WO2012132024A1 - レーザ溶接方法 - Google Patents

レーザ溶接方法 Download PDF

Info

Publication number
WO2012132024A1
WO2012132024A1 PCT/JP2011/060806 JP2011060806W WO2012132024A1 WO 2012132024 A1 WO2012132024 A1 WO 2012132024A1 JP 2011060806 W JP2011060806 W JP 2011060806W WO 2012132024 A1 WO2012132024 A1 WO 2012132024A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser beam
welding
laser
welded
steel plate
Prior art date
Application number
PCT/JP2011/060806
Other languages
English (en)
French (fr)
Inventor
矢埜 浩史
博幸 角
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011072107A external-priority patent/JP4998633B1/ja
Priority claimed from JP2011073023A external-priority patent/JP4998634B1/ja
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to US14/008,177 priority Critical patent/US9266195B2/en
Priority to RU2013147986/02A priority patent/RU2547987C1/ru
Priority to KR1020137025936A priority patent/KR101545423B1/ko
Priority to CN201180069772.5A priority patent/CN103476535B/zh
Priority to EP11862667.0A priority patent/EP2692475B1/en
Publication of WO2012132024A1 publication Critical patent/WO2012132024A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • B23K26/24Seam welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/32Bonding taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0604Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams
    • B23K26/0608Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams in the same heat affected zone [HAZ]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • B23K26/24Seam welding
    • B23K26/26Seam welding of rectilinear seams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys
    • B23K2103/05Stainless steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26

Definitions

  • the present invention suppresses spatter generated during welding from adhering to the upper surface of the material to be welded or an optical component, and also provides an undercut or underfill (underfill) on the back surface of the material to be welded.
  • the present invention relates to a laser welding method for preventing the occurrence of underfill (that is, depression).
  • Laser welding can obtain a high energy density, so that penetration is deep and high-speed welding is possible, and a high-efficiency welding method. ) Is expected.
  • the influence of heat applied to the material to be welded is also affected. Small, distortion and deformation are reduced, and a high quality weld joint can be obtained.
  • the field of thin steel sheets such as automobiles
  • commercialization has already progressed in the assembly process of members (framework of bodies) and vehicle bodies (automobile bodies).
  • high-performance laser welding machines capable of optical fiber transmission with high output have recently been put on the market. A full-scale study is underway.
  • a laser beam having a high energy density is condensed by an optical component and applied to the welded portion, so that the material to be welded is rapidly melted. For this reason, the molten metal may be spattered from the formed molten pool as a spatter.
  • the scattered spatter adheres to the material to be welded, the appearance quality of the welded portion is impaired.
  • optical parts such as a protective glass and a lens, the focusing property of the laser beam, the irradiation level, etc. change, and the laser welding becomes unstable. become.
  • Patent Document 1 a laser working head having a double tubular nozzle structure (laser working head) is used, and a shielding curtain (assist gasses) is ejected from an outer nozzle.
  • a technique for preventing spatter scattering inside a laser processing head by forming a shielding curtain is disclosed.
  • Patent Document 2 discloses a technique for preventing underfill and suppressing generation of spatter by feeding a filler wire to a laser welded portion while oscillating the filler wire.
  • Patent Document 3 discloses a technique for preventing spatter adhesion to a laser processing head and a material to be welded by injecting a fluid from a lateral direction between the laser processing nozzle and the material to be welded.
  • spatter adheres to optical parts and materials to be welded by spraying gas from the lateral direction at positions close to the material to be welded toward the spatter scattered from the molten pool formed by laser beam irradiation.
  • Techniques for preventing are disclosed.
  • Patent Document 1 can prevent spatter adhesion to the inside of the laser processing head, it cannot prevent spatter adhesion to the tip of the laser processing head or the workpiece.
  • the composition of the weld metal changes depending on the filler wire component used, and as a result, the characteristics of the weld metal vary, so it is suitable according to the component of the material to be welded. It is necessary to select a suitable filler wire. For this reason, the load of inventory management (stock management) of filler wires and work management (product control) for selecting filler wires increases.
  • Patent Document 4 The technique disclosed in Patent Document 4 is effective in preventing adhesion of spatter generated on the upper surface side (that is, the side irradiated with the laser beam) of the material to be welded.
  • the molten metal in the pond is reduced and welding defects such as undercut and underfill are likely to occur on the back side of the work piece. Therefore, the present invention relates to a method of welding by irradiating a laser beam from the upper surface side to a groove provided on a butt surface of a material to be welded in butt welding, without using a filler wire, and spatter is scattered during welding.
  • An object of the present invention is to provide a laser welding method capable of suppressing adhesion of the welded material to the upper surface and the optical component and preventing the occurrence of undercut and underfill on the back surface of the welded material.
  • Patent Documents 1 to 4 perform laser welding by vertically irradiating a workpiece with a laser beam.
  • the energy concentrates on the part where the laser beam is irradiated onto the material to be welded. Not only is the spatter likely to occur on the upper surface of the material, but also an undercut or underfill is likely to occur on the back surface of the material to be welded.
  • a laser beam preceding the welding progress direction (hereinafter referred to as the preceding laser beam) and a subsequent laser beam (hereinafter referred to as the following laser beam) are irradiated on the upper surface side of the material to be welded while being inclined in the welding progress direction.
  • the incident angle of the preceding laser beam is made larger than the incident angle of the succeeding laser beam, and irradiation is performed so that the preceding laser beam and the succeeding laser beam do not intersect within the welding material.
  • the effect of reducing spatter and preventing undercut and underfill is increased by preventing the laser beam from concentrating on one place inside the welded material.
  • the details of the mechanism are unknown, but after the steel plate is preheated while the energy is distributed to the two laser beams irradiated at an incident angle on the steel plate and the preceding laser beam suppresses spattering, the trailing laser It is presumed that spatter scattering is suppressed when the beam melts the steel plate.
  • the incident angle of the laser beam refers to an angle formed by a direction perpendicular to the upper surface of the material to be welded and a direction in which the laser beam is irradiated.
  • the present invention irradiates two laser beams having a spot diameter of 0.3 mm or more transmitted from different optical fibers along the welding line from the upper surface side of the material to be welded.
  • the preceding laser beam preceding the welding progress direction and the following laser beam following the welding progress direction are irradiated on the upper surface side of the welding member at an incident angle from a direction perpendicular to the upper surface of the material to be welded and tilted in the welding progress direction.
  • This is a laser welding method in which laser welding is performed with an incident angle of a beam larger than an incident angle of a subsequent laser beam.
  • the distance between the center of the irradiation region of the preceding laser beam and the center of the irradiation region of the succeeding laser beam on the upper surface of the workpiece is set to the spot diameter Da of the preceding laser beam and the succeeding laser beam.
  • the laser beam spot diameter Db is set to 6 ⁇ D max or less with respect to the larger spot diameter D max , and the center of the preceding laser beam emission area and the emission area of the subsequent laser beam on the back surface of the workpiece.
  • the distance between the center of which is the laser welding method for performing laser welding as in the range of 2 ⁇ D max ⁇ 12 ⁇ D max relative to D max.
  • the incident angles of the preceding laser beam and the subsequent laser beam are preferably 5 to 50 °.
  • the present invention when performing butt welding, it is possible to suppress spatter from being scattered from the upper surface of the material to be welded during welding and to prevent occurrence of undercut or underfill on the back surface of the material to be welded.
  • FIG. 1 is a perspective view schematically showing an example in which the present invention is applied to perform butt welding of materials to be welded with two laser beams.
  • An arrow A in FIG. 1 indicates a welding progress direction.
  • the weld line 2 is a line which shows the junction part of the steel plates 1 which faced each other.
  • a deep cavity (hereinafter referred to as a keyhole) 4 generated by irradiation of the laser beams 3a and 3b and a molten metal 5 formed around the cavity are shown as perspective views.
  • a keyhole 4 generated by irradiation of the laser beams 3a and 3b and a molten metal 5 formed around the cavity are shown as perspective views.
  • the two laser beams 3 a and 3 b are irradiated from the upper surface side of the steel plate 1 along the weld line 2 of the steel plate 1.
  • an optical component for example, a prism
  • the incident angles described later cannot be individually set.
  • One or two laser oscillators may be used. When two laser beams are transmitted with a single laser oscillator, the oscillated laser light may be divided by optical components and then supplied to different optical fibers for transmission.
  • the distance between the laser beam irradiation region and the weld line on the upper surface of the steel plate As shown in FIG. 1, the laser beams 3 a and 3 b are arranged back and forth along the weld line 2.
  • a laser beam preceding the welding progress direction on the upper surface side of the steel plate 1 is referred to as a preceding laser beam 3a, and a subsequent laser beam is referred to as a subsequent laser beam 3b.
  • An example of the arrangement of the irradiation region 7a of the preceding laser beam 3a, the irradiation region 7b of the subsequent laser beam 3b, and the weld line 2 on the upper surface of the steel plate 1 is schematically shown in FIG. 2 as a plan view. As shown in FIG.
  • the irradiation regions 7 a and 7 b of the preceding laser beam 3 a and the subsequent laser beam 3 b are arranged on the upper surface of the steel plate 1 so that the centers thereof coincide with the weld line 2.
  • the centers of the irradiation regions 7a and 7b on the upper surface of the steel plate 1 do not necessarily coincide with the weld line 2 during welding.
  • the preceding laser beam 3a and the succeeding laser beam 3b deviate from the butt groove, and welding defects such as unmelted grooves are generated. It becomes easy to do.
  • the distance between the centers of the irradiation regions 7a and 7b and the weld line 2 is within the radius of the irradiation regions 7a and 7b.
  • the spot diameter at the just focus of the preceding laser beam 3a and the following laser beam 3b must be 0.3 mm or more.
  • the spot diameter at the just focus refers to the beam diameter at the focal position of the laser beam when the laser beams 3a and 3b are optically condensed. Accordingly, the energy density of the laser beam is highest at the just focus position.
  • the spot diameter at the just focus of the laser beams 3a and 3b is smaller than 0.3 mm, the width of the weld bead 6 at the time of welding becomes narrow, and the unmelted groove is generated.
  • the spot diameter exceeds 1.2 mm the energy density is small and the keyhole 4 becomes unstable.
  • the spot diameter at the just focus of the laser beams 3a and 3b is preferably 1.2 mm or less.
  • the keyhole 4 is generated by irradiating the laser beams 3a and 3b, whereby the steel plate 1 is melted and the molten metal 5 is evaporated, and the evaporation pressure and the evaporation reaction force are generated. Therefore, in order to stably apply butt welding of the steel plate 1 by applying the present invention, it is necessary to stabilize the keyhole 4.
  • the spot shape at the just focus of the laser beams 3a and 3b is preferably circular, but may be an elliptical shape. When the spot shape is elliptical, the minor axis at the just focus is set to 0.3 mm or more. For the same reason as in the case of the circular shape, the minor axis is preferably 1.2 mm or less.
  • the distance from the upper surface of the steel plate 1 to the focus of the laser beams 3a and 3b is t (mm), the thickness of the steel plate 1 is T (mm), and the distance t from the upper surface of the steel plate 1 to the focus is ⁇ 3 ⁇ T ( That is, if it exceeds 3T from the upper surface, the focus position is too high, and it is difficult to maintain the keyhole 4 stably. On the other hand, if it exceeds 3 ⁇ T (that is, 3T downward from the upper surface), the focus position is too deep, so that sputtering easily occurs from the rear surface side of the steel plate 1. Therefore, the distance t from the upper surface of the steel plate 1 to the focus is preferably set within a range of ⁇ 3 ⁇ T to 3 ⁇ T.
  • FIG. 3 is a side view schematically showing an example of the arrangement of the preceding laser beam 3a, the succeeding laser beam 3b, and the line perpendicular to the upper surface of the steel plate 1 in FIG.
  • both the preceding laser beam 3 a and the following laser beam 3 b are applied to the upper surface of the steel sheet 1 while being inclined in the welding progress direction indicated by the arrow A.
  • An angle ⁇ a formed between the preceding laser beam 3a and a line perpendicular to the upper surface of the steel sheet 1 is defined as an incident angle of the preceding laser beam 3a
  • an angle ⁇ b formed between the subsequent laser beam 3b and a line perpendicular to the surface of the steel sheet 1 is represented by the following laser.
  • the incident angles of the beams 3b are set so that the incident angles satisfy ⁇ a> ⁇ b.
  • the preceding laser beam 3a and the succeeding laser beam 3b are arranged so as not to intersect inside the steel plate 1. If the distance from the upper surface of the steel plate 1 to the intersection of the preceding laser beam 3a and the subsequent laser beam 3b is X (mm) and the plate thickness of the steel plate 1 is T (mm), X is 0 (that is, the upper surface of the steel plate 1). It is preferable to set within the range of ⁇ X ⁇ 2 ⁇ T (that is, 2T upward from the upper surface of the steel plate 1).
  • the incident angle ⁇ a of the preceding laser beam 3a and the incident angle ⁇ b of the subsequent laser beam 3b are set as ⁇ a ⁇ b, the distance from the upper surface to the back surface of the steel plate 1 through which the subsequent laser beam 3b passes becomes longer.
  • the energy of the trailing laser beam 3b is attenuated and the heating efficiency is lowered. Therefore, the preheating effect of the butt portion by the preceding laser beam 3a can be obtained, but the butt portion melting by the subsequent laser beam 3b becomes unstable.
  • the preceding laser beam 3a increases the inclination angle ⁇ a in order to suppress spatter when preheating the butted portion.
  • the trailing laser beam 3b reduces the tilt angle ⁇ b in order to increase the heating efficiency when melting the butted portion. As a result, it is possible to reduce spatter and to prevent undercut and underfill. If the incident angle ⁇ a of the preceding laser beam 3a is less than 5 °, the incident angle ⁇ a is too small.
  • the incident angle ⁇ a of the preceding laser beam 3a is preferably in the range of 5 to 50 °.
  • the incident angle ⁇ b of the subsequent laser beam 3b is less than 5 °, the incident angle ⁇ b is too small.
  • the incident angle ⁇ b exceeds 50 °, the distance from the upper surface to the rear surface of the steel plate 1 through which the subsequent laser beam 3b passes increases, so that the energy of the subsequent laser beam 3b attenuates and a sufficient penetration depth is obtained. Cannot be obtained. Therefore, the incident angle ⁇ b of the trailing laser beam 3b is preferably in the range of 5 to 50 °.
  • Center distance between emission areas of the preceding laser beam and the succeeding laser beam on the back surface side of the steel plate As shown in FIG. 4, on the back surface of the steel plate 1, the emission region of the preceding laser beam 3a is located in front of the welding progress direction indicated by the arrow A, and the emission region of the subsequent laser beam 3b is located behind. Center distance L 2 of the emission region, by a range of 2 ⁇ D max ⁇ 12 ⁇ D max, to ensure sufficient penetration depth, can be prevented underfill in the steel plate 1 the rear surface.
  • Laser beam oscillator A laser beam oscillator for use in the present invention (oscillator), the oscillator various forms can be used, a gas (e.g., CO 2 (carbon dioxide gas), helium - neon (helium-neon), argon (argon would be), nitrogen ( gas laser (gas laser) using nitrogen, iodine (iodine, etc.) as a medium, solid laser (solid laser) using a solid (for example, YAG doped with rare earth elements) as a medium, and bulk as a laser medium (laser medium)
  • a fiber laser that uses a fiber instead of (bulk) is suitable. Or you may use a semiconductor laser (semiconductor laser).
  • the present invention it is possible to prevent spatter from being scattered from the upper surface of the welded material during welding, and to prevent the occurrence of undercut or underfill on the back surface of the welded material.
  • butt welding can be performed.
  • the present invention is applicable not only to butt welding of welded materials (for example, thin steel plates, thick steel plates, stainless steel plates, etc.), but also to welding when manufacturing the welded pipe by forming those welded materials into a cylindrical shape. it can.
  • the invention examples in Table 1 have spot diameters at the just focus of the preceding laser beam 3a and the succeeding laser beam 3b that satisfy the scope of the present invention.
  • the laser beam 3a and the subsequent laser beam 3b are irradiated while being inclined in the welding progress direction, and the incident angle ⁇ a of the preceding laser beam 3a is set larger than the incident angle ⁇ b of the subsequent laser beam 3b.
  • the joint No. 1 shows an example in which the incident angle ⁇ b of the subsequent laser beam 3b is set to 0 ° (that is, an example in which irradiation is performed vertically).
  • the trailing laser beam 3b was inclined in the direction opposite to the welding traveling direction A, so that a large amount of spatter adhered to the stainless steel plate 1 and underfill occurred in the weld bead.
  • the preceding laser beam 3a and the succeeding laser beam 3b were inclined in the direction opposite to the welding progress direction, so that a large amount of spatter adhered to the stainless steel plate 1 and underfill occurred in the weld bead.
  • the distance X (mm) from the upper surface of the stainless steel plate 1 to the intersection position of the preceding laser beam 3a and the succeeding laser beam 3b was set to 0, 1 / 4T, 1 / 2T, and T with respect to the plate thickness T.
  • the incident angles ⁇ a and ⁇ b of the laser beam in Table 1 are angles shown in FIG. When the incident angle is negative, it indicates that the laser beam is irradiated while being inclined in the direction opposite to the welding progress direction indicated by the arrow A.
  • Table Inventive Example in 3 (joint No.2 ⁇ 4,6,7,11) are leading the laser beam 3a in the stainless steel plate 1 top surface, the trailing laser beam 3b of the irradiation region 7a, 7b center distance L 1 and the back surface of center distance L 2 of the irradiation area are examples which satisfy the range, and the preceding laser beam 3a, was irradiated by tilting the trailing laser beam 3b in welding direction of the present invention in.
  • the joint No. 1 shows an example in which the incident angle ⁇ b of the subsequent laser beam 3b is set to 0 ° (that is, an example in which irradiation is performed vertically).
  • the example center distance L 2 of the emitting region of the back surface is outside the scope of the present invention
  • the joint No. 9 example center distance L 2 of the emitting region in the center distance L 1 and the back surface of the irradiated area of the upper surface is outside the scope of the present invention
  • the joint No. Reference numeral 12 denotes an example in which the laser beams 3a and 3b are irradiated while being inclined in the direction opposite to the welding progress direction.

Abstract

異なる光ファイバーを用いて伝送されたジャストフォーカスでのスポット径が直径0.3mm以上の2本のレーザビームを溶接線に沿って被溶接材の上面側から照射し、被溶接材の上面側で溶接進行方向に先行する先行レーザビームおよび後行する後行レーザビームを被溶接材の上面に垂直な方向から入射角を設けて溶接進行方向に傾斜させて照射するとともに、先行レーザビームの入射角を後行レーザビームの入射角よりも大きくしてレーザ溶接を行なう。

Description

レーザ溶接方法
 本発明は、溶接中に発生するスパッタ(spatter)が被溶接材の上面や光学部品(optical component)に付着するのを抑制するとともに、被溶接材の裏面にアンダーカット(undercut)やアンダーフィル(underfill)(すなわち窪み(depression))が発生するのを防止するレーザ溶接方法に関するものである。
 レーザ溶接(laser welding)は、高いエネルギー密度(high−energy density)を得ることができるので、溶け込み(penetration)が深くかつ高速の溶接が可能であり、高能率な溶接方法(high−efficiency welding method)として期待されている。また、極めて局所的な溶融となるため被溶接材(たとえば薄鋼板(thin steel sheet),厚鋼板(thick steel plate),ステンレス鋼板(stainless steel plate or stainless steel sheet)等)に加わる熱の影響も小さく、歪や変形が小さくなり、高品質の溶接継手(weld join)を得ることができる。このため、自動車(automobile)などの薄鋼板の分野においては、既に部材(member of framework)や車体(automobile body)の組立工程(assembly line)に実用化が進んでいる。また、厚鋼板の分野においても、最近では高出力で光ファイバー伝送(optical fiber transmission)が可能な高性能のレーザ溶接機が市販されるようになり、溶接可能な板厚が増大したことから実用化に向けた本格的な検討がなされている。
 しかしながら、レーザ溶接は高エネルギー密度のレーザビームを光学部品により集光して溶接部に照射するため、被溶接材が急激に溶融することになる。そのため、形成された溶融池(molten weld pool)から溶融メタルがスパッタとして周囲に飛散することがある。この飛散したスパッタが被溶接材に付着すると、溶接部の外観品質を損ねることになる。さらに、スパッタが保護ガラス(guard glass)やレンズ(lens)などの光学部品に付着すると、レーザビームの集光性(focusing property)や照射量(irradiance level)等が変化し、レーザ溶接が不安定になる。
 また、スパッタが多量に発生すると溶融地の溶融メタルが減少するので、アンダーカットやアンダーフィル(すなわち窪み)などの溶接欠陥が生じやすくなる。アンダーカットやアンダーフィルが発生すれば、溶接部の強度低下を招く。
 これに対して、例えば特許文献1では、二重管状のノズル構造(nozzle configuration)を有するレーザ加工ヘッド(laser working head)を用い、外側ノズルから噴出させたアシストガス(assist gases)によって遮蔽カーテン(shielding curtain)を形成して、レーザ加工ヘッド内部へのスパッタ飛散を防止する技術が開示されている。
 特許文献2では、レーザ溶接の溶接部にフィラーワイヤ(filler wire)を揺動させながら送給することで、アンダーフィルを防止し、スパッタの発生を抑制する技術が開示されている。
 特許文献3では、レーザ加工ノズルと被溶接材との間に横方向から流体を噴射して、レーザ加工ヘッドおよび被溶接材へのスパッタ付着を防止する技術が開示されている。
 特許文献4では、レーザビームの照射により形成される溶融池から飛散するスパッタに向けて、横方向から被溶接材に近い位置で気体を吹き付けることで、光学部品や被溶接材へのスパッタ付着を防止する技術が開示されている。
特開平11−123578号公報 特開2004−330299号公報 特開2003−334686号公報 特開2009−166050号公報
 しかし、特許文献1に開示された技術では、レーザ加工ヘッド内部へのスパッタ付着は防止できるものの、レーザ加工ヘッド先端や被溶接材へのスパッタ付着を防止することはできない。
 特許文献2に開示された技術では、使用するフィラーワイヤの成分によって溶接金属(weld metal)の組成が変化し、その結果、溶接金属の特性が変動するので、被溶接材の成分に応じて好適なフィラーワイヤを選択する必要がある。そのため、フィラーワイヤの在庫管理(stock management)やフィラーワイヤを選択する作業管理(production control)の負荷が増大する。
 特許文献3に開示された技術では、対象とする被溶接材の板厚が増大してレーザ出力が大きくなると、飛散するスパッタ量が増加するためレーザ加工ヘッドおよび被溶接材へのスパッタ付着を完全に防止することはできない。
 特許文献4に開示された技術では、被溶接材の上面側(すなわちレーザビームを照射する側)に発生したスパッタの付着防止には有効であるが、飛散するスパッタを吹き飛ばして除去するので、溶融池の溶融メタルが減少してアンダーカットやアンダーフィルなどの溶接欠陥が被溶接材の裏面側に発生しやすい。
 そこで本発明は、突合せ溶接における被溶接材の突合せ面に設けられた開先に上面側からレーザビームを照射して溶接する方法に関して、フィラーワイヤを使用せず、溶接中にスパッタが飛散して被溶接材の上面および光学部品へ付着することを抑制するとともに、被溶接材の裏面のアンダーカットやアンダーフィルが発生することを防止できるレーザ溶接方法を提供することを目的とする。
 発明者らは、特許文献1~4に開示された技術が、いずれも1本のレーザビームを被溶接材に垂直に照射してレーザ溶接を行なうものであることに着目した。レーザビームを1本のみ使用して垂直に照射する場合は、そのレーザビームが被溶接材に照射される部位にエネルギーが集中するので、溶融メタルの温度が著しく上昇して揺動し、被溶接材の上面にスパッタが発生しやすくなるばかりでなく、被溶接材の裏面にアンダーカットやアンダーフィルが発生しやすくなる。
 これに対してレーザビームを2本使用し、それらを溶接線に沿って配置することによってエネルギーを分散させると、溶融メタルの温度上昇や揺動を抑制できるので、被溶接材の上面で発生するスパッタが軽減され、かつ被溶接材の裏面にアンダーカットやアンダーフィルが発生するのを防止できる。さらにその被溶接材の上面側で溶接進行方向に先行するレーザビーム(以下、先行レーザビームという)および後行するレーザビーム(以下、後行レーザビームという)を溶接進行方向に傾斜させて照射し、かつ先行レーザビームの入射角(incident angle)を後行レーザビームの入射角より大きくし、かつ被溶接材の内部で先行レーザビームと後行レーザビームを交差しないように照射することによって、被溶接材の内部の1ヶ所にレーザビームが集中しないようにして、スパッタを軽減し、ひいてはアンダーカットやアンダーフィルを防止する効果が増大する。そのメカニズムの詳細は不明であるが、鋼板にある入射角でもって照射される2本のレーザビームにエネルギーを分散させ、かつ先行レーザビームがスパッタを抑制しながら鋼板を予熱した後、後行レーザビームが鋼板を溶融することによって、スパッタの飛散が抑制されると推定される。なお、レーザビームの入射角は、被溶接材の上面に垂直な方向とレーザビームを照射する方向とのなす角を指す。
 本発明はこのような知見に基づいてなされたものである。
 すなわち本発明は、異なる光ファイバーを用いて伝送されたジャストフォーカスでのスポット径が直径0.3mm以上の2本のレーザビームを溶接線に沿って被溶接材の上面側から照射し、被溶接材の上面側で溶接進行方向に先行する先行レーザビームおよび後行する後行レーザビームを被溶接材の上面に垂直な方向から入射角を設けて溶接進行方向に傾斜させて照射するとともに、先行レーザビームの入射角を後行レーザビームの入射角よりも大きくしてレーザ溶接を行なうレーザ溶接方法である。
 また、本発明は、前記被溶接材の上面での前記先行レーザビームの照射領域の中心と前記後行レーザビームの照射領域の中心との間隔を前記先行レーザビームのスポット径Daと前記後行レーザビームのスポット径Dbの大きい方のスポット径Dmaxに対して6×Dmax以下とし、かつ前記被溶接材の裏面で前記先行レーザビームの出射領域の中心と前記後行レーザビームの出射領域の中心との間隔を前記Dmaxに対して2×Dmax~12×Dmaxの範囲内としてレーザ溶接を行なうレーザ溶接方法である。
 また、本発明のレーザ溶接方法においては、先行レーザビームと後行レーザビームの入射角が5~50°であることが好ましい。
 本発明によれば、突合せ溶接を行なうにあたって、溶接中にスパッタが被溶接材の上面から飛散することを抑制するとともに、被溶接材の裏面にアンダーカットやアンダーフィルが発生することを防止できる。
本発明を適用して2本のレーザビームで溶接する例を模式的に示す斜視図である。 図1の鋼板の上面における先行レーザビームの照射領域,後行レーザビームの照射領域および溶接線の配置の例を模式的に示す平面図である。 図1の先行レーザビーム,後行レーザビームおよび鋼板の上面に垂直な線の配置の例を模式的に示す側面図である。 本発明を適用して2本のレーザビームで溶接する第2の発明例を模式的に示す斜視図である。
 図1は、本発明を適用して2本のレーザビームで被溶接材の突合せ溶接を行なう例を模式的に示す斜視図である。図1中の矢印Aは溶接進行方向を示す。溶接線2は、互いに突き合わせた鋼板1の接合部を示す線である。なお、レーザビーム3a,3bの照射によって発生する深い空洞(cavity)(以下、キーホール(keyhole)という)4と、その周囲に形成される溶融メタル5は透視図として示す。以下に被溶接材1として鋼板の溶接を行なう例について説明する。
 本発明では、2本のレーザビーム3a,3bを、鋼板1の溶接線2に沿って、鋼板1の上面側から照射する。その際、単一の光ファイバーで伝送したレーザビームを光学部品(たとえばプリズム(prism)等)で分割しながら照射すると、後述する入射角を個別に設定することができない。また、後述する照射領域の中心点の間隔や入射角,スポット径を個別に設定することができない。したがって、2本のレーザビーム3a,3bをそれぞれ異なる光ファイバーを用いて伝送する必要がある。
 使用するレーザ発振器は1台でも良いし、あるいは2台でも良い。レーザ発振器が1台で、2本のレーザビームを伝送する場合は、発振されたレーザ光を光学部品で分割した後、それぞれ異なる光ファイバーに供給して伝送すれば良い。
(1)鋼板上面におけるレーザビームの照射領域と溶接線との間隔:
 図1に示すように、レーザビーム3a,3bは溶接線2に沿って前後に配置する。鋼板1の上面側で溶接進行方向に先行するレーザビームを先行レーザビーム3aとし、後行するレーザビームを後行レーザビーム3bとする。鋼板1の上面における先行レーザビーム3aの照射領域7a,後行レーザビーム3bの照射領域7bおよび溶接線2の配置の例を模式的に平面図として図2に示す。
 図2に示すように、鋼板1上面における先行レーザビーム3a,後行レーザビーム3bの照射領域7a,7bの中心が溶接線2に一致するように配置することが好ましい。ただし、そのような配置を維持して溶接を行なうことは難しく、溶接施工中には鋼板1上面における照射領域7a,7bの中心は必ずしも溶接線2に一致しない。照射領域7a,7bの中心と溶接線2との間隔が増大すると、先行レーザビーム3a,後行レーザビーム3bが突合せ開先から逸脱することになり、開先の溶け残り等の溶接欠陥が発生しやすくなる。
 照射領域7a,7bの中心が溶接線2に一致しなくても、照射領域7a,7b内を溶接線2が通過する状態で溶接を行なうと、溶接欠陥は発生しない。したがって、照射領域7a,7bの中心と溶接線2との間隔は、いずれも照射領域7a,7bの半径以内とすることが好ましい。
(2)先行レーザビームおよび後行レーザビームのジャストフォーカスでのスポット径:
 先行レーザビーム3a,後行レーザビーム3bのジャストフォーカスでのスポット径は、いずれも直径0.3mm以上とする必要がある。ここで、ジャストフォーカスでのスポット径とは、レーザビーム3a,3bを光学的に集光させた時のレーザビームの焦点位置のビーム径を指す。従って、ジャストフォーカスの位置ではレーザビームのエネルギー密度は最も高くなっている。レーザビーム3a,3bのジャストフォーカスでのスポット径が0.3mmよりも小さいと、溶接時の溶接ビード6の幅が狭くなり、開先の溶け残りが発生する。一方、スポット径が1.2mmを超えると、エネルギー密度が小さいので、キーホール4が不安定となる。そのため、レーザビーム3a,3bのジャストフォーカスでのスポット径は1.2mm以下が好ましい。
 キーホール4は、レーザビーム3a,3bを照射することによって、鋼板1が溶融し、かつ溶融メタル5が蒸発して、その蒸発圧と蒸発反力によって発生するものである。したがって、本発明を適用して鋼板1の突合せ溶接を安定して行なうためには、キーホール4を安定させる必要がある。
 レーザビーム3a,3bのジャストフォーカスでのスポット形状は円形が好ましいが、楕円形(oval figure)であってもよい。スポット形状が楕円形の場合は、ジャストフォーカスでの短径を0.3mm以上とする。また前述の円形の場合と同様の理由から、短径は1.2mm以下が好ましい。
(3)鋼板の上面からフォーカスまでの距離:
 鋼板1の上面からレーザビーム3a,3bのフォーカスまでの距離をt(mm)とし、鋼板1の板厚をT(mm)として、鋼板1の上面からフォーカスまでの距離tが−3×T(すなわち上面から上方へ3T)を超えると、フォーカスの位置が高すぎるので、キーホール4を安定して維持することが難しい。一方、3×T(すなわち上面から下方へ3T)を超えると、フォーカスの位置が深すぎるので、鋼板1の裏面側からスパッタが発生し易くなる。したがって、鋼板1の上面からフォーカスまでの距離tは−3×T~3×Tの範囲内に設定するのが好ましい。
(4)先行レーザビームの入射角と後行レーザビームの入射角:
 図3は、図1の先行レーザビーム3a,後行レーザビーム3bおよび鋼板1上面に垂直な線の配置の例を模式的に示す側面図である。図3に示すように、先行レーザビーム3aと後行レーザビーム3bは、いずれも矢印Aで示す溶接進行方向に傾斜させて鋼板1上面に照射する。その先行レーザビーム3aと鋼板1上面に垂直な線とのなす角θaを先行レーザビーム3aの入射角とし、後行レーザビーム3bと鋼板1表面に垂直な線とのなす角θbを後行レーザビーム3bの入射角として、それぞれの入射角がθa>θbを満足するように設定する。
 さらに、先行レーザビーム3aと後行レーザビーム3bが鋼板1の内部で交差しないように配置する。鋼板1の上面から先行レーザビーム3aと後行レーザビーム3bの交差位置までの距離をX(mm)、鋼板1の板厚をT(mm)とすると、Xは0(すなわち鋼板1の上面)≦X≦2×T(すなわち鋼板1の上面から上方へ2T)の範囲内に設定するのが好ましい。その理由は、X<0の場合は先行レーザビーム3aと後行レーザビーム3bが鋼板1の内部で交差するため、先行レーザビーム3aと後行レーザビーム3bの各キーホール4が合体して、巨大なキーホールが生じ、スパッタが多量に発生し易くなる。一方、X>2×Tの場合は、溶融メタル5が分離してしまうので突合せ部の溶融が不安定となり、スパッタが多量に発生し易くなる。
 なお、先行レーザビーム3aの入射角θaと後行レーザビーム3bの入射角θbを、θa<θbと設定すると、後行レーザビーム3bが通過する鋼板1の上面から裏面までの距離が長くなるので、後行レーザビーム3bのエネルギーが減衰して加熱効率が低下する。そのため、先行レーザビーム3aによる突合せ部の予熱効果は得られるが、後行レーザビーム3bによる突合せ部の溶融が不安定になる。
 また、θa=θbと設定すると、先行レーザビーム3aと後行レーザビーム3bの各キーホール4が合体しやすくなり、巨大なキーホールが生じて、スパッタが多量に発生する惧れがある。
 したがって、先行レーザビーム3aと後行レーザビーム3bの入射角をθa>θbと設定する必要がある。つまり、先行レーザビーム3aは突合せ部を予熱するにあたってスパッタを抑制するために傾斜角θaを大きくする。後行レーザビーム3bは突合せ部を溶融するにあたって加熱効率を高めるために傾斜角θbを小さくする。
 その結果、スパッタを軽減し、ひいてはアンダーカットやアンダーフィルを防止することが可能となる。
 先行レーザビーム3aの入射角θaが5°未満では、入射角θaが小さすぎるので、先行レーザビーム3aを垂直に照射する場合と同様の挙動を示し、スパッタの発生を抑制する効果が得られない。一方、入射角θaが50°を超えると、先行レーザビーム3aが通過する鋼板1の上面から裏面までの距離が長くなるので、先行レーザビーム3aのエネルギーが減衰して十分な予熱効果が得られなくなる。したがって、先行レーザビーム3aの入射角θaは5~50°の範囲内が好ましい。
 同様に後行レーザビーム3bの入射角θbが5°未満では、入射角θbが小さすぎるので、後行レーザビーム3bを垂直に照射する場合と同様の挙動を示し、スパッタの発生を抑制する効果が得られない。一方、入射角θbが50°を超えると、後行レーザビーム3bが通過する鋼板1の上面から裏面までの距離が長くなるので、後行レーザビーム3bのエネルギーが減衰して十分な溶込み深さが得られなくなる。したがって、後行レーザビーム3bの入射角θbは5~50°の範囲内が好ましい。
(5)鋼板の上面側における先行レーザビームと後行レーザビームの中心点の間隔:
 また、鋼板1上面における先行レーザビーム3a,後行レーザビーム3bの照射領域7a,7bの中心間隔Lが大きすぎる場合は、溶融メタル5が分離してしまうので、スパッタが発生し易くなる。そこで、レーザビーム3a,3bのジャストフォーカスでのスポット径Da,Dbの大きい方のスポット径Dmaxに対して、鋼板1上面における照射領域7a,7bの中心間隔Lを6×Dmax以下とする。
(6)鋼板の裏面側における先行レーザビームと後行レーザビームの出射領域の中心間隔:
 図4に示すように、鋼板1の裏面では、先行レーザビーム3aの出射領域が矢印Aで示す溶接進行方向の前方に位置し、後行レーザビーム3bの出射領域が後方に位置する。その出射領域の中心間隔Lは、2×Dmax~12×Dmaxの範囲内とすることによって、十分な溶込み深さを確保し、鋼板1裏面におけるアンダーフィルを防止できる。
(7)レーザビームの発振器:
 本発明で使用するレーザビームの発振器(oscillator)は、様々な形態の発振器が使用でき、気体(たとえばCO(carbon dioxide gas),ヘリウム−ネオン(helium−neon),アルゴン(argon),窒素(nitrogen),ヨウ素(iodine)等)を媒質として用いる気体レーザ(gas laser),固体(たとえば希土類元素をドープしたYAG等)を媒質として用いる固体レーザ(solid laser),レーザ媒質(laser medium)としてバルク(bulk)の代わりにファイバー(fiber)を利用するファイバーレーザ(fiber laser)等が好適である。あるいは、半導体レーザ(semiconductor laser)を使用しても良い。
 以上のようにして、本発明によれば、溶接施工中にスパッタが被溶接材の上面から飛散することを抑制するとともに、被溶接材の裏面のアンダーカットやアンダーフィルが発生することを防止して、突合せ溶接を行なうことができる。
 また本発明は、被溶接材(たとえば薄鋼板,厚鋼板,ステンレス鋼板等)の突合せ溶接のみならず、それらの被溶接材を円筒状に成形して溶接管を製造する際の溶接にも適用できる。
 図1に示すように、被溶接材1としてステンレス鋼板(SUS304,板厚5mm)の突合せ溶接を行なうにあたって、2台のレーザ発振器から発振されるレーザビームをそれぞれ先行レーザビーム3a,後行レーザビーム3bとし、各照射領域7a,7bを図2に示すように溶接線2上に配置した。溶接の条件は表1に示す通りである。ステンレス鋼板1の上面からフォーカスまでの距離t(mm)は、板厚Tに対して、いずれも1/2Tとした。またステンレス鋼板1の上面から先行レーザビーム3aと後行レーザビーム3bの交差位置までの距離X(mm)は、板厚Tに対して、いずれも1/2Tとした。表1中のレーザビームの入射角θa,θbは図3に示す角度である。入射角がマイナスとなるものは、レーザビームを矢印Aで示す溶接進行方向の逆方向に傾斜させて照射したことを示す。
 表1中の発明例(継手No.2,4,5,6,9)は、先行レーザビーム3a,後行レーザビーム3bのジャストフォーカスでのスポット径が本発明の範囲を満足するとともに、先行レーザビーム3a,後行レーザビーム3bを溶接進行方向に傾斜させて照射しかつ先行レーザビーム3aの入射角θaを後行レーザビーム3bの入射角θbより大きく設定した例である。
 表1中の比較例のうち、継手No.1は後行レーザビーム3bの入射角θbを0°とした例(すなわち垂直に照射した例)、継手No.3は先行レーザビーム3aのジャストフォーカスでのスポット径が本発明の範囲を外れる例、継手No.7は後行レーザビーム3bを溶接進行方向の逆方向に傾斜させて照射した例、継手No.8は先行レーザビーム3aと後行レーザビーム3bを溶接進行方向の逆方向に傾斜させて照射した例である。
 このようにしてレーザ溶接を行なった後、ステンレス鋼板1の上面を目視で観察して、スパッタの付着状況を調査した。また、ステンレス鋼板1の裏面の溶接ビードを目視で観察して、アンダーカットやアンダーフィルの発生状況を調査した。その結果を表2に示す。
 表2から明らかなように、発明例ではスパッタの付着およびアンダーカットやアンダーフィルの発生は認められなかった。
 表2中の比較例のうち、継手No.1は後行レーザビーム3bの入射角θaを0°としたので、ステンレス鋼板1にスパッタが多量に付着しかつ溶接ビードにアンダーフィルが発生した。継手No.3は先行レーザビーム3aのジャストフォーカスでのスポット径が小さいので、スパッタの発生を抑えられず、溶接ビードにアンダーフィルが発生した。継手No.7は後行レーザビーム3bを溶接進行方向Aの逆方向に傾斜させたので、ステンレス鋼板1にスパッタが多量に付着しかつ溶接ビードにアンダーフィルが発生した。継手No.8は先行レーザビーム3aと後行レーザビーム3bを溶接進行方向の逆方向に傾斜させたので、ステンレス鋼板1にスパッタが多量に付着しかつ溶接ビードにアンダーフィルが発生した。
 図4に示すように、被溶接材1としてステンレス鋼板(SUS304,板厚5mm,10mm)の突合せ溶接を行なうにあたって、2台のレーザ発振器から発振されるレーザビームをそれぞれ先行レーザビーム3a,後行レーザビーム3bとし、各照射領域7a,7bを図2に示すように溶接線2上に配置した。溶接の条件は表1に示す通りである。ステンレス鋼板1の上面からフォーカスまでの距離t(mm)は、板厚Tに対して、いずれも1/2Tとした。またステンレス鋼板1の上面から先行レーザビーム3aと後行レーザビーム3bの交差位置までの距離X(mm)は、板厚Tに対して、0、1/4T、1/2T、Tとした。表1中のレーザビームの入射角θa,θbは図3に示す角度である。入射角がマイナスとなるものは、レーザビームを矢印Aで示す溶接進行方向の逆方向に傾斜させて照射したことを示す。
 表3中の発明例(継手No.2~4,6,7,11)は、ステンレス鋼板1上面における先行レーザビーム3a,後行レーザビーム3bの照射領域7a,7bの中心間隔Lおよび裏面における照射領域の中心間隔Lが本発明の範囲を満足し、かつ先行レーザビーム3a,後行レーザビーム3bを溶接進行方向に傾斜させて照射した例である。
 表3中の比較例のうち、継手No.1は後行レーザビーム3bの入射角θbを0°とした例(すなわち垂直に照射した例)、継手No.5,8,10は裏面における出射領域の中心間隔Lが本発明の範囲を外れる例、継手No.9は上面における照射領域の中心間隔Lおよび裏面における出射領域の中心間隔Lが本発明の範囲を外れる例、継手No.12はレーザビーム3a,3bを溶接進行方向の逆方向に傾斜させて照射した例である。
 このようにしてレーザ溶接を行なった後、ステンレス鋼板1の上面を目視で観察して、スパッタの付着状況を調査した。また、ステンレス鋼板1の裏面の溶接ビードを目視で観察して、アンダーカットやアンダーフィルの発生状況を調査した。その結果を表4に示す。
 表4から明らかなように、発明例ではスパッタの付着およびアンダーカットやアンダーフィルの発生は認められなかった。
 表4中の比較例のうち、継手No.1は後行レーザビーム3bの入射角θbを0°としたので、ステンレス鋼板1にスパッタが多量に付着しかつ溶接ビードにアンダーフィルが発生した。継手No.5は先行レーザビーム3aの入射角θaが本発明の範囲を外れるので、予熱効果が不十分となり、ステンレス鋼板1にスパッタが付着しかつ溶接ビードにアンダーフィルが発生した。継手No.8,10は裏面における出射領域の中心間隔Lが本発明の範囲を外れるので、裏面にアンダーフィルが発生した。継手No.9は上面における照射領域の中心間隔Lおよび裏面における出射領域の中心間隔Lが本発明の範囲を外れるので、ステンレス鋼板1にスパッタが多量に付着しかつ溶接ビードにアンダーフィルが発生した。継手No.12は先行レーザビーム3aと後行レーザビーム3bを溶接進行方向の逆方向に傾斜させたので、ステンレス鋼板1にスパッタが多量に付着しかつ溶接ビードにアンダーフィルが発生した。
 突合せ溶接を行なうにあたって、溶接中にスパッタが被溶接材の上面から飛散することを抑制するとともに、被溶接材の裏面のアンダーカットやアンダーフィルが発生することを防止できるので、産業上格段の効果を奏する。
 1 被溶接材
 2 溶接線
 3a 先行レーザビーム
 3b 後行レーザビーム
 4 キーホール
 5 溶融メタル
 6 溶接ビード
 7a 先行レーザビームの照射領域
 7b 後行レーザビームの照射領域
 θa:先行レーザビーム3aの入射角
 θb:後行レーザビーム3aの入射角
 L1:被溶接材の上面での先行レーザビームの照射領域の中心と後行レーザビームの照射領域の中心との距離
 L2:被溶接材の裏面での先行レーザビームの出射領域の中心と後行レーザビームの出射領域の中心との距離
 Da:先行レーザビーム3aのジャストフォーカスでのスポット径
 Db:後行レーザビーム3aのジャストフォーカスでのスポット径
 Dmax:先行レーザビームのスポット径Daと前記後行レーザビームのスポット径Dbの大きい方のスポット径
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004

Claims (3)

  1.  異なる光ファイバーを用いて伝送されたジャストフォーカスでのスポット径が直径0.3mm以上の2本のレーザビームを溶接線に沿って被溶接材の上面側から照射し、該被溶接材の上面側で溶接進行方向に先行する先行レーザビームおよび後行する後行レーザビームを前記被溶接材の上面に垂直な方向から入射角を設けて前記溶接進行方向に傾斜させて照射するとともに、前記先行レーザビームの入射角を前記後行レーザビームの入射角よりも大きくしてレーザ溶接を行なうレーザ溶接方法。
  2.  請求項1において、前記被溶接材の上面での前記先行レーザビームの照射領域の中心と前記後行レーザビームの照射領域の中心との間隔を前記先行レーザビームのスポット径Daと前記後行レーザビームのスポット径Dbの大きい方のスポット径Dmaxに対して6×Dmax以下とし、かつ前記被溶接材の裏面で前記先行レーザビームの出射領域の中心と前記後行レーザビームの出射領域の中心との間隔を前記Dmaxに対して2×Dmax~12×Dmaxの範囲内としてレーザ溶接を行なうレーザ溶接方法。
  3.  前記先行レーザビームと前記後行レーザビームの入射角が5~50°である請求項1または2に記載のレーザ溶接方法。
PCT/JP2011/060806 2011-03-29 2011-04-28 レーザ溶接方法 WO2012132024A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/008,177 US9266195B2 (en) 2011-03-29 2011-04-28 Laser welding method
RU2013147986/02A RU2547987C1 (ru) 2011-03-29 2011-04-28 Способ лазерной сварки
KR1020137025936A KR101545423B1 (ko) 2011-03-29 2011-04-28 레이저 용접 방법
CN201180069772.5A CN103476535B (zh) 2011-03-29 2011-04-28 激光焊接方法
EP11862667.0A EP2692475B1 (en) 2011-03-29 2011-04-28 Laser welding method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011072107A JP4998633B1 (ja) 2011-03-29 2011-03-29 レーザ溶接方法
JP2011073023A JP4998634B1 (ja) 2011-03-29 2011-03-29 レーザ溶接方法
JP2011-073023 2011-03-29
JP2011-072107 2011-03-29

Publications (1)

Publication Number Publication Date
WO2012132024A1 true WO2012132024A1 (ja) 2012-10-04

Family

ID=46929841

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/060806 WO2012132024A1 (ja) 2011-03-29 2011-04-28 レーザ溶接方法

Country Status (6)

Country Link
US (1) US9266195B2 (ja)
EP (1) EP2692475B1 (ja)
KR (1) KR101545423B1 (ja)
CN (1) CN103476535B (ja)
RU (1) RU2547987C1 (ja)
WO (1) WO2012132024A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022517713A (ja) * 2018-11-12 2022-03-10 トルンプフ レーザー- ウント ジュステームテヒニク ゲゼルシャフト ミット ベシュレンクテル ハフツング 特に固体レーザを用いたスパッタフリー溶接のための方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6241459B2 (ja) * 2015-07-31 2017-12-06 トヨタ自動車株式会社 溶接構造体の製造方法
CN107971632B (zh) * 2016-10-21 2019-07-12 核工业西南物理研究院 一种消除背面飞溅的激光焊接方法
RU2637035C1 (ru) * 2017-02-06 2017-11-29 Публичное акционерное общество "Челябинский трубопрокатный завод" (ПАО "ЧТПЗ") Способ гибридной лазерно-дуговой сварки продольного шва трубы
DE102017120051B4 (de) * 2017-08-31 2023-01-12 Baosteel Tailored Blanks Gmbh Verfahren zum Laserstrahlschweißen eines oder mehrerer Stahlbleche aus presshärtbarem Mangan-Borstahl
DE112018004942T5 (de) * 2017-09-07 2020-07-23 Shiloh Industries, Inc. Lasergeschweisste Aluminiumplatinen
JP7081324B2 (ja) * 2018-06-19 2022-06-07 トヨタ自動車株式会社 レーザ溶接方法および溶接構造体

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0199789A (ja) * 1987-10-13 1989-04-18 Kawasaki Steel Corp 溶接管の製造方法
JPH07144288A (ja) * 1993-11-19 1995-06-06 Sumitomo Metal Ind Ltd レーザー製管溶接方法
JPH0890265A (ja) * 1994-09-19 1996-04-09 Sumitomo Metal Ind Ltd レーザ溶接製管方法
JPH0924480A (ja) * 1995-07-12 1997-01-28 Nkk Corp 溶接鋼管の製造方法
JPH11123578A (ja) 1997-10-22 1999-05-11 Isuzu Motors Ltd レーザ加工ヘッド
JP2000317667A (ja) * 1999-05-17 2000-11-21 Amada Eng Center Co Ltd レーザ溶接用複合ヘッド
JP2003334686A (ja) 2002-05-22 2003-11-25 Denso Corp レーザ加工スパッタ付着防止
JP2004330299A (ja) 2003-04-15 2004-11-25 Nippon Steel Corp 溶接部強度に優れたレーザ溶接方法
JP2009166050A (ja) 2008-01-10 2009-07-30 Sumitomo Metal Ind Ltd 鋼板のレーザ溶接方法およびその装置
JP2009178768A (ja) * 2008-02-01 2009-08-13 Sumitomo Metal Ind Ltd レーザ溶接方法およびレーザ溶接装置
JP2009269036A (ja) * 2008-04-30 2009-11-19 Tokyu Car Corp レーザ溶接方法
JP2010167436A (ja) * 2009-01-21 2010-08-05 Tokyu Car Corp レーザ溶接方法
JP2010240734A (ja) * 2008-10-31 2010-10-28 Jfe Steel Corp レーザ溶接鋼管の製造方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3843841A1 (de) 1988-12-24 1990-06-28 Fraunhofer Ges Forschung Laserstrahlschweissverfahren
US5155323A (en) * 1991-05-16 1992-10-13 John Macken Dual focus laser welding
CA2108761A1 (en) * 1992-10-23 1994-04-24 Koichi Haruta Method and apparatus for welding material by laser beam
JP3293401B2 (ja) * 1995-03-20 2002-06-17 トヨタ自動車株式会社 レーザ溶接方法
US6608278B1 (en) 1999-04-30 2003-08-19 Edison Welding Institute, Inc. Coated material welding with multiple energy beams
JP2003094184A (ja) 2001-09-20 2003-04-02 Nippon Steel Corp 亜鉛めっき鋼板の重ねレーザー溶接方法
WO2003031108A1 (en) * 2001-10-09 2003-04-17 Ecole Polytechnique Federale De Lausanne (Epfl) Process for avoiding cracking in welding
FR2830477B1 (fr) * 2001-10-09 2004-02-06 Usinor Procede et dispositif de soudage par recouvrement a l'aide d'un faisceau a haute densite d'energie de deux toles revetues
KR100489692B1 (ko) * 2004-06-16 2005-05-17 엘에스전선 주식회사 플라즈마와 레이저를 이용한 연속적인 맞대기 용접방법 및이를 이용한 금속관 제조방법
US8253062B2 (en) * 2005-06-10 2012-08-28 Chrysler Group Llc System and methodology for zero-gap welding
JP5088920B2 (ja) * 2006-05-19 2012-12-05 日新製鋼株式会社 建築部材の製造方法
FR2908677B1 (fr) * 2006-11-17 2009-02-20 Air Liquide Procede de soudage par faisceau laser a penetration amelioree
JP5060880B2 (ja) * 2007-09-11 2012-10-31 三星ダイヤモンド工業株式会社 脆性材料基板の分断装置および分断方法
WO2009123330A1 (ja) 2008-03-31 2009-10-08 Jfeスチール株式会社 高密度エネルギービームで接合した溶接鋼管およびその製造方法
EP2263823B1 (en) * 2008-11-27 2020-09-23 Panasonic Intellectual Property Management Co., Ltd. Hybrid welding method and hybrid welding apparatus
US20100288738A1 (en) 2009-05-15 2010-11-18 General Electric Company Welding apparatus and method
CN101905379B (zh) * 2010-08-05 2012-11-21 武汉钢铁(集团)公司 高强耐候冷轧集装箱镀层板激光焊接工艺
EP2692476B1 (en) * 2011-03-30 2018-11-21 JFE Steel Corporation Method for producing laser-welded steel tube

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0199789A (ja) * 1987-10-13 1989-04-18 Kawasaki Steel Corp 溶接管の製造方法
JPH07144288A (ja) * 1993-11-19 1995-06-06 Sumitomo Metal Ind Ltd レーザー製管溶接方法
JPH0890265A (ja) * 1994-09-19 1996-04-09 Sumitomo Metal Ind Ltd レーザ溶接製管方法
JPH0924480A (ja) * 1995-07-12 1997-01-28 Nkk Corp 溶接鋼管の製造方法
JPH11123578A (ja) 1997-10-22 1999-05-11 Isuzu Motors Ltd レーザ加工ヘッド
JP2000317667A (ja) * 1999-05-17 2000-11-21 Amada Eng Center Co Ltd レーザ溶接用複合ヘッド
JP2003334686A (ja) 2002-05-22 2003-11-25 Denso Corp レーザ加工スパッタ付着防止
JP2004330299A (ja) 2003-04-15 2004-11-25 Nippon Steel Corp 溶接部強度に優れたレーザ溶接方法
JP2009166050A (ja) 2008-01-10 2009-07-30 Sumitomo Metal Ind Ltd 鋼板のレーザ溶接方法およびその装置
JP2009178768A (ja) * 2008-02-01 2009-08-13 Sumitomo Metal Ind Ltd レーザ溶接方法およびレーザ溶接装置
JP2009269036A (ja) * 2008-04-30 2009-11-19 Tokyu Car Corp レーザ溶接方法
JP2010240734A (ja) * 2008-10-31 2010-10-28 Jfe Steel Corp レーザ溶接鋼管の製造方法
JP2010167436A (ja) * 2009-01-21 2010-08-05 Tokyu Car Corp レーザ溶接方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2692475A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022517713A (ja) * 2018-11-12 2022-03-10 トルンプフ レーザー- ウント ジュステームテヒニク ゲゼルシャフト ミット ベシュレンクテル ハフツング 特に固体レーザを用いたスパッタフリー溶接のための方法
US11786989B2 (en) 2018-11-12 2023-10-17 Trumpf Laser- Und Systemtechnik Gmbh Method for splash-free welding, in particular using a solid-state laser
JP7412428B2 (ja) 2018-11-12 2024-01-12 トルンプフ レーザー- ウント ジュステームテヒニク ゲゼルシャフト ミット ベシュレンクテル ハフツング 特に固体レーザを用いたスパッタフリー溶接のための方法

Also Published As

Publication number Publication date
CN103476535A (zh) 2013-12-25
KR20130124407A (ko) 2013-11-13
CN103476535B (zh) 2015-07-29
EP2692475A1 (en) 2014-02-05
EP2692475A4 (en) 2015-07-15
US20140076865A1 (en) 2014-03-20
US9266195B2 (en) 2016-02-23
RU2547987C1 (ru) 2015-04-10
KR101545423B1 (ko) 2015-08-18
RU2013147986A (ru) 2015-05-10
EP2692475B1 (en) 2016-06-08

Similar Documents

Publication Publication Date Title
JP5531623B2 (ja) 亜鉛めっき鋼板のレーザ重ね溶接方法
JP5024475B1 (ja) レーザ溶接鋼管の製造方法
KR101436705B1 (ko) 레이저·아크 복합 용접 방법 및 상기 용접 방법에 의한 용접 부재의 제조 방법
WO2012132024A1 (ja) レーザ溶接方法
JP3762676B2 (ja) ワークの溶接方法
US8546720B2 (en) Hybrid welding apparatus and system and method of welding
JP5595913B2 (ja) 亜鉛めっき鋼板のレーザ重ね溶接方法
JP2008126315A (ja) 改良された溶込みを伴うレーザ溶接方法
JP5601003B2 (ja) レーザ・アーク複合溶接方法、及び突き合わせ溶接用金属板の開先
JP5954009B2 (ja) 溶接鋼管の製造方法
JP5495118B2 (ja) 亜鉛めっき鋼板のレーザ重ね溶接方法
JP2021521009A (ja) 複合溶接連続溶接方法及び装置、溶接製品、車体
JP6216111B2 (ja) 溶接システム、溶接プロセス及び溶接物品
JP5812527B2 (ja) ホットワイヤレーザ溶接方法と装置
JP5866790B2 (ja) レーザ溶接鋼管の製造方法
CN112969547A (zh) 尤其用固体激光器无飞溅地焊接的方法
JP4998634B1 (ja) レーザ溶接方法
JP5803160B2 (ja) レーザ溶接鋼管の製造方法
JP2003001453A (ja) 複合熱源溶接法
JP2018140424A (ja) レーザ溶接方法
JP4998633B1 (ja) レーザ溶接方法
JP5987305B2 (ja) レーザ溶接方法
JP2014024078A (ja) レーザ溶接装置
CN113787257A (zh) 低功率激光引导超高功率激光-电弧焊接的方法及应用
Colombo et al. Remote Fiber Laser Processing of Zinc Coated Steels for Automotive Applications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11862667

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011862667

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137025936

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2013147986

Country of ref document: RU

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14008177

Country of ref document: US