WO2012132229A1 - MANUFACTURING METHOD FOR TRENCH-TYPE SiC SEMICONDUCTOR DEVICE - Google Patents

MANUFACTURING METHOD FOR TRENCH-TYPE SiC SEMICONDUCTOR DEVICE Download PDF

Info

Publication number
WO2012132229A1
WO2012132229A1 PCT/JP2012/001361 JP2012001361W WO2012132229A1 WO 2012132229 A1 WO2012132229 A1 WO 2012132229A1 JP 2012001361 W JP2012001361 W JP 2012001361W WO 2012132229 A1 WO2012132229 A1 WO 2012132229A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulating film
trench
semiconductor device
forming
manufacturing
Prior art date
Application number
PCT/JP2012/001361
Other languages
French (fr)
Japanese (ja)
Inventor
信行 三瀬
峰 利之
横山 夏樹
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2012132229A1 publication Critical patent/WO2012132229A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/0445Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide
    • H01L21/0475Changing the shape of the semiconductor body, e.g. forming recesses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
    • H01L29/42368Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity the thickness being non-uniform
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
    • H01L29/66068Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System
    • H01L29/1608Silicon carbide

Abstract

In a trench MOSFET, the voltage resistance of the gate insulating film is lowered by the electric field concentration at trench corners. When the thickness of the gate insulating film is increased in order to suppress this reduction, the ON resistance increases, and it is difficult to establish both a low ON resistance and a high voltage resistance when the thickness of the gate insulating film in a trench is constant. Therefore, a bottom-up-fill optical CVD film (6b) is used in a portion of the gate insulating film in the trench. Thus, the gate insulating film on the bottom surface is thicker than the gate insulating film on the side surfaces. Specifically, a trench-type SiC-MOSFET is manufactured by means of: a step for forming a trench in an SiC substrate; a step for forming the insulating film (6b) in the bottom of the trench by means of optical CVD; and a step for forming a gate electrode (7) above the insulating film.

Description

トレンチ型SiC半導体装置の製造方法Method for manufacturing trench type SiC semiconductor device
 本発明は、トレンチ型SiC半導体装置の製造方法に関する。 The present invention relates to a method of manufacturing a trench type SiC semiconductor device.
 シリコンカーバイド(SiC)は、シリコン(Si)よりも絶縁破壊電界が約10倍大きいため、耐圧を維持するドリフト層を薄く、かつ不純物濃度を高くすることができ、SiCは大電力用の電界効果型トランジスタ(MOSFET)の抵抗、すなわち損失を低減できる材料である。そのため、次世代の高耐圧・低損失スイッチングデバイスとしてSiCを用いたMOSFETが注目されている。しかもSiC基板に形成した溝(トレンチ)の側面をMOS界面あるいはチャネルとするトレンチ型MOSFETは、従来のSiC基板表面をMOS界面あるいはチャネルとするMOSFETよりも損失が低減できる構造として期待されている。 Since silicon carbide (SiC) has a dielectric breakdown electric field about 10 times larger than that of silicon (Si), the drift layer for maintaining the breakdown voltage can be made thin and the impurity concentration can be increased. SiC is a field effect for high power. It is a material that can reduce the resistance, that is, the loss of a type transistor (MOSFET). For this reason, MOSFETs using SiC have attracted attention as next-generation high withstand voltage / low loss switching devices. In addition, a trench MOSFET in which a side surface of a groove (trench) formed in a SiC substrate has a MOS interface or channel is expected to have a structure capable of reducing loss as compared with a conventional MOSFET having a SiC substrate surface as a MOS interface or channel.
 ここで、従来のトレンチ型のパワーMOSFETの動作原理を図14を用いて説明する。図において、符号1はnドレイン、2はnドリフト層、3はp型ベース領域、4はpコンタクト領域、5はnソース、6(6a、c)はゲート絶縁膜、7はゲート電極、8はソース/ゲート間を電気的に絶縁するための層間絶縁膜、9はソース電極、10はドレイン電極である。ドレイン電極10とソース電極9との間に電圧が印加された状態で、ゲート電極7に正の電圧が印加されると、ベース層3の表層、すなわちトレンチの側壁表面に電子の反転層が形成される。その結果、ドレイン電極10からドレイン領域1、ドリフト層2、ソース領域5を経て、ソース電極10に電流が流れる。 Here, the operation principle of a conventional trench type power MOSFET will be described with reference to FIG. In the figure, reference numeral 1 is an n + drain, 2 is an n drift layer, 3 is a p-type base region, 4 is a p + contact region, 5 is an n + source, 6 (6a, c) is a gate insulating film, 7 is A gate electrode, 8 is an interlayer insulating film for electrically insulating the source / gate, 9 is a source electrode, and 10 is a drain electrode. When a positive voltage is applied to the gate electrode 7 in a state where a voltage is applied between the drain electrode 10 and the source electrode 9, an electron inversion layer is formed on the surface layer of the base layer 3, that is, the side wall surface of the trench. Is done. As a result, a current flows from the drain electrode 10 to the source electrode 10 through the drain region 1, the drift layer 2, and the source region 5.
 本デバイスに望まれる特性は、ゲート電極7に所望の電圧を印加したときにドレイン電流が大きいことである。ドレイン電流は、反転層の電子密度が高いほど大きくなる。反転層電子密度はゲート絶縁膜が薄いほど高くなり、ゲート絶縁膜が薄いほど、ドレイン電流は大きくなる。しかし、ゲート絶縁膜が薄くなるほど耐圧限界が低くなる。特に、トレンチ型MOSFETの場合、トレンチの底部側面の角部において電界が集中するために、トレンチ角部のゲート絶縁膜の耐圧が問題になる。 The characteristic desired for this device is that the drain current is large when a desired voltage is applied to the gate electrode 7. The drain current increases as the electron density of the inversion layer increases. The inversion layer electron density is higher as the gate insulating film is thinner, and the drain current is larger as the gate insulating film is thinner. However, the withstand voltage limit decreases as the gate insulating film becomes thinner. In particular, in the case of a trench MOSFET, the electric field concentrates at the corner of the bottom side surface of the trench, so that the breakdown voltage of the gate insulating film at the corner of the trench becomes a problem.
 この問題を回避する方法として、SiC基板の酸化速度が面方位に依存することを利用し、トレンチ底面のゲート絶縁膜をトレンチ側面のゲート絶縁膜よりも厚くする方法が提案されている(特許文献1)。すなわち、六方晶のSiC(0001)カーボン面を表面とし、そこにトレンチを形成し、SiCトレンチ面を酸化すると、底面のカーボン面の酸化速度が側面のSiC面の酸化速度よりも大きいために、底面のゲート絶縁膜を側面のゲート絶縁膜よりも厚くすることができる。 As a method for avoiding this problem, a method has been proposed in which the gate insulating film on the bottom surface of the trench is made thicker than the gate insulating film on the side surface of the trench by utilizing the fact that the oxidation rate of the SiC substrate depends on the plane orientation (Patent Literature). 1). That is, when a hexagonal SiC (0001) carbon surface is the surface, a trench is formed there, and the SiC trench surface is oxidized, the oxidation rate of the bottom carbon surface is greater than the oxidation rate of the side SiC surface. The bottom gate insulating film can be made thicker than the side gate insulating film.
特開平7-326755号公報JP 7-326755 A 米国特許5672889号公報US Pat. No. 5,672,889
 特許文献1の発明によるトレンチの底面と側面のゲート絶縁膜の厚さを変える方法では、酸化速度の差に依存しゲート絶縁膜の厚さが決まるため、側面と底面のゲート絶縁膜の厚さを独立して制御するのは困難であった。特に、ゲート絶縁膜がある程度厚くなり酸化速度に面方位の依存性が無くなると、酸化速度がゲート絶縁膜中の酸素の拡散速度で決まるようになり、底面と側面でゲート絶縁膜の厚さの差をある一定以上に大きくするのは困難であった。また、酸化膜厚さをある程度以上厚くすると、界面準位が増えるため、移動度の劣化が顕著になり、オン抵抗の低減という観点から酸化膜は一定の厚さに抑制することが有効であることがわかってきた。すなわち、面方位依存の酸化レートの差により、側面と底面の絶縁膜厚さに所望の差をつけることは、高い耐圧とオン抵抗の低減との両立という観点から望ましくない。また、段差に対してほぼ均一な膜厚分布が得られる化学気相成長などによる堆積膜を組み合わせても、側面と底面の絶縁膜厚さを独立して制御することは不可能である。したがって、C面にトレンチを形成し、面方位依存の酸化により、側面に対して底面の絶縁膜を厚くする方法ではオン抵抗の低減と高耐圧の両立は困難である。 In the method of changing the thickness of the gate insulating film on the bottom and side surfaces of the trench according to the invention of Patent Document 1, the thickness of the gate insulating film is determined depending on the difference in oxidation rate. It was difficult to control them independently. In particular, when the gate insulating film becomes thicker to some extent and the surface orientation does not depend on the oxidation rate, the oxidation rate is determined by the diffusion rate of oxygen in the gate insulating film. It was difficult to increase the difference beyond a certain level. Further, when the oxide film thickness is increased to a certain extent, the interface state increases, so that the mobility is significantly deteriorated, and it is effective to suppress the oxide film to a certain thickness from the viewpoint of reducing the on-resistance. I understand that. That is, it is not desirable to give a desired difference in the insulating film thickness between the side surface and the bottom surface due to the difference in oxidation rate depending on the plane orientation from the viewpoint of achieving both high breakdown voltage and reduced on-resistance. In addition, even if a deposited film obtained by chemical vapor deposition or the like that provides a substantially uniform film thickness distribution with respect to the step is combined, it is impossible to independently control the insulating film thickness on the side surface and the bottom surface. Therefore, it is difficult to achieve both a reduction in on-resistance and a high breakdown voltage by a method in which a trench is formed in the C-plane and the insulating film on the bottom surface is thickened with respect to the side surface by surface orientation-dependent oxidation.
 一方、底面のゲート絶縁膜を側面のゲート絶縁膜よりも厚くする方法として、エッチバックを利用する方法が提案されている(特許文献2)。この方法では、トレンチを形成した後に、トレンチを絶縁膜で覆い、平坦化と絶縁膜のエッチバックによりトレンチの底部にだけ絶縁膜を残した上で、トレンチに対しSiCを酸化、あるいは化学気相成長などで堆積することでゲート絶縁膜を形成している。ところが、この方法ではプラズマでエッチバックを行うため、SiCトレンチ側面にプラズマによる損傷が入る。また、エッチング後にはエッチングの副生成物がSiCトレンチ側面に付着していると考えられるため、エッチバック後には希フッ酸などでトレンチ側面の損傷層を除去したり、副生成物を除去したりする必要がある。その除去には通常希フッ酸などによる処理が不可欠である。希フッ酸などを用いてトレンチ面からエッチングの副生成物を除去するときに、底面の絶縁膜にピンホールが形成される可能性がある。このピンホールは耐圧を低下させる要因になる。このように、エッチバックを用いて底面の絶縁膜を厚くする方法でも、オン抵抗の低減と高耐圧の両立は困難である。 On the other hand, as a method of making the gate insulating film on the bottom surface thicker than the gate insulating film on the side surface, a method using etch back has been proposed (Patent Document 2). In this method, after the trench is formed, the trench is covered with an insulating film, and the insulating film is left only at the bottom of the trench by planarization and etching back of the insulating film, and then SiC is oxidized or chemical vapor deposited on the trench. A gate insulating film is formed by depositing by growth or the like. However, since this method etches back with plasma, the side surface of the SiC trench is damaged by the plasma. In addition, it is considered that etching by-products are attached to the side surfaces of the SiC trench after the etching. Therefore, after etching back, the damaged layer on the side surfaces of the trench is removed with dilute hydrofluoric acid, or by-products are removed. There is a need to. Usually, treatment with dilute hydrofluoric acid is indispensable for the removal. When etching by-products are removed from the trench surface using dilute hydrofluoric acid or the like, pinholes may be formed in the bottom insulating film. This pinhole becomes a factor of lowering the withstand voltage. Thus, it is difficult to achieve both a reduction in on-resistance and a high breakdown voltage even by a method in which the insulating film on the bottom surface is thickened by using etch back.
 そこで本発明の目的はオン抵抗の低減と高耐圧を両立させる方法を提供することである。 Therefore, an object of the present invention is to provide a method for achieving both a reduction in on-resistance and a high breakdown voltage.
 上記課題を解決する本願発明の代表的なものを挙げると以下のとおりである。本願発明は、SiC基板に対し、トレンチを形成する工程と、トレンチの底に絶縁膜を光CVDで形成する工程と、絶縁膜の上方にゲート電極を形成する工程とを備えるトレンチ型SiC半導体装置の製造方法である。 Typical examples of the present invention for solving the above problems are as follows. The present invention relates to a trench type SiC semiconductor device comprising a step of forming a trench with respect to an SiC substrate, a step of forming an insulating film on the bottom of the trench by photo-CVD, and a step of forming a gate electrode above the insulating film. It is a manufacturing method.
 また、別の本願発明は、SiC基板に対し、トレンチを形成する工程と、トレンチの側面及び底面に、酸化又は酸窒化、若しくは、熱CVDにより第一絶縁膜を形成する工程と、トレンチの底面に光CVDにより第二絶縁膜を形成する工程と、第一および第二絶縁膜の上方にゲート電極を形成する工程とを備えるトレンチ型SiC半導体装置の製造方法である。 Another invention of the present application includes a step of forming a trench in a SiC substrate, a step of forming a first insulating film on the side and bottom surfaces of the trench by oxidation, oxynitridation, or thermal CVD, and a bottom surface of the trench. A method of manufacturing a trench type SiC semiconductor device comprising: a step of forming a second insulating film by photo-CVD, and a step of forming a gate electrode above the first and second insulating films.
 また、別の本願発明は、SiC基板に対し、トレンチを形成する工程と、トレンチの側面及び底面に、酸化又は酸窒化により第一絶縁膜を形成する工程と、トレンチの底面であって、第一絶縁膜の上方に、光CVDにより第二絶縁膜を形成する工程と、トレンチの側面及び底面であって、第二絶縁膜の上方に、熱CVDにより第三の絶縁膜を形成する工程と、第三絶縁膜の上方にゲート電極を形成する工程とを備えるトレンチ型SiC半導体装置の製造方法である。 Another invention of the present application is a step of forming a trench in an SiC substrate, a step of forming a first insulating film on the side and bottom surfaces of the trench by oxidation or oxynitriding, and a bottom surface of the trench, Forming a second insulating film by photo-CVD above one insulating film; forming a third insulating film by thermal CVD on the side and bottom surfaces of the trench and above the second insulating film; And a step of forming a gate electrode above the third insulating film.
 上記方法により、トレンチの上面に対して、トレンチの底面の膜堆積速度が大きな光CVDを用いて成膜された絶縁膜をトレンチの底近傍のみに選択的に配備し、この膜と酸化膜又は酸窒化膜、若しくは、トレンチの上面に対してトレンチの底面の膜厚がほぼ一定の堆積膜を組み合わせることにより、トレンチ側面のゲート絶縁膜の厚さとトレンチ底面の絶縁膜厚さを独立に制御できる。 By the above method, an insulating film formed using photo-CVD with a large film deposition rate on the bottom surface of the trench with respect to the upper surface of the trench is selectively provided only near the bottom of the trench, and this film and the oxide film or By combining an oxynitride film or a deposited film with a substantially constant thickness on the bottom surface of the trench with respect to the top surface of the trench, the thickness of the gate insulating film on the side surface of the trench and the insulating film thickness on the bottom surface of the trench can be controlled independently. .
 本願発明により、オン抵抗の低減と高耐圧を実現するトレンチ型SiC半導体装置を製造することができる。 According to the present invention, a trench type SiC semiconductor device that realizes a reduction in on-resistance and a high breakdown voltage can be manufactured.
本発明の実施例1に関わるトレンチ型SiC半導体装置の概略を示した断面図である。It is sectional drawing which showed the outline of the trench type SiC semiconductor device in connection with Example 1 of this invention. 本発明の実施例1に関わるトレンチ型SiC半導体装置の製造工程を示すための断面図である。It is sectional drawing for showing the manufacturing process of the trench type SiC semiconductor device in connection with Example 1 of this invention. 本発明の実施例1に関わるトレンチ型SiC半導体装置の製造工程を示すための断面図である。It is sectional drawing for showing the manufacturing process of the trench type SiC semiconductor device in connection with Example 1 of this invention. 本発明の実施例1に関わるトレンチ型SiC半導体装置の製造工程を示すための断面図である。It is sectional drawing for showing the manufacturing process of the trench type SiC semiconductor device in connection with Example 1 of this invention. 本発明の実施例1に関わるトレンチ型SiC半導体装置の製造工程を示すための断面図である。It is sectional drawing for showing the manufacturing process of the trench type SiC semiconductor device in connection with Example 1 of this invention. 本発明の実施例1に関わるトレンチ型SiC半導体装置の製造工程を示すための断面図である。It is sectional drawing for showing the manufacturing process of the trench type SiC semiconductor device in connection with Example 1 of this invention. 本発明の実施例1に関わるトレンチ型SiC半導体装置の製造工程を示すための断面図である。It is sectional drawing for showing the manufacturing process of the trench type SiC semiconductor device in connection with Example 1 of this invention. 本発明の実施例1に関わるトレンチ型SiC半導体装置の製造工程を示すための断面図である。It is sectional drawing for showing the manufacturing process of the trench type SiC semiconductor device in connection with Example 1 of this invention. 本発明の実施例1に関わるトレンチ型SiC半導体装置の製造工程を示すための断面図である。It is sectional drawing for showing the manufacturing process of the trench type SiC semiconductor device in connection with Example 1 of this invention. 本発明の実施例1に関わるトレンチ型SiC半導体装置の製造工程を示すための断面図である。It is sectional drawing for showing the manufacturing process of the trench type SiC semiconductor device in connection with Example 1 of this invention. 本発明の実施例1に関わるトレンチ型SiC半導体装置の製造工程を示すための断面図である。It is sectional drawing for showing the manufacturing process of the trench type SiC semiconductor device in connection with Example 1 of this invention. 本発明の実施例2に関わるトレンチ型SiC半導体装置の概略を示した断面図である。It is sectional drawing which showed the outline of the trench type SiC semiconductor device in connection with Example 2 of this invention. 本発明の実施例2の別の形態に関わるトレンチ型SiC半導体装置の概略を示した断面図である。It is sectional drawing which showed the outline of the trench type SiC semiconductor device in connection with another form of Example 2 of this invention. 従来技術により形成されたトレンチ型SiC半導体装置の概略を示した断面図である。It is sectional drawing which showed the outline of the trench type SiC semiconductor device formed by the prior art.
 本発明の実施例1によるトレンチ型SiC-MOSFETの断面図を図1により説明する。図において、符号1はnドレイン、2はnドリフト層、3はp型ベース領域、4はpコンタクト領域、5はnソース、6aは酸化又は酸窒化によって形成されたゲート絶縁膜、6bは光CVDによってトレンチ底部に堆積された絶縁膜、6cは主として熱エネルギーを利用して化学反応を促進させる化学気相成長(以下、熱CVDという)によって堆積された絶縁膜6c、7はゲート電極、8はソース/ゲート間を電気的に絶縁するための層間絶縁膜、9はソース電極、10はドレイン電極である。 A cross-sectional view of a trench type SiC-MOSFET according to Example 1 of the present invention will be described with reference to FIG. In the figure, reference numeral 1 denotes an n + drain, 2 denotes an n drift layer, 3 denotes a p-type base region, 4 denotes a p + contact region, 5 denotes an n + source, and 6a denotes a gate insulating film formed by oxidation or oxynitridation. , 6b is an insulating film deposited on the bottom of the trench by photo-CVD, 6c is an insulating film 6c, 7 deposited by chemical vapor deposition (hereinafter referred to as thermal CVD) that promotes a chemical reaction mainly using thermal energy. A gate electrode, 8 is an interlayer insulating film for electrically insulating the source / gate, 9 is a source electrode, and 10 is a drain electrode.
 本トレンチ型SiC-MOSFETにおいては、ゲート絶縁膜6は、酸化又は酸窒化によって形成されたゲート絶縁膜6aと光CVDによってトレンチ底部に堆積された絶縁膜6bと熱CVDによって堆積された絶縁膜6cの3種の絶縁膜を組み合わせて構成されている。チャネルとなる側面のゲート絶縁膜は酸化又は酸窒化によって形成されたゲート絶縁膜6aと熱CVDによって堆積された絶縁膜6cを積層で構成させ、一方、底面のゲート絶縁膜は6aと6cの絶縁膜と光CVDによってトレンチ底部に堆積された絶縁膜6bの積層で構成されている。したがって、トレンチ側面のゲート絶縁膜の厚さはトレンチ底面のゲート絶縁膜の厚さよりも薄くなっている。 In this trench type SiC-MOSFET, the gate insulating film 6 includes a gate insulating film 6a formed by oxidation or oxynitridation, an insulating film 6b deposited at the bottom of the trench by photo-CVD, and an insulating film 6c deposited by thermal CVD. These three types of insulating films are combined. The gate insulating film on the side surface serving as a channel is formed by stacking a gate insulating film 6a formed by oxidation or oxynitridation and an insulating film 6c deposited by thermal CVD, while the gate insulating film on the bottom surface is an insulation between 6a and 6c. It is composed of a stack of a film and an insulating film 6b deposited on the bottom of the trench by photo-CVD. Therefore, the thickness of the gate insulating film on the side surface of the trench is thinner than the thickness of the gate insulating film on the bottom surface of the trench.
 ゲート絶縁膜6aは基板を1000度以上に保ちつつ、酸素(O)と水蒸気(HO)、又は水素(H)と酸化窒素(NOあるいはNO)の混合ガスを用いて酸化又は酸窒化して形成された膜であり、トレンチ側面における厚さが5nmである。6cはSiC基板温度を750度に保った状態で、シラン(SiH)と酸化窒素(NOあるいはNO)を原料として供給することにより、化学気相成長により堆積した膜であり、トレンチ側面の厚さが60nmである。 The gate insulating film 6a is oxidized using a mixed gas of oxygen (O 2 ) and water vapor (H 2 O) or hydrogen (H 2 ) and nitrogen oxide (N 2 O or NO) while keeping the substrate at 1000 ° C. or more. Alternatively, it is a film formed by oxynitriding, and the thickness on the side surface of the trench is 5 nm. 6c is a film deposited by chemical vapor deposition by supplying silane (SiH 4 ) and nitrogen oxide (N 2 O or NO) as raw materials while keeping the SiC substrate temperature at 750 ° C. The thickness is 60 nm.
 一方、6bは光CVDで堆積した膜で、底面における膜厚は100nmである。この膜6bは、真空紫外光を照射するランプを備えたCVD装置にトレンチを形成したSiC基板を導入し、CVD装置に所定の原料ガスを導入することで形成される。具体的には、真空容器中に膜を堆積したいトレンチを加工したSiC基板を配備し、SiC基板の温度を100度以下に保ち、TEOS(Tetraethy orthosilicate)を原料ガスとして供給するとともに、172nmの波長のXe2のエキシマ光をSiC基板に照射することによってトレンチの底面に絶縁膜を堆積したものである。原料ガスのTEOSにはエチル基が多く含まれているが、真空紫外光を照射されるとSi-Oの結合が切れ、流動性を持った分子がトレンチの底面に堆積すると考えられている。したがって、トレンチ内においては、トレンチの側面には実質的には絶縁膜が堆積することなく、底面に選択的に絶縁膜が堆積する。結果として、トレンチの底面にのみ絶縁膜を堆積することができる。 On the other hand, 6b is a film deposited by photo-CVD, and the film thickness at the bottom is 100 nm. This film 6b is formed by introducing a SiC substrate having a trench formed in a CVD apparatus provided with a lamp for irradiating vacuum ultraviolet light, and introducing a predetermined source gas into the CVD apparatus. Specifically, an SiC substrate with a trench processed to deposit a film in a vacuum vessel is provided, the temperature of the SiC substrate is kept at 100 ° C. or less, TEOS (Tetrahethy orthosilicate) is supplied as a source gas, and a wavelength of 172 nm An insulating film is deposited on the bottom surface of the trench by irradiating the SiC substrate with Xe2 excimer light. The source gas TEOS contains a lot of ethyl groups, but it is considered that when irradiated with vacuum ultraviolet light, Si—O bonds are broken and molecules having fluidity are deposited on the bottom surface of the trench. Therefore, in the trench, the insulating film is selectively deposited on the bottom surface without substantially depositing the insulating film on the side surface of the trench. As a result, an insulating film can be deposited only on the bottom surface of the trench.
 このようにトレンチ(溝)あるいは穴の底に対して選択的に堆積する手法をボトムアップフィルと呼ぶ。上記の例では、TEOSを原料ガスとしたボトムアップフィルの例を示したが、OMCTS(Octomethyl cyclotetrasiloxane)、BTBAS(Bis(Tertiary butyl amino)silane)、HMDSO(Hexamethyl disiloxane)、MHDSA(Hexamethyl disilazane)、HMCTSN(Hexamethyl cyclotrisilazane)等を用いてもボトムアップフィルの絶縁膜堆積が可能である。また、真空紫外光の光源としては、Xe2のエキシマランプ、水銀ランプ、XeCl、KrF、ArFのエキシマレーザ、F2、Ar2のレーザなどを用いてもよいが、ランプの寿命などを考えると、Xe2のエキシマランプを用いるのが実用的である。 This method of selectively depositing on the bottom of a trench or a hole is called bottom-up fill. In the above example, an example of bottom-up fill using TEOS as a raw material gas has been shown. The bottom-up fill insulating film can be deposited using HMCTSN (Hexamethyl cyclotrisilazane) or the like. Further, as a vacuum ultraviolet light source, an Xe2 excimer lamp, a mercury lamp, XeCl, KrF, ArF excimer lasers, F2, Ar2 lasers, etc. may be used. It is practical to use an excimer lamp.
 選択的にトレンチの底面に堆積する絶縁膜6b厚さは50ないし100nmである。光CVD法は、化学気相成長法による膜堆積なので、トレンチの底面の膜厚は、原料ガスの濃度、全圧、プロセス時間を制御することで、5nm以下の精度での堆積膜厚制御は十分に可能である。また、絶縁膜6bの主成分は珪素、酸素、窒素、水素である。一般に、酸化珪素の耐圧は他の固体酸化物の耐圧に比べて高いことが知られており、絶縁膜6bは酸化珪素に加え、原料ガスに含まれる窒素、炭素、水素を主成分とするのが望ましい。 The thickness of the insulating film 6b selectively deposited on the bottom surface of the trench is 50 to 100 nm. Since the photo-CVD method is film deposition by chemical vapor deposition, the film thickness at the bottom of the trench can be controlled with a precision of 5 nm or less by controlling the concentration of the source gas, the total pressure, and the process time. It is possible enough. The main components of the insulating film 6b are silicon, oxygen, nitrogen, and hydrogen. In general, it is known that the breakdown voltage of silicon oxide is higher than that of other solid oxides, and the insulating film 6b is mainly composed of nitrogen, carbon, and hydrogen contained in a source gas in addition to silicon oxide. Is desirable.
 以上のような絶縁膜形成方法により、トレンチ側面のゲート絶縁膜の厚さに対しトレンチ底面の絶縁膜を厚くすることが可能になる。具体的には、トレンチ底面のゲート絶縁膜の膜厚は、トレンチ側面のゲート絶縁膜の膜厚よりも50nm以上厚くすることができる。さらに望ましくは、100nm以上厚くすることができる。本手法では、トレンチの側面のゲート絶縁膜の厚さとトレンチ底面の絶縁膜の厚さを独立して制御することができるので、トレンチ側面のゲート絶縁膜は一様な電界に対して信頼性が確保できる程度に薄くし、トレンチ底面のゲート絶縁膜は集中電界を緩和するのに必要なだけ厚くすることができる。したがって、反転層の電子濃度を高く保ちつつ、すなわちチャネルのオン抵抗を小さく保ちつつ、絶縁耐性の高いトレンチ型SiC-MOSFETが実現できる。特に光CVDによるボトムアップフィルの絶縁膜に関しては、チャネルの移動度などに悪影響を及ぼす不純物元素や正負の電荷が含まれていてもかまわない。なぜなら、チャネル底部の絶縁膜は絶縁耐性を高めるために必要な絶縁膜であり、トレンチ型SiC-MOSFETのチャネル抵抗には影響を及ぼさないためである。実際に、同じTEOSを原料ガスとして堆積される絶縁膜でも光CVDで堆積されるSiOは熱CVDで堆積されるSiOよりも密度が低い。ただし、熱処理後には6MV/cm以上の絶縁破壊耐性を持つことが実験的に確かめられている。 By the insulating film forming method as described above, the insulating film on the bottom surface of the trench can be made thicker than the thickness of the gate insulating film on the side surface of the trench. Specifically, the thickness of the gate insulating film on the bottom surface of the trench can be made 50 nm or more thicker than the thickness of the gate insulating film on the side surface of the trench. More desirably, the thickness can be increased to 100 nm or more. In this method, since the thickness of the gate insulating film on the side surface of the trench and the thickness of the insulating film on the bottom surface of the trench can be controlled independently, the gate insulating film on the side surface of the trench is reliable against a uniform electric field. The gate insulating film on the bottom of the trench can be made as thick as necessary to alleviate the concentrated electric field. Therefore, a trench type SiC-MOSFET with high insulation resistance can be realized while keeping the electron concentration of the inversion layer high, that is, keeping the channel on-resistance small. In particular, the bottom-up fill insulating film formed by photo-CVD may contain impurity elements and positive and negative charges that adversely affect channel mobility and the like. This is because the insulating film at the bottom of the channel is an insulating film necessary for enhancing the insulation resistance and does not affect the channel resistance of the trench type SiC-MOSFET. Actually, even in an insulating film deposited using the same TEOS as a source gas, SiO deposited by photo-CVD has a lower density than SiO deposited by thermal CVD. However, it has been experimentally confirmed that it has a dielectric breakdown resistance of 6 MV / cm or more after the heat treatment.
 次に、図1のトレンチ型SiC-MOSFETを製造する方法を図2~図11を用いて示す。まず、n型の六方晶系SiC基板の(0001)Si面を表面とし、基板の裏面に高濃度のリン(P)あるいは砒素(As)をイオン注入により導入し、表面側にp型のSiCのベース層3をエピタキシャル成長させる(図2)。次に、パターニングとイオン注入と1700度程度の熱処理により、p型のエピタキシャル層3の表面に高濃度のn型領域5および高濃度のp型領域4を形成する(図3)。トレンチを形成するためのハードマスクとして、絶縁膜8を堆積し、トレンチの形成するためのリソグラフィーを行い、所望の位置にのみレジスト41を残す(図4)。このレジスト41を用いて、絶縁膜8とSiCをエッチングし、形成されたトレンチの底面をドリフト層2内に存在させ、アッシングによりレジスト41を除去する(図5)。エッチングによる損傷層を除去するため、SiCトレンチの表面を酸化し、表面酸化膜を希フッ酸などで除去する。次にSiCの表面を1000度ないし1300度の温度で酸化又は酸窒化する。このときに形成する酸化膜6a又は酸窒化膜6aは10nm以下、望ましくは5nmがよい(図6)。 Next, a method for manufacturing the trench type SiC-MOSFET of FIG. 1 will be described with reference to FIGS. First, the (0001) Si surface of an n-type hexagonal SiC substrate is used as the front surface, and high-concentration phosphorus (P) or arsenic (As) is introduced into the back surface of the substrate by ion implantation. The base layer 3 is epitaxially grown (FIG. 2). Next, a high-concentration n-type region 5 and a high-concentration p-type region 4 are formed on the surface of the p-type epitaxial layer 3 by patterning, ion implantation, and heat treatment at about 1700 degrees (FIG. 3). As a hard mask for forming the trench, an insulating film 8 is deposited, and lithography for forming the trench is performed to leave the resist 41 only at a desired position (FIG. 4). Using this resist 41, the insulating film 8 and SiC are etched, the bottom surface of the formed trench is present in the drift layer 2, and the resist 41 is removed by ashing (FIG. 5). In order to remove the damaged layer by etching, the surface of the SiC trench is oxidized, and the surface oxide film is removed with dilute hydrofluoric acid or the like. Next, the surface of SiC is oxidized or oxynitrided at a temperature of 1000 to 1300 degrees. The oxide film 6a or oxynitride film 6a formed at this time is 10 nm or less, preferably 5 nm (FIG. 6).
 次に、光CVDにより絶縁膜6bを堆積する(図7)。この光CVDにおいては、原料ガスと照射する光の波長を適切に選択し、基板温度、原料ガス供給時間などの条件を制御することで、トレンチや穴の底に対して選択的に所望の膜を堆積することが可能である。すなわち、トレンチの側面には膜を堆積することなく、トレンチの底面に膜を堆積することが可能である。たとえば、CVD反応室に図6のようなトレンチが形成されたSiC基板を配備し、原料ガスのTEOSを導入し、172nmの波長の光を照射すると、トレンチの底に選択的にSiO膜が堆積する。この膜の堆積速度は、導入する原料ガスの濃度や圧力などで制御できる。トレンチの底に選択的に膜を堆積する方法としては、SOG(Spin on Glass)と呼ばれる塗布膜を利用することも考えられる。ただし、100nm程度あるいはそれ以下の厚さの塗布膜を制御性良く塗布するのは困難である。さらに、塗布で形成される絶縁膜は光CVDで形成される絶縁膜比べて、残留不純物が多い。そのため、その後の熱処理において、膜が収縮し、不純物を多く放出し、すでに形成した絶縁膜6aの表面に不純物を導入する原因となり好ましくない。したがって、光CVDによって底面にのみ厚い絶縁膜を堆積する必要がある。 Next, an insulating film 6b is deposited by photo-CVD (FIG. 7). In this photo-CVD, the source gas and the wavelength of light to be irradiated are appropriately selected, and conditions such as the substrate temperature and the source gas supply time are controlled, so that a desired film can be selectively applied to the bottom of the trench or hole. Can be deposited. That is, it is possible to deposit a film on the bottom surface of the trench without depositing a film on the side surface of the trench. For example, when a SiC substrate having a trench as shown in FIG. 6 is installed in a CVD reaction chamber, a source gas TEOS is introduced, and light having a wavelength of 172 nm is irradiated, a SiO film is selectively deposited on the bottom of the trench. To do. The deposition rate of this film can be controlled by the concentration or pressure of the introduced source gas. As a method for selectively depositing a film on the bottom of the trench, it is conceivable to use a coating film called SOG (Spin on Glass). However, it is difficult to apply a coating film having a thickness of about 100 nm or less with good controllability. Further, the insulating film formed by coating has more residual impurities than the insulating film formed by photo-CVD. Therefore, in the subsequent heat treatment, the film shrinks and releases a large amount of impurities, which is not preferable because it introduces impurities into the surface of the already formed insulating film 6a. Therefore, it is necessary to deposit a thick insulating film only on the bottom surface by photo-CVD.
 光CVDによりトレンチの底に選択的に絶縁膜を堆積したのちに、熱エネルギーを利用した化学気相成長(熱CVD)により、絶縁膜6cを堆積する(図8)。このとき、基板の温度を800度に保ち、原料ガスをシラン(SiH)と一酸化に窒素(NO)を導入して、酸化シリコン膜を30nmないし100nm堆積させる。光CVDで堆積した膜には、カーボンなどの不純物が含まれており、通常、その後の熱処理により、内包する不純物などを除去し、膜を焼き締める必要があるが、熱CVDの間に、不純物が除去され、絶縁膜6bが焼き締められる。なお、熱CVDの代わりにプラズマCVDで絶縁膜6cを形成することも考えられるが、プラズマCVDは熱CVDに比べ、膜の均一性が悪いので熱CVDで絶縁膜6cを形成し、トレンチ側面の絶縁膜の膜厚の均一性を確保する必要がある。 After an insulating film is selectively deposited on the bottom of the trench by photo-CVD, an insulating film 6c is deposited by chemical vapor deposition (thermal CVD) using thermal energy (FIG. 8). At this time, the temperature of the substrate is kept at 800 ° C., the source gas is silane (SiH 4 ) and nitrogen (N 2 O) is introduced into the monoxide to deposit a silicon oxide film of 30 nm to 100 nm. Films deposited by photo-CVD contain impurities such as carbon, and it is usually necessary to remove the encapsulated impurities and bake the film by subsequent heat treatment. Is removed, and the insulating film 6b is baked. Although it is conceivable that the insulating film 6c is formed by plasma CVD instead of thermal CVD, since the uniformity of the film is poorer than that by thermal CVD, the insulating film 6c is formed by thermal CVD and the trench side surface is formed. It is necessary to ensure the uniformity of the thickness of the insulating film.
 次に、CVD法により多結晶シリコン7と必要に応じて絶縁膜91を堆積する(図9)。リソグラフィーとエッチングにより、ゲート電極7のパターニングを行い、ゲート電極7を形成する(図10)。この後、ゲート電極7表面に絶縁分離用の層間絶縁膜11を堆積する(図11)。 Next, a polycrystalline silicon 7 and an insulating film 91 are deposited if necessary by the CVD method (FIG. 9). The gate electrode 7 is patterned by lithography and etching to form the gate electrode 7 (FIG. 10). Thereafter, an insulating interlayer 11 is deposited on the surface of the gate electrode 7 (FIG. 11).
 そして、リソグラフィーとエッチングにより、層間絶縁膜11、ゲート絶縁膜6a、6c、絶縁膜8を加工し、pコンタクト領域4及びnソース領域5が表出するコンタクトホールを形成し、シリサイド反応によりソース電極9を形成する(図示せず)。層間絶縁膜11に対し別のパターンでリソグラフィーとエッチングを行い、ゲートのためのコンタクトホールを形成し、n基板1の裏面にドレイン電極10を形成する(図示せず)。 Then, the interlayer insulating film 11, the gate insulating films 6a and 6c, and the insulating film 8 are processed by lithography and etching to form contact holes in which the p + contact region 4 and the n + source region 5 are exposed. A source electrode 9 is formed (not shown). Lithography and etching are performed on the interlayer insulating film 11 in a different pattern to form a contact hole for the gate, and a drain electrode 10 is formed on the back surface of the n + substrate 1 (not shown).
 以上のように、トレンチ内に光CVDにより形成された絶縁膜を用いることで、トレンチ底面のゲート絶縁膜を側面より厚く形成できるので、オン抵抗の低減と高耐圧を実現するトレンチ型SiC半導体装置を製造することができる。また、この光CVDにより形成された絶縁膜を形成した後の工程で、当該絶縁膜をエッチバックしていないので、エッチバックの際に生じるトレンチ側壁の損傷も生じることがない。 As described above, since the gate insulating film on the bottom of the trench can be formed thicker than the side surface by using the insulating film formed by photo-CVD in the trench, the trench type SiC semiconductor device that realizes a reduction in on-resistance and a high breakdown voltage. Can be manufactured. In addition, since the insulating film is not etched back in the process after the insulating film formed by the photo-CVD is formed, the trench side wall that occurs during the etch back is not damaged.
 実施例1では、ゲート絶縁膜は酸化膜あるいは酸窒化膜6a、光CVDにより堆積した絶縁膜6b、熱CVDにより堆積した絶縁膜6cの順に積層した絶縁膜であったが、実施例2では別の形態について説明する。 In the first embodiment, the gate insulating film is an insulating film in which an oxide film or oxynitride film 6a, an insulating film 6b deposited by photo-CVD, and an insulating film 6c deposited by thermal CVD are stacked in this order. Will be described.
 別の形態として、図12に図示するように、酸化膜又は酸窒化膜6a、熱CVDによる堆積した絶縁膜6c、光CVDにより堆積した絶縁膜6bの順に積層したりすることもできる。重要なのは、光CVDにより堆積した絶縁膜6bと、酸化膜又は酸窒化膜6aと、熱CVDにより堆積した絶縁膜6cとを適宜組み合わせることにより、トレンチの側面のゲート絶縁膜に対し、トレンチの底面のゲート絶縁膜が厚くなるようにトレンチ型SiC-MOSFETを製造することである。 As another form, as shown in FIG. 12, an oxide film or oxynitride film 6a, an insulating film 6c deposited by thermal CVD, and an insulating film 6b deposited by photo-CVD can be laminated in this order. What is important is that the insulating film 6b deposited by photo-CVD, the oxide film or oxynitride film 6a, and the insulating film 6c deposited by thermal CVD are appropriately combined, so that the bottom surface of the trench is made to the gate insulating film on the side surface of the trench. The trench type SiC-MOSFET is manufactured so that the gate insulating film becomes thicker.
 製造方法において、図2~11と違うのは、ゲート絶縁膜の形成方法である。すなわち図12では、まず、酸化又は酸窒化による絶縁膜6aを形成し、その後、熱CVDにより絶縁膜6cを堆積し、光CVDにより絶縁膜6bを堆積させる。絶縁膜6bを堆積後には、400度以上の酸化雰囲気での熱処理を施したのちに、ゲート電極7を堆積する。 In the manufacturing method, the difference from FIGS. 2 to 11 is the method of forming the gate insulating film. That is, in FIG. 12, first, the insulating film 6a is formed by oxidation or oxynitridation, and then the insulating film 6c is deposited by thermal CVD, and the insulating film 6b is deposited by optical CVD. After the insulating film 6b is deposited, the gate electrode 7 is deposited after heat treatment in an oxidizing atmosphere of 400 ° C. or more.
 また、別の形態として、図13に図示するように、酸化膜又は酸窒化膜6aの代わりに熱CVDにより堆積した絶縁膜6bを、光CVDにより堆積した絶縁膜6bの上下に積層したりしてもよい。重要なのは、光CVDにより堆積した絶縁膜6bと熱CVDにより堆積した絶縁膜6cを適宜組み合わせることにより、トレンチの側面のゲート絶縁膜に対し、トレンチの底面のゲート絶縁膜が厚くなるようにトレンチ型SiC-MOSFETを製造することである。 As another form, as shown in FIG. 13, insulating films 6b deposited by thermal CVD instead of the oxide film or oxynitride film 6a may be stacked on and under the insulating film 6b deposited by photo-CVD. May be. What is important is that the insulating film 6b deposited by optical CVD and the insulating film 6c deposited by thermal CVD are appropriately combined so that the gate insulating film on the bottom surface of the trench becomes thicker than the gate insulating film on the side surface of the trench. It is to manufacture a SiC-MOSFET.
 なお、熱CVDの中には、二種類以上の原料ガスを交互に供給して、原子層毎に膜を堆積させる原子層堆積法を含んでもよい。高い耐圧を維持しつつ、閾値電圧を制御するために金属酸化物からなる絶縁膜を原子層堆積法により堆積してもよい。 Note that thermal CVD may include an atomic layer deposition method in which two or more source gases are alternately supplied to deposit a film for each atomic layer. In order to control the threshold voltage while maintaining a high breakdown voltage, an insulating film made of a metal oxide may be deposited by an atomic layer deposition method.
 製造方法において、図2~11と違うのは、ゲート絶縁膜の形成方法である。すなわち図13では、図6における酸化又は酸窒化による絶縁膜6aを熱CVDにより形成される絶縁膜6cで置き換えればよい。 In the manufacturing method, the difference from FIGS. 2 to 11 is the method of forming the gate insulating film. That is, in FIG. 13, the insulating film 6a formed by oxidation or oxynitriding in FIG. 6 may be replaced with an insulating film 6c formed by thermal CVD.
 また、図示はしないが、熱酸化膜6aを形成し、熱CVD膜6cを堆積し、次に光CVD膜6bを堆積し、さらに別の熱CVD膜6c2を堆積するなどして4層の絶縁膜構造としてもよい。 Although not shown, four layers of insulation are formed by forming a thermal oxide film 6a, depositing a thermal CVD film 6c, then depositing a photo-CVD film 6b, and further depositing another thermal CVD film 6c2. A film structure may be used.
 以上のような絶縁膜形成方法により、実施例1と同様に、トレンチ側面のゲート絶縁膜の厚さに対しトレンチ底面の絶縁膜を厚くすることが可能になる。具体的には、トレンチ底面のゲート絶縁膜の膜厚は、トレンチ側面のゲート絶縁膜の膜厚よりも50nm以上厚くすることができる。さらに望ましくは、100nm以上厚くすることができる。本手法では、トレンチの側面のゲート絶縁膜の厚さとトレンチ底面の絶縁膜の厚さを独立して制御することができるので、トレンチ側面のゲート絶縁膜は一様な電界に対して信頼性が確保できる程度に薄くし、トレンチ底面のゲート絶縁膜は集中電界を緩和するのに必要なだけ厚くすることができる。したがって、反転層の電子濃度を高く保ちつつ、すなわちチャネルのオン抵抗を小さく保ちつつ、絶縁耐性の高いトレンチ型SiC-MOSFETが実現できる。また、この光CVDにより形成された絶縁膜を形成した後の工程で、当該絶縁膜をエッチバックしていないので、エッチバックの際に生じるトレンチ側壁の損傷も生じることがない。 By the insulating film forming method as described above, the insulating film on the bottom surface of the trench can be made thicker than the gate insulating film on the side surface of the trench as in the first embodiment. Specifically, the thickness of the gate insulating film on the bottom surface of the trench can be made 50 nm or more thicker than the thickness of the gate insulating film on the side surface of the trench. More desirably, the thickness can be increased to 100 nm or more. In this method, since the thickness of the gate insulating film on the side surface of the trench and the thickness of the insulating film on the bottom surface of the trench can be controlled independently, the gate insulating film on the side surface of the trench is reliable against a uniform electric field. The gate insulating film on the bottom of the trench can be made as thick as necessary to alleviate the concentrated electric field. Therefore, a trench type SiC-MOSFET with high insulation resistance can be realized while keeping the electron concentration of the inversion layer high, that is, keeping the channel on-resistance small. In addition, since the insulating film is not etched back in the process after the insulating film formed by the photo-CVD is formed, the trench side wall that occurs during the etch back is not damaged.
 以上、実施例1及び2について説明した。これらから分かるように、本願発明で重要なことは、トレンチ内のゲート絶縁膜の一部をボトムアップフィルによって形成すること、すなわち、光CVDによる堆積膜6bによって形成することである。 In the above, Example 1 and 2 were demonstrated. As can be seen from the above, what is important in the present invention is that a part of the gate insulating film in the trench is formed by bottom-up fill, that is, formed by the deposited film 6b by photo-CVD.
1:n型ドレイン、
2:n型ドリフト層、
3:p型ベース領域、
4:p型コンタクト領域、
5:n型ソース領域、
6:ゲート絶縁膜、
6a:酸化あるいは酸窒化で形成するゲート絶縁膜
6b:光CVDで堆積するゲート絶縁膜
6c:熱CVDで堆積するゲート絶縁膜
7:ゲート電極、
8:層間絶縁膜、
9:ソース電極、
10:ドレイン電極
11:層間絶縁膜
41:トレンチ加工用のレジストパターン
91:絶縁膜
1: n + type drain,
2: n type drift layer,
3: p-type base region,
4: p + type contact region,
5: n + type source region,
6: Gate insulating film,
6a: gate insulating film 6b formed by oxidation or oxynitridation: gate insulating film 6c deposited by photo-CVD: gate insulating film 7 deposited by thermal CVD: gate electrode,
8: Interlayer insulating film,
9: source electrode,
10: drain electrode 11: interlayer insulating film 41: resist pattern 91 for trench processing: insulating film

Claims (19)

  1.  SiC基板に対し、トレンチを形成する工程と、
     前記トレンチの底に絶縁膜を光CVDで形成する工程と、
     前記絶縁膜の上方にゲート電極を形成する工程とを備えることを特徴とするトレンチ型SiC半導体装置の製造方法。
    Forming a trench in the SiC substrate;
    Forming an insulating film at the bottom of the trench by photo-CVD;
    Forming a gate electrode above the insulating film. A method of manufacturing a trench type SiC semiconductor device.
  2.  請求項1において、
     前記光CVDの原料ガスは、TEOS(Tetraethyl orthosilicate)、OMCTS(Octomethyl cyclotetrasiloxane)、BTBAS(Bis(Tertiary butyl amino)silane)、HMDSO(Hexamethyl disiloxane)、MHDSA(Hexamethyl disilazane)、若しくは、HMCTSN(Hexamethyl cyclotrisilazane)のいずれかであることを特徴とするトレンチ型SiC半導体装置の製造方法。
    In claim 1,
    Raw material gas in the light CVD is, TEOS (Tetraethyl orthosilicate), OMCTS (Octomethyl cyclotetrasiloxane), BTBAS (Bis (Tertiary butyl amino) silane), HMDSO (Hexamethyl disiloxane), MHDSA (Hexamethyl disilazane), or, HMCTSN (Hexamethyl cyclotrisilazane) A method of manufacturing a trench type SiC semiconductor device, wherein
  3.  請求項1において、
     前記光CVDでは、真空紫外光を用いることを特徴とするトレンチ型SiC半導体装置の製造方法。
    In claim 1,
    In the photo-CVD, vacuum ultraviolet light is used. A method for manufacturing a trench type SiC semiconductor device.
  4.  請求項1において、
     前記絶縁膜を形成する工程の後の工程で、前記絶縁膜は、前記トレンチ内においてエッチバックされないことを特徴とするトレンチ型SiC半導体装置の製造方法。
    In claim 1,
    A method of manufacturing a trench type SiC semiconductor device, wherein the insulating film is not etched back in the trench in a step subsequent to the step of forming the insulating film.
  5.  請求項1において、
     前記ゲート電極のゲート絶縁膜が前記トレンチの側面及び底面に形成され、前記ゲート絶縁膜は前記絶縁膜を含み、
     前記トレンチの底面のゲート絶縁膜の膜厚は、前記トレンチの側面のゲート絶縁膜の膜厚よりも50nm以上厚いことを特徴とするトレンチ型SiC半導体装置の製造方法。
    In claim 1,
    A gate insulating film of the gate electrode is formed on a side surface and a bottom surface of the trench, and the gate insulating film includes the insulating film;
    The trench type SiC semiconductor device manufacturing method, wherein the thickness of the gate insulating film on the bottom surface of the trench is 50 nm or more thicker than the thickness of the gate insulating film on the side surface of the trench.
  6.  請求項1において、
     前記SiC基板にはMOSFETのn型ドレイン層と前記n型ドレイン層とpn接合するp型ベース領域とが設けられ、
     前記ゲート電極の下端は前記pn接合よりも前記SiC基板の裏面側に位置することを特徴とするトレンチ型SiC半導体装置の製造方法。
    In claim 1,
    The SiC substrate is provided with an n-type drain layer of a MOSFET and a p-type base region that pn-joins with the n-type drain layer,
    A method of manufacturing a trench type SiC semiconductor device, wherein a lower end of the gate electrode is located on a back side of the SiC substrate with respect to the pn junction.
  7.  請求項1において、
     前記絶縁膜を形成する工程は、真空紫外光を照射するランプを備えたCVD装置に前記トレンチを形成したSiC基板を導入し、前記CVD装置に所定の原料ガスを導入することで前記絶縁膜を形成する工程であることを特徴とするトレンチ型SiC半導体装置の製造方法。
    In claim 1,
    In the step of forming the insulating film, the SiC substrate in which the trench is formed is introduced into a CVD apparatus provided with a lamp that irradiates vacuum ultraviolet light, and the insulating film is formed by introducing a predetermined source gas into the CVD apparatus. A method of manufacturing a trench type SiC semiconductor device, characterized by being a forming step.
  8.  SiC基板に対し、トレンチを形成する工程と、
     前記トレンチの側面及び底面に、酸化又は酸窒化、若しくは、熱CVDにより第一絶縁膜を形成する工程と、
     前記トレンチの底面に光CVDにより第二絶縁膜を形成する工程と、
     前記第一および第二絶縁膜の上方にゲート電極を形成する工程とを備えることを特徴とするトレンチ型SiC半導体装置の製造方法。
    Forming a trench in the SiC substrate;
    Forming a first insulating film on the side and bottom surfaces of the trench by oxidation, oxynitridation, or thermal CVD;
    Forming a second insulating film on the bottom surface of the trench by photo-CVD,
    Forming a gate electrode above the first and second insulating films. A method of manufacturing a trench type SiC semiconductor device.
  9.  請求項8において、
     前記光CVDの原料ガスは、TEOS(Tetraethyl orthosilicate)、OMCTS(Octomethyl cyclotetrasiloxane)、BTBAS(Bis(Tertiary butyl amino)silane)、HMDSO(Hexamethyl disiloxane)、M
    HDSA(Hexamethyl disilazane)、若しくは、HMCTSN(Hexamethyl cyclotrisilazane)のいずれかであることを特徴とするトレンチ型SiC半導体装置の製造方法。
    In claim 8,
    The source gases for the photo-CVD are TEOS (Tetraethyl orthosilicate), OMCTS (Octomoethyl cyclotetrasiloxane), BTBAS (Bis (Tertiary Butylamino) silane), HMDSO (Hexamethyldisiloxane), HMDSO (Hexamethyldisiloxane).
    A method for manufacturing a trench type SiC semiconductor device, which is either HDSA (Hexamethyl disilazane) or HMCTSN (Hexamethyl cyclotrisilazane).
  10.  請求項8において、
     前記光CVDでは、真空紫外光を用いることを特徴とするトレンチ型SiC半導体装置の製造方法。
    In claim 8,
    In the photo-CVD, vacuum ultraviolet light is used. A method for manufacturing a trench type SiC semiconductor device.
  11.  請求項8において、
     前記第一および第二絶縁膜を形成する工程の後の工程で、前記第一および第二絶縁膜は、前記トレンチ内においてエッチバックされないことを特徴とするトレンチ型SiC半導体装置の製造方法。
    In claim 8,
    A method of manufacturing a trench SiC semiconductor device, wherein the first and second insulating films are not etched back in the trench in a step subsequent to the step of forming the first and second insulating films.
  12.  請求項8において、
     前記ゲート電極のゲート絶縁膜が前記トレンチの側面及び底面に形成され、前記ゲート絶縁膜は前記第一および第二絶縁膜を含み、
     前記トレンチの底面のゲート絶縁膜の膜厚は、前記トレンチの側面のゲート絶縁膜の膜厚よりも50nm以上厚いことを特徴とするトレンチ型SiC半導体装置の製造方法。
    In claim 8,
    A gate insulating film of the gate electrode is formed on a side surface and a bottom surface of the trench, and the gate insulating film includes the first and second insulating films;
    The trench type SiC semiconductor device manufacturing method, wherein the thickness of the gate insulating film on the bottom surface of the trench is 50 nm or more thicker than the thickness of the gate insulating film on the side surface of the trench.
  13.  請求項8において、
     前記SiC基板にはMOSFETのn型ドレイン層と前記n型ドレイン層とpn接合するp型ベース領域とが設けられ、
     前記ゲート電極の下端は前記pn接合よりも前記SiC基板の裏面側に位置することを特徴とするトレンチ型SiC半導体装置の製造方法。
    In claim 8,
    The SiC substrate is provided with an n-type drain layer of a MOSFET and a p-type base region that pn-joins with the n-type drain layer,
    A method of manufacturing a trench type SiC semiconductor device, wherein a lower end of the gate electrode is positioned on a back side of the SiC substrate with respect to the pn junction.
  14.  請求項8において、
     前記第二絶縁膜を形成する工程は、真空紫外光を照射するランプを備えたCVD装置に前記トレンチを形成したSiC基板を導入し、前記CVD装置に所定の原料ガスを導入することで前記絶縁膜を形成する工程であることを特徴とするトレンチ型SiC半導体装置の製造方法。
    In claim 8,
    The step of forming the second insulating film includes introducing the SiC substrate having the trench into a CVD apparatus equipped with a lamp that irradiates vacuum ultraviolet light, and introducing the predetermined source gas into the CVD apparatus. A method of manufacturing a trench type SiC semiconductor device, characterized by being a step of forming a film.
  15.  SiC基板に対し、トレンチを形成する工程と、
     前記トレンチの側面及び底面に、酸化又は酸窒化により第一絶縁膜を形成する工程と、
     前記トレンチの底面であって、前記第一絶縁膜の上方に、光CVDにより第二絶縁膜を形成する工程と、
     前記トレンチの側面及び底面であって、前記第二絶縁膜の上方に、熱CVDにより第三の絶縁膜を形成する工程と、
     前記第三絶縁膜の上方にゲート電極を形成する工程とを備えることを特徴とするトレンチ型SiC半導体装置の製造方法。
    Forming a trench in the SiC substrate;
    Forming a first insulating film on the side and bottom surfaces of the trench by oxidation or oxynitriding;
    Forming a second insulating film by photo-CVD at the bottom of the trench and above the first insulating film;
    Forming a third insulating film by thermal CVD on the side and bottom surfaces of the trench and above the second insulating film;
    Forming a gate electrode above the third insulating film. A method of manufacturing a trench type SiC semiconductor device.
  16.  請求項15において、
     前記光CVDの原料ガスは、TEOS(Tetraethyl orthosilicate)、OMCTS(Octomethyl cyclotetrasiloxane)、BTBAS(Bis(Tertiary butyl amino)silane)、HMDSO(Hexamethyl disiloxane)、MHDSA(Hexamethyl disilazane)、若しくは、HMCTSN(Hexamethyl cyclotrisilazane)のいずれかであることを特徴とするトレンチ型SiC半導体装置の製造方法。
    In claim 15,
    Raw material gas in the light CVD is, TEOS (Tetraethyl orthosilicate), OMCTS (Octomethyl cyclotetrasiloxane), BTBAS (Bis (Tertiary butyl amino) silane), HMDSO (Hexamethyl disiloxane), MHDSA (Hexamethyl disilazane), or, HMCTSN (Hexamethyl cyclotrisilazane) A method of manufacturing a trench type SiC semiconductor device, wherein
  17.  請求項15において、
     前記光CVDでは、真空紫外光を用いることを特徴とするトレンチ型SiC半導体装置の製造方法。
    In claim 15,
    In the photo-CVD, vacuum ultraviolet light is used. A method for manufacturing a trench type SiC semiconductor device.
  18.  請求項15において、
     前記第一絶縁膜、前記第二絶縁膜及び前記第三絶縁膜を形成する工程の後の工程で、前記第一絶縁膜、前記第二絶縁膜及び前記第三絶縁膜は、前記トレンチ内においてエッチバックされないことを特徴とするトレンチ型SiC半導体装置の製造方法。
    In claim 15,
    In a step after the step of forming the first insulating film, the second insulating film, and the third insulating film, the first insulating film, the second insulating film, and the third insulating film are formed in the trench. A method of manufacturing a trench type SiC semiconductor device, wherein the trench type SiC semiconductor device is not etched back.
  19.  請求項15において、
     前記ゲート電極のゲート絶縁膜が前記トレンチの側面及び底面に形成され、前記ゲート絶縁膜は前記第一絶縁膜、前記第二絶縁膜及び前記第三絶縁膜を含み、
     前記トレンチの底面のゲート絶縁膜の膜厚は、前記トレンチの側面のゲート絶縁膜の膜厚よりも50nm以上厚いことを特徴とするトレンチ型SiC半導体装置の製造方法。
    In claim 15,
    A gate insulating film of the gate electrode is formed on a side surface and a bottom surface of the trench, and the gate insulating film includes the first insulating film, the second insulating film, and the third insulating film;
    The trench type SiC semiconductor device manufacturing method, wherein the thickness of the gate insulating film on the bottom surface of the trench is 50 nm or more thicker than the thickness of the gate insulating film on the side surface of the trench.
PCT/JP2012/001361 2011-03-30 2012-02-29 MANUFACTURING METHOD FOR TRENCH-TYPE SiC SEMICONDUCTOR DEVICE WO2012132229A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011073873A JP2014139956A (en) 2011-03-30 2011-03-30 TRENCH-TYPE SiC SEMICONDUCTOR DEVICE MANUFACTURING METHOD
JP2011-073873 2011-03-30

Publications (1)

Publication Number Publication Date
WO2012132229A1 true WO2012132229A1 (en) 2012-10-04

Family

ID=46930025

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/001361 WO2012132229A1 (en) 2011-03-30 2012-02-29 MANUFACTURING METHOD FOR TRENCH-TYPE SiC SEMICONDUCTOR DEVICE

Country Status (2)

Country Link
JP (1) JP2014139956A (en)
WO (1) WO2012132229A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015082632A (en) * 2013-10-24 2015-04-27 住友電気工業株式会社 Silicon carbide semiconductor device and method of manufacturing the same
WO2015155828A1 (en) * 2014-04-08 2015-10-15 日産自動車株式会社 Semiconductor device and method for manufacturing same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9577073B2 (en) 2014-12-11 2017-02-21 Infineon Technologies Ag Method of forming a silicon-carbide device with a shielded gate
JP2016143788A (en) * 2015-02-03 2016-08-08 住友電気工業株式会社 Manufacturing method of silicon carbide semiconductor device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6170761A (en) * 1984-09-14 1986-04-11 Mitsubishi Electric Corp Field-effect transistor
JPS6297364A (en) * 1985-10-24 1987-05-06 Matsushita Electric Ind Co Ltd Manufacture of semiconductor device
JPS62263676A (en) * 1986-05-09 1987-11-16 Seiko Instr & Electronics Ltd Manufacture of thin film transistor
JPH01192174A (en) * 1988-01-27 1989-08-02 Hitachi Ltd Semiconductor device
JPH0334462A (en) * 1989-06-30 1991-02-14 Semiconductor Energy Lab Co Ltd Field effect semiconductor device and manufacture thereof
JP2002075988A (en) * 2000-08-30 2002-03-15 Miyazaki Oki Electric Co Ltd Method of manufacturing layer insulation film by vacuum uv cvd
JP2004507092A (en) * 2000-08-16 2004-03-04 フェアチャイルド セミコンダクター コーポレイション Thick oxide layer at bottom of trench structure in silicon
JP2008141125A (en) * 2006-12-05 2008-06-19 Sekisui Chem Co Ltd Semiconductor device, and manufacturing method thereof
JP2009130069A (en) * 2007-11-22 2009-06-11 Mitsubishi Electric Corp Semiconductor device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6170761A (en) * 1984-09-14 1986-04-11 Mitsubishi Electric Corp Field-effect transistor
JPS6297364A (en) * 1985-10-24 1987-05-06 Matsushita Electric Ind Co Ltd Manufacture of semiconductor device
JPS62263676A (en) * 1986-05-09 1987-11-16 Seiko Instr & Electronics Ltd Manufacture of thin film transistor
JPH01192174A (en) * 1988-01-27 1989-08-02 Hitachi Ltd Semiconductor device
JPH0334462A (en) * 1989-06-30 1991-02-14 Semiconductor Energy Lab Co Ltd Field effect semiconductor device and manufacture thereof
JP2004507092A (en) * 2000-08-16 2004-03-04 フェアチャイルド セミコンダクター コーポレイション Thick oxide layer at bottom of trench structure in silicon
JP2002075988A (en) * 2000-08-30 2002-03-15 Miyazaki Oki Electric Co Ltd Method of manufacturing layer insulation film by vacuum uv cvd
JP2008141125A (en) * 2006-12-05 2008-06-19 Sekisui Chem Co Ltd Semiconductor device, and manufacturing method thereof
JP2009130069A (en) * 2007-11-22 2009-06-11 Mitsubishi Electric Corp Semiconductor device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015082632A (en) * 2013-10-24 2015-04-27 住友電気工業株式会社 Silicon carbide semiconductor device and method of manufacturing the same
WO2015060027A1 (en) * 2013-10-24 2015-04-30 住友電気工業株式会社 Silicon carbide semiconductor device and method for manufacturing same
US9728633B2 (en) 2013-10-24 2017-08-08 Sumitomo Electric Industries, Ltd. Silicon carbide semiconductor device and method for manufacturing the same
WO2015155828A1 (en) * 2014-04-08 2015-10-15 日産自動車株式会社 Semiconductor device and method for manufacturing same
JPWO2015155828A1 (en) * 2014-04-08 2017-04-13 日産自動車株式会社 Semiconductor device and manufacturing method thereof

Also Published As

Publication number Publication date
JP2014139956A (en) 2014-07-31

Similar Documents

Publication Publication Date Title
US11848369B2 (en) Horizontal gate-all-around device nanowire air gap spacer formation
CN108475695B (en) Method of fabricating nanowires for wrap-around horizontal gate devices for semiconductor applications
KR102500552B1 (en) Semiconductor device manufacturing method and plasma processing device
US9034747B2 (en) Semiconductor device with metal gates and method for fabricating the same
US8884362B2 (en) Semiconductor device and manufacturing method of the same
JP2006066439A (en) Semiconductor device and its manufacturing method
WO2012131898A1 (en) Silicon carbide semiconductor device
WO2006132284A1 (en) Trench-type mosfet and method for manufacturing same
CN108364861B (en) Method for manufacturing semiconductor device
JP4842527B2 (en) Manufacturing method of semiconductor device
US8415723B2 (en) Spacer structure wherein carbon-containing oxide film formed within
WO2012132229A1 (en) MANUFACTURING METHOD FOR TRENCH-TYPE SiC SEMICONDUCTOR DEVICE
WO2011080857A1 (en) Process for production of semiconductor device, and plasma doping device
CN108257855B (en) Preparation method of high-k gate dielectric layer and silicon carbide MOS power device
JP2008147232A (en) Silicon carbide semiconductor device and manufacturing method therefor
KR20090019131A (en) Method of forming a dielectric layer in semiconductor memory device
JP6773198B1 (en) Silicon Carbide Semiconductor Device and Method for Manufacturing Silicon Carbide Semiconductor Device
CN105161526B (en) The method for improving vertical conductive structure SiC MOSFET channel mobilities
US10249497B2 (en) Silicon carbide semiconductor device and method of manufacturing silicon carbide semiconductor device
JP7389239B2 (en) Trench gate type SiCMOSFET device and its manufacturing method
KR100539159B1 (en) Transistor in a semiconductor device and a method of manufacturing the same
US20230084127A1 (en) Semiconductor device manufacturing method
KR100451768B1 (en) Method for fabricating gate dielectric of semiconductor device
JP2021150635A (en) Silicon carbide semiconductor device and manufacturing method thereof
KR101006511B1 (en) Method of manufacturing semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12762763

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12762763

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP