示されない充電装置に電気的に接続され、電気エネルギーを蓄える。
 端子112および端子114は、モータ102、充電装置などのシステム外部の装置と、蓄電システム110とを電気的に接続する。蓄電セル122、蓄電セル124、蓄電セル126および蓄電セル128は、直列に接続される。蓄電セル122、蓄電セル124、蓄電セル126および蓄電セル128は、二次電池またはキャパシタであってよい。蓄電セル122、蓄電セル124、蓄電セル126および蓄電セル128のそれぞれは、複数の蓄電セルを含んでもよい。
 例えば、蓄電セル122と蓄電セル124との間で、製造品質、劣化の程度などが異なる場合、蓄電セル122および蓄電セル124の電池特性に差が生じる場合がある。電池特性としては、電池容量、または、放電時間に対する電池電圧の関係を示す放電電圧特性を例示することができる。例えば、蓄電セルの劣化が進行するにつれて、より短い放電時間で電池電圧が低下するようになる。
 蓄電セル122および蓄電セル124の電池特性が異なる場合、蓄電システム110の充電完了時に蓄電セル122および蓄電セル124の電圧が略同一であったとしても、蓄電システム110の放電が進行するにつれて、蓄電セル122および蓄電セル124の電圧にばらつきが生じる。また、蓄電システム110の充電開始時に蓄電セル122および蓄電セル124の電圧が略同一であったとしても、蓄電システム110の充電が進行するにつれて、蓄電セル122および蓄電セル124の電圧にばらつきが生じる。
 蓄電セル122および蓄電セル124は、利用可能な充電レベル(State of Charge、SOCという場合がある。)の範囲が予め定められているので、蓄電セル122および蓄電セル124の電圧にばらつきが生じると、蓄電システム110の利用効率が悪化する。そこで、蓄電セル122および蓄電セル124の電圧を均等化させることで、蓄電システム110の利用効率を向上させることができる。
 バランス補正回路132は、インダクタを有し、蓄電セル122および蓄電セル124の電圧を均等化させる。バランス補正回路132は、蓄電セル122の端子112側の一端(正極側という場合がある。)と、蓄電セル122の端子114側の一端(負極側という場合がある。)と蓄電セル124の正極側との接続点143とに電気的に接続される。これにより、蓄電セル122およびインダクタを含む回路が形成される。バランス補正回路132は、接続点143と、蓄電セル124の負極側と蓄電セル126の正極側との接続点145とに電気的に接続される。これにより、蓄電セル124およびインダクタを含む回路が形成される。
 バランス補正回路132は、蓄電セル122およびインダクタを含む回路と、蓄電セル124およびインダクタを含む回路とに交互に電流を流す。これにより、蓄電セル122と蓄電セル124との間でインダクタを介して電気エネルギーを授受することができる。その結果、蓄電セル122および蓄電セル124の電圧を均等化させることができる。
 バランス補正回路134は、蓄電セル124および蓄電セル126の電圧を均等化させる。バランス補正回路134は、接続点143と、接続点145と、蓄電セル126の負極側と蓄電セル128の正極側との接続点147とに、電気的に接続される。バランス補正回路136は、蓄電セル126および蓄電セル128の電圧を均等化させる。バランス補正回路136は、接続点145と、接続点147と、蓄電セル128の負極側とに、電気的に接続される。バランス補正回路134およびバランス補正回路136は、バランス補正回路132と同様の構成を有してよい。
 図2は、蓄電システム210の一例を概略的に示す。蓄電システム210は、端子212と、端子214と、直列に接続された蓄電セル222および蓄電セル224と、バランス補正回路232とを備える。バランス補正回路232は、バランス補正装置の一例であってよい。蓄電セル222は、第1の蓄電セルの一例であってよい。蓄電セル224は、第2の蓄電セルの一例であってよい。
 端子212および端子214は、それぞれ、蓄電システム110の端子112および端子114と同様の構成を有してよい。蓄電セル222および蓄電セル224は、蓄電セル122、蓄電セル124、蓄電セル126または蓄電セル128と同様の構成を有してよい。また、蓄電システム110は、蓄電システム210と同様の構成を有してよい。バランス補正回路132、バランス補正回路134およびバランス補正回路136は、バランス補正回路232と同様の構成を有してよい。
 バランス補正回路232は、蓄電セル222および蓄電セル224の電圧を均等化させる。バランス補正回路232は、インダクタ250と、スイッチング素子252と、スイッチング素子254と、制御信号発生部272と、ダイオード282と、ダイオード284と、ツェナーダイオード292と、ツェナーダイオード294とを備える。スイッチング素子252は、第1のスイッチング素子の一例であってよい。スイッチング素子254は、第2のスイッチング素子の一例であってよい。ツェナーダイオード292およびツェナーダイオード294のそれぞれは、シャントレギュレータおよび電圧安定化回路の一例であってよい。
 バランス補正回路232は、蓄電セル222の正極側と、蓄電セル222の負極側と蓄電セル224の正極側との接続点243とに電気的に接続される。これにより、蓄電セル222と、スイッチング素子252と、インダクタ250とを含む第1の開閉回路が形成される。バランス補正回路232は、接続点243と、蓄電セル224の負極側とに電気的に接続される。これにより、蓄電セル224と、インダクタ250と、スイッチング素子254とを含む第2の開閉回路が形成される。接続点243は、第1の蓄電セルの一端と第2の蓄電セルの一端との接続点の一例であってよい。
 インダクタ250は、一端が接続点243に電気的に接続される。インダクタ250の他端は、スイッチング素子252およびスイッチング素子254の接続点263に電気的に接続されてよい。スイッチング素子252およびスイッチング素子254が交互にオン動作およびオフ動作(オン・オフ動作という場合がある。)を繰り返すと、インダクタ250にはインダクタ電流Iが生じる。
 スイッチング素子252は、インダクタ250の他端と蓄電セル222の正極側との間に電気的に接続される。スイッチング素子252は、制御信号発生部272から制御信号φ22を受信して、制御信号φ22に基づきオン動作またはオフ動作を行う。これにより、第1の開閉回路を開閉する。スイッチング素子252は、MOSFETであってよい。スイッチング素子252は、制御信号φ22を受信しない場合にはオフ動作をする素子であってよい。
 スイッチング素子254は、インダクタ250の他端と蓄電セル224の負極側との間に電気的に接続される。スイッチング素子254は、制御信号発生部272から制御信号φ24を受信して、制御信号φ24に基づきオン動作またはオフ動作を行う。これにより、第2の開閉回路を開閉する。スイッチング素子254は、MOSFETであってよい。スイッチング素子254は、制御信号φ24を受信しない場合にはオフ動作をする素子であってよい。
 制御信号発生部272は、スイッチング素子252のオン・オフ動作を制御する制御信号φ22と、スイッチング素子254のオン・オフ動作を制御する制御信号φ24とを発生させる。制御信号発生部272は、制御信号φ22をスイッチング素子252に供給する。制御信号発生部272は、制御信号φ24をスイッチング素子254に供給する。
 制御信号発生部272は、スイッチング素子252およびスイッチング素子254が交互にオン・オフ動作を繰り返すように、制御信号φ22および制御信号φ24を発生させてよい。これにより、スイッチング素子252とスイッチング素子254とを交互にオン・オフ動作させることができる。制御信号φ22および制御信号φ24は、それぞれ、デューティ比が50%の方形波であってよい。デューティ比は、方形波の周期に対するON期間の割合として算出することができる。
 制御信号発生部272は、予め定められた周期のパルス列を発生するパルス発生器であってよい。制御信号発生部272は、制御信号φ22および制御信号φ24の少なくとも一方のデューティ比を可変制御する可変パルス発生器であってもよい。制御信号発生部272は、スイッチング素子252およびスイッチング素子254と同一の基板に形成されてよい。
 制御信号発生部272は、蓄電セル222の正極側と電気的に接続する基準電圧入力端子274と、蓄電セル224の負極側と電気的に接続する基準電圧入力端子276とを有する。基準電圧入力端子274は、第1の基準電圧入力端子の一例であってよい。基準電圧入力端子276は、第2の基準電圧入力端子の一例であってよい。
 ダイオード282は、スイッチング素子252と並列に配される。ダイオード282は、一端がインダクタ250の他端と電気的に接続する。ダイオード282の他端は、蓄電セル222の正極側と電気的に接続する。ダイオード282は、インダクタ250の他端から蓄電セル222の正極側への方向に電流を流す。
 ダイオード284は、スイッチング素子254と並列に配される。ダイオード284は、一端が蓄電セル224の負極側と電気的に接続する。ダイオード284の他端は、インダクタ250の他端と電気的に接続する。ダイオード284は、蓄電セル224の負極側からインダクタ250の他端への方向に電流を流す。ダイオード282およびダイオード284は、MOSFETのソース・ドレイン間に等価的に形成される寄生ダイオードであってよい。
 ダイオード282およびダイオード284を設けることで、スイッチング素子252およびスイッチング素子254が共にオフ状態となった期間にインダクタ電流Iが残留した場合であっても、当該インダクタ電流Iがダイオード282またはダイオード284を通して流れ続けることができる。これにより、インダクタ250に一旦生じたインダクタ電流Iを無駄なく利用することができる。また、インダクタ電流Iを遮断した場合に生じるサージ電圧の発生を抑制することができる。
 ツェナーダイオード292は、基準電圧入力端子274と基準電圧入力端子276との間の電圧差を予め定められた範囲に維持する。ツェナーダイオード292は、制御信号発生部272と並列に配されてよい。
 ツェナーダイオード292は、一端が、インダクタ250の他端と電気的に接続してよい。ツェナーダイオード292の他端は、制御信号発生部272の基準電圧入力端子276と電気的に接続してよい。ツェナーダイオード292は、ツェナーダイオード292の一端と他端との間の電圧差が予め定められた値よりも大きい場合、ツェナーダイオード292の一端からツェナーダイオード292の他端に電流が流れる向きに配されてよい。
 これにより、基準電圧入力端子274と基準電圧入力端子276との間の電圧差を予め定められた範囲に維持することができる。その結果、制御信号発生部272の破損を防止することができる。
 ツェナーダイオード294は、基準電圧入力端子274と基準電圧入力端子276との間の電圧差を予め定められた範囲に維持する。ツェナーダイオード294は、制御信号発生部272と並列に配されてよい。
 ツェナーダイオード294は、一端が、制御信号発生部272の基準電圧入力端子274と電気的に接続してよい。ツェナーダイオード292の他端は、インダクタ250の他端と電気的に接続してよい。ツェナーダイオード294は、ツェナーダイオード294の一端と他端との間の電圧差が予め定められた値よりも大きい場合、ツェナーダイオード294の一端からツェナーダイオード294の他端に電流が流れる向きに配されてよい。
 これにより、基準電圧入力端子274と基準電圧入力端子276との間の電圧差を予め定められた範囲に維持することができる。その結果、制御信号発生部272の破損を防止することができる。
 本実施形態において、バランス補正回路232が、ツェナーダイオード292およびツェナーダイオード294を備える場合について説明した。しかし、バランス補正回路232はこれに限定されない。バランス補正回路232は、ツェナーダイオード292およびツェナーダイオード294の少なくとも一方を備えてよい。
 図3は、蓄電システム210の動作の一例を概略的に示す。図3は、制御信号φ22および制御信号φ24の波形の一例に対応づけて、グラフ302、グラフ304およびグラフ306を示す。グラフ302、グラフ304およびグラフ306において、横軸は時間の経過を示す。また、縦軸はインダクタ電流Iの大きさを示す。図3において、インダクタ電流Iの大きさは、接続点263から接続点243に向かって流れる電流(図2において実線の矢印で示す。)を正として表す。
 まず、蓄電システム210の正常時の動作について、図3を用いて説明する。グラフ302は、蓄電セル222の電圧Eが蓄電セル224の電圧Eよりも大きい場合のインダクタ電流Iの経時変化の一例を概略的に示す。グラフ304は、蓄電セル222の電圧Eが蓄電セル224の電圧Eよりも小さい場合のインダクタ電流Iの経時変化の一例を概略的に示す。グラフ306は、蓄電セル222の電圧Eと蓄電セル224の電圧Eとが略同一である場合のインダクタ電流Iの経時変化の一例を概略的に示す。
 図3において、制御信号φ22および制御信号φ24は、デューティ比が50%の方形波である。図3に示すように、制御信号φ22および制御信号φ24は、スイッチング素子252およびスイッチング素子254の一方がオン状態の間は他方がオフ状態になるように、互いに相補な論理または位相極性を有する。
 グラフ302に示すように、蓄電セル222の電圧Eが蓄電セル224の電圧Eよりも大きい場合には、スイッチング素子252がオン状態のときに、蓄電セル222の正極側-スイッチング素子252-接続点263-インダクタ250-接続点243-蓄電セル222の負極側の電流経路で電流が流れる。このとき、インダクタ250には、インダクタ電流Iが図2における実線矢印の方向に充電される。
 次に、スイッチング素子252がオフ状態になり、スイッチング素子254がオン状態になると、インダクタ250に充電されたインダクタ電流Iがインダクタ250の一端-接続点243-蓄電セル224-スイッチング素子254-接続点263-インダクタ250の他端の電流経路で放電される。この放電は、蓄電セル224を充電しながら行われる。図3に示すように、インダクタ電流Iは放電により時間と共に減少し、放電電流が0になると、インダクタ250には、放電電流とは逆方向の充電電流が流れるようになる。
 グラフ304に示すように、蓄電セル222の電圧Eが蓄電セル224の電圧Eよりも小さい場合には、スイッチング素子254がオン状態のときに、蓄電セル224の正極側-接続点243-インダクタ250-接続点263-スイッチング素子254-蓄電セル224の負極側の電流経路で電流が流れる。このとき、インダクタ250には、インダクタ電流Iが図2における破線矢印の方向に充電される。
 次に、スイッチング素子254がオフ状態になり、スイッチング素子252がオン状態になると、インダクタ250に充電されたインダクタ電流Iがインダクタ250の他端-接続点263-スイッチング素子252-蓄電セル222-接続点243-インダクタ250の一端の電流経路で放電される。この放電は、蓄電セル222を充電しながら行われる。
 上記のように、バランス補正回路232が第1の開閉回路と、第2の開閉回路とに交互に電流を流すことで、蓄電セル122と蓄電セル124との間でインダクタ250を介して電気エネルギーを授受することができる。その結果、蓄電セル122および蓄電セル124の電圧を均等化させることができる。
 グラフ306に示すように、蓄電セル222の電圧Eと蓄電セル224の電圧Eとが略同一である場合には、スイッチング素子252またはスイッチング素子254がオン状態の期間において、インダクタ電流Iの放電と充電とがほぼ等量ずつ実施される。その結果、電圧がほぼバランスした状態を維持することができる。
 なお、本実施形態においては、説明を簡単にする目的で、制御信号φ22および制御信号φ24のデューティ比が50%である場合について説明した。しかし、制御信号φ22および制御信号φ24はこれに限定されない。制御信号φ22および制御信号φ24のデューティ比は、蓄電セル222および蓄電セル224の電圧差に応じて変更されてよい。
 次に、蓄電システム210の稼動中に、蓄電セル222および蓄電セル224と、バランス補正回路232との接続が切断された場合における、ツェナーダイオード292およびツェナーダイオード294の機能について説明する。蓄電セル222および蓄電セル224と、バランス補正回路232との接続が切断されるタイミングによっては、制御信号発生部272の基準電圧入力端子274と基準電圧入力端子276との間に大きな電圧が印加される可能性がある。
 ツェナーダイオード292は、蓄電セル222の電圧Eが蓄電セル224の電圧Eよりも小さい場合に、スイッチング素子252がオン状態であり、スイッチング素子254がオフ状態であり、インダクタ電流Iが図2における破線矢印の方向に流れている状態において、蓄電セル222とバランス補正装置との接続が切断されたときに、制御信号発生部272を保護する。ツェナーダイオード294は、蓄電セル222の電圧Eが蓄電セル224の電圧Eよりも大きい場合おいて、スイッチング素子252がオフ状態であり、スイッチング素子254がオン状態であり、インダクタ電流Iが図2における実線矢印の方向に流れている状態において、蓄電セル224とバランス補正装置との接続が切断されたときに、制御信号発生部272を保護する。
 まず、ツェナーダイオード292の機能について説明する。蓄電セル222の電圧Eが蓄電セル224の電圧Eよりも小さい場合であって、スイッチング素子252がオン状態であり、スイッチング素子254がオフ状態であり、インダクタ電流Iが図2における破線矢印の方向に流れている状態を考える。
 この状態おいて、蓄電セル222とバランス補正装置との接続が切断された場合、ツェナーダイオード292がなければ、インダクタ250の他端-接続点263-スイッチング素子252-基準電圧入力端子274-制御信号発生部272-基準電圧入力端子276-蓄電セル224-接続点243-インダクタ250の一端の電流経路でインダクタ電流Iが流れる。インダクタ電流Iの大きさによっては、制御信号発生部272が破損する可能性がある。
 これに対して、ツェナーダイオード292が図2に関連して説明したように配されている場合には、インダクタ電流Iは、インダクタ250の他端-接続点263-ツェナーダイオード292-蓄電セル224-接続点243-インダクタ250の一端の電流経路を流れる。これにより、制御信号発生部272の破損を防止することができる。
 次に、ツェナーダイオード294の機能について説明する。蓄電セル222の電圧Eが蓄電セル224の電圧Eよりも大きい場合であって、スイッチング素子252がオフ状態であり、スイッチング素子254がオン状態であり、インダクタ電流Iが図2における実線矢印の方向に流れている状態を考える。
 この状態おいて、蓄電セル224とバランス補正装置との接続が切断された場合、ツェナーダイオード294がなければ、インダクタ250の一端-接続点243-蓄電セル222-基準電圧入力端子274-制御信号発生部272-基準電圧入力端子276-スイッチング素子254-接続点263-インダクタ250の他端の電流経路でインダクタ電流Iが流れる。インダクタ電流Iの大きさによっては、制御信号発生部272が破損する可能性がある。
 これに対して、ツェナーダイオード294が図2に関連して説明したように配されている場合には、インダクタ電流Iは、インダクタ250の一端-接続点243-蓄電セル222-ツェナーダイオード294-接続点263-インダクタ250の他端の電流経路を流れる。これにより、制御信号発生部272の破損を防止することができる。
 図4は、蓄電システム410の一例を概略的に示す。蓄電システム410は、端子212と、端子214と、直列に接続された蓄電セル222および蓄電セル224と、バランス補正回路432とを備える。バランス補正回路432は、バランス補正装置の一例であってよい。
 バランス補正回路432は、蓄電セル222および蓄電セル224の電圧を均等化させる。バランス補正回路432は、インダクタ250と、スイッチング素子252と、スイッチング素子254と、制御信号発生部272と、ダイオード282と、ダイオード284と、ツェナーダイオード490とを備える。
 バランス補正回路432は、ツェナーダイオード292およびツェナーダイオード294の代わりに、ツェナーダイオード490を備える点でバランス補正回路232と相違する。その他の点については、バランス補正回路232と同様の構成を有してよい。バランス補正回路232の各部と同一または類似の部分には同一の参照番号を付して重複する説明を除く。また、蓄電システム110は、蓄電システム410と同様の構成を有してよい。バランス補正回路132、バランス補正回路134およびバランス補正回路136は、バランス補正回路432と同様の構成を有してよい。
 ツェナーダイオード490は、基準電圧入力端子274と基準電圧入力端子276との間の電圧差を予め定められた範囲に維持する。ツェナーダイオード490は、一端が、基準電圧入力端子274と電気的に接続する。ツェナーダイオード490の他端は、基準電圧入力端子276と電気的に接続する。ツェナーダイオード490は、制御信号発生部272と並列に配されてよい。
 ツェナーダイオード490は、一端が、蓄電セル222の正極側とスイッチング素子252との間に電気的に接続してよい。ツェナーダイオード490の他端は、蓄電セル224の負極側とスイッチング素子254との間に電気的に接続してよい。ツェナーダイオード490は、ツェナーダイオード490の一端と他端との間の電圧差が予め定められた値よりも大きい場合、ツェナーダイオード490の一端からツェナーダイオード294の他端に電流が流れる向きに配されてよい。
 次に、ツェナーダイオード490の機能について説明する。蓄電セル222の電圧Eが蓄電セル224の電圧Eよりも大きい場合であって、スイッチング素子252がオフ状態であり、スイッチング素子254がオン状態であり、インダクタ電流Iが図4における実線矢印の方向に流れている状態を考える。この状態おいて、蓄電セル224とバランス補正装置との接続が切断されたとしても、ツェナーダイオード490が上記のように配されている場合には、インダクタ電流Iは、インダクタ250の一端-接続点243-蓄電セル222-ツェナーダイオード490-スイッチング素子254-接続点263-インダクタ250の他端の電流経路を流れる。これにより、制御信号発生部272の破損を防止することができる。
 また、蓄電セル222の電圧Eが蓄電セル224の電圧Eよりも小さい場合であって、スイッチング素子252がオン状態であり、スイッチング素子254がオフ状態であり、インダクタ電流Iが図4における破線矢印の方向に流れている状態を考える。この状態おいて、蓄電セル222とバランス補正装置との接続が切断されたとしても、ツェナーダイオード490が上記のように配されている場合には、インダクタ電流Iは、インダクタ250の他端-接続点263-ダイオード282-ツェナーダイオード490-蓄電セル224-接続点243-インダクタ250の一端の電流経路を流れる。これにより、制御信号発生部272の破損を防止することができる。
 以上のとおり、ツェナーダイオード490は、基準電圧入力端子274と基準電圧入力端子276との間の電圧差を予め定められた範囲に維持することができる。その結果、制御信号発生部272の破損を防止することができる。
 以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更または改良を加えることが可能であることが当業者に明らかである。その様な変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、請求の範囲の記載から明らかである。
 請求の範囲、明細書、および図面中において示した装置、システム、プログラム、および方法における動作、手順、ステップ、および段階等の各処理の実行順序は、特段「より前に」、「先立って」等と明示しておらず、また、前の処理の出力を後の処理で用いるのでない限り、任意の順序で実現しうることに留意すべきである。請求の範囲、明細書、および図面中の動作フローに関して、便宜上「まず、」、「次に、」等を用いて説明したとしても、この順で実施することが必須であることを意味するものではない。
 100 装置、102 モータ、110 蓄電システム、112 端子、114 端子、122 蓄電セル、124 蓄電セル、126 蓄電セル、128 蓄電セル、132 バランス補正回路、134 バランス補正回路、136 バランス補正回路、143 接続点、145 接続点、147 接続点、210 蓄電システム、212 端子、214 端子、222 蓄電セル、224 蓄電セル、232 バランス補正回路、243 接続点、250 インダクタ、252 スイッチング素子、254 スイッチング素子、263 接続点、272 制御信号発生部、274 基準電圧入力端子、276 基準電圧入力端子、282 ダイオード、284 ダイオード、292 ツェナーダイオード、294 ツェナーダイオード、302 グラフ、304 グラフ、306 グラフ、410 蓄電システム、432 バランス補正回路、490 ツェナーダイオード

Claims (6)

  1.  直列に接続された第1の蓄電セルおよび第2の蓄電セルの電圧を均等化させるバランス補正装置であって、
     前記第1の蓄電セルの一端と前記第2の蓄電セルの一端との接続点に、一端が電気的に接続されるインダクタと、
     前記インダクタの他端と前記第1の蓄電セルの他端との間に電気的に接続される第1のスイッチング素子と、
     前記インダクタの他端と前記第2の蓄電セルの他端との間に電気的に接続される第2のスイッチング素子と、
     前記第1の蓄電セルの他端と電気的に接続する第1の基準電圧入力端子および前記第2の蓄電セルの他端と電気的に接続する第2の基準電圧入力端子を有し、前記第1のスイッチング素子および前記第2のスイッチング素子のオン・オフ動作を制御する制御信号を、前記第1のスイッチング素子および前記第2のスイッチング素子に供給し、前記第1のスイッチング素子と前記第2のスイッチング素子とを交互にオン・オフ動作させる制御信号発生部と、
     前記第1の基準電圧入力端子と前記第2の基準電圧入力端子との間の電圧差を予め定められた範囲に維持する電圧安定化回路と、
     を備える、バランス補正装置。
  2.  前記電圧安定化回路は、シャントレギュレータを有し、
     前記シャントレギュレータは、
     一端が、前記インダクタの他端と電気的に接続し、
     他端が、前記制御信号発生部の前記第2の基準電圧入力端子と電気的に接続し、
     前記シャントレギュレータの一端と他端との間の電圧差が予め定められた値よりも大きい場合に、前記シャントレギュレータの一端から前記シャントレギュレータの他端に電流を流す、
     請求項1に記載のバランス補正装置。
  3.  前記電圧安定化回路は、シャントレギュレータを有し、
     前記シャントレギュレータは、
     一端が、前記制御信号発生部の前記第1の基準電圧入力端子と電気的に接続し、
     他端が、前記インダクタの他端と電気的に接続し、
     前記シャントレギュレータの一端と他端との間の電圧差が予め定められた値よりも大きい場合に、前記シャントレギュレータの一端から前記シャントレギュレータの他端に電流を流す、
     請求項1または請求項2に記載のバランス補正装置。
  4.  前記第1のスイッチング素子は、前記第1のスイッチング素子と並列に配され、前記インダクタの他端から前記第1の蓄電セルの他端への方向に電流を流す第1のダイオードを有し、
     前記第2のスイッチング素子は、前記第2のスイッチング素子と並列に配され、前記第2の蓄電セルの他端から前記インダクタの他端への方向には電流を流す第2のダイオードを有し、
     前記電圧安定化回路は、シャントレギュレータを有し、
     前記シャントレギュレータは、
     一端が、前記第1の基準電圧入力端子と電気的に接続し、
     他端が、前記第2の基準電圧入力端子と電気的に接続し、
     前記シャントレギュレータの一端と他端との間の電圧差が予め定められた値よりも大きい場合に、前記シャントレギュレータの一端から前記シャントレギュレータの他端に電流を流す、
     請求項1から請求項3までの何れか一項に記載のバランス補正装置。
  5.  前記シャントレギュレータは、ツェナーダイオードを含む、
     請求項2から請求項4までの何れか一項に記載のバランス補正装置。
  6.  直列に接続された第1の蓄電セルおよび第2の蓄電セルと、
     前記第1の蓄電セルおよび前記第2の蓄電セルの電圧を均等化させる、請求項1から請求項5までの何れか一項に記載のバランス補正装置と、
     を備える、蓄電システム。
PCT/JP2012/002123 2011-03-31 2012-03-27 バランス補正装置および蓄電システム WO2012132414A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201280015549.7A CN103460549B (zh) 2011-03-31 2012-03-27 平衡校准装置及蓄电系统
EP12764104.1A EP2693595B1 (en) 2011-03-31 2012-03-27 Balance correction apparatus and electrical storage system
US14/032,198 US9083188B2 (en) 2011-03-31 2013-09-20 Balance correcting apparatus and electricity storage system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-079755 2011-03-31
JP2011079755A JP5744598B2 (ja) 2011-03-31 2011-03-31 バランス補正装置および蓄電システム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/032,198 Continuation US9083188B2 (en) 2011-03-31 2013-09-20 Balance correcting apparatus and electricity storage system

Publications (1)

Publication Number Publication Date
WO2012132414A1 true WO2012132414A1 (ja) 2012-10-04

Family

ID=46930188

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/002123 WO2012132414A1 (ja) 2011-03-31 2012-03-27 バランス補正装置および蓄電システム

Country Status (5)

Country Link
US (1) US9083188B2 (ja)
EP (1) EP2693595B1 (ja)
JP (1) JP5744598B2 (ja)
CN (1) CN103460549B (ja)
WO (1) WO2012132414A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015049568A1 (en) * 2013-10-01 2015-04-09 Toyota Jidosha Kabushiki Kaisha Power storage system
EP3073603A4 (en) * 2013-11-18 2017-08-30 FDK Corporation Balance correction device and electricity storage device
US11342776B2 (en) * 2020-06-15 2022-05-24 Magnetic Energy Charging, Inc. Battery charger and method for charging a battery

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5864320B2 (ja) * 2012-03-19 2016-02-17 Evtd株式会社 バランス補正装置および蓄電システム
JP6814437B2 (ja) * 2017-02-13 2021-01-20 NExT−e Solutions株式会社 制御装置、バランス補正装置、蓄電システム、及び、装置
JP6928347B2 (ja) * 2017-08-02 2021-09-01 NExT−e Solutions株式会社 管理装置、蓄電装置、蓄電システム、及び、電気機器
EP4280413A1 (de) * 2022-05-18 2023-11-22 Hilti Aktiengesellschaft Ausgleichsmodul für eine werkzeugmaschine, werkzeugmaschine und ladungsausgleichsverfahren

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004129439A (ja) * 2002-10-04 2004-04-22 Mitsubishi Heavy Ind Ltd バックアップ電源装置の電圧均等化装置
JP2006067748A (ja) 2004-08-30 2006-03-09 Avr:Kk サイザの停電における張力制御方法
JP2008017605A (ja) 2006-07-05 2008-01-24 Fdk Corp 直列セルの電圧バランス補正回路
JP2008054415A (ja) * 2006-08-24 2008-03-06 Ntt Facilities Inc 電圧補償装置、電圧補償システム及び電圧補償方法
JP2009232660A (ja) 2008-03-25 2009-10-08 Fdk Corp 直列セルの電圧バランス補正回路

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5479083A (en) * 1993-06-21 1995-12-26 Ast Research, Inc. Non-dissipative battery charger equalizer
IT1281308B1 (it) * 1995-04-04 1998-02-17 Bitron Spa Dispositivo di protezione per circuiti elettronici dalla disconnessione della batteria di alimentazione (load dump) e/o dalle
JPH10257683A (ja) * 1997-03-07 1998-09-25 Japan Storage Battery Co Ltd 組電池の充放電回路
US6140800A (en) * 1999-05-27 2000-10-31 Peterson; William Anders Autonomous battery equalization circuit
JP2004336919A (ja) * 2003-05-09 2004-11-25 Ricoh Co Ltd キャパシタ充電回路およびそれに用いる半導体装置
JP4140585B2 (ja) 2004-08-27 2008-08-27 Fdk株式会社 直列接続した2次電池のバランス補正装置およびその補正方法
WO2007018227A1 (ja) * 2005-08-11 2007-02-15 Murata Manufacturing Co., Ltd. 絶縁型スイッチング電源装置
US20090195079A1 (en) * 2008-01-31 2009-08-06 Jens Barrenscheen Circuit for equalizing charge unbalances in storage cells
DE102008001341A1 (de) * 2008-04-23 2009-10-29 Robert Bosch Gmbh Energiespeicher
JP5334566B2 (ja) * 2008-12-25 2013-11-06 Fdk株式会社 蓄電モジュールの電圧補正制御方法
US8493028B2 (en) * 2009-04-03 2013-07-23 Marvell World Trade Ltd. Power management circuit for rechargeable battery stack

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004129439A (ja) * 2002-10-04 2004-04-22 Mitsubishi Heavy Ind Ltd バックアップ電源装置の電圧均等化装置
JP2006067748A (ja) 2004-08-30 2006-03-09 Avr:Kk サイザの停電における張力制御方法
JP2008017605A (ja) 2006-07-05 2008-01-24 Fdk Corp 直列セルの電圧バランス補正回路
JP2008054415A (ja) * 2006-08-24 2008-03-06 Ntt Facilities Inc 電圧補償装置、電圧補償システム及び電圧補償方法
JP2009232660A (ja) 2008-03-25 2009-10-08 Fdk Corp 直列セルの電圧バランス補正回路

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2693595A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015049568A1 (en) * 2013-10-01 2015-04-09 Toyota Jidosha Kabushiki Kaisha Power storage system
CN105593055A (zh) * 2013-10-01 2016-05-18 丰田自动车株式会社 蓄电系统
US9948116B2 (en) 2013-10-01 2018-04-17 Toyota Jidosha Kabushiki Kaisha Power storage system
EP3073603A4 (en) * 2013-11-18 2017-08-30 FDK Corporation Balance correction device and electricity storage device
US11342776B2 (en) * 2020-06-15 2022-05-24 Magnetic Energy Charging, Inc. Battery charger and method for charging a battery
US11710978B2 (en) 2020-06-15 2023-07-25 Magnetic Energy Charging, Inc. Battery charger and method for charging a battery

Also Published As

Publication number Publication date
JP5744598B2 (ja) 2015-07-08
CN103460549B (zh) 2016-06-29
CN103460549A (zh) 2013-12-18
EP2693595B1 (en) 2018-01-24
EP2693595A4 (en) 2014-10-01
US20140015475A1 (en) 2014-01-16
EP2693595A1 (en) 2014-02-05
US9083188B2 (en) 2015-07-14
JP2012217243A (ja) 2012-11-08

Similar Documents

Publication Publication Date Title
WO2012120878A1 (ja) バランス補正装置および蓄電システム
JP5827019B2 (ja) バランス補正装置および蓄電システム
WO2012132414A1 (ja) バランス補正装置および蓄電システム
EP3073603B1 (en) Balance correction device and electricity storage device
JP6134520B2 (ja) バランス補正装置及び蓄電装置
JP5864320B2 (ja) バランス補正装置および蓄電システム
WO2013140710A1 (ja) バランス補正装置及び蓄電システム
JP5187406B2 (ja) 補機バッテリ充電装置
JP5553061B2 (ja) セルバランス装置
US20150069960A1 (en) Auxiliary Battery Charging Apparatus
JP5187407B2 (ja) 補機バッテリ充電装置
WO2013157576A1 (ja) 電池均等化システムおよび方法
JP2013162540A (ja) 電池均等化装置および方法
JP5718702B2 (ja) バランス補正装置および蓄電システム
JP5758234B2 (ja) 蓄電システム
WO2015005273A1 (ja) バランス補正装置及び蓄電装置
JP6133110B2 (ja) バランス補正装置および蓄電システム
JP2013051601A (ja) 駆動回路および電流制御回路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12764104

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE