WO2012130033A2 - 电源装置及调节死区时间的方法 - Google Patents
电源装置及调节死区时间的方法 Download PDFInfo
- Publication number
- WO2012130033A2 WO2012130033A2 PCT/CN2012/072207 CN2012072207W WO2012130033A2 WO 2012130033 A2 WO2012130033 A2 WO 2012130033A2 CN 2012072207 W CN2012072207 W CN 2012072207W WO 2012130033 A2 WO2012130033 A2 WO 2012130033A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- voltage
- dead time
- current
- reference voltage
- dead
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/22—Conversion of dc power input into dc power output with intermediate conversion into ac
- H02M3/24—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
- H02M3/28—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
- H02M3/325—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
- H02M3/335—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/33569—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
- H02M3/33576—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
- H02M3/33592—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer having a synchronous rectifier circuit or a synchronous freewheeling circuit at the secondary side of an isolation transformer
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/38—Means for preventing simultaneous conduction of switches
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B70/00—Technologies for an efficient end-user side electric power management and consumption
- Y02B70/10—Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
Definitions
- the present invention relates to power supply technologies, and more particularly to a power supply device and a method of adjusting dead time.
- BACKGROUND OF THE INVENTION With the improvement of environmental awareness, people are increasingly demanding energy efficiency of electrical appliances, and accordingly, the conversion efficiency of power converters is becoming higher and higher.
- the losses of the power converter are mainly distributed on the magnetic device and the switching tube, and the loss of the switching tube is divided into switching loss and conduction loss. Switching losses are not only related to the switching tube itself, but also to the control of the control circuit. In the isolated power converter, the dead time between the primary switching tube and the secondary synchronous rectifier switching tube has a greater impact on efficiency.
- Embodiments of the present invention provide a power supply device and a method for adjusting dead time, which are used to solve the problem of slow implementation of the prior art and improve conversion efficiency.
- Embodiments of the present invention provide a power supply device including a power converter and a regulator, the power converter including a primary side and a transformer for voltage conversion of the primary side and the secondary side, the primary side mosfet connection To the primary winding of the transformer, the secondary side mosfet is connected to the secondary winding of the transformer, the regulator comprising:
- a current sampling unit configured to sample a current of the power converter and generate a voltage for characterizing a magnitude of the sampled current
- a reference voltage generating unit configured to generate a reference voltage, the reference voltage being a constant value or inversely changing relationship with an input voltage of the primary side;
- a signal processing unit configured to determine a voltage and a reference voltage according to the magnitude of the sampled current, Generating a dead zone parameter for characterizing a dead time parameter, the dead zone parameter being a voltage value or a current value; and a control unit configured to adjust a dead time according to the dead zone parameter, such that the dead time and the sampled current In a reverse relationship, and the dead time is positively changed with the input voltage, and the primary side mosfet in the power converter is adjusted according to the adjusted dead time, or the primary side mosfet Switching control is performed with the secondary side mosfet in the power converter.
- An embodiment of the present invention provides a method for adjusting a dead time, including:
- the reference voltage being a constant value or inversely changing relationship with an input voltage of the primary side
- the deadband parameter for characterizing a dead time period based on the voltage and the reference voltage characterizing the magnitude of the sampled current, the dead zone parameter being a voltage value or a current value;
- the zone time is switched to the primary side mosfet in the power converter, or to the primary side mosfet and the secondary side mosfet in the power converter.
- the embodiment of the present invention can reduce the complexity and improve the conversion efficiency by considering the input voltage and the magnitude of the sampled current and performing dead zone adjustment according to the above two parameters.
- BRIEF DESCRIPTION OF THE DRAWINGS In order to more clearly illustrate the technical solutions in the embodiments of the present invention, a brief description of the drawings to be used in the description of the embodiments will be briefly made. It is obvious that the drawings in the following description are some of the present invention. For the embodiments, those skilled in the art can obtain other drawings according to the drawings without any creative labor.
- 1 is a schematic structural view of a power supply device according to a first embodiment of the present invention
- 2 is a schematic structural diagram of a reference voltage generating unit according to an embodiment of the present invention
- FIG. 3 is a schematic structural view of a power supply device according to a second embodiment of the present invention.
- FIG. 4 is a schematic structural view of a power supply device according to a third embodiment of the present invention.
- FIG. 5 is a schematic structural diagram of a signal processing unit according to an embodiment of the present invention.
- FIG. 6 is a schematic flow chart of a method according to a fourth embodiment of the present invention.
- FIG. ⁇ is a schematic flowchart of generating a reference voltage by a reference voltage generating unit in the embodiment of the present invention.
- FIG. 1 is a schematic structural view of a power supply device according to a first embodiment of the present invention, including a power converter and a regulator, and the power converter includes a metal-oxide-semiconductor field-effect transistor (Metal-Oxide-Semiconductor Field-Effect Transistor, A MOSFET) 111, a secondary side mosfet 112 and a transformer 113, the primary side mosfet being connected to a primary winding of the transformer, the secondary side mosfet being connected to a secondary winding of the transformer.
- a MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor
- the regulator includes a current sampling unit 121, a reference voltage generating unit 122, a signal processing unit 123, and a control unit 124.
- the current sampling unit 121 is configured to sample a primary current of the power converter and generate a voltage Viv for characterizing the magnitude of the sampled current;
- the reference voltage generating unit 122 is configured to generate a reference voltage Vref, the reference voltage is constant The value is inversely related to the input voltage Vin of the primary side of the power converter;
- the signal processing unit 123 is configured to generate a dead zone parameter for characterizing the dead time according to the voltage Viv and the reference voltage, the dead zone
- the parameter may be a voltage value Vcd or a current value led;
- the control unit 124 is configured to adjust the dead time according to the dead zone parameter, The dead time is inversely related to the sampled current, and the dead time is positively changed with the input voltage, and the original in the power converter is adjusted according to the adjusted dead time.
- the side mosfet (Q1), or the switching control of the primary side mosfet (Q1) and the secondary side mosfet (Q2) in the power converter is specifically configured to control the electric room, or control the time when the primary side mosfet and the secondary side mosfet in the power converter are simultaneously in an off state is the adjusted dead time.
- the dead time of the above-mentioned dead time is inversely related to the current to be sampled, and the positive relationship between the dead time and the input voltage includes: when the sampled current increases, the adjusted dead time is reduced. Small, when the sampled current is reduced, the adjusted dead time increases; when the input voltage increases, the adjusted dead time increases, when the input voltage decreases, the adjusted dead zone further, in order to achieve high-speed control
- the current sampling unit 121, the reference voltage generating unit 122, the signal processing unit 123, and the control unit 124 may all be hardware.
- an isolation and driving circuit is added between the primary side and the secondary side.
- the reference voltage generating unit includes a Pulse Width Modulation (PWM) chip 21, a mosfet 22, a capacitor 23, and a comparator 24.
- PWM Pulse Width Modulation
- the PWM chip 21 is configured to generate a first PWM wave, the first PWM wave may be configured according to actual needs;
- the mosfet 22 is configured to discharge the capacitor according to the first PWM wave;
- the capacitor 23 is configured to receive charging of the input voltage of the primary side of the power converter and discharge of the mosfet to generate a sawtooth wave;
- the comparator 24 is configured to compare the sawtooth wave with a predetermined voltage to generate a second PWM a duty ratio of the second PWM wave is inversely proportional to a duty ratio of the input voltage;
- the filter 25 is configured to filter the second PWM wave to generate a reverse direction with the input voltage
- the DC voltage of the change relationship Thereafter, the DC voltage may be used as a reference voltage, or may further include: a modulator 26, wherein the trimmer 26 is configured to finely adjust the DC voltage to generate the reference voltage.
- Vin charges C1 through R1, and Q1 discharges C1, and charges one on the other, forming a sawtooth wave on the capacitor C1.
- the switch control signal of Q1 comes from the PWM chip.
- S1 is a comparator that receives the sawtooth wave and compares the sawtooth wave with a given voltage to produce a new PWM wave.
- the duty cycle is inversely proportional to the input voltage Vin.
- the new PWM wave is filtered by R6, C4, R7, C5, Rl, and C6 into a DC voltage that is inversely proportional to the input voltage Vin, and then added to V4 to form a reference voltage Vref.
- V4 is used to fine-tune Vref to meet different application scenarios. It can be adjusted according to the range of values used in actual application to compensate for the deviation caused by filtering, so that Viv can compare.
- the reference voltage may also be taken as a constant value (the value is not limited).
- the parameter Vcd or led which controls the dead zone adjustment is not only related to
- the reference voltage is also related to the voltage that characterizes the magnitude of the sampled current, and the magnitude of the sampled current is related to the load condition. Therefore, it is possible to adjust the dead time according to the load condition, and to achieve a larger dead zone when the load is light. Time, when the load is heavy, it has a small dead time to meet certain scene requirements.
- the current sampling and PWM chips of this embodiment are both on the primary side, the control is simpler and more convenient; the reference voltage varies with the input voltage, and the sampled current is related to the load and the input voltage, and thus can vary with the input voltage and/or load. And adjust the dead time.
- the current sampling may be performed in different manners.
- the current sampling unit is specifically configured to sample the current of the input bus of the primary side of the power converter, and obtain the voltage that characterizes the magnitude of the sampled current.
- the current sampling unit includes: a sampling module, configured to sample a current from the primary side mosfet and obtain a corresponding voltage according to the sampled current; and a filtering module, configured to obtain the characterization according to a voltage corresponding to the sampling current The voltage at which the current is sampled. Described separately below.
- FIG. 3 is a schematic structural view of a power supply device according to a second embodiment of the present invention, and referring to FIG. 3,
- the source clamp is used in the forward converter.
- R1 samples the current of the input bus to obtain a voltage Viv which characterizes the magnitude of the sampled current
- the signal processing unit receives the reference voltage Vref and the voltage Viv which characterizes the magnitude of the sampled current, and is processed to generate a dead zone parameter.
- Vcd or led output to the LM5025.
- the LM5025 adjusts the dead time between the two primary mosfets to the required value, for example, adjusting the dead time between the two mosfets of Q 1 and Qc; and/or adjusting the primary side
- the dead time between the mosfet and the secondary mosfet reaches the required value, for example, adjusting the dead time between the two mosfets of Q1 and Q2.
- the LM5025 After receiving the new dead zone signal, the LM5025 adjusts the dead time between mosfets to a larger value, thereby reducing The inrush current at the time of small turn-on causes the voltage spike of the mosfet to be smaller when it is turned on, so that the switching loss is reduced and the efficiency is improved.
- the signal processing section When the load enters the heavy load, the sampled current becomes larger, and the signal processing section outputs a signal, which can make the LM5025 reduce the dead time, so that the synchronous rectification mosfet body diode conduction time becomes shorter and the loss becomes smaller. , efficiency has improved.
- the signal processing unit output Vcd or led may be determined according to actual conditions. For example, if the device that subsequently adjusts the dead time requires voltage input, the signal processing unit may output Vcd, if the device that subsequently adjusts the dead time requires current input. , the signal processing unit can output led, Vcd and led can be converted by a resistor.
- Fig. 4 is a block diagram showing the construction of a power supply unit according to a third embodiment of the present invention.
- Fig. 4 another form of application of the active clamp forward converter is shown.
- the current sampling is different.
- the current on the primary side mosfet is directly sampled, and the pulse current is taken. Therefore, a filter loop is added and filtered into an average value. When this average signal becomes larger, the LM5025 will reduce the dead band and vice versa.
- FIG. 5 is a schematic structural diagram of a signal processing unit according to an embodiment of the present invention, including an operational amplifier 51, wherein the operational amplifier 51 is configured to perform amplification processing on an added value or a difference between a voltage representing a magnitude of a sampled current and a reference voltage, Obtaining the dead zone parameter, the magnification used by the amplification process
- the absolute value of the number may be greater than 1, equal to 1 or less than 1, in order to adjust the dead time according to the dead zone parameter, such that the dead time has an inverse relationship with the sampled current, and the dead time Positively related to the input voltage.
- the operational amplifier may also be replaced by an adder and an amplifier, and the adder is configured to obtain the added value of the voltage and the reference voltage that characterize the magnitude of the sampled current, or obtain the sampled voltage and the reference voltage. Difference; the adder can be a simple resistor network or a dedicated adder circuit.
- the amplifier is configured to perform amplification processing on the voltage signal processed by the adder to obtain the dead zone parameter, and the absolute value of the amplification factor used in the amplification process may be greater than 1, equal to 1 or less than 1, so as to be When the dead zone parameter adjusts the dead time, the dead time is inversely related to the sampled current, and the dead time has a positive relationship with the input voltage.
- the specific manner of adjusting the dead time according to each parameter in the above adjustment process is not limited, as long as the dead time is reduced when the current to be sampled is increased, and the dead time is increased when the sampled current is decreased. Time; and / or, when the input voltage increases, increase the dead time, when the input voltage decreases, reduce the dead time.
- the voltage representing the magnitude of the sampled current is used as the negative input of the operational amplifier, and the reference voltage is used as the positive input of the operational amplifier. If the output is Vcd, then Vcd needs to be increased. The control dead time is reduced. After that, the mosfet that needs to be controlled remains in the off state during the adjusted dead time.
- the value of the change is not limited. It can be set according to actual needs. For example, the sampled current is increased by A value, and the reduced dead time is B. A and B can be set according to actual needs.
- the adjustment speed can be controlled, that is, the embodiment may further include an adjustment speed control module, which is used to speed up the generation of the dead zone parameter when the dead time is increased or the load is decreased. And, when the dead time is reduced or the load is increased, the generation speed of the dead zone parameter is reduced. Therefore, after adjusting the speed control module, if the dead time is increased or the load is reduced, the speed of the dead time can be increased due to the faster speed of the dead zone parameter. If the dead time is reduced or the load is increased, The generation rate of the dead zone parameter is reduced, The adjustment speed of the dead time can be reduced.
- an adjustment speed control module which is used to speed up the generation of the dead zone parameter when the dead time is increased or the load is decreased.
- the reference voltage Vref and the voltage Viv characterization of the magnitude of the sampled current are respectively applied to the non-inverting input and the inverting input of the operational amplifier, processed by the operational amplifier, and then converted into a representation by the adjusted speed control module.
- the current signal of the dead time is led, and the PWM chip can control the MOSFET switch according to the current signal.
- the dead zone adjustment speed control module can be divided into two parts:
- DDT1, RDT3, RDT4, and CDT2 form the first part.
- the first part can make the dead time increase faster, and the dead time decrease when the speed becomes longer.
- the output voltage of the op amp rises, charging the capacitor CDT2, there are two branches, RDT4-strip, DDT1 and RDT3 are the other, so the charging speed is faster; when the dead time is reduced, The output voltage of the op amp is reduced, and the capacitor is discharged.
- the discharge has only one branch RDT4, and the other branch is reversed by the diode DDT1. Therefore, the discharge speed becomes slower, and the regulation speed decreases as the dead time decreases.
- R5, D2, R121, Dl, R38 form the second part.
- This part can be equivalent to a variable resistor whose resistance varies with the voltage across CDT2.
- FIG. 6 is a schematic flowchart of a method according to a fourth embodiment of the present invention, including:
- Step 61 The current sampling unit samples the primary current of the power converter, and generates a voltage for characterizing the magnitude of the sampled current;
- a resistor connected in series on the primary side samples the current of the input bus of the primary side and obtains the voltage characterizing the magnitude of the sampled current.
- the sampling module samples the current from the primary side mosfet and obtains a corresponding voltage according to the sampled current; the filtering module filters the voltage corresponding to the sampled current to obtain the voltage that characterizes the magnitude of the sampled current.
- Step 62 The reference voltage generating unit generates a reference voltage, the reference voltage is a constant value or In inverse relationship with the input voltage of the primary side;
- FIG. 7 is a schematic flow chart of generating a reference voltage by a reference voltage generating unit according to an embodiment of the present invention, including:
- Step 71 The PWM chip generates a first PWM wave.
- Step 72 The mosfet discharges the capacitor according to the first PWM wave
- Step 73 The capacitor receives charging of the input voltage and discharge of the mosfet to generate a sawtooth wave
- Step 74 The comparator compares the sawtooth wave with a predetermined voltage to generate a second PWM wave, and a duty ratio of the second PWM wave is inversely proportional to a duty ratio of the input voltage;
- Step 75 The filter filters the second PWM wave to generate a DC voltage that is inversely related to the input voltage.
- the DC voltage may be used as a reference voltage, or may include:
- Step 76 The trimmer fine-tunes the DC voltage to generate the reference voltage, and the trimming value may be set according to actual needs.
- Step 63 The signal processing unit generates a dead zone parameter for characterizing the dead time according to the voltage and the reference voltage that characterize the magnitude of the sampled current, and the dead zone parameter is a voltage value or a current value; Obtaining the sum of the voltage and the reference voltage that characterize the magnitude of the sampled current, or obtaining the difference between the voltage and the reference voltage that characterize the magnitude of the sampled current; and amplifying the voltage signal processed by the adder by using an amplifier Processing, the dead zone parameter is obtained, and the absolute value of the magnification used by the amplification process is greater than 1, equal to 1 or less than 1, so as to adjust the dead time according to the dead zone parameter, so that the dead time is
- the sampling current is in an inverse relationship, and the dead time is positively changed in relation to the input voltage; or, the operational amplifier is used to obtain the voltage and the reference voltage which are used to represent the magnitude of the sampled current, and the reference voltage is added or subtracted.
- the amplified value of the voltage value, the amplified value is used as the dead zone parameter, and the absolute value of the corresponding magnification is greater than 1, etc. 1 or less than 1, so that dead time is adjusted according to the dead zone parameters, such that the The dead time is inversely related to the sampled current, and the dead time is positively related to the input voltage.
- the speed of the dead zone parameter may be accelerated when the dead time is increased or the load is decreased, and the dead zone is decreased when the dead time is reduced or the load is increased. The speed at which the parameters are generated.
- Step 64 The control unit adjusts the dead time according to the dead zone parameter, so that the dead time has an inverse relationship with the sampled current, and the dead time has a positive relationship with the input voltage, and Performing switching control on the primary side mosfet in the power converter, or on the primary side mosfet and the secondary side mosfet in the power converter according to the adjusted dead time; wherein, when the sampled current is increased The adjusted dead time is reduced. When the sampled current decreases, the adjusted dead time increases. When the input voltage increases, the adjusted dead time increases. When the input voltage decreases, the adjusted deadband decreases. The time is reduced.
- switching the primary side mosfet in the power converter according to the adjusted dead time, or switching the primary side mosfet and the secondary side mosfet in the power converter may include: controlling the The time when the primary side mosfet in the power converter and the secondary side mosfet in the power converter are simultaneously in the off state is the adjusted dead time.
- the current sampling unit, the reference voltage generating unit, the signal processing unit, and the control unit may all be hardware.
- the dead time is adjusted by the hardware, which can reduce the complexity and increase the adjustment speed. It can be understood that related features in the above methods and devices can be referred to each other. In addition, “first”, “second”, and the like in the above embodiments are used to distinguish the embodiments, and do not represent the advantages and disadvantages of the embodiments.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Dc-Dc Converters (AREA)
Description
电源装置及调节死区时间的方法 技术领域 本发明涉及电源技术, 尤其涉及一种电源装置及调节死区时间的方法。 背景技术 随着环保意识的提高, 人们对电器的能源效率的要求越来越高, 随之, 对电源变换器的转换效率的要求也越来越高。 电源变换器的损耗主要分布在 磁性器件和开关管上, 开关管的损耗分为开关损耗和导通损耗。 开关损耗不 仅和开关管本身有关, 还和控制电路的控制有关。 在隔离电源变换器里, 初 级开关管和次级同步整流开关管相互之间的死区时间对效率的影响比较大, 负载轻时需要较大死区时间, 负载重时需要较小的死区时间; 输入电压高时 需要较大死区时间, 输入电压低时需要较小死区时间。 现有技术主要通过数 字技术, 副边控制技术, 直接在副边检测负载电流, 由软件来调节死区时间。 但是现有技术计算复杂, 速度很慢, 不能满足动态负载应用场合, 转换效率 较差。 发明内容 本发明实施例是提供一种电源装置及调节死区时间的方法, 用以解决现 有技术实现较慢的问题, 提高转换效率。
本发明实施例提供了一种电源装置, 包括电源变换器及调节器, 所述电 源变换器包括原边副边和对所述原边和副边进行电压变换的变压器, 所述原 边 mosfet连接到所述变压器的初级绕组, 所述副边 mosfet连接到所述变压器 的次级绕组, 所述调节器包括:
电流采样单元, 用于对所述电源变换器的电流进行采样, 并产生用于表 征被采样电流大小的电压;
参考电压产生单元, 用于产生参考电压, 所述参考电压为恒定值或者与 所述原边的输入电压呈反向变化关系;
信号处理单元, 用于根据所述表征被采样电流大小的电压和参考电压,
产生用于表征死区时间的死区参数, 所述死区参数为电压值或者电流值; 控制单元, 用于根据所述死区参数调节死区时间, 使得所述死区时间与 被采样电流呈反向变化关系, 以及, 所述死区时间与所述输入电压呈正向变 化关系, 并根据调节后的死区时间对所述电源变换器中的原边 mosfet, 或者 对所述原边 mosfet和所述电源变换器中的副边 mosfet进行开关控制。 本发明实施例了提供一种调节死区时间的方法, 包括:
对电源变换器的原边电流进行采样, 并产生用于表征被采样电流大小的 电压;
产生参考电压, 所述参考电压为恒定值或者与所述原边的输入电压呈反 向变化关系;
根据所述表征被采样电流大小的电压和参考电压, 产生用于表征死区时 间的死区参数, 所述死区参数为电压值或者电流值;
根据所述死区参数调节死区时间, 使得所述死区时间与被采样电流呈反 向变化关系, 以及, 所述死区时间与所述输入电压呈正向变化关系, 并根据 调节后的死区时间对所述电源变换器中的原边 mosfet , 或者, 对所述原边 mosfet和所述电源变换器中的副边 mosfet进行开关控制。
由上述技术方案可知, 本发明实施例通过考虑输入电压及被采样电流的 大小, 并根据上述两个参数进行死区调节, 可以降低复杂度, 提高转换效率。 附图说明 为了更清楚地说明本发明实施例中的技术方案, 下面将对实施例描述中 所需要使用的附图作一简单地介绍, 显而易见地, 下面描述中的附图是本发 明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动性的 前提下, 还可以根据这些附图获得其他的附图。
图 1为本发明第一实施例的电源装置的结构示意图;
图 2为本发明实施例中参考电压产生单元的结构示意图;
图 3为本发明第二实施例的电源装置的结构示意图;
图 4为本发明第三实施例的电源装置的结构示意图;
图 5为本发明实施例中的信号处理单元的结构示意图;
图 6为本发明第四实施例的方法流程示意图;
图 Ί为本发明实施例中参考电压产生单元产生参考电压的流程示意图。 具体实施方式 为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合 本发明实施例中的附图, 对本发明实施例中的技术方案进行清楚、 完整地描 述, 显然, 所描述的实施例是本发明一部分实施例, 而不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有做出创造性劳动前提下 所获得的所有其他实施例, 都属于本发明保护的范围。
图 1 为本发明第一实施例的电源装置的结构示意图, 包括电源变换器和 调节器, 电源变换器包括原边金属-氧化物-半导体场效应晶体管 ( Metal-Oxide-Semiconductor Field-Effect Transistor, MOSFET ) 111、 副边 mosfet 112和变压器 113 , 所述原边 mosfet连接到所述变压器的初级绕组, 所 述副边 mosfet连接到所述变压器的次级绕组。
其中, 调节器包括电流采样单元 121、 参考电压产生单元 122、 信号处理 单元 123和控制单元 124。电流采样单元 121用于对所述电源转换器的原边电 流进行采样, 并产生用于表征被采样电流大小的电压 Viv; 参考电压产生单元 122用于产生参考电压 Vref,所述参考电压为恒定值或者与所述电源变换器的 原边的输入电压 Vin呈反向变化关系; 信号处理单元 123用于根据所述电压 Viv和参考电压, 产生用于表征死区时间的死区参数, 该死区参数可以为电压 值 Vcd或者电流值 led; 控制单元 124用于根据所述死区参数调节死区时间,
使得所述死区时间与被采样电流呈反向变化关系, 以及, 所述死区时间与所 述输入电压呈正向变化关系, 并根据调节后的死区时间对所述电源变换器中 的原边 mosfet ( Q1 ) , 或者对所述原边 mosfet ( Q1 )和所述电源变换器中的 副边 mosfet ( Q2 )进行开关控制。 例如, 控制单元 124具体用于控制所述电 间, 或者, 控制所述原边 mosfet和所述电源变换器中的副边 mosfet同时处于 关断状态的时间为所述调节后的死区时间。
其中, 上述的所述死区时间与被采样电流呈反向变化关系, 以及, 所述 死区时间与输入电压呈正向变化关系具体包括: 当被采样电流增加时, 调节 后的死区时间减小, 当被采样电流减小时, 调节后的死区时间增加; 当输入 电压增加时, 调节后的死区时间增加, 当输入电压减小时, 调节后的死区时 进一步地, 为了实现高速控制, 所述电流采样单元 121、 参考电压产生单 元 122、 信号处理单元 123和控制单元 124可以均为硬件。
另外, 为了实现原边与副边的隔离, 在原边与副边之间加入了隔离及驱 动电路。
其中,图 2为本发明实施例中参考电压产生单元的结构示意图,参见图 2, 参考电压产生单元包括脉冲宽度调制 ( Pulse Width Modulation, PWM ) 芯片 21、 mosfet 22、 电容 23、 比较器 24、 滤波器 25; 所述 PWM芯片 21用于产 生第一 PWM波, 该第一 PWM波可以根据实际需要配置; 所述 mosfet 22用 于根据所述第一 PWM波对所述电容进行放电; 所述电容 23用于接受所述电 源变换器的原边的输入电压的充电及所述 mosfet的放电, 产生锯齿波; 所述 比较器 24用于比较所述锯齿波与预定的电压, 产生第二 PWM波, 所述第二 PWM波的占空比与所述输入电压的占空比成反比; 所述滤波器 25用于对所 述第二 PWM波进行滤波, 产生与所述输入电压呈反向变化关系的直流电压。
之后, 可以将该直流电压作为参考电压, 或者, 进一步包括: 调器 26, 所 述微调器 26用于对所述直流电压进行微调, 产生所述参考电压。
具体地, Vin通过 R1给 C1充电, Q1则给 C1放电, 一充一放, 在电 容 C1上形成锯齿波。 Q1的开关控制信号来自 PWM芯片。 S1是比较器, 接 收锯齿波, 把锯齿波和给定电压比较, 产生一个新的 PWM波, 占空比和输入 电压 Vin成反比。 新的 PWM波通过 R6、 C4、 R7、 C5、 Rl l和 C6滤波成一 个和输入电压 Vin成反比的直流电压, 再和 V4相加形成参考电压 Vref。 V4 用来对 Vref 进行微调, 以满足不同应用场景, 可以根据实际应用时采用的数 值范围通过微调补偿滤波时造成的偏差, 以便于 Viv进行比较。
另外, 本实施例以参考电压与输入电压呈反向变化关系为例, 也可以将 参考电压取为恒定值(该值不限定) , 此时, 由于控制死区调节的参数 Vcd 或者 led不仅与参考电压有关,也与表征被采样的电流的大小的电压有关, 而 被采样的电流的大小与负载情况有关, 因此, 可以实现根据负载情况调节死 区时间, 实现负载轻时具有较大死区时间, 负载重时具有较小的死区时间, 满足一定场景需求。
本实施例的电流采样和 PWM芯片都在原边,控制更简单方便;参考电压 随输入电压变化, 并且被采样的电流是与负载和输入电压相关的, 因此可以 随着输入电压和 /或负载变化而调节死区时间。
在具体实施例时, 可以采用不同的方式进行电流采样, 例如, 所述电流 采样单元具体用于对电源变换器原边的输入总线的电流进行采样, 并得到所 述表征被采样电流大小的电压。 或者, 所述电流采样单元包括: 采样模块, 用于从所述原边 mosfet上采样电流并根据被采样电流得到对应的电压; 滤波 模块, 用于根据所述采样电流对应的电压得到所述表征被采样电流大小的电 压。 下面分别描述。
图 3为本发明第二实施例的电源装置的结构示意图, 参见图 3 , 可以在有
源嵌位正激变换器中应用。作为电流采样单元的 R1通过对输入总线的电流进 行采样, 得到表征被采样的电流大小的电压 Viv,信号处理单元接收到参考电 压 Vref和表征被采样电流大小的电压 Viv, 经过处理产生死区参数 Vcd或者 led, 输出给 LM5025。 LM5025根据此死区参数 Vcd或者 led, 调节两个原 边 mosfet之间的死区时间到要求的值, 例如调节 Q 1 ,Qc两个 mosfet之间的死 区时间; 和 /或, 调节原边 mosfet和副边 mosfet之间的死区时间到要求的值, 例如调节 Q1,Q2两个 mosfet之间的死区时间。 当输入电压升高时, Vref变小, 信号处理环节输出的信号也发生变化, LM5025接收到新的死区信号后, 就把 mosfet之间的死区时间调到一个更大的值, 从而减小开通时的冲击电流, 进 而使 mosfet的开通时电压尖峰更小, 于是, 开关损耗也就降低了, 效率就提 高了。 当负载进入重载时, 被采样的电流变大, 信号处理环节会输出一个信 号, 该信号可以使 LM5025把死区时间变小, 这样, 同步整流 mosfet体二极 管导通时间变短, 损耗变小, 效率提高了。
在具体实施时, 可以根据实际情况确定信号处理单元输出 Vcd或者 led, 例如,后续调节死区时间的设备需要电压输入,则信号处理单元可以输出 Vcd, 如果后续调节死区时间的设备需要电流输入, 则信号处理单元可以输出 led, Vcd和 led可以通过电阻进行转换。
图 4为本发明第三实施例的电源装置的结构示意图, 参见图 4, 在有源嵌 位正激变换器的应用的又一种形式。 和图 3相比, 电流采样有所不同, 此处 直接采样原边 mosfet上的电流, 采得的是脉冲电流, 所以再增加一个滤波环 节, 滤成平均值。 当此平均值信号变大时, LM5025会把死区调小, 反之则调 大。
图 5 为本发明实施例中的信号处理单元的结构示意图, 包括运算放大器 51 , 所述运算放大器 51用于对表征被采样电流大小的电压和参考电压的相加 值或者差值进行放大处理, 得到所述死区参数, 所述放大处理采用的放大倍
数的绝对值可以大于 1、 等于 1或者小于 1 , 以便根据所述死区参数调节死区 时间时, 使得所述死区时间与被采样电流呈反向变化关系, 以及, 所述死区 时间与输入电压呈正向变化关系。 在具体实施例, 该运算放大器也可以替换 为加法器和放大器, 所述加法器用于得到所述表征被采样电流大小的电压和 参考电压的相加值, 或者得到所述采样电压和参考电压的差值; 加法器可以 是简单的电阻网络或专用的加法电路。 所述放大器用于对所述加法器处理后 的电压信号进行放大处理, 得到所述死区参数, 所述放大处理采用的放大倍 数的绝对值可以大于 1、 等于 1或者小于 1 , 以便根据所述死区参数调节死区 时间时, 使得所述死区时间与被采样电流呈反向变化关系, 以及, 所述死区 时间与输入电压呈正向变化关系。
另外, 对上述调节过程中的根据各参数对死区时间进行调节的具体方式 不做限定, 只要保证在被采样的电流增加时, 减小死区时间, 被采样的电流 减小时, 增加死区时间; 和 /或, 输入电压增加时, 增加死区时间, 输入电压 减小时, 减小死区时间。 例如, 如果采用图 5 所示的信号处理单元, 表征被 采样电流大小的电压作为运算放大器的负输入端, 参考电压作为运算放大器 的正输入端, 假设输出为 Vcd, 则 Vcd变大时, 需要控制死区时间减小。 之 后, 将需要控制的 mosfet在调节后的死区时间内均保持在关断状态。 另外, 变化的数值也不做限定可以根据实际需要设定, 例如, 被采样的电流增加 A 值, 减小的死区时间为 B, A和 B可以根据实际需要设定。
另外, 为了更有效地对死区时间进行调节可以控制调节速度, 即本实施 例还可以包括调节速度控制模块, 用于当死区时间调大或者负载减小时加快 所述死区参数的产生速度, 以及, 当死区时间调小或者负载增加时减小所述 死区参数的产生速度。 因此, 采用调节速度控制模块后, 如果死区时间调大 或者负载减小时, 由于死区参数的产生速度加快, 可以加快死区时间的调节 速度, 如果死区时间调小或者负载增加时, 由于死区参数的产生速度减小,
可以减小死区时间的调节速度。
具体地, 参见图 5, 参考电压 Vref和表征被采样电流大小的电压 Viv分 别加到运算放大器的同相输入端和反相输入端, 经过运算放大器处理后, 再 经过调节速度控制模块转换成一个表征死区时间的电流信号 led, PWM 芯片 可按照此电流信号去控制 MOSFET开关。 死区调节速度控制模块可分成两部 分:
1 ) DDT1, RDT3, RDT4, CDT2组成第一部分, 第一部分可让死区时间增 加时速度变快, 死区时间减小时速度变曼。 具体地, 死区时间增加时, 运放 输出电压升高,给电容 CDT2充电,有两条支路, RDT4—条, DDT1和 RDT3 为另一条, 所以充电速度较快; 死区时间减小时,运放输出电压降低, 给 电容放电, 放电只有一条支路 RDT4, 另一条支路由于二极管 DDT1反向截 至, 不通, 因此, 放电速度变慢, 死区时间减小时调节速度也跟着变慢。
2 ) R5, D2, R121 , Dl , R38组成第二部分。 这部分可等效成一个可变 电阻, 阻值随 CDT2 两端的电压变化。 当被采样电流较小时, 运放输出电压 较高, CDT2两端的电压较高,等效电阻值随被采样电流减小而迅速变大, led 迅速变小, 死区时间迅速变大。
图 6为本发明第四实施例的方法流程示意图, 包括:
步骤 61 : 电流采样单元对电源变换器的原边电流进行采样, 并产生用于 表征被采样电流大小的电压;
可以是, 串联在原边上的电阻对所述原边的输入总线的电流进行采样, 并得到所述表征被采样电流大小的电压。
也可以是, 采样模块从所述原边 mosfet上采样电流并根据被采样电流得 到对应的电压; 滤波模块对所述被采样电流对应的电压滤波得到所述表征被 采样电流大小的电压。
步骤 62: 参考电压产生单元产生参考电压, 所述参考电压为恒定值或者
与所述原边的输入电压呈反向变化关系;
其中, 图 7 为本发明实施例中参考电压产生单元产生参考电压的流程示 意图, 包括:
步骤 71 : PWM芯片产生第一 PWM波;
步骤 72: mosfet根据所述第一 PWM波对所述电容进行放电;
步骤 73: 所述电容接受所述输入电压的充电及所述 mosfet的放电, 产生 锯齿波;
步骤 74: 比较器比较所述锯齿波与预定的电压, 产生第二 PWM波, 所 述第二 PWM波的占空比与所述输入电压的占空比成反比;
步骤 75: 滤波器对所述第二 PWM波进行滤波, 产生与所述输入电压呈 反向变化关系的直流电压; 之后, 可以将该直流电压作为参考电压, 或者, 还包括:
步骤 76: 微调器对所述直流电压进行微调, 产生所述参考电压, 该微调 值可以根据实际需要设定。
步骤 63:信号处理单元根据所述表征被采样电流大小的电压和参考电压, 产生用于表征死区时间的死区参数, 所述死区参数为电压值或者电流值; 可以是, 采用加法器得到所述表征被采样电流大小的电压和参考电压的 相加值, 或者得到所述表征被采样电流大小的电压和参考电压的差值; 采用 放大器对所述加法器处理后的电压信号进行放大处理, 得到所述死区参数, 所述放大处理采用的放大倍数的绝对值大于 1、 等于 1或者小于 1 , 以便根据 所述死区参数调节死区时间时, 使得所述死区时间与被采样电流呈反向变化 关系, 以及, 所述死区时间与输入电压呈正向变化关系; 或者, 采用运算放 大器得到所述表征被采样电流大小的电压和参考电压相加或者相减处理后得 到的电压值的放大值, 将放大值作为死区参数, 对应的放大倍数的绝对值大 于 1、 等于 1或者小于 1 , 以便根据所述死区参数调节死区时间时, 使得所述
死区时间与被采样电流呈反向变化关系, 以及, 所述死区时间与输入电压呈 正向变化关系。
另外, 在产生死区参数时, 可以是, 当死区时间调大或者负载减小时加 快所述死区参数的产生速度, 以及, 当死区时间调小或者负载增加时减小所 述死区参数的产生速度。
步骤 64: 控制单元根据所述死区参数调节死区时间, 使得所述死区时间 与被采样电流呈反向变化关系, 以及, 所述死区时间与所述输入电压呈正向 变化关系, 并根据调节后的死区时间对所述电源变换器中的原边 mosfet, 或 者, 对所述原边 mosfet和所述电源变换器中的副边 mosfet进行开关控制; 其中, 当被采样电流增加时, 调节后的死区时间减小, 当被采样电流减 小时, 调节后的死区时间增加; 当输入电压增加时, 调节后的死区时间增加, 当输入电压减小时, 调节后的死区时间减小。 另外, 根据调节后的死区时间 对所述电源变换器中的原边 mosfet, 或者, 对所述原边 mosfet和所述电源变 换器中的副边 mosfet进行开关控制, 可以包括: 控制所述电源变换器中的原 述原边 mosfet和所述电源变换器中的副边 mosfet同时处于关断状态的时间为 所述调节后的死区时间。
所述电流采样单元、 参考电压产生单元、 信号处理单元和控制单元可以 均为硬件。
本实施例由硬件进行死区时间的调节, 可以降低复杂度, 提高调节速度。 可以理解的是, 上述方法及设备中的相关特征可以相互参考。 另外, 上 述实施例中的 "第一" 、 "第二" 等是用于区分各实施例, 而并不代表各实 施例的优劣。
本领域普通技术人员可以理解: 实现上述方法实施例的全部或部分步骤 可以通过程序指令相关的硬件来完成。
最后应说明的是: 以上实施例仅用以说明本发明的技术方案, 而非对其限 制; 尽管参照前述实施例对本发明进行了详细的说明, 本领域的普通技术人 员应当理解: 其依然可以对前述各实施例所记载的技术方案进行修改, 或者 对其中部分技术特征进行等同替换; 而这些修改或者替换, 并不使相应技术 方案的本质脱离本发明各实施例技术方案的精神和范围。
Claims
1、 一种电源装置, 包括电源变换器及调节器, 所述电源变换器包括原边金 属-氧化物-半导体场效应晶体管 mosfet、副边 mosfet和变压器, 所述原边 mosfet 连接到所述变压器的初级绕组,所述副边 mosfet连接到所述变压器的次级绕组, 其特征在于, 所述调节器包括:
电流采样单元, 用于对所述电源变换器的原边电流进行采样, 并产生用于 表征被采样电流大小的电压;
参考电压产生单元, 用于产生参考电压, 所述参考电压为恒定值或者与所 述原边的输入电压呈反向变化关系;
信号处理单元, 用于根据所述表征被采样电流大小的电压和参考电压, 产 生用于表征死区时间的死区参数, 所述死区参数为电压值或者电流值;
控制单元, 用于根据所述死区参数调节死区时间, 使得所述死区时间与被 采样电流呈反向变化关系, 以及, 所述死区时间与所述输入电压呈正向变化关 系, 并根据调节后的死区时间对所述电源变换器中的原边 mosfet, 或者, 对所 述原边 mosfet和所述电源变换器中的副边 mosfet进行开关控制。
2、 根据权利要求 1所述的装置, 其特征在于, 当所述参考电压与所述输入 电压呈反向变化关系时, 所述参考电压产生单元包括:
PWM芯片、 mosfet、 电容、 比较器、 滤波器;
所述 PWM芯片用于产生第一 PWM波;
所述 mosfet用于根据所述第一 PWM波对所述电容进行放电;
所述电容用于接受所述输入电压的充电及所述 mosfet的放电,产生锯齿波; 所述比较器用于比较所述锯齿波与预定的电压,产生第二 PWM波,所述第 二 PWM波的占空比与所述输入电压的占空比成反比;
所述滤波器用于对所述第二 PWM波进行滤波,产生与所述输入电压呈反向 变化关系的直流电压, 以便根据所# f流 压产生所述参考电压。
3、 根据权利要求 2所述的装置, 其特征在于,
将所述滤波器产生的与所述输入电压呈反向变化关系的直流电压作为所述 参考电压; 或者,
所述参考电压产生单元还包括: 微调器, 用于对所述滤波器产生的直流电 压进行微调, 产生所述参考电压。
4、 根据权利要求 1-3任一项所述的装置, 其特征在于, 所述电流采样单元 具体用于对所述原边的输入总线的电流进行采样, 并得到所述表征被采样电流 大小的电压。
5、 根据权利要求 1-3任一项所述的装置, 其特征在于, 所述电流采样单元 包括:
采样模块, 用于从所述原边 mosfet上采样电流并根据被采样电流得到对应 的电压;
滤波模块, 用于对所述采样电流对应的电压滤波得到所述表征被采样电流 大小的电压。
6、 根据权利要求 1所述的装置, 其特征在于, 所述信号处理单元包括: 加法器, 用于得到所述表征被采样电流大小的电压和参考电压的相加值, 或者得到所述表征被采样电流大小的电压和参考电压的差值; 放大器, 用于对 所述加法器处理后的电压信号进行放大处理, 得到所述死区参数, 以便根据所 述死区参数调节死区时间时, 使得所述死区时间与被采样电流呈反向变化关系, 以及, 所述死区时间与输入电压呈正向变化关系;
或者,
运算放大器, 用于得到所述表征被采样电流大小的电压和参考电压相加或 者相减处理后得到的电压值的放大值, 将所述放大值作为死区参数, 以便根据 所述死区参数调节死区时间时, 使得所述死区时间与被采样电流呈反向变化关 系, 以及, 所述死区时间与输入电压呈正向变化关系。
7、 根据权利要求 6所述的装置, 其特征在于, 所述信号处理单元还包括: 调节速度控制模块, 用于当死区时间调大或者负载减小时加快所述死区参 数的产生速度, 以及, 当死区时间调小或者负载增加时减小所述死区参数的产 生速度。
8、 根据权利要求 1所述的方法, 其特征在于, 所述控制单元具体用于: 控制所述电源变换器中的原边 mosfet同时处于关断状态的时间为所述调节 后的死区时间, 或者, 控制所述原边 mosfet和所述电源变换器中的副边 mosfet
Λβ
9、 一种调节死区时间的方法, 其特征在于, 包括:
对电源变换器的原边电流进行采样, 并产生用于表征被采样电流大小的电 压;
产生参考电压, 所述参考电压为恒定值或者与所述原边的输入电压呈反向 变化关系;
根据所述表征被采样电流大小的电压和参考电压, 产生用于表征死区时间 的死区参数, 所述死区参数为电压值或者电流值;
根据所述死区参数调节死区时间, 使得所述死区时间与被采样电流呈反向 变化关系, 以及, 所述死区时间与所述输入电压呈正向变化关系, 并根据调节 后的死区时间对所述电源变换器中的原边 mosfet, 或者, 对所述原边 mosfet和 所述电源变换器中的副边 mosfet进行开关控制。
10、 根据权利要求 9所述的方法, 其特征在于, 当所述参考电压与所述输 入电压呈反向变化关系时, 所述产生参考电压, 包括:
产生第一 PWM波;
根据所述第一 PWM波对所述电容进行放电;
接受所述输入电压的充电及所述 mosfet的放电, 产生锯齿波;
比较所述三角波与预定的电压,产生第二 PWM波, 所述第二 PWM波的占 空比与所述输入电压的占空比成反比;
对所述第二 PWM波进行滤波,产生与所述输入电压呈反向变化关系的直流 电压, 以便根据所述直流电压产生所述参考电压。
11、 根据权利要求 10所述的方法, 其特征在于, 所述根据所述直流电压产 生所述参考电压, 包括:
将所述直流电压作为所述参考电压;
或者,
对所述直流电压进行 调, 产生所述参考电压。
12、 根据权利要求 9-11任一项所述的方法, 其特征在于, 所述对电源变换 器的原边电流进行采样, 并产生用于表征被采样电流大小的电压, 包括:
对所述原边的输入总线的电流进行采样, 并得到所述表征被采样电流大小 的电压。
13、 根据权利要求 9-11任一项所述的方法, 其特征在于, 所述对电源变换 器的原边电流进行采样, 并产生用于表征被采样电流大小的电压, 包括:
从所述原边 mosfet上采样电流并根据被采样电流得到对应的电压; 对所述被采样电流对应的电压滤波得到所述表征被采样电流大小的电压。
14、 根据权利要求 9所述的方法, 其特征在于, 所述根据所述表征被采样 电流大小的电压和参考电压, 产生用于表征死区时间的死区参数, 包括:
采用加法器得到所述表征被采样电流大小的电压和参考电压的相加值, 或 者得到所述表征被采样电流大小的电压和参考电压的差值; 采用放大器对所述 加法器处理后的电压信号进行放大处理, 得到所述死区参数, 以便根据所述死 区参数调节死区时间时, 使得所述死区时间与被采样电流呈反向变化关系, 以 及, 所述死区时间与输入电压呈正向变化关系;
或者,
采用运算放大器得到所述表征被采样电流大小的电压和参考电压相加或者 相减处理后得到的电压值的放大值, 将所述放大值作为死区参数, 以便根据所 述死区参数调节死区时间时, 使得所述死区时间与被采样电流呈反向变化关系, 以及, 所述死区时间与输入电压呈正向变化关系。
15、 根据权利要求 9所述的方法, 其特征在于, 所述产生用于表征死区时 间的死区参数, 包括:
当死区时间调大或者负载减小时加快所述死区参数的产生速度, 以及, 当 死区时间调小或者负载增加时减小所述死区参数的产生速度。
16、 根据权利要求 9所述的方法, 其特征在于, 所述根据调节后的死区时 间对所述电源变换器中的原边 mosfet, 或者, 对所述原边 mosfet和所述电源变 换器中的副边 mosfet进行开关控制, 包括:
控制所述电源变换器中的原边 mosfet同时处于关断状态的时间为所述调节 后的死区时间, 或者, 控制所述原边 mosfet和所述电源变换器中的副边 mosfet
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP12765432.5A EP2590307B1 (en) | 2011-03-29 | 2012-03-12 | Power supply device and method for regulating dead time |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110077249.9A CN102723872B (zh) | 2011-03-29 | 2011-03-29 | 电源装置及调节死区时间的方法 |
CN201110077249.9 | 2011-03-29 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2012130033A2 true WO2012130033A2 (zh) | 2012-10-04 |
WO2012130033A3 WO2012130033A3 (zh) | 2012-11-15 |
Family
ID=46931996
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2012/072207 WO2012130033A2 (zh) | 2011-03-29 | 2012-03-12 | 电源装置及调节死区时间的方法 |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP2590307B1 (zh) |
CN (1) | CN102723872B (zh) |
WO (1) | WO2012130033A2 (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113162425A (zh) * | 2021-04-13 | 2021-07-23 | 昂宝电子(上海)有限公司 | 用于控制有源钳位反激开关电源的死区时间的装置和方法 |
EP4105678A1 (en) | 2021-06-18 | 2022-12-21 | HELLA Saturnus Slovenija d.o.o. | Illuminated cover for electromagnetic transmitter and receiver |
CN118300399A (zh) * | 2024-06-05 | 2024-07-05 | 杭州元芯半导体科技有限公司 | 高频开关电源的死区时间控制方法及装置 |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2517761A (en) * | 2013-08-30 | 2015-03-04 | Control Tech Ltd | Dead-time selection in power converters |
CN103490605B (zh) * | 2013-10-12 | 2015-12-23 | 成都芯源系统有限公司 | 隔离式开关变换器及其控制器和控制方法 |
US9729061B2 (en) * | 2015-07-08 | 2017-08-08 | Qualcomm Incorporated | Boost regulator having adaptive dead time |
CN105763129B (zh) * | 2016-03-31 | 2019-07-26 | 广东美的环境电器制造有限公司 | 电机调速装置的死区时间确定方法及电机调速装置 |
CN108471227A (zh) * | 2018-04-12 | 2018-08-31 | 四川升华电源科技有限公司 | 一种功率变换器控制方法及装置 |
CN111092496B (zh) * | 2019-08-13 | 2021-06-11 | 浙江华云信息科技有限公司 | 一种磁耦合谐振式无线充电发射电路及无线充电发射装置 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10225118A (ja) * | 1997-02-04 | 1998-08-21 | Matsushita Electric Ind Co Ltd | 安定化電源装置 |
JP3237633B2 (ja) * | 1998-12-02 | 2001-12-10 | 株式会社村田製作所 | スイッチング電源装置 |
JP2002136127A (ja) * | 2000-10-26 | 2002-05-10 | Toshiba Corp | 電力変換回路 |
CN2554861Y (zh) * | 2001-12-05 | 2003-06-04 | 周仕祥 | 高效率低空载损耗交流/直流开关变换器 |
US7391194B2 (en) * | 2004-02-20 | 2008-06-24 | International Rectifier Corporation | Apparatus and method for minimizing power loss associated with dead time |
US7098640B2 (en) * | 2004-07-06 | 2006-08-29 | International Rectifier Corporation | Method and apparatus for intelligently setting dead time |
US7321498B2 (en) * | 2005-10-31 | 2008-01-22 | Honeywell International, Inc. | DC-DC converter having synchronous rectification without cross conduction |
US7675759B2 (en) * | 2006-12-01 | 2010-03-09 | Flextronics International Usa, Inc. | Power system with power converters having an adaptive controller |
US7639517B2 (en) * | 2007-02-08 | 2009-12-29 | Linear Technology Corporation | Adaptive output current control for switching circuits |
CN101453165A (zh) * | 2007-11-29 | 2009-06-10 | 上海辰蕊微电子科技有限公司 | 开关电源峰值电流控制中的电压前馈方法 |
CN101552560B (zh) * | 2009-01-13 | 2011-06-22 | 成都芯源系统有限公司 | 一种开关稳压电路及其控制方法 |
CN101951177B (zh) * | 2010-09-06 | 2014-05-07 | Bcd半导体制造有限公司 | 开关电源系统及开关电源控制电路 |
-
2011
- 2011-03-29 CN CN201110077249.9A patent/CN102723872B/zh active Active
-
2012
- 2012-03-12 WO PCT/CN2012/072207 patent/WO2012130033A2/zh active Application Filing
- 2012-03-12 EP EP12765432.5A patent/EP2590307B1/en active Active
Non-Patent Citations (2)
Title |
---|
None |
See also references of EP2590307A4 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113162425A (zh) * | 2021-04-13 | 2021-07-23 | 昂宝电子(上海)有限公司 | 用于控制有源钳位反激开关电源的死区时间的装置和方法 |
EP4105678A1 (en) | 2021-06-18 | 2022-12-21 | HELLA Saturnus Slovenija d.o.o. | Illuminated cover for electromagnetic transmitter and receiver |
CN118300399A (zh) * | 2024-06-05 | 2024-07-05 | 杭州元芯半导体科技有限公司 | 高频开关电源的死区时间控制方法及装置 |
Also Published As
Publication number | Publication date |
---|---|
CN102723872B (zh) | 2014-09-03 |
WO2012130033A3 (zh) | 2012-11-15 |
EP2590307A4 (en) | 2014-11-26 |
CN102723872A (zh) | 2012-10-10 |
EP2590307A2 (en) | 2013-05-08 |
EP2590307B1 (en) | 2017-03-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2012130033A2 (zh) | 电源装置及调节死区时间的方法 | |
US10439501B2 (en) | Resonant power converter and frequency tracking method for resonant power converter | |
US9762113B2 (en) | Control circuit, control method and flyback converter | |
CN100461601C (zh) | 一种实现隔离高频开关dc-dc变换的系统及方法 | |
US8861236B2 (en) | Switching power supply with self-optimizing efficiency | |
JP5803945B2 (ja) | 電力変換装置 | |
US20100177536A1 (en) | Dc-dc power supply apparatus method for improving dc-dc power supply apparatus | |
WO2012119107A1 (en) | Digital pulse-frequency modulation controller for switch-mode power supplies with frequency targeting and ultrasonic modes | |
WO2015027750A1 (zh) | 一种Boost控制器及Boost变换器 | |
JP2012501156A5 (zh) | ||
TW201838303A (zh) | 控制裝置及控制方法 | |
JP2009148149A (ja) | 昇降圧チョッパ回路の制御方法 | |
WO2020062837A1 (zh) | 逆变器系统 | |
WO2015120689A1 (zh) | 一种dc-dc转换电路及方法 | |
CN115642805A (zh) | 基于ZVS的六开关buck-boost变换器 | |
CN108075634B (zh) | 用于功率因数校正变换器的控制装置及控制方法 | |
CN105141043B (zh) | 无线充电控制方法和装置 | |
CN109217668A (zh) | 可调整电感电流阈值的切换式电源供应器及控制方法 | |
WO2013159499A1 (zh) | 电压调整电路 | |
CN107612030B (zh) | 一种电流准临界连续且器件软开关的光伏变换器 | |
US8816609B2 (en) | Method and circuit for improving crest factor of gas discharge lamp | |
Sano et al. | Improving dynamic performance and efficiency of a resonant switched-capacitor converter based on phase-shift control | |
Chen et al. | Light-load efficiency optimization for module integrated converters in photovoltaic systems | |
JP5188939B2 (ja) | 電力変換装置及びその制御方法 | |
KR102721196B1 (ko) | Dc/dc 전력변환기에 적용되는 오버슈트 및 과도기를 최소화하는 초고속 제어방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12765432 Country of ref document: EP Kind code of ref document: A2 |
|
REEP | Request for entry into the european phase |
Ref document number: 2012765432 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012765432 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |