WO2012129900A1 - 一种具有激发式的高能量供电装置 - Google Patents

一种具有激发式的高能量供电装置 Download PDF

Info

Publication number
WO2012129900A1
WO2012129900A1 PCT/CN2011/080422 CN2011080422W WO2012129900A1 WO 2012129900 A1 WO2012129900 A1 WO 2012129900A1 CN 2011080422 W CN2011080422 W CN 2011080422W WO 2012129900 A1 WO2012129900 A1 WO 2012129900A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
supply device
battery
type according
excitation type
Prior art date
Application number
PCT/CN2011/080422
Other languages
English (en)
French (fr)
Inventor
于文学
Original Assignee
昆山金鼎新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN2011100814576A external-priority patent/CN102201562A/zh
Priority claimed from CN201110114404XA external-priority patent/CN102263296A/zh
Priority claimed from CN2011203429260U external-priority patent/CN202363553U/zh
Application filed by 昆山金鼎新能源科技有限公司 filed Critical 昆山金鼎新能源科技有限公司
Publication of WO2012129900A1 publication Critical patent/WO2012129900A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0413Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • H01M10/12Construction or manufacture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to the field of power supply and can be used for wind energy, solar energy, communication, power transmission systems, power plants, automobiles, pure electric vehicles, motorcycles, mopeds, mines, household appliances, lighting and the like. Background technique
  • lead-acid batteries batteries with light weight and large discharge capacity are required for starting, Lighting and ignition, on the other hand, the need for a safe, reliable and long-life battery as a backup power source, so the rapid growth of the number of cars and phones has greatly promoted the development and industrial production of lead-acid batteries.
  • lead-acid batteries have begun to be used in automobiles, motorcycles, railways, mines, communications and other fields.
  • the positive electrode plate containing the positive electrode active material and the negative electrode plate containing the negative electrode active material are immersed in the electrolyte, and the positive electrode reaction and the negative electrode reaction are relatively independently generated on the positive electrode plate and the negative electrode plate, respectively, and then relatively independent.
  • the positive electrode plates are connected to each other to collect positive charges on the positive electrode plates to form a positive current
  • the negative electrode plates are connected to each other to collect negative charges on the negative electrode plates to form a negative current. Then, the positive current and the negative current are respectively conducted to the positive electrode and the negative electrode by means of a bus bar or the like.
  • the positive current and the negative current must be separately collected and conducted, so it is necessary to use a metal grid or a metal grid to charge the positive and negative plates respectively. Then, they are respectively conducted through the respective tabs, and finally the positive current and the negative current are separately transmitted through the bus bars.
  • the internal structure of the conventional lead-acid battery is not only complicated but also uses a large amount of metal (metal grid). , metal ribs, tabs and busbars, etc.)
  • the internal resistance of the lead-acid battery is increased, which further leads to an increase in the internal consumption of the lead-acid battery and an increase in the heat energy generated by the lead-acid battery.
  • the lead-acid battery discharges at a large current, the internal resistance increases sharply, and the voltage and current drop rapidly, so that the battery can not fully discharge the electric energy instantaneously, and because the internal resistance increases, the battery converts a part of the electric energy into heat energy, resulting in The waste of electrical energy, while the heat generated at the same time, easily damages the battery. Furthermore, since the internal resistance of the battery is increased, the battery cannot be charged at a large current, and it takes a long time to charge slowly, which is inconvenient for the user to use. A lead acid battery discharges a large amount of lead sulfate, and lead sulfate forms a resistance, further increasing. The internal resistance of the battery makes it difficult to charge and discharge the battery, so the existing battery has a short service life.
  • the capacity of lead-acid batteries is generally designed according to the amount of active substances (lead paste), the negative electrode is designed with the positive electrode, which is designed for the auxiliary positive electrode, because the negative electrode has no capacity, only the positive electrode is released.
  • the electric quantity, so the capacity of the battery is limited by the capacity of the positive electrode, and only local capacity can be generated.
  • the utilization rate of the living material of the existing battery does not exceed 35%, which greatly wastes resources.
  • One of the objects of the present invention is to effectively prevent lead dust, lead smoke, acid sewage and acid mist from leaking out during production, effectively eliminating potential pollution hazards, effectively reducing the installation of equipment for pollution treatment facilities, and saving a large amount of production investment. Protect the environment and eliminate pollution.
  • the second object of the present invention is to provide a high-energy power supply device, which saves a large amount of charging cost.
  • the third object of the present invention is to provide a high-energy power supply device which has a simple structure, a single standard for component parts, simplified production equipment, production line production, labor saving, reduced production cost, and is suitable for mass production.
  • the present invention discloses a high-energy power supply device having an excitation type, having an energized high-energy power supply device, characterized by comprising a battery having an output negative voltage or a positive voltage, the output having a negative voltage or a positive voltage
  • the battery includes a housing, a cover over the housing, at least one battery cell slot disposed in the housing filled with electrolyte, at least two electrical energy bodies, at least one spacer, at least two current collectors, and at least The two external terminals, the power body, the spacer and the current collector are located in the battery cell slot, and the power body and the power body are separated by the spacer, and the collector body is divided Do not connect to the external terminal.
  • the electrical energy body and the current collector are separated by the spacer.
  • the current collector is located at both end faces of the battery and is relatively preferably located in the battery cell slot, and the collector is located at both end faces of the battery and is relatively preferred in the battery cell slot.
  • the collector is located at both end faces of the battery and is relatively preferred in the battery cell slot.
  • An electric energy reactor unit wherein the electric energy reactor unit is located in the battery cell slot, and the current collector is located at both end faces of the electric energy reactor unit and is respectively connected to the external terminal.
  • At least two battery cell slots filled with the electrolyte, at least four of the electrical energy bodies, at least two of the spacers, and at least four of the current collectors are disposed in the battery.
  • the electrical energy body and the electrical energy body are separated by the spacer, and an intermediate cell is formed between the battery cell slot and the battery cell slot, wherein the current collector is located on both sides of the middle cell And the current collectors located at opposite inner sides of the battery and located opposite to the battery cell slot and corresponding to the intermediate grid are respectively connected to the external terminal.
  • the electrical energy body and the current collector are separated by the spacer.
  • At least two battery cell slots filled with the electrolyte, at least four of the electrical energy bodies, at least two of the spacers, and at least four of the current collectors are disposed in the battery. Between the electrical energy body and the electrical energy body and between the current collector and the electrical energy body are separated by at least one of the spacers, at least two of the electrical energy bodies, at least one of the spacers, and at least two
  • the current collector constitutes an electric energy reactor unit, the electric energy reactor unit is located in each of the battery cell slots, and the two current collectors are respectively located at both end faces of the electric energy reactor unit, and the The current collector of the tail end surface of the electric energy reactor unit is connected to the current collector located at the first end surface of the electric energy reactor unit, and the plurality of electric energy reactor units are connected into an electric energy reactor unit assembly.
  • the current collectors located at both end faces of the electrical energy reactor unit assembly are respectively connected to the external terminals.
  • At least two battery cell slots filled with the electrolyte, at least four of the electrical energy bodies, at least two of the spacers, and at least four of the current collectors are disposed in the battery.
  • Electrical body Separated from the electrical energy body and between the current collector and the electrical energy body by at least one of the spacers, at least two of the electrical energy bodies, at least one of the spacers, and at least two of the sets
  • the electric body constitutes an electric energy reactor unit, the electric energy reactor unit is located in each of the battery cell slots, and the two current collectors are respectively located at both end faces of the electric energy reactor unit, and the electric energy reaction body is located
  • the current collector of the unit tail end surface is connected to another current collector located at the head end surface of the electric energy reactor unit, and the plurality of electric energy reactor units are connected into an electric energy reactor unit assembly.
  • the current collectors on both end faces of the electric energy reactor unit assembly are respectively connected to the external terminals.
  • the electrical energy body and the electrolyte generate a large amount of ionic groups and conduct to the current collector.
  • each of said battery cells of said battery produces an operating output voltage of at least 2.6V.
  • each of the battery cells of the battery generates an operating output voltage of at least 3.0V.
  • the plurality of electrical energy bodies are made of the same material.
  • the electrical energy body comprises lead dioxide or lead.
  • the at least one electrical energy body is a positive electrical energy body or a negative electrical energy body.
  • the positive power body and the negative power body are alternately distributed in the battery cell slot.
  • the at least one electrical energy body is a plate type electric energy body or a tubular electric energy body.
  • the plate type electric energy body comprises a support member and a lead paste coated in the support member.
  • the tubular electrical energy body comprises an upper cover, an electric energy tube, a lower cover and a lead powder or a lead paste filled in the electric energy tube.
  • the tubular electrical energy body comprises an upper cover, a reinforced bone grid, an electric energy tube, a lower cover and a lead powder or a lead paste filled in the electric energy tube.
  • the electric energy tube is made of glass fiber.
  • the current collector is made of a conductive material.
  • the conductive material used in the current collector is a metal material or a carbon fiber material.
  • the metal material used for the current collector is lead plate or stainless steel or other metal plate.
  • the current collector is in the form of a sheet or a tube or a mesh.
  • the wall of the battery cell slot is provided with a through hole, and the current collector is connected to the external terminal through the through hole or through the through hole through the groove wall.
  • the intermediate cells are provided with through holes, and the current collectors disposed on both sides of the intermediate grid are connected through the through holes or through the intermediate holes through the through holes.
  • the current collectors on both sides of the intermediate grid are connected by a bridge.
  • the current collectors on both sides of the intermediate grid are welded by cross-bridge or cross-bridge.
  • the spacer is made of an ion-permeable electrical insulating material.
  • the ion penetrating electrically insulating material comprises fiber or polypropylene or polyvinyl chloride.
  • the spacer is in the form of a bag or a W-shape or a U-shape or an S-shape or a sheet.
  • the bag-shaped spacer is a semi-closed or fully enclosed structure.
  • the electrolyte comprises nano silica, analytically pure sulfuric acid, acrylamide, sodium silicate, sodium sulfate, absolute ethanol, and high purity water.
  • the method further includes providing an inverter device, wherein the negative voltage outputted by the battery is turned by the inverter device, and the inverter device outputs a positive voltage.
  • the inverter device comprises a Zener, a diode, a transistor, a capacitor, a resistor and a transformer.
  • the inverter device further includes a heat dissipation pad, a field effect transistor and an inductor.
  • a wire is disposed between the battery and the inverter device, and the battery is connected to the inverter device through the wire.
  • the battery is connected to an input port of the inverter device through a wire disposed between the battery and the inverter device.
  • the inverter device can output a negative voltage of 220V to 12V of the input voltage to an inverter output of 12V or 24V or 48V or 60V or 72V or 110V.
  • the inverter device can invert an output of 220V or 380V AC from a negative 220V to 12V input voltage.
  • the method further includes providing an electric motor, the battery being in communication with the electric motor, the electric motor operating with a voltage output by the battery.
  • the electric motor includes a casing, a stator permanent magnet, a rotor electromagnetic pole and a commutator, and an end voltage of the electromagnetic pole winding corresponding to the stator permanent magnet is set to zero in a rated state, so that the electric motor A structure that works in conjunction with the battery having the output negative voltage is formed.
  • the method further includes disposing a steering device, and the negative voltage outputted by the battery is reversed by the steering device, and the steering device outputs a positive voltage.
  • the steering device comprises a frame body, a steering switch, a first joint, a second joint, a third joint, a fourth joint, a fifth joint and a sixth joint, and the fifth joint and the sixth joint are externally connected.
  • the fifth joint and the sixth joint are disposed in a middle portion of the frame body, and the first joint and the second joint are correspondingly disposed at a lower portion of the fifth joint and the sixth joint, the third Connector and fourth connection The head is correspondingly disposed at an upper portion of the fifth joint and the sixth joint.
  • the method further includes: providing a first wire, a second wire, a third wire, and a fourth wire, wherein the second wire and the third wire respectively pass through the second wire, the third wire, and one of the external terminals of the battery
  • the first connector and the fourth connector are respectively connected to the other external terminal of the battery through the first wire and the fourth wire.
  • the battery further comprises at least one cushion.
  • the cushion is disposed between the electrical energy body and the cover.
  • the cushion is a sponge or a spring piece.
  • a liquid injection hole is disposed in the cover above the battery.
  • the above-mentioned activated high-energy power supply device has the advantages of effectively avoiding the leakage of lead dust, lead smoke, acid sewage and acid mist in production, effectively eliminating the hidden danger of pollution, and effectively reducing the installation of equipment for pollution treatment facilities.
  • FIG. 1 is a schematic cross-sectional view of an embodiment of a high energy power supply device having an excitation type according to the present invention.
  • Fig. 2 is a schematic view showing the structure of Fig. 1 in the exploded state.
  • Fig. 3 is an exploded perspective view showing the combination of the electric energy body and the spacer and the casing.
  • Figure 4 is a schematic view of the assembly process of the power body and the spacer and the assembly process of the housing.
  • FIG. 5 is a schematic structural view of an embodiment of an electrical energy reactor unit.
  • FIG. 6 is a schematic structural view of another embodiment of an electrical energy reactor unit.
  • FIG. 7 is a schematic structural view of another embodiment of an electrical energy reactor unit.
  • Figure 8 is a schematic view showing the structure of another embodiment of an electrical energy reactor unit.
  • Figure 9 is a schematic view showing the structure of another embodiment of an electrical energy reactor unit.
  • Fig. 10 is a schematic view showing the structure of the electric power of the circular tube.
  • Figure 11 is a schematic view showing the structure of another embodiment of an electric energy reactor unit.
  • Fig. 12 is a schematic view showing the structure of the square tube power body when it is decomposed.
  • Fig. 13 is a schematic view showing the structure of another electric tube body when it is decomposed.
  • Fig. 14 is a schematic view showing the structure of another square tube electric energy body.
  • Figure 15 is a schematic diagram of a plate type electric energy body.
  • Fig. 16 is a schematic view showing the structure of Fig. 15 in the exploded state.
  • Figure 17 is a schematic view showing the structure of an electric energy body and a spacer.
  • Figure 18 is a partial cross-sectional view of Figure 17.
  • Figure 19 is a schematic view showing the structure of another electric power body and a spacer.
  • Figure 20 is a cross-sectional view of Figure 19.
  • Figure 21 is a partial cross-sectional view of Figure 19.
  • Fig. 22 is a schematic view showing the structure of another electric power body and a spacer.
  • Fig. 23 is a schematic view showing the structure of another electric power body and a spacer.
  • Fig. 24 is a schematic view showing the structure of another electric power body and a spacer.
  • Fig. 25 is a schematic cross-sectional view showing another electric power body and a spacer.
  • FIG. 26 is a schematic cross-sectional view of another embodiment of a high energy power supply device with an energizing type.
  • Figure 27 is a schematic illustration of another embodiment of a high energy power supply device with an energized type.
  • 28 is a schematic diagram of a working mode of a power supply device.
  • Fig. 29 is a schematic view showing another working mode of the power supply device.
  • Figure 30 is a schematic diagram of another working mode of the power supply device.
  • Figure 31 is a schematic diagram of another working mode of the power supply device.
  • Figure 32 is a schematic illustration of another embodiment of a high energy power supply device with an energized type.
  • Figure 33 is a schematic cross-sectional view of another embodiment of a high energy power supply device with an energizing type.
  • Fig. 34 is a schematic view showing the structure of Fig. 33 in the exploded state.
  • Figure 35 is a schematic cross-sectional view of another embodiment of a high energy power supply device with an energizing type.
  • Figure 36 is a schematic view of a portion A of Figure 35.
  • FIG. 37 is a schematic illustration of another embodiment of a high energy power supply device with an energized type.
  • 38 is a schematic cross-sectional view of another embodiment of a high energy power supply device with an energized type.
  • Figure 39 is a schematic view showing the structure of Figure 38 in an exploded state.
  • 40 is a cross-sectional schematic view of another embodiment of a high energy power supply device with an energizing type.
  • Figure 41 is a schematic view of the portion A-A of Figure 40.
  • Fig. 42 is a schematic view showing the injection of electrolyte into the power supply device.
  • Figure 43 is a schematic cross-sectional view of another embodiment of a high energy power supply device with an energizing type.
  • Figure 44 is a cross-sectional schematic view of another embodiment of a high energy power supply device with an energizing type.
  • Fig. 45 is a schematic view showing the structure of Fig. 44 in the exploded state.
  • Figure 46 is a schematic cross-sectional view of another embodiment of a high energy power supply device with an energizing type.
  • Figure 47 is a schematic view showing another embodiment of a high-energy power supply device having an excitation type
  • Figure 48 is a schematic view showing another embodiment of a high-energy power supply device having an excitation type
  • Figure 49 is another schematic diagram of the excitation.
  • FIG. 50 is a schematic diagram of another embodiment of a high-energy power supply device with an excitation type
  • FIG. 51 is another embodiment of a high-energy power supply device with an excitation type.
  • high-energy supply with excitation including output negative or positive a battery having a negative or positive voltage
  • a battery having a negative or positive voltage comprising a housing, a cover above the housing, at least one battery cell slot disposed in the housing filled with electrolyte, at least two electrical energy bodies, At least one spacer, at least two current collectors, and at least two external terminals, wherein the power body, the spacer and the current collector are located in the battery cell slot, and between the power body and the power body
  • the spacers are isolated, and the current collectors are respectively connected to the external terminals, and the power source is charged in the tank before being charged, or is charged after the battery is assembled, which is generally called formation, and the battery in the invention is not needed.
  • the battery In the case of internalization, the battery is directly discharged and outputs a negative voltage. When the battery is charged normally, the battery can output a positive voltage, effectively preventing lead dust, lead smoke, acid sewage and acid mist from leaking out during production. Effectively eliminate the hidden dangers of pollution, effectively reduce the installation of equipment for pollution treatment facilities, save a lot of production investment, protect the environment, eliminate pollution,
  • the utility model has the advantages of simple structure, single standard of component parts, simplified production equipment, production line production, labor saving, low production cost, suitable for mass production, small internal resistance, low internal consumption, high utilization rate of active materials, current The density is evenly distributed, and the high-rate electric energy is fully released outward, and the service life is long, and the resource shortage problem is effectively solved.
  • FIG. 2 is a schematic exploded view of the structure of FIG. 1, having an energized high-energy power supply device including a battery 1 having an output negative voltage or a positive voltage
  • the battery 1 having an output negative voltage or positive voltage includes a housing 11, a cover 110 located at an upper portion of the housing 11, a battery cell slot 12 provided with an electrolyte in the housing 11, six electrical energy bodies 2, and seven isolation a component 5, two collectors 3 and two external terminals 6, the six electrical energy bodies 2, seven spacers 5 and two collectors 3 are located in the battery cell slot 12, the electrical energy body 2 Separated from the electrical energy body 2 by the spacer 5, the current collector 3 is respectively connected to the external terminal 6, effectively avoiding lead dust, lead smoke, acid sewage and acid mist in production. Venting effectively eliminates potential pollution hazards, effectively reduces the installation of equipment for pollution treatment facilities, saves production investment, protects the environment, and eliminates pollution.
  • the electrical energy body 2 and the current collector 3 are separated by the spacer 5, and the structure is simple, effectively preventing short circuit and improving service life.
  • the current collector 3 is located at both end faces of the battery 1 and located opposite to the battery cell slot 12, and the current collector 3 is respectively connected to the external terminal 6, and the structure is simple and reasonable, resulting in The power is sufficient and the effect is good.
  • two corresponding groove walls of the battery cell slot 12 are provided with through holes, and the current collector 3 and the external terminal 6 are connected through the through holes, and the preferred solution is through the through hole.
  • the holes are welded through the wall of the groove, and have high fastness and good electrical conductivity.
  • the spacer 5 is disposed between the power body 2 and the power body 2 to prevent a short circuit between the power body 2 and the power body 2.
  • the electrolyte, the six power bodies 2, Seven spacers 5 are located in the battery cell slot 12, so that the electric energy body 2 and the electrolyte generate a large amount of ionic groups and conduct to the current collector 3, and there is no internal resistance, and at the same time, two external terminals 6 It is connected to the two electric energy bodies 2, and outputs high-rate electric energy to the outside.
  • the spacer 5 is also disposed between the electric energy body 2 and the current collector 3 to prevent short circuit, and the isolation effect is better, and the service life of the electric energy body 2 is improved.
  • the power body 2 When the battery 1 is required, as long as the two external terminals 6 are connected to the external circuit, the power body 2 can be automatically activated, and the power body 2 and the electrolyte generate a large amount of ionic groups and conduct to the current collector 3, and each of the power bodies 2 simultaneously
  • the energy released is about 100%, which means that the utilization rate of living materials can reach 100%, and the output of high-rate electric energy can exceed 5 times that of existing lead-acid batteries, which greatly saves resources;
  • Lead-acid batteries with positive and negative plates must be deficient in acid mist, acid sewage, lead dust and lead smoke during factory formation, effectively protecting the environment.
  • effectively avoiding the use of metal plates Grids, tabs, and busbars produce lead smoke or dust during cast pole or cast welding, effectively protecting the environment.
  • Each of the battery cells 12 of the battery 1 of the present embodiment generates an operating output voltage of at least 2.6 V, which exceeds 30% of the working output voltage of the prior art lead-acid battery (the existing lead-acid battery generates a working output voltage generally). Less than 2V), effectively saving energy.
  • the operating output voltage of each battery cell slot can reach more than 3.0 V, which exceeds 50% of the working output voltage of the prior art lead-acid battery (the existing lead-acid battery generates a working output voltage of less than 2V).
  • the energy release is sufficient, the power is large, and the energy shortage problem is effectively solved, and energy conservation and environmental protection are provided.
  • the existing battery is tested according to national standards: 2V38Ah single battery is discharged at 2 hours, generally about 120 minutes, and the termination voltage is 1.75V.
  • the actual test 2V38AH single-cell battery, discharge according to 2 hours rate, current 19 times, continuous discharge for more than 600 minutes, working voltage is still above 3. 6V, effectively realize high-power discharge and use time Long, save resources and protect the environment.
  • the plurality of electrical energy bodies 2 are made of the same material, have small internal resistance and low internal consumption, can effectively improve the utilization rate of the active material, and improve the discharge performance of the power supply device.
  • the electric energy body 2 includes lead dioxide or lead, and the current density is uniformly distributed, which can effectively improve the utilization rate of the active material, and the electric energy body 2 and the electrolyte generate a large amount of ionic groups to sufficiently release the high-rate electric energy. Repeatedly used for a long time, long life and environmental protection.
  • the electric energy body 2 is a plate type electric energy body, has a simple structure, a single standard workpiece, simple manufacturing process, simplified equipment, low manpower, low production cost, can form flow operation, high output, long service life, Suitable for mass production.
  • the electric energy body can also be a tubular electric energy body, has a simple structure, a single standard workpiece, simple manufacturing process, simplified equipment, less manpower, low production cost, can form flow operation, and has high output. Long life, suitable for mass production.
  • the plate type electric energy body comprises a support member 28 and a lead paste 25 coated in the support member 28, the structure is simple, the workpiece is single standard, and the manufacturing process Simple, simple equipment, low manpower, low production cost, flow-through operation, high output, long service life, suitable for mass production.
  • the tubular electrical energy body includes an upper cover 23, an electric energy tube 26, a lower cover 24, and a lead powder or a lead paste 25 filled in the electric energy tube 26, and has a simple structure and a single standard of the workpiece.
  • the production process is simple, the equipment is simplified, the use of manpower is small, the production cost is low, the flow can be formed, the output is high, the service life is long, and it is suitable for mass production.
  • the tubular electrical energy body may further include an upper cover 23 , a reinforcing bone grid 27 , an electric energy tube 26 , a lower cover 24 , and a lead powder or a lead paste 25 filled in the electric energy tube 26 , and the structure is simple.
  • the workpiece has a single standard, the production process is simple, the equipment is simplified, the manpower is low, the production cost is low, the flow can be formed, the output is high, the service life is long, and it is suitable for mass production.
  • the electric energy tube 26 is made of glass fiber, has good ion conductivity, good quality and good use effect.
  • the current collector 3 is made of a conductive material, has small internal resistance, low internal consumption, high utilization rate of active materials, uniform current density distribution, and fully releases high-rate electric energy, has a long service life, and effectively solves resources. Shortages.
  • the conductive material used in the current collector 3 is a metal material or a carbon fiber material, and has small internal resistance, low internal consumption, high utilization rate of active materials, uniform current density distribution, and sufficient release of high-rate electric energy, and service life. Long, effectively solve the problem of resource shortage.
  • the metal material used for the current collector 3 is lead plate or stainless steel or other metal plate,
  • the resistance is small, the internal consumption is small, the utilization rate of the active material is high, the current density is evenly distributed, the high-rate electric energy is fully released outward, the service life is long, and the resource shortage problem is effectively solved.
  • the current collector 3 has a sheet structure, has small internal resistance, low internal consumption, high utilization rate of active materials, uniform current density distribution, and fully releases high-rate electric energy, and has a long service life. Effectively address resource shortages.
  • the current collector 3 can also be a tubular structure with small internal resistance, low internal consumption, high utilization rate of active materials, uniform current density distribution, full release of high-rate electrical energy, long service life, and effective Solve the problem of resource shortage.
  • the current collector 3 can also be a mesh-like structure, which has small internal resistance, low internal consumption, high utilization rate of active materials, uniform distribution of current density, full release of high-rate electric energy, long service life, and effective solution of resources. Shortages.
  • the spacer 5 is made of ion penetrating electrically insulating material, has low cost, high quality, good use effect, short circuit prevention and long service life.
  • the ion-penetrating electrical insulating material comprises fibrous or polypropylene or polyvinyl chloride, which has low cost, high quality, good electrical conductivity and better use effect.
  • the spacer 5 is in the form of a bag, has a simple structure, is simple in manufacturing process, has low manufacturing cost, and has good use effect. Further, the bag-shaped spacer is semi-closed (see Fig. 17), and has a simple structure and low cost. The bag-shaped spacer is a fully enclosed structure (see Figure 179), which has a simple structure, low cost, short circuit prevention, long service life and better use effect.
  • the spacer 5 may also be W-shaped (see Fig. 23) or U-shaped (see Fig. 22) or S-shaped (see Fig. 24) or sheet (see Fig. 1), see Fig. 25, and may also be in multiple electric energy
  • a multi-format spacer 5 is arranged between the bodies 2, the structure is simple, the installation is convenient, the short circuit is prevented, and the service life is long.
  • a plurality of electric power bodies 2 and a plurality of spacers 5 are conveniently assembled into the battery cell slot 12, which is simple in assembly, low in cost, fast in production speed, and high in efficiency.
  • an electric energy reactor unit in which a plurality of electric energy bodies 2, a plurality of spacers 5 and a plurality of current collectors 3 are combined greatly improves the production speed, reduces the production cost, and improves the product. quality.
  • FIG. 5 or FIG. 7 an electric energy reactor unit in which a plurality of electric energy bodies 2, a plurality of spacers 5 and a plurality of current collectors 3 are combined greatly improves the production speed, reduces the production cost, and improves the product. quality.
  • six electric energy bodies 2, four spacers 5 (three of which are U-shaped, one of which is flat) and two current collectors 3 constitute an electric energy reaction unit, which can It is conveniently inserted into the battery cell slot 12, and the electric energy body 2 can be a positive electric energy body 21 or a negative electric energy body 22, and the six electric energy bodies 2 can be three positive electric energy bodies 21 and three negative electric energy bodies 22, alternating The distribution is arranged in both inner sides of the current collector 3, The internal resistance is small, the internal friction is small, and the current density is evenly distributed, which can effectively improve the utilization rate of the active material, and the electric energy body and the electrolyte generate a large amount of ionic groups to fully release the high-rate electric energy, which can be repeatedly used for a long time, and the service life is long. Long, protect the environment.
  • the positive power body 21 and the negative power body 22 are separated by the spacers 5, 51
  • the spacers 5, 51 are made of ion-permeable electrical insulating material, and the ion-penetrating electrical insulating material may include fibers.
  • the spacer 51 may also have a U-shape, which prevents short circuit at a large current and has a good use effect.
  • the power body 2 adopts a flat structure.
  • the power body 2 may include a lead paste 25 and a power tube 26 for loading the lead paste 25, and the lead paste 25 is loaded therein, and then used.
  • the cover 23 and the lower cover 24 are closed, the use effect is good, the lead powder is prevented from falling off, the structure is simple, the short circuit is effectively prevented, and the service life is improved.
  • the electric energy body 2 may include a plate-like structure of a lead paste 25 and a square tube type electric energy tube 26.
  • the lead paste 25 is filled therein, and is closed by the upper cover 23 and the lower cover 24, and the use effect is good. Prevent lead powder from falling off, simple structure, effectively prevent short circuit and improve service life.
  • a reinforcing bone grid 27 may also be provided in the electric energy tube 26 to increase the strength of the electric power body 2.
  • three of the six electric energy bodies 2 are positive electric energy bodies 21, three are negative electric energy bodies 22, seven isolating members 5, the three positive electric energy bodies 21, three negative electric energy bodies 22, and seven
  • the separator 5 and the two current collectors 3 constitute an electrical energy reactor unit, and the separator 5 is disposed between the positive power body 21 and the negative power body 22, and the current collector 3 and the positive power body 21 are separated by the spacer 5
  • the electric body 3 and the negative electric energy body 22 are separated by a spacer 5, and one of the two external terminals 6 is a positive external terminal 61, which is connected to the positive electric energy body 21 through the current collector 3, and the other is a negative external terminal 62.
  • connection effectively avoids the leakage of lead dust, lead smoke, acid sewage and acid mist in production, effectively eliminates hidden dangers, effectively reduces the installation of equipment for pollution treatment facilities, saves production investment, protects the environment, and eliminates Pollution, a lot of festivals Charging cost; Simple structure, single component of component parts, simplified production equipment, production line production, labor saving, low production cost, suitable for mass production; low internal resistance, low internal consumption, high utilization rate of active materials, uniform current density Distribution, fully release high-rate electrical energy, long service life, and effectively solve the problem of resource shortage.
  • At least one battery cell filled with the electrolyte is disposed in the battery 1 a slot 1, at least two electrical energy bodies 2, at least one spacer 5, at least two current collectors 3 and at least two external terminals 5, between the electrical energy body 2 and the electrical energy body 2 and the electrical energy body 2 Separated from the current collector 3 by the spacer 5, at least two of the power bodies 2, at least one of the spacers 5 and at least two of the current collectors 3 constitute an electrical energy reactor unit 20,
  • the electric energy reactor unit 20 is located in the battery cell slot, and the current collector 3 is located at both end faces of the electric energy reactor unit 20 and is respectively connected to the external terminal 6 .
  • the battery 1 is provided with a battery unit filled with the electrolyte, at least six electric energy bodies 2, five spacers 5, two current collectors 3 and two external terminals 6,
  • the electrical energy body 2 and the electrical energy body 2 are separated by the spacer 5, and the electrical energy body 2 and the current collector 3 are separated by the spacer 5, and the six electrical energy bodies 2
  • the five separators 5 and the two current collectors 3 constitute an electrical energy reactor unit 20, the electrical energy reactor unit 20 is located in the battery cell tank, and the current collector 3 is located in the electrical energy reaction
  • Both end faces of the body unit 20 are respectively connected with the external terminal 6, effectively preventing lead dust, lead smoke, acid sewage and acid mist from leaking out during production, effectively eliminating the hidden danger of pollution, and effectively reducing pollution treatment.
  • two terminal holes 16 are disposed on the cover 110.
  • the two current collectors 3 and the two external terminals 6 are connected, and the two external terminals 6 and the two terminal holes 16 are matched and connected, which is simple in production and convenient in operation.
  • a high-energy power supply device having an excitation type includes a battery 1 and an inverter device 7. After the negative voltage output from the battery 1 is turned by the inverter device 7, a positive voltage is output from the inverter device 7. In this way, the low power output from the battery 1 can be inverted into high-voltage or high-power electric energy to suit different power demand, energy saving and environmental protection.
  • the inverter device 7 includes a Zener diode, a diode, a triode, a capacitor, a resistor, and a transformer.
  • the structure is simple, reasonable, and low in cost, and is suitable for mass production.
  • the inverter device 7 further includes a heat sink pad, a field effect transistor and an inductor, and the use effect is better.
  • the battery 1 is connected to the input port of the inverter device 7 through the wires 71 and 72 provided between the battery 1 and the inverter device 7, and has a simple and reasonable structure. Further, the inverter device 7 can invert the input 220V to 12V of the input voltage to be DC.
  • the inverter device can output 220V or 380V AC power from a negative 220V to 12V input voltage, which greatly saves resources and protects the environment.
  • a high-energy power supply device having an excitation type includes a battery 1 and an electric motor 8, and the battery 1 is in communication with the motor 8, and the motor 8 operates using a voltage output from the battery 1, so that the battery 1 can be used.
  • the output voltage is externally operated by the motor 8 to suit different power requirements, saving resources and reducing pollution.
  • the motor 8 includes a housing, a stator permanent magnet, a rotor electromagnetic pole, and a commutator, and the end voltage of the electromagnetic pole winding corresponding to the stator permanent magnet is set to zero in a rated state, so that the motor 8 Forming a structure that works in conjunction with a battery having an output negative voltage to suit different power demand, conserve resources, and reduce pollution.
  • a high-energy power supply device having an excitation type includes a battery 1 and a steering device 9. After the negative voltage outputted from the battery 1 is commutated by the steering device 9, a positive voltage is output from the steering device 9 to fit Different power demand, long service life, effective solution to resource shortage, simple structure, simple production process, lower production cost, effectively avoid lead dust, acid sewage, lead smoke and acid mist, reduce environmental pollution , suitable for mass production.
  • the steering device 9 can also have various changes.
  • the steering device 9' includes a frame body 91, a steering switch 92, a first joint 921, a second joint 922, a third joint 923, and a fourth joint 934,
  • the fifth joint 925 and the sixth joint 926 are externally connected, and the structure is simple, the cost is low, the steering is convenient, the safety is reliable, the resources are saved, and the pollution is reduced.
  • the fifth joint 925 and the sixth joint 926 are disposed at a middle portion of the frame body 91, and the first joint 921 and the second joint 922 are correspondingly disposed at the fifth joint 925 and the sixth joint 926.
  • the third joint 923 and the fourth joint 924 are disposed at upper portions of the fifth joint 925 and the sixth joint 926, respectively.
  • the first wire 931, the second wire 932, the third wire 933, and the fourth wire 934 are disposed, and the second joint 922 and the third joint 923 pass through the second wire 932 and the third wire 933, respectively.
  • the first connector 921 and the fourth connector 924 are connected to the external terminal 61 of the battery 1 through the first wire 931 and the fourth wire 934, respectively.
  • the battery 1 having an output negative voltage or a positive voltage includes a housing 11 and is located in the housing.
  • each of the battery cells is provided with six electric energy bodies 2, two current collectors 3 and five separators 5, and the battery cell slot 12 and the battery cells are respectively
  • An intermediate grid 13 is formed between the grooves 121, and the current collectors 3 on both sides of the intermediate grid 13 are welded by the bridge, located at both end faces of the battery 1 and located on the opposite sides of the battery cells 12, 121.
  • the current collectors 3 corresponding to the intermediate cells 13 are respectively connected to the external terminals 6 to effectively prevent lead dust, lead smoke, acid sewage and acid mist from leaking out during production, thereby effectively eliminating the hidden danger of pollution.
  • effectively reducing the pollution treatment facilities and equipment Installation saving a lot of production investment, protecting the environment, eliminating pollution, saving a lot of charging costs;
  • the resistance is small, the internal consumption is small, the utilization rate of the active material is high, the current density is evenly distributed, the high-rate electric energy is fully released outward, the service life is long, and the resource shortage problem is effectively solved.
  • Figure 34 is an exploded perspective view of Figure 33, with an energized high energy power supply device including a battery 1 having an output negative or positive voltage, the battery having a negative or positive voltage output 1 includes a housing 11, a cover 110 located at an upper portion of the housing 11, two battery cells 12, 121 filled with electrolyte disposed in the housing 11, twelve electrical energy bodies, fourteen spacers 5, four
  • the current collector 3 and the two external terminals 6 are disposed between the electric energy body 2 and the electric energy body 2, the electrolyte, the twelve electric energy bodies 2, the four current collectors 3 and fourteen
  • the spacer 5 is disposed in the two battery cell slots 12 and 121, and the battery cell slot 12 and the battery cell slot 121 form an intermediate compartment 13 on the two sides of the intermediate compartment 13
  • the current collector 3 and the current collector 3 are welded by a bridge, and the current collectors located on both end faces of the battery 1 and located on opposite sides of the battery cell slots 12 and 121 and corresponding to the intermediate grid 13
  • the body is respectively connected to the external terminal
  • the body, the four collectors 3 and the fourteen spacers 5 form two electrical energy reactor units, and the power body 2 can be a positive power body 21 or a negative power body 22, and each of the power reactor units has six
  • the positive power body 21, the two current collectors 3, and the seven spacers 5 are all composed of six negative power bodies 22, two current collectors 3, and seven spacers 5, each of which is located In each of the battery cell slots 12 and 121, the battery cell slot 12 and the battery cell slot 1
  • Venting effectively eliminating potential pollution hazards, effectively reducing the installation of equipment for pollution treatment facilities, saving production investment, protecting the environment, eliminating pollution, and saving a large amount of charging costs; simple structure, single component of component parts, simplified production equipment Forming assembly line production, saving labor, reducing production cost, suitable for mass production; low internal resistance, low internal consumption, high utilization rate of active materials, uniform distribution of current density, full release of high-rate electric energy, long service life, effective Solve the problem of resource shortage.
  • the power body 2 and the current collector 3 are separated by the spacer 5, and the structure is simple, effectively preventing short circuit, and improving the service life of the power body 2.
  • two positive electric energy bodies 21, two negative electric energy bodies 22, four separators 5, two current collectors 3 and two external terminals 6 are disposed in the battery cell slots 12, 121;
  • An intermediate cell 13 is formed between the cell slot 12 and the battery cell slot 121;
  • the collector 3 may be made of a metal material, and the conductive metal sheets on both sides of the intermediate cell 13 are disposed in the intermediate cell 13
  • the through hole is welded through the wall, and the current collector 3 adjacent to one of the external terminals 6 is connected to the external terminal 6, and the current collector 3 adjacent to the other external terminal 6 is connected to the external terminal 6.
  • the spacer 5 is U-shaped, has small internal resistance and low internal consumption, can effectively improve the utilization rate of the active material, improve the discharge performance of the power supply device, has a long service life, effectively solves the problem of resource shortage, and protects the environment.
  • the land has reduced pollution.
  • the U-shaped spacer 5 is disposed between the positive power body and the negative power body, which has low cost and high utilization rate, improves the service life of the power body, and is energy-saving and environmentally friendly.
  • the battery 1 is provided with two battery cell slots 12 and 121 filled with the electrolyte, eight of the electric energy bodies 2, ten of the spacers 5, and four
  • the current collector 3 and the two external terminals 6 are separated from the power body 2 by the spacer 5, and the current collector 3 and the power body 3 are
  • the separator 5 is isolated, four of the electrical energy bodies 2, five of the spacers 5 and two of the current collectors 3 constitute an electrical energy reactor unit 20, and the electrical energy reactor unit 20 is located in the battery cell slot 12 and 121, the two current collectors 3 are respectively located at both end faces of the electric energy reactor unit 20, and the current collector 3 located at the end surface of the electric energy reactor unit 20 and the other are located in the electric energy.
  • the current collectors 3 at the first end faces of the reaction unit 20 are connected, and the plurality of electric energy reactor units 20 are connected into an electric energy reactor unit assembly, and the collectors located at both end faces of the electric energy reactor unit assembly 3 respectively connected to the external terminal 6 to effectively avoid Lead dust, lead smoke, acid sewage and acid mist are leaked out in production, effectively eliminating potential pollution hazards, effectively reducing the installation of equipment for pollution treatment facilities, saving production investment, protecting the environment, eliminating pollution, and saving a lot of electricity.
  • the current collector 3 and the current collector 3 are welded by cross-bridge or cross-bridge, and have high fastness, good electrical conductivity, long service life, energy saving and environmental protection.
  • At least three battery cell slots 12, 121, 122 filled with the electrolyte, eighteen of the electrical energy bodies 2, and twenty one of the spacers are disposed in the battery 1. 5.
  • Six of the current collectors and two external terminals 6, between the electrical energy body 2 and the electrical energy body 2, and between the current collector 3 and the electrical energy body 2 are twenty-one Separating the spacers, six of the electrical energy bodies 2, seven of the spacers 5 and two of the current collectors 3 constitute an electrical energy reactive unit, and the electrical energy reactive unit is located in each of the battery cells
  • three electric energy reactor units are formed, the two current collectors 3 are respectively located at both end faces of the electric energy reactor unit, and the current collector 3 located at the tail end surface of the electric energy reactor unit And connecting to the current collector 3 located at the first end surface of the electric energy reactor unit, wherein the plurality of electric energy reactor units are connected into an electric energy reactor unit assembly, and the two electric energy unit unit assemblies are The current collectors 3 of the end faces are respectively connected to
  • the current collector 3 located at the tail end surface of the electric energy reactor unit and the other current collector 3 located at the head end surface of the electric energy reactor unit are fastened by cross-bridge or cross-bridge welding, and the fastness is high. Good conductivity, long service life, energy saving and environmental protection.
  • the liquid injection hole 112 is provided on the cover 110 above the battery, so that the electrolyte 14 can be injected therein, which is convenient and simple, and low in cost.
  • the battery 1 is provided with four battery cells 12, 121, 122, 123, twenty-four of the electric energy bodies 2, and twenty-eight of the spacers filled with the electrolyte. 5, at least eight of the current collector 2 and two external terminals 6, between the electrical energy body 2 and the electrical energy body 2 and between the current collector 3 and the electrical energy body 2 are isolated by the The device 5 is isolated, six of the electrical energy bodies 2, seven of the spacers 5 and two of the current collectors 3 constitute an electrical energy reactor unit, and the electrical energy reactive body unit is located in each of the battery cells
  • the two current collectors 3 are respectively located at both end faces of the electric energy reactor unit 20, and the current collectors 3 located at the end face of the electric energy reactor unit 20 and the other are located at the first end of the electric energy reactor unit
  • the current collectors 3 of the end faces are connected, the plurality of electrical energy reactor units 20 are connected into an electrical energy reactor unit assembly, and the current collectors 3 located at both end faces of the electrical energy reactor unit assembly are respectively The external terminals 6
  • the battery 1 is provided with six battery cells 12, 121, 122, 123, 124, 125, thirty-six of the electric energy bodies 2, four filled with the electrolyte.
  • Acid waste water and acid mist are leaked out during production, effectively eliminating potential pollution hazards, effectively reducing the installation of equipment for pollution treatment facilities, saving production investment, protecting the environment, eliminating pollution, and saving charging costs in a large amount;
  • a single standard for component parts simplified production equipment, production line production, labor saving, lower production cost, suitable for mass production; small internal resistance Less consumption, high utilization of the active material, the current density uniform, sufficiently high rate of energy released outwardly, long life, effectively solve the problem of shortage of resources.
  • the battery 1 is provided with six battery cell slots 12, 121, 122, 123, 124, 125, twelve of the electric energy bodies 2, and twelve charged with the electrolyte.
  • a spacer 5 and twelve of the current collectors 3, between the power body 2 and the power body 2, and between the current collector 3 and the power body 2 are separated by the spacer 5
  • Two of the electric energy bodies 2, two of the spacers 5 and two of the current collectors 3 constitute an electric energy reactor unit, and the electric energy reactor unit is located in each of the battery cell slots, the two The current collectors 3 are respectively located at both end faces of the electric energy reactor unit, and the current collector 3 located at the tail end surface of the electric energy reactor unit and the other collector located at the head end surface of the electric energy reactor unit
  • the body 3 is connected to each other, and the plurality of electric energy reactor units are connected into an electric energy reactor unit assembly, and the current collectors 3 located at both end faces of the electric energy reactor unit assembly are respectively connected to the external terminal 6 and are effective.
  • the spacer 5 is U-shaped, has a simple structure, simple manufacturing process, high energy generation, small equipment investment, low manpower, low production cost, and is suitable for mass production.
  • the battery 1 further includes at least one cushion 15 disposed between the power body 2 and the cover 110.
  • the cushion is a sponge or a spring. Film, there Effectively prevent the power body 2, the spacer 5 and the collector 3 from loosening, and ensure that the power supply device works normally.
  • two electric energy reactor units 20 are disposed in two battery cells, two external terminals 6 are disposed on the same side of the casing 11, and two electric energy reactor units 20 are arranged side by side, which is beneficial.
  • the effect is similar to that of FIG. 33, and details are not described herein again.
  • two electric energy reactor units 20 are disposed in two battery cells, and two external terminals 6 are disposed on two connected sides of the casing 11, and two electric energy reactor units 20, One of the electrical energy reactor units 20 is disposed parallel to the intermediate grid 13 and the other electrical energy reactive unit 20 is disposed perpendicular to the intermediate grid 13.
  • the beneficial effects are similar to those of FIG. 33 and will not be described herein.
  • three electric energy reactor units 20 are disposed in three battery cell slots 12, 121, 122, and the two current collectors 3 are respectively located at both end faces of the electric energy reactor unit 20.
  • the current collector 3 located at the end surface of the electric energy reactor unit 20 is connected to the current collector 3 located at the first end surface of the electric energy reactor unit 20, and the plurality of electric energy reactor units 20 are connected.
  • an electrical energy generating body unit assembly wherein the current collectors 3 on both end faces of the combination of the electrical energy reactive body unit 20 are respectively connected to the external terminal 6, and the two external terminals 6 are respectively disposed on the two of the housings 11.
  • the two connected electrical energy unit units 20 are arranged in parallel with each other, wherein the other electrical energy reactive unit 20 is arranged perpendicularly to the other two parallel disposed electrical energy reactive units 20, the beneficial effect of which is similar to that of FIG. No longer.
  • six electrical energy reactor units 20 are disposed in six battery cells, and the two current collectors 3 are respectively located at both end faces of the electrical energy reactor unit 20, and the electrical energy reaction is located.
  • the current collector 3 at the end face of the body unit 20 is connected to the current collector 3 located at the first end face of the power reactor unit 20, and the plurality of power reactor units 20 are connected to an electric energy reactor unit.
  • the assembly body, the current collectors 3 on the both end faces of the combination of the electrical energy reactor unit 20 are respectively connected to the external terminal 6, and the beneficial effects thereof are similar to those of FIG. 50, and details are not described herein again.
  • the electrolyte may include nano-silica, analytically pure sulfuric acid, acrylamide, sodium silicate, sodium sulfate, anhydrous ethanol and high-purity water, which is convenient to produce and suitable for mass production.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Description

一种具有激发式的高能量供电装置 技术领域
本发明涉及供电领域, 可用于风能、 太阳能、 通信、 输变系统、 发电厂、 汽 车、 纯电动汽车、 摩托车、 助动车、 矿山、 家用电器、 照明等。 背景技术
随着化石能源稀缺性问题的日益突出, 化石能源已经成为世界共同面对的极 端性问题, 为节约能源, 在 1859年法国人普兰特就发明了一种蓄电池, 其蓄电池 构造是用陶块铅皮, 中间用橡胶条隔开, 浸在 10 %的稀疏酸中, 经过正向充电、 停止、 反向充电, 如此反复进行。 英国人色隆 (Sel lon)发明了铅锑合金板栅, 这 种板栅与富尔涂粉方法结合, 出现了所谓涂膏式极板。
二十世纪 10年代起,汽车业和电话业的发展极大的促进了供电装置的研发和 生产, 尤其是在铅酸蓄电池方面, 汽车上需要重量较轻并且放电量大的蓄电池来 进行起动、 照明和点火, 而另一方面, 电话需要一种安全可靠并且使用寿命较长 的蓄电池作为备用电源, 故而汽车和电话数量的快速增长极大地促进了铅酸蓄电 池的研发和工业化生产。 至此, 铅酸蓄电池开始应用在汽车、 摩托车、 铁道、 矿 山、 通信等领域。
现有的铅酸蓄电池都是将含有正极活性物质的正极板和含有负极活性物质的 负极板浸入电解液, 分别相对独立地在正极板和负极板上发生正极反应和负极反 应, 然后分别相对独立地利用极耳和汇流排等方式, 将各正极板相互连通以汇集 各正极板上的正电荷形成正电流, 将各负极板利用极耳相互连通以汇集各负极板 上的负电荷形成负电流, 然后利用汇流排等方式, 分别将正电流和负电流传导至 正极和负极。
正是由于铅酸蓄电池内部存在正极板和负极板的区别, 所以正电流和负电流 必须分开汇集和传导, 因此势必需要利用金属板栅或金属骨栅来分别在正极板和 负极板上电荷汇集, 再分别通过各自的极耳传导出去, 最后在分别通过汇流排来 分开传导正电流和负电流, 由此可见, 传统的铅酸蓄电池的内部结构不仅复杂而 且采用了大量的金属 (金属板栅、 金属骨栅、 极耳和汇流排等) 导电手段, 使得 铅酸蓄电池的内阻增大, 从而进一步导致了铅酸蓄电池的内耗增大并且使得铅酸 蓄电池产生的热能增大。 当铅酸蓄电池大电流放电时, 内阻急剧增大, 电压、 电 流则迅速下降, 使得蓄电池不能瞬间充分放出电能, 并且由于内阻增大, 使蓄电 池将一部分的电能转化成了热能, 导致了电能的浪费, 同时产生的热能容易损坏 蓄电池。 再者, 由于蓄电池内阻增大, 使得蓄电池不能大电流充电, 而需要长时 间的慢充, 不方便使用者使用, 铅酸蓄电池放电后产生大量硫酸铅, 硫酸铅形成 电阻, 进一步的增大蓄电池内部电阻, 导致蓄电池充放电困难, 因此现有蓄电池 使用寿命很短。
一般情况下, 铅酸蓄电池的容量一般都是按照活物质 (铅膏) 的用量来设计 的, 负极是与正极配套设计的, 也就是为辅助正极而设计的, 因为负极没有容量, 只有正极释放电量, 所以蓄电池的容量受正极的容量限制, 只能产生局部性的容 量, 现有蓄电池的活物质的利用率不超过 35%, 大大地浪费了资源。
另外, 在生产现有铅酸蓄电池时, 需采用化成技术制作极板, 进一步需将各 极板的极耳与汇流排进行焊接等操作流程, 在进行上述操作过程中, 形成铅烟、 铅粉尘、 酸污水及酸雾等有毒有害物质, 影响人体健康, 污染生态环境。 发明内容
本发明的发明目的之一是有效地避免了铅粉尘、 铅烟、 酸污水和酸雾在生产 中外泄, 有效地消除了污染隐患, 有效地减少了污染处理设施设备的安装, 大量 节约生产投资, 保护环境, 消除污染。
本发明的发明目的之二是提供高能量的供电装置, 大量地节约充电费用。 本发明的发明目的之三是提供一种高能量的供电装置, 组成结构简单, 组成 部件工件单一标准, 生产设备简化, 形成流水线生产, 节约劳动力, 降低生产成 本, 适合大批量生产。
为了实现上述目的, 本发明公开了具有激发式的高能量供电装置, 具有激发 式的高能量供电装置, 其特征在于包括具有输出负电压或正电压的蓄电池, 所述 具有输出负电压或正电压的蓄电池包括壳体、 位于壳体上方的盖子、 设置在所述 壳体中充有电解质的至少一个蓄电池单体槽、至少两个电能体、至少一个隔离件、 至少两个集电体和至少两个外接端子, 所述电能体、 隔离件和集电体位于所述蓄 电池单体槽中, 所述电能体与所述电能体之间由所述隔离件隔离, 所述集电体分 别与所述外接端子相连接。
优选的, 所述电能体与所述集电体之间由所述隔离件隔离。
优选的, 所述集电体位于所述蓄电池两端面且位于所述蓄电池单体槽的相对 优选的, 所述集电体位于所述蓄电池两端面且位于所述蓄电池单体槽的相对 优选的, 所述蓄电池中设置至少一个充有所述电解质的所述蓄电池单体槽, 至少两个电能体、 至少一个隔离件、 至少两个集电体和至少两个外接端子, 所述 电能体与所述电能体之间和所述电能体与所述集电体之间由所述隔离件隔离, 至 少两个所述电能体、 至少一个所述隔离件和至少两个所述集电体组成电能反应体 单元, 所述电能反应体单元位于所述蓄电池单体槽中, 所述集电体位于所述电能 反应体单元的两端面并分别与所述外接端子相连接。
优选的, 所述蓄电池中设置至少两个充有所述电解质的所述蓄电池单体槽、 至少四个所述电能体、 至少两个所述隔离件和至少四个所述集电体, 所述电能体 与所述电能体之间由所述隔离件隔离, 所述蓄电池单体槽与所述蓄电池单体槽之 间形成中间格, 其中, 位于所述中间格两边的所述集电体相连接; 其中, 位于所 述蓄电池两端面且位于所述蓄电池单体槽的相对内侧并与所述中间格相对应的所 述集电体分别与所述外接端子相连接。
优选的, 所述电能体与所述集电体之间由所述隔离件隔离。
优选的, 所述蓄电池中设置至少两个充有所述电解质的所述蓄电池单体槽、 至少四个所述电能体、 至少两个所述隔离件和至少四个所述集电体, 所述电能体 与所述电能体之间和所述集电体与所述电能体之间由至少一个所述隔离件隔离, 至少两个所述电能体、 至少一个所述隔离件和至少两个所述集电体组成电能反应 体单元, 所述电能反应体单元位于所述每个蓄电池单体槽中, 所述两个集电体分 别位于所述电能反应体单元的两端面, 所述位于电能反应体单元尾端面的所述集 电体与另一个位于所述电能反应体单元首端面的所述集电体相连接, 所述多个电 能反应体单元连接成电能反应体单元组合体, 所述位于电能反应体单元组合体的 两端面的所述集电体分别与所述外接端子相连接。
优选的, 所述蓄电池中设置至少两个充有所述电解质的所述蓄电池单体槽、 至少四个所述电能体、 至少两个所述隔离件和至少四个所述集电体, 所述电能体 与所述电能体之间和所述集电体与所述电能体之间由至少一个所述隔离件隔离, 至少两个所述电能体、 至少一个所述隔离件和至少两个所述集电体组成电能反应 体单元, 所述电能反应体单元位于所述每个蓄电池单体槽中, 所述两个集电体分 别位于所述电能反应体单元的两端面, 所述位于电能反应体单元尾端面的所述集 电体与另一个位于所述电能反应体单元首端面的所述集电体相连接, 所述多个电 能反应体单元连接成电能反应体单元组合体, 所述位于电能反应体单元组合体的 两端面的所述集电体分别与所述外接端子相连接。
优选的, 所述电能体与所述电解质产生大量离子基团并向所述集电体传导。 优选的,所述蓄电池的每一所述蓄电池单体槽产生工作输出电压为至少 2.6V。 优选的,所述蓄电池的每一所述蓄电池单体槽产生工作输出电压为至少 3.0V。 优选的, 所述多个电能体采用相同材料制成。
优选的, 所述电能体包括二氧化铅或者铅。
优选的, 所述至少一个电能体为正电能体或负电能体。
优选的, 所述正电能体和所述负电能体交替分布在所述蓄电池单体槽中。 优选的, 所述至少一个电能体为板式电能体或管式电能体。
优选的, 所述板式电能体包括支撑件和涂接在所述支撑件中的铅膏。
优选的, 所述管式电能体包括上盖、 电能管、 下盖和填充在电能管内的铅粉 或铅膏。
优选的, 所述管式电能体包括上盖、 加强骨栅、 电能管、 下盖和填充在电能 管内的铅粉或铅膏。
优选的, 在于所述电能管为玻璃纤维制成。
优选的, 所述集电体采用导电材料制成。
优选的, 所述集电体采用的导电材料为金属材料或碳纤维材料。
优选的, 所述集电体采用的金属材料为铅板或不锈钢或其他金属板。
优选的, 所述集电体为片状或管状或网片状。
优选的, 所述蓄电池单体槽的壁设置通孔, 所述集电体与所述外接端子通过 所述通孔相连接或通过所述通孔穿过槽壁相焊接。
优选的, 所述中间格中设置通孔, 设置在所述中间格两边的所述集电体通过 所述通孔相连接或通过所述通孔穿过中间格相焊接。
优选的, 所述中间格两边的所述集电体通过跨桥相连接。 优选的, 所述中间格两边的所述集电体通过跨桥固接或跨桥相焊接。
优选的, 所述隔离件由离子穿透电绝缘材料制成。
优选的, 所述离子穿透电绝缘材料采用包括纤维质或聚丙乙烯或聚氯乙烯。 优选的, 所述隔离件为袋状或 W字形或 U字形或 S字形或片状。
优选的, 所述袋状隔离件为半封闭或全封闭结构。
优选的, 所述电解质包括纳米二氧化硅、 分析纯硫酸、 集丙烯酰胺、 硅酸钠、 硫酸钠、 无水乙醇和高纯水。
优选的, 在于还包括设置逆变装置, 所述蓄电池输出的负电压经所述逆变装 置转向后, 由所述逆变装置输出正电压。
优选的, 所述逆变装置包括稳压管、 两极管、 三极管、 电容、 电阻和变压器。 优选的, 所述逆变装置还包括散热垫件、 场效应管和电感。
优选的, 所述蓄电池与逆变装置之间设置导线, 所述蓄电池与所述逆变装置 通过所述导线相连接。
优选的, 所述蓄电池通过所述蓄电池与所述逆变装置之间设置的导线与所述 逆变装置的输入口相连接。
优选的, 所述逆变装置可将输入电压的负 220V至 12V至逆变输出为直流的 12V或 24V或 48V或 60V或 72V或 110V。
优选的,所述逆变装置可将输入电压的负 220V至 12V逆变输出 220V或 380V 的交流电。
优选的, 还包括设置电动机, 所述蓄电池与所述电动机相通, 所述电动机使 用所述蓄电池输出的电压工作。
优选的, 所述电动机包括外壳、 定子永磁极、 转子电磁极和换向器, 所述与 定子永磁极对应的所述电磁极绕组的端部电压在额定状态下设置为零, 使所述电 动机形成与所述具有输出负电压的蓄电池相配合工作的结构。
优选的, 还包括设置转向装置, 所述蓄电池输出的负电压经所述转向装置换 向后, 由所述转向装置输出正电压。
优选的, 所述转向装置包括架体、 转向开关、 第一接头、 第二接头、 第三接 头、 第四接头、 第五接头和第六接头, 所述第五接头和第六接头对外连接。
优选的, 所述第五接头和第六接头设置在所述架体的中部, 所述第一接头和 第二接头相对应设置在所述第五接头和第六接头的下部, 所述第三接头和第四接 头相对应设置在所述第五接头和第六接头的上部。
优选的, 还包括设置第一导线、 第二导线、 第三导线和第四导线, 所述第二 接头、 第三接头分别通过所述第二导线、 第三导线与所述蓄电池其中一个外接端 子相连接, 所述第一接头、 第四接头分别通过所述第一导线、 第四导线与所述蓄 电池另一外接端子相连接。
优选的, 所述蓄电池还包括至少一个减震垫。
优选的, 所述减震垫设置在所述电能体与所述盖子之间。
优选的, 所述减震垫为海绵体或弹簧片。
优选的, 所述蓄电池上方的盖子中设置注液孔。
上述公开的激发式的高能量供电装置的益处在于有效地避免了铅粉尘、铅烟、 酸污水和酸雾在生产中外泄, 有效地消除了污染隐患, 有效地减少了污染处理设 施设备的安装, 大量节约生产投资, 保护环境, 消除污染, 大量地节约充电费用; 组成结构简单, 组成部件工件单一标准, 生产设备简化, 形成流水线生产, 节约 劳动力, 降低生产成本, 适合大批量生产; 内阻小、 内耗少, 活性物质的利用率 高、 电流密度均匀分布, 充分向外释放高倍率的电能, 使用寿命长, 有效地解决 资源紧缺问题。
以下, 将通过具体的实施例做进一步的说明, 然而实施例仅是本发明的可选 实施方式的举例, 其所公开的特征仅用于说明及阐述本发明的技术方案, 并不用 于限定本发明的保护范围。 附图说明
图 1为本发明一种具有激发式的高能量供电装置实施例的剖视示意图。
图 2为图 1分解时的结构示意图。
图 3为电能体和隔离件组合与壳体的分解示意图。
图 4为电能体和隔离件组合与壳体装配过程的示意图。
图 5为一种电能反应体单元实施例的结构示意图。
图 6为另一种电能反应体单元实施例的结构示意图。
图 7为另一种电能反应体单元实施例的结构示意图。
图 8为另一种电能反应体单元实施例的结构示意图。
图 9为另一种电能反应体单元实施例的结构示意图。 图 10为圆管电能体的分解时的结构示意图。
图 11为另一种电能反应体单元实施例的结构示意图。
图 12为方管电能体分解时的结构示意图。
图 13为另一种圆管电能体分解时的结构示意图。
图 14为另一种方管电能体分解时的结构示意图。
图 15为板式电能体示意图。
图 16为图 15分解时的结构示意图。
图 17为一种电能体和隔离件配合时的结构示意图。
图 18为图 17部分剖视示意图。
图 19为另一种电能体和隔离件配合时的结构示意图
图 20为图 19截面剖视图。
图 21为图 19部分剖视示意图。
图 22为另一种电能体和隔离件配合时的结构示意图。
图 23为另一种电能体和隔离件配合时的结构示意图。
图 24为另一种电能体和隔离件配合时的结构示意图。
图 25为另一种电能体和隔离件配合时的剖视示意图。
图 26为另一种具有激发式的高能量供电装置实施例的剖视示意图。 图 27为另一种具有激发式的高能量供电装置实施例的示意图。 图 28为一种供电装置工作方式示意图。
图 29为另一种供电装置工作方式示意图。
图 30为另一种供电装置工作方式示意图。
图 31为另一种供电装置工作方式示意图。
图 32为另一种具有激发式的高能量供电装置实施例的示意图。 图 33为另一种具有激发式的高能量供电装置实施例的剖视示意图。 图 34为图 33分解时的结构示意图。
图 35为另一种具有激发式的高能量供电装置实施例的剖视示意图。 图 36为图 35中 A部分的示意图。
图 37为另一种具有激发式的高能量供电装置实施例的示意图。 图 38为另一种具有激发式的高能量供电装置实施例的剖视示意图。 图 39为图 38分解时的结构示意图。 图 40为另一种具有激发式的高能量供电装置实施例的剖视示意图。
图 41为图 40中 A-A部分的示意图。
图 42为向供电装置注入电解质的示意图。
图 43为另一种具有激发式的高能量供电装置实施例的剖视示意图。
图 44为另一种具有激发式的高能量供电装置实施例的剖视示意图。
图 45为图 44分解时的结构示意图。
图 46为另一种具有激发式的高能量供电装置实施例的剖视示意图。
图 47为另一种具有激发式的高能量供电装置实施例分解时的示意图, 图 48为另一种具有激发式的高能量供电装置实施例分解时的示意图, 图 49为另一种具有激发式的高能量供电装置实施例分解时的示意图, 图 50为另一种具有激发式的高能量供电装置实施例分解时的示意图, 图 51为另一种具有激发式的高能量供电装置实施例分解时的示意图,
图中:
1…蓄电池 11—-壳体 110—-盖子 112—- 注液孔 12、 121、
122、 123、 124、 125 —-蓄电池单体槽
13、 131、 132、 133、 134—-中间格 14—-电解质
15—防震垫 16-…端子孔 2-—电能体
20 ---电能反应体单元 21 ---正电能体 22 ---负电能体
23―上盖 24―下盖 25―铅膏 26―电能管 27 -—骨栅
28—支撑件 3 —集电体 5、 51—隔离件 6—外接端子
61-—正外接端子 62-—负外接端子 7-—逆变装置 71、 72-—导线
8―电动机 9、 9 ' ―转向装置 91…架体 92…转向开关 921…第一 接头 922…第二接头 923…第三接头 924…第四接头 925…第五 接头 926…第六接头 931…第一导线 932…第二导线 933…第三导线
934---第四导线 具体实施方式
参见全部附图, 具有激发式的高能量供电装置, 包括具有输出负电压或正电 压的蓄电池, 所述具有输出负电压或正电压的蓄电池包括壳体、 位于壳体上方的 盖子、设置在所述壳体中充有电解质的至少一个蓄电池单体槽、至少两个电能体、 至少一个隔离件、 至少两个集电体和至少两个外接端子, 所述电能体、 隔离件和 集电体位于所述蓄电池单体槽中, 所述电能体与所述电能体之间由所述隔离件隔 离, 所述集电体分别与所述外接端子相连接, 给电能体自先在化成槽中充电, 或 在蓄电池组装后充电, 通常称为化成, 本发明中的蓄电池在无需或内化成的情况 下, 蓄电池直接放电, 输出负电压; 当在常规充电后的情况下, 蓄电池可输出正 电压, 有效地避免了铅粉尘、 铅烟、 酸污水和酸雾在生产中外泄, 有效地消除了 污染隐患, 有效地减少了污染处理设施设备的安装, 大量节约生产投资, 保护环 境, 消除污染, 大量地节约充电费用; 组成结构简单, 组成部件工件单一标准, 生产设备简化, 形成流水线生产, 节约劳动力, 降低生产成本, 适合大批量生产; 内阻小、 内耗少, 活性物质的利用率高、 电流密度均匀分布, 充分向外释放高倍 率的电能, 使用寿命长, 有效地解决资源紧缺问题。
参见图 1和图 2, 为了更清晰地说明本实施例, 图 2为图 1结构的分解情况 示意图, 具有激发式的高能量供电装置, 包括具有输出负电压或正电压的蓄电池 1, 所述具有输出负电压或正电压的蓄电池 1包括壳体 11、 位于壳体 11上部的盖 子 110、 设置在壳体 11中一个充有电解质的蓄电池单体槽 12、 六个电能体 2、 七 个隔离件 5、 两个集电体 3和两个外接端子 6, 所述六个电能体 2、 七个隔离件 5 和两集电体 3位于所述蓄电池单体槽 12中,所述电能体 2与所述电能体 2之间由 所述隔离件 5隔离, 所述集电体 3分别与所述外接端子 6相连接, 有效地避免了 铅粉尘、 铅烟、 酸污水和酸雾在生产中外泄, 有效地消除了污染隐患, 有效地减 少了污染处理设施设备的安装, 大量节约生产投资, 保护环境, 消除污染。
进一步, 所述电能体 2与所述集电体 3之间由所述隔离件 5隔离, 结构简单, 有效地防止了短路, 提高使用寿命。
进一步, 所述集电体 3位于所述蓄电池 1两端面且位于所述蓄电池单体槽 12 的相对内侧, 所述集电体 3分别与所述外接端子 6相连接, 结构简单、 合理, 产 生电量足, 使用效果好。
参见图 1, 所述蓄电池单体槽 12的两个相对应的槽壁设置通孔, 所述集电体 3与所述外接端子 6通过所述通孔相连接, 优选方案是通过所述通孔穿过槽的壁 相焊接, 牢度高, 导电性好。 参见图 1, 所述电能体 2与电能体 2之间设置所述隔离件 5, 防止电能体 2与 电能体 2之间出现短路现象, 所述电解质、 所述六个电能体 2、 所述七个隔离件 5 位于所述蓄电池单体槽 12中, 这样, 就形成了电能体 2与电解质产生大量离子基 团并向集电体 3传导, 畅通无内阻, 同时, 两个外接端子 6与所述两个电能体 2 相连, 向外输出高倍率的电能。
进一步, 所述电能体 2与所述集电体 3之间也设置所述隔离件 5, 防止短路, 隔离效果更好, 提高了电能体 2的使用寿命长。
当需要使用蓄电池 1时, 只要两个外接端子 6接通外电路, 就能自动激活电 能体 2, 电能体 2与电解质产生大量离子基团并向集电体 3传导, 每个电能体 2 同时释放能量约达 100%, 也就是说活物质的利用率可达 100%, 向外输出高倍率 的电能可超过现有铅酸蓄电池的 5倍以上, 大大地节约了资源; 同时, 解决了现 有正、 负极板的铅酸蓄电池必须要在工厂化成时产生酸雾、 酸污水、 铅粉尘和铅 烟的缺陷, 有效地保护了环境; 再者, 有效地避免了使用通常必需要利用金属板 栅、 极耳和汇流排等方式在铸极柱或铸焊时产生铅烟或尘粉现象, 有效地保护了 环境。
本实施例的蓄电池 1的每一蓄电池单体槽 12产生工作输出电压为至少 2.6V, 超过了现有技术铅酸蓄电池产生工作输出电压的 30%以上 (现有铅酸蓄电池产生 工作输出电压一般小于 2V), 有效地节约了能源。
进一步,每一蓄电池单体槽产生工作输出电压还可达 3.0 V以上,超过了现有 技术铅酸蓄电池产生工作输出电压的 50%以上 (现有铅酸蓄电池产生工作输出电 压一般小于 2V), 能量释放充分, 功率大, 有效的解决了能源紧缺问题, 节能环 保。
现有的蓄电池按照国家标准进行测试: 2V38Ah单体蓄电池按 2小时率放电, 一般在 120分钟左右, 终止电压 1.75V.
根据本实施例的结构, 实际测试: 2V38AH的单体蓄电池,按照 2小时率放电, 电流 19安倍, 连续放电 600分钟以上, 工作电压仍在 3. 6V以上, 有效地实现大 功率放电并且使用时间长, 节约资源, 保护环境。
进一步, 所述多个电能体 2采用相同材料制成, 内阻小、 内耗少, 能有效地 提高了活性物质的利用率, 提高供电装置的放电性能, 进一步, 所述电能体 2包括二氧化铅或者铅, 电流密度均匀分布, 能有效地 提高了活性物质的利用率, 电能体 2与电解质产生大量离子基团向外充分释放高 倍率的电能, 可重复长时间地使用, 使用寿命长, 保护环境。
参见图 15至图 21所述电能体 2为板式电能体, 结构简单, 工件单一标准, 制作工艺简易, 设备简化, 使用人力少, 制作成本低, 可形成流水作业, 产量高, 使用寿命长, 适合大批量生产。
参见图 9至图 14, 所述电能体还可以为管式电能体, 结构简单, 工件单一标 准, 制作工艺简易, 设备简化, 使用人力少, 制作成本低, 可形成流水作业, 产 量高, 使用寿命长, 适合大批量生产。
进一步, 参见图 15或图 16或图 18或图 20或 21, 所述板式电能体包括支撑 件 28和涂接在所述支撑件 28中的铅膏 25, 结构简单, 工件单一标准, 制作工艺 简易, 设备简化, 使用人力少, 制作成本低, 可形成流水作业, 产量高, 使用寿 命长, 适合大批量生产。
也可以是, 参见图 10或图 12, 所述管式电能体包括上盖 23、 电能管 26、 下 盖 24和填充在电能管 26内的铅粉或铅膏 25, 结构简单, 工件单一标准, 制作工 艺简易, 设备简化, 使用人力少, 制作成本低, 可形成流水作业, 产量高, 使用 寿命长, 适合大批量生产。
参见图 13或图 14, 所述管式电能体也可以包括上盖 23、 加强骨栅 27、 电能 管 26、下盖 24和填充在电能管 26内的铅粉或铅膏 25,结构简单,工件单一标准, 制作工艺简易, 设备简化, 使用人力少, 制作成本低, 可形成流水作业, 产量高, 使用寿命长, 适合大批量生产。
进一步, 所述电能管 26为玻璃纤维制成, 离子导电性能好, 质量好, 使用效 果好。
进一步, 所述集电体 3采用导电材料制成, 内阻小、 内耗少, 活性物质的利 用率高、 电流密度均匀分布, 充分向外释放高倍率的电能, 使用寿命长, 有效地 解决资源紧缺问题。
再进一步, 所述集电体 3采用的导电材料为金属材料或碳纤维材料, 内阻小、 内耗少, 活性物质的利用率高、 电流密度均匀分布, 充分向外释放高倍率的电能, 使用寿命长, 有效地解决资源紧缺问题。
再进一步, 所述集电体 3采用的金属材料为铅板或不锈钢或其他金属板, 内 阻小、 内耗少, 活性物质的利用率高、 电流密度均匀分布, 充分向外释放高倍率 的电能, 使用寿命长, 有效地解决资源紧缺问题。
参见图 1至图 7, 所述集电体 3为片状结构, 内阻小、 内耗少, 活性物质的 利用率高、 电流密度均匀分布, 充分向外释放高倍率的电能, 使用寿命长, 有效 地解决资源紧缺问题。
参见图 8, 所述集电体 3也可以为管状结构, 内阻小、 内耗少, 活性物质的 利用率高、 电流密度均匀分布, 充分向外释放高倍率的电能, 使用寿命长, 有效 地解决资源紧缺问题。
所述集电体 3也可以为网片状结构, 内阻小、 内耗少, 活性物质的利用率高、 电流密度均匀分布, 充分向外释放高倍率的电能, 使用寿命长, 有效地解决资源 紧缺问题。
参见图 1或图 2, 所述隔离件 5由离子穿透电绝缘材料制成, 成本低, 质量 高, 使用效果好, 防止短路, 使用寿命长。
进一步, 所述离子穿透电绝缘材料采用包括纤维质或聚丙乙烯或聚氯乙烯, 成本低, 质量高, 导电性能好, 使用效果更好。
参见图 17或图 19, 所述隔离件 5为袋状, 结构简单, 制作工艺简易, 制作 成本低, 使用效果好。 进一步, 所述袋状隔离件为半封闭 (参见图 17 ), 结构简 单, 成本低。 所述袋状隔离件为全封闭结构 (参见图 179), 结构简单, 成本低, 防止短路, 使用寿命长, 使用效果更好。
所述隔离件 5也可以为 W字形 (参见图 23) 或 U字形 (参见图 22) 或 S字 形 (参见图 24) 或片状 (参见图 1 ), 参见图 25, 也可以在多个电能体 2之间设 置一个多格式的隔离件 5, 结构简单, 方便安装, 防止短路, 使用寿命长。
参见图 3和图 4, 在装配时, 多个电能体 2和多个隔离件 5合在一起很方便 地装入蓄电池单体槽 12中, 装配简单, 成本低, 生产速度快, 效益高。
参见图 5、 图 6和图 7, 将多个电能体 2、 多个隔离件 5和多个集电体 3组合 成的电能反应体单元, 大大地提高了生产速度, 降低生产成本, 提高产品质量。 比如, 参见图 5或图 6所示, 六个电能体 2、 四个隔离件 5 (其中 3个为 U字形、 其中一个为平板状) 和两个集电体 3组成电能反应体单元, 可以很方便地装入蓄 电池单体槽 12中, 电能体 2可以为正电能体 21或负电能体 22, 六个电能体 2可 以三个为正电能体 21,三个为负电能体 22,交替分布排列在集电体 3的两内侧中, 内阻小、 内耗少, 电流密度均匀分布, 能有效地提高了活性物质的利用率, 电能 体与电解质产生大量离子基团向外充分释放高倍率的电能,可重复长时间地使用, 使用寿命长, 保护环境。
参见图 5, 正电能体 21和负电能体 22之间由所述隔离件 5、 51隔离, 隔离件 5、 51 由离子穿透电绝缘材料制成, 离子穿透电绝缘材料可采用包括纤维质或聚 丙乙烯或聚氯乙烯, 正电能体 21与集电体 3之间由所述隔离件 5隔离, 负电能体 与集电体 3之间由所述隔离件 51隔离, 隔离件 5为平板状, 隔离件 51也可以为 U字形, 该结构防止大电流时短路, 使用效果好。
参见图 6, 电能体 2采用平板式结构, 参见图 9和图 10, 电能体 2可以包括 铅膏 25和用于装铅膏 25的电能管 26, 将铅膏 25装入其中, 再用上盖 23和下盖 24封闭, 使用效果好, 防止铅粉脱落, 结构简单, 有效地防止了短路, 提高使用 寿命。 参见图 11和图 12, 电能体 2可以包括铅膏 25和方管式的电能管 26的板 状结构, 铅膏 25装入其中, 再用上盖 23和下盖 24封闭, 使用效果好, 防止铅粉 脱落, 结构简单, 有效地防止了短路, 提高使用寿命。
参见图 13和图 14, 也可以在电能管 26中设置起加强作用的骨栅 27, 以提高 电能体 2的强度。
参见图 26, 六个电能体 2其中三个为正电能体 21, 三个为负电能体 22, 七 个隔离件 5, 所述三个正电能体 21、 三个负电能体 22、 七个隔离件 5和两个集电 体 3组成电能反应体单元, 所述正电能体 21与负电能体 22之间设置隔离件 5, 集电体 3与正电能体 21由隔离件 5隔离, 集电体 3与负电能体 22之间由隔离件 5隔离, 两个外接端子 6中一个为正外接端子 61, 与正电能体 21通过集电体 3相 接通, 另一个为负外接端子 62, 与负电能体 22通过集电体 3相接通, 所述靠近 正外接端子的正电能体 21通过集电体 3相连接,所述靠近负外接端子的负电能体 22通过集电体 3相连接, 有效地避免了铅粉尘、 铅烟、 酸污水和酸雾在生产中外 泄, 有效地消除了污染隐患, 有效地减少了污染处理设施设备的安装, 大量节约 生产投资, 保护环境, 消除污染, 大量地节约充电费用; 组成结构简单, 组成部 件工件单一标准, 生产设备简化, 形成流水线生产, 节约劳动力, 降低生产成本, 适合大批量生产; 内阻小、 内耗少, 活性物质的利用率高、 电流密度均匀分布, 充分向外释放高倍率的电能, 使用寿命长, 有效地解决资源紧缺问题。
参见图 27, 所述蓄电池 1中设置至少一个充有所述电解质的所述蓄电池单体 槽 1, 至少两个电能体 2、 至少一个隔离件 5、 至少两个集电体 3和至少两个外接 端子 5, 所述电能体 2与所述电能体 2之间和所述电能体 2与所述集电体 3之间 由所述隔离件 5隔离, 至少两个所述电能体 2、 至少一个所述隔离件 5和至少两 个所述集电体 3组成电能反应体单元 20, 所述电能反应体单元 20位于所述蓄电 池单体槽中,所述集电体 3位于所述电能反应体单元 20的两端面并分别与所述外 接端子 6相连接。
参见图 27, 所述蓄电池 1中设置一个充有所述电解质的所述蓄电池单体, 至 少六个电能体 2、 五个隔离件 5、 两个集电体 3和两个外接端子 6, 所述电能体 2 与所述电能体 2之间由所述隔离件 5隔离, 所述电能体 2与所述集电体 3之间由 所述隔离件 5隔离, 六个所述电能体 2、 五个所述隔离件 5和两个所述集电体 3 组成电能反应体单元 20, 所述电能反应体单元 20位于所述蓄电池单体槽中, 所 述集电体 3位于所述电能反应体单元 20的两端面并分别与所述外接端子 6相连 接, 有效地避免了铅粉尘、 铅烟、 酸污水和酸雾在生产中外泄, 有效地消除了 污染隐患, 有效地减少了污染处理设施设备的安装, 大量节约生产投资, 保护环 境, 消除污染, 大量地节约充电费用; 组成结构简单, 组成部件工件单一标准, 生产设备简化, 形成流水线生产, 节约劳动力, 降低生产成本, 适合大批量生产; 内阻小、 内耗少, 活性物质的利用率高、 电流密度均匀分布, 充分向外释放高倍 率的电能, 使用寿命长, 有效地解决资源紧缺问题。
参见图 27, 盖子 110上设置两个端子孔 16, 两个集电体 3和两个外接端子 6 相连接, 两个外接端子 6和两个端子孔 16相配套连接, 生产简单, 操作方便。
参见图 28, 具有激发式的高能量供电装置, 包括蓄电池 1和逆变装置 7, 所 述蓄电池 1输出的负电压经所述逆变装置 7转向后, 由所述逆变装置 7输出正电 压, 这样, 可以把蓄电池 1输出的小功率逆变为高电压或大功率的电能, 以适合 不同的用电需求, 节能环保。
进一步, 所述逆变装置 7包括稳压管、 二极管、 三极管、 电容、 电阻和变压 器, 结构简单、 合理, 成本低, 适合大批量生产。
又进一步, 所述逆变装置 7还包括散热垫件、 场效应管和电感, 使用效果更 好。
再进一步, 所述蓄电池 1通过蓄电池 1与逆变装置 7之间设置的导线 71和 72与所述逆变装置 7的输入口相连接, 结构简单、 合理。 进一步, 所述逆变装置 7可将输入电压的负 220V至 12V逆变输出为直流的
12V或 24V或 48V或 60V或 72V或 110V, 节约资源, 减少污染。
进一步,所述逆变装置可将输入电压的负 220V至 12V逆变输出 220V或 380V 的交流电, 大大地节约了资源, 保护环境。
参见图 29, 具有激发式的高能量供电装置包括蓄电池 1和电动机 8, 所述蓄 电池 1与所述电动机 8相通, 所述电动机 8使用所述蓄电池 1输出的电压工作, 这样, 可以把蓄电池 1输出的电压通过电动机 8对外工作, 以适合不同的用电需 求, 节约资源, 减少污染。
进一步, 所述电动机 8包括外壳、 定子永磁极、 转子电磁极和换向器, 所述 与定子永磁极对应的所述电磁极绕组的端部电压在额定状态下设置为零, 使所述 电动机 8形成与具有输出负电压的蓄电池相配合工作的结构, 以适合不同的用电 需求, 节约资源, 减少污染。
参见图 30, 具有激发式的高能量供电装置包括蓄电池 1和转向装置 9, 所述 蓄电池 1输出的负电压经所述转向装置 9换向后, 由所述转向装置 9输出正电压, 以适合不同的用电需求, 使用寿命长, 有效地解决资源紧缺问题, 结构简单, 制 作工艺流程简易, 降低生产成本, 有效地避免了铅粉尘、 酸污水、 铅烟及酸雾的 产生, 减少环境污染, 适合大批量生产。
转向装置 9还可以有多种变化, 参见图 31, 所述转向装置 9 ' 包括架体 91、 转向开关 92、 第一接头 921、 第二接头 922、 第三接头 923、 第四接头 934、 第五 接头 925和第六接头 926, 所述第五接头 925和第六接头 926对外连接, 结构简 单, 成本低, 转向方便, 安全可靠, 节约资源, 减少污染。
再进一步, 所述第五接头 925和第六接头 926设置在所述架体 91的中部, 所 述第一接头 921和第二接头 922相对应设置在所述第五接头 925和第六接头 926 的下部, 所述第三接头 923和第四接头 924相对应设置在所述第五接头 925和第 六接头 926的上部。
再进一步, 还包括设置第一导线 931、 第二导线 932、 第三导线 933和第四导 线 934, 所述第二接头 922、 第三接头 923分别通过所述第二导线 932、 第三导线 933与所述蓄电池 1其中一个外接端子 6相连接, 所述第一接头 921、 第四接头 924分别通过所述第一导线 931、 第四导线 934与所述蓄电池 1另一外接端子 61 相连接, 结构简单, 成本低, 转向方便, 安全可靠, 节约资源, 减少污染。 参见图 32, 所述具有输出负电压或正电压的蓄电池 1包括壳体 11、位于壳体
11上部的盖子 110、 设置在壳体 11中两个充有电解质的蓄电池单体槽 12、 121、 十二个电能体 2、 十二个隔离件 5、 四个集电体 3和两个外接端子 6, 所述电能体 2与电能体 2之间由所述隔离件 5隔离, 所述电解质、 十二个电能体 2、 四个集电 体 3和十个隔离件 5位于两个所述蓄电池单体槽中 12、 121 , 每个蓄电池单体槽 中各自设置六个电能体 2、 两个集电体 3和五个隔离件 5, 所述蓄电池单体槽 12 与所述蓄电池单体槽 121之间形成中间格 13, 所述位于中间格 13两边的所述集 电体 3通过跨桥相焊接, 位于所述蓄电池 1两端面且位于所述蓄电池单体槽 12、 121的相对内侧并与所述中间格 13相对应的集电体 3分别与所述外接端子 6相连 接, 有效地避免了铅粉尘、 铅烟、 酸污水和酸雾在生产中外泄, 有效地消除了污 染隐患, 有效地减少了污染处理设施设备的安装, 大量节约生产投资, 保护环境, 消除污染, 大量地节约充电费用; 组成结构简单, 组成部件工件单一标准, 生产 设备简化, 形成流水线生产, 节约劳动力, 降低生产成本, 适合大批量生产; 内 阻小、 内耗少, 活性物质的利用率高、 电流密度均匀分布, 充分向外释放高倍率 的电能, 使用寿命长, 有效地解决资源紧缺问题。
参见图 33和 34, 图 34为图 33的分解示意图, 具有激发式的高能量供电装 置, 其特征在于包括具有输出负电压或正电压的蓄电池 1, 所述具有输出负电压 或正电压的蓄电池 1包括壳体 11、 位于壳体 11上部的盖子 110、 设置在壳体 11 中两个充有电解质的蓄电池单体槽 12、 121、 十二个电能体、 十四个隔离件 5、 四 个集电体 3和两个外接端子 6, 所述电能体 2与电能体 2之间设置所述隔离件 5, 所述电解质、 十二个电能体 2、 四个集电体 3和十四个隔离件 5设置在两个所述 蓄电池单体槽 12和 121中, 所述蓄电池单体槽 12与所述蓄电池单体槽 121之间 形成中间格 13, 所述位于中间格 13两边的所述集电体 3与所述集电体 3通过跨 桥相焊接, 位于所述蓄电池 1两端面且位于所述蓄电池单体槽 12、 121的相对内 侧并与所述中间格 13相对应的集电体分别与所述外接端子 6相连接,有效地避免 了铅粉尘、 铅烟、 酸污水和酸雾在生产中外泄, 有效地消除了污染隐患, 有效地 减少了污染处理设施设备的安装, 大量节约生产投资, 保护环境, 消除污染, 大 量地节约充电费用; 组成结构简单, 组成部件工件单一标准, 生产设备简化, 形 成流水线生产, 节约劳动力, 降低生产成本, 适合大批量生产; 内阻小、 内耗少, 活性物质的利用率高、 电流密度均匀分布, 充分向外释放高倍率的电能, 使用寿 命长, 有效地解决资源紧缺问题。
参见图 35和图 36所示, 设置在壳体 11中两个充有电解质的蓄电池单体槽 12和 121、 十二个电能体 2、 十四个隔离件 5、 四个集电体 3和两个外接端子 6, 所述电能体 2与电能体 2之间由所述隔离件 5隔离, 所述电解质、 十二个电能体 2、所述十四个隔离件 5和四个集电体 3位于两个所述蓄电池单体槽 12和 121中, 每个蓄电池单体槽 12和 121中各自设置六个电能体 2、 两个集电体 3和七个隔离 件 5, 十二个电能体、 四个集电体 3与十四个隔离件 5组成两个电能反应体单元, 所述电能体 2可以为正电能体 21或负电能体 22, 每个电能反应体单元中有六个 正电能体 21、两个集电体 3和七个隔离件 5或均为六个负电能体 22、两个集电体 3和七个隔离件 5组成, 所述每个电能反应体单元位于所述每个蓄电池单体槽 12 和 121中, 所述蓄电池单体槽 12与所述蓄电池单体槽 121之间形成中间格 13, 所述位于中间格 13两边的所述集电体 3通过设置在中间格 13中的通孔穿壁相焊 接, 位于所述蓄电池 1两端面且位于所述蓄电池单体槽 12、 121的相对内侧并与 所述中间格 13相对应的集电体 3分别与所述外接端子 6相连接,有效地避免了铅 粉尘、 铅烟、 酸污水和酸雾在生产中外泄, 有效地消除了污染隐患, 有效地减少 了污染处理设施设备的安装, 大量节约生产投资, 保护环境, 消除污染, 大量地 节约充电费用; 组成结构简单, 组成部件工件单一标准, 生产设备简化, 形成流 水线生产, 节约劳动力, 降低生产成本, 适合大批量生产; 内阻小、 内耗少, 活 性物质的利用率高、 电流密度均匀分布, 充分向外释放高倍率的电能, 使用寿命 长, 有效地解决资源紧缺问题。
进一步, 参见图 35和 36, 所述电能体 2与所述集电体 3之间由所述隔离件 5 隔离, 结构简单, 有效地防止了短路, 提高了电能体 2的使用寿命。
参见图 37, 蓄电池单体槽 12、 121中各设置两个正电能体 21、 两个负电能 体 22、 四个隔离件 5、 两个集电体 3和两个外接端子 6; 所述蓄电池单体槽 12和 所述蓄电池单体槽 121之间形成中间格 13; 所述集电体 3可采用金属材料制成, 所述中间格 13两边的导电金属片通过设置在中间格 13中的通孔穿壁相焊接, 所 述靠近其中一个外接端子 6的集电体 3与所述外接端子 6相连接, 所述靠近另一 个外接端子 6的集电体 3与所述外接端子 6相连接, 所述隔离件 5为 U字形, 内 阻小、 内耗少, 能有效地提高了活性物质的利用率, 提高供电装置的放电性能, 使用寿命长, 有效地解决资源紧缺问题, 保护环境, 大大地减少了污染。 进一步, 所述正电能体和所述负电能体之间设置所述 U字形隔离件 5, 成本 低, 利用率高, 提高了电能体的使用寿命, 节能环保。
参见图 38和图 39, 所述蓄电池 1中设置两个充有所述电解质的所述蓄电池 单体槽 12和 121、 八个所述电能体 2、 十个所述隔离件 5、 四个所述集电体 3和 两个外接端子 6, 所述电能体 2与所述电能体 2之间由所述隔离件 5隔离, 所述 集电体 3与所述电能体 3之间由所述隔离件 5隔离, 四个所述电能体 2、 五个所 述隔离件 5和两个所述集电体 3组成电能反应体单元 20,所述电能反应体单元 20 位于所述蓄电池单体槽 12和 121中,所述两个集电体 3分别位于所述电能反应体 单元 20的两端面, 所述位于电能反应体单元 20尾端面的所述集电体 3与另一个 位于所述电能反应体单元 20首端面的所述集电体 3相连接,所述多个电能反应体 单元 20连接成电能反应体单元组合体,所述位于电能反应体单元组合体的两端面 的集电体 3分别与所述外接端子 6相连接, 有效地避免了铅粉尘、 铅烟、 酸污水 和酸雾在生产中外泄, 有效地消除了污染隐患, 有效地减少了污染处理设施设备 的安装, 大量节约生产投资, 保护环境, 消除污染, 大量地节约充电费用; 组成 结构简单, 组成部件工件单一标准, 生产设备简化, 形成流水线生产, 节约劳动 力, 降低生产成本, 适合大批量生产; 内阻小、 内耗少, 活性物质的利用率高、 电流密度均匀分布, 充分向外释放高倍率的电能, 使用寿命长, 有效地解决资源 紧缺问题。
进一步, 所述集电体 3与所述集电体 3通过跨桥固接或跨桥相焊接, 牢度高, 导电性好, 使用寿命长, 节能环保。
参见图 40和 41, 所述蓄电池 1中设置至少三个充有所述电解质的所述蓄电 池单体槽 12、 121、 122, 十八个所述电能体 2, 二十一个所述隔离件 5、 六个所 述集电体和两个外接端子 6, 所述电能体 2与所述电能体 2之间和所述集电体 3 与所述电能体 2之间由二十一个所述隔离件隔离, 六个所述电能体 2、 七个所述 隔离件 5和两个所述集电体 3组成电能反应体单元, 所述电能反应体单元位于所 述每个蓄电池单体槽中, 这样, 就形成了三个电能反应体单元, 所述两个集电体 3 分别位于所述电能反应体单元的两端面, 所述位于电能反应体单元尾端面的所 述集电体 3与另一个位于所述电能反应体单元首端面的所述集电体 3相连接, 所 述多个电能反应体单元连接成电能反应体单元组合体, 所述位于电能反应体单元 组合体的两端面的集电体 3分别与所述外接端子 6相连接,有效地避免了铅粉尘、 铅烟、 酸污水和酸雾在生产中外泄, 有效地消除了污染隐患, 有效地减少了污染 处理设施设备的安装, 大量节约生产投资, 保护环境, 消除污染, 大量地节约充 电费用; 组成结构简单, 组成部件工件单一标准, 生产设备简化, 形成流水线生 产, 节约劳动力, 降低生产成本, 适合大批量生产; 内阻小、 内耗少, 活性物质 的利用率高、 电流密度均匀分布, 充分向外释放高倍率的电能, 使用寿命长, 有 效地解决资源紧缺问题。
所述位于电能反应体单元尾端面的所述集电体 3与另一个位于所述电能反应 体单元首端面的所述集电体 3通过跨桥固接或跨桥相焊接, 牢度高, 导电性好, 使用寿命长, 节能环保。
参见图 42, 所述蓄电池上方的盖子 110上设置的注液孔 112, 以便电解质 14 可从中注入, 方便简单, 成本低。
参见图 43,所述蓄电池 1中设置四个充有所述电解质的所述蓄电池单体槽 12、 121、 122、 123、 二十四个所述电能体 2、 二十八个所述隔离件 5、 至少八个所述 集电体 2和两个外接端子 6, 所述电能体 2与所述电能体 2之间和所述集电体 3 与所述电能体 2之间由所述隔离件 5隔离, 六个所述电能体 2、七个所述隔离件 5 和两个所述集电体 3组成电能反应体单元, 所述电能反应体单元位于所述每个蓄 电池单体槽中, 所述两个集电体 3分别位于所述电能反应体单元 20的两端面, 所 述位于电能反应体单元 20尾端面的所述集电体 3与另一个位于所述电能反应体单 元首端面的所述集电体 3相连接,所述多个电能反应体单元 20连接成电能反应体 单元组合体, 所述位于电能反应体单元组合体的两端面的集电体 3分别与所述外 接端子 6相连接, 有效地避免了铅粉尘、 铅烟、 酸污水和酸雾在生产中外泄, 有 效地消除了污染隐患, 有效地减少了污染处理设施设备的安装, 大量节约生产投 资, 保护环境, 消除污染, 大量地节约充电费用; 组成结构简单, 组成部件工件 单一标准, 生产设备简化, 形成流水线生产, 节约劳动力, 降低生产成本, 适合 大批量生产; 内阻小、 内耗少, 活性物质的利用率高、 电流密度均匀分布, 充分 向外释放高倍率的电能, 使用寿命长, 有效地解决资源紧缺问题。
参见图 44和图 45, 所述蓄电池 1中设置六个充有所述电解质的所述蓄电池 单体槽 12、 121、 122、 123、 124、 125、 三十六个所述电能体 2、 四十二个所述隔 离件 5、十二个所述集电体 3和两个外接端子 6, 所述电能体 2与所述电能体 2之 间和所述集电体 3与所述电能体 2之间由所述隔离件 5隔离, 六个所述电能体 2、 七个所述隔离件 5和两个所述集电体 3组成电能反应体单元, 所述电能反应体单 元位于所述每个蓄电池单体槽中, 所述两个集电体 3分别位于所述电能反应体单 元的两端面, 所述位于电能反应体单元尾端面的所述集电体 3与另一个位于所述 电能反应体单元首端面的所述集电体 3相连接, 所述多个电能反应体单元连接成 电能反应体单元组合体, 所述位于电能反应体单元组合体的两端面的集电体 3分 别与所述外接端子 6相连接, 有效地避免了铅粉尘、 铅烟、 酸污水和酸雾在生产 中外泄, 有效地消除了污染隐患, 有效地减少了污染处理设施设备的安装, 大量 节约生产投资, 保护环境, 消除污染, 大量地节约充电费用; 组成结构简单, 组 成部件工件单一标准, 生产设备简化, 形成流水线生产, 节约劳动力, 降低生产 成本, 适合大批量生产; 内阻小、 内耗少, 活性物质的利用率高、 电流密度均匀 分布, 充分向外释放高倍率的电能, 使用寿命长, 有效地解决资源紧缺问题。
参见图 46,所述蓄电池 1中设置六个充有所述电解质的所述蓄电池单体槽 12、 121、 122、 123、 124、 125、 十二个所述电能体 2、 十二个所述隔离件 5和十二个 所述集电体 3,所述电能体 2与所述电能体 2之间和所述集电体 3与所述电能体 2 之间由所述隔离件隔离 5, 两个所述电能体 2、两个所述隔离件 5和两个所述集电 体 3组成电能反应体单元, 所述电能反应体单元位于所述每个蓄电池单体槽中, 所述两个集电体 3分别位于所述电能反应体单元的两端面, 所述位于电能反应体 单元尾端面的所述集电体 3与另一个位于所述电能反应体单元首端面的所述集电 体 3相连接, 所述多个电能反应体单元连接成电能反应体单元组合体, 所述位于 电能反应体单元组合体的两端面的集电体 3分别与所述外接端子 6相连接, 有效 地避免了铅粉尘、 铅烟、 酸污水和酸雾在生产中外泄, 有效地消除了污染隐患, 有效地减少了污染处理设施设备的安装, 大量节约生产投资, 保护环境, 消除污 染, 大量地节约充电费用; 组成结构简单, 组成部件工件单一标准, 生产设备简 化, 形成流水线生产, 节约劳动力, 降低生产成本, 适合大批量生产; 内阻小、 内耗少, 活性物质的利用率高、 电流密度均匀分布, 充分向外释放高倍率的电能, 使用寿命长, 有效地解决资源紧缺问题。
进一步, 参见图 46所示, 所述隔离件 5为 U字形, 结构简单, 制作工艺流程 简易, 产生能量高, 设备投资小, 使用人力少, 制作成本低, 适合大批量生产。
参见图 47, 所述蓄电池 1还包括至少一个减震垫 15, 所述减震垫 15设置在 所述电能体 2与所述盖子 110之间, 进一步, 所述减震垫为海绵体或弹簧片, 有 效地防止电能体 2、 隔离件 5和集电体 3出现松动现象, 保证供电装置正常地工 作。
参见图 48, 本实施例在两个蓄电池单体槽中设置两个电能反应体单元 20, 两个外接端子 6设置在壳体 11的同一侧, 两个电能反应体单元 20并立设置, 其 有益效果与图 33相近, 在此不再赘述。
参见图 49, 本实施例在两个蓄电池单体槽中设置两个电能反应体单元 20, 两个外接端子 6设置在壳体 11的相连接的两个侧面,两个电能反应体单元 20,其 中一个电能反应体单元 20平行中间格 13设置,另一个电能反应体单元 20垂直中 间格 13设置, 其有益效果与图 33相近, 在此不再赘述。
参见图 50, 本实施例在三个蓄电池单体槽 12、 121、 122中设置三个电能反 应体单元 20, 所述两个集电体 3分别位于所述电能反应体单元 20的两端面, 所 述位于电能反应体单元 20尾端面的所述集电体 3与另一个位于所述电能反应体单 元 20首端面的所述集电体 3相连接, 所述多个电能反应体单元 20连接成电能反 应体单元组合体,所述位于电能反应体单元 20组合体的两端面的集电体 3分别与 所述外接端子 6相连接, 两个外接端子 6各设置在壳体 11的两个相连接的侧面, 其中两个电能反应体单元 20平行设置, 其中另一个电能反应体单元 20与另外两 个平行设置的电能反应体单元 20相对垂直排列, 其有益效果与图 33相近, 在此 不再赘述。
参见图 51, 本实施例在六个蓄电池单体槽中设置六个电能反应体单元 20, 所 述两个集电体 3分别位于所述电能反应体单元 20的两端面,所述位于电能反应体 单元 20尾端面的所述集电体 3与另一个位于所述电能反应体单元 20首端面的所 述集电体 3相连接, 所述多个电能反应体单元 20连接成电能反应体单元组合体, 所述位于电能反应体单元 20组合体的两端面的集电体 3分别与所述外接端子 6相 连接, 其有益效果与图 50相近, 在此不再赘述。
进一步, 所述电解质可包括纳米两氧化硅、 分析纯硫酸、 集丙烯酰胺、 硅酸 钠、 硫酸钠、 无水乙醇和高纯水, 生产方便, 适合大批量生产。
以上所述, 仅是本发明的较佳实施案例, 并非对本发明做任何限制, 凡是根 据本发明技术实质对以上实施例所作的任何简单修改、 变更以及等效结构变化, 均仍属于本发明技术方案的保护范围内。

Claims

禾'」
1、 一种具有激发式的高能量供电装置, 其特征在于包括具有输出负电压或 正电压的蓄电池,所述具有输出负电压或正电压的蓄电池包括壳体、位于壳体上 方的盖子、设置在所述壳体中充有电解质的至少一个蓄电池单体槽、至少两个电 能体、 至少一个隔离件、 至少两个集电体和至少两个外接端子, 所述电能体、 隔 离件和集电体位于所述蓄电池单体槽中,所述电能体与所述电能体之间由所述隔 离件隔离, 所述集电体分别与所述外接端子相连接。
2、 根据权利要求 1所述具有激发式的高能量供电装置, 其特征在于所述电 能体与所述集电体之间由所述隔离件隔离。
3、 根据权利要求 1所述具有激发式的高能量供电装置, 其特征在于所述集 电体位于所述蓄电池两端面且位于所述蓄电池单体槽的相对内侧。
4、 根据权利要求 2所述具有激发式的高能量供电装置, 其特征在于所述集 电体位于所述蓄电池两端面且位于所述蓄电池单体槽的相对内侧。
5、 根据权利要求 1所述具有激发式的高能量供电装置, 其特征在于所述蓄 电池中设置至少一个充有所述电解质的所述蓄电池单体槽, 至少两个电能体、至 少一个隔离件、至少两个集电体和至少两个外接端子,所述电能体与所述电能体 之间和所述电能体与所述集电体之间由所述隔离件隔离, 至少两个所述电能体、 至少一个所述隔离件和至少两个所述集电体组成电能反应体单元,所述电能反应 体单元位于所述蓄电池单体槽中,所述集电体位于所述电能反应体单元的两端面 并分别与所述外接端子相连接。
6、 根据权利要求 1所述具有激发式的高能量供电装置, 其特征在于所述蓄 电池中设置至少两个充有所述电解质的所述蓄电池单体槽、 至少四个所述电能 体、至少两个所述隔离件和至少四个所述集电体,所述电能体与所述电能体之间 由所述隔离件隔离,所述蓄电池单体槽与所述蓄电池单体槽之间形成中间格,其 中, 位于所述中间格两边的所述集电体相连接; 其中, 位于所述蓄电池两端面且 位于所述蓄电池单体槽的相对内侧并与所述中间格相对应的所述集电体分别与 所述外接端子相连接。
7、 根据权利要求 6所述具有激发式的高能量供电装置, 其特征在于所述电 能体与所述集电体之间由所述隔离件隔离。
8、 根据权利要求 1所述具有激发式的高能量供电装置, 其特征在于所述蓄 电池中设置至少两个充有所述电解质的所述蓄电池单体槽、 至少四个所述电能 体、至少两个所述隔离件和至少四个所述集电体,所述电能体与所述电能体之间 和所述集电体与所述电能体之间由至少一个所述隔离件隔离,至少两个所述电能 体、至少一个所述隔离件和至少两个所述集电体组成电能反应体单元,所述电能 反应体单元位于所述每个蓄电池单体槽中,所述两个集电体分别位于所述电能反 应体单元的两端面,所述位于电能反应体单元尾端面的所述集电体与另一个位于 所述电能反应体单元首端面的所述集电体相连接,所述多个电能反应体单元连接 成电能反应体单元组合体,所述位于电能反应体单元组合体的两端面的所述集电 体分别与所述外接端子相连接。
9、 据权利要求 5所述具有激发式的高能量供电装置, 其特征在于所述蓄电 池中设置至少两个充有所述电解质的所述蓄电池单体槽、 至少四个所述电能体、 至少两个所述隔离件和至少四个所述集电体,所述电能体与所述电能体之间和所 述集电体与所述电能体之间由至少一个所述隔离件隔离, 至少两个所述电能体、 至少一个所述隔离件和至少两个所述集电体组成电能反应体单元,所述电能反应 体单元位于所述每个蓄电池单体槽中,所述两个集电体分别位于所述电能反应体 单元的两端面,所述位于电能反应体单元尾端面的所述集电体与另一个位于所述 电能反应体单元首端面的所述集电体相连接,所述多个电能反应体单元连接成电 能反应体单元组合体,所述位于电能反应体单元组合体的两端面的所述集电体分 别与所述外接端子相连接。
10、根据权利要求 1至 9任意之一所述具有激发式的高能量供电装置,其特 征在于所述电能体与所述电解质产生大量离子基团并向所述集电体传导。
11、根据权利要求 1至 9任意之一所述具有激发式的高能量供电装置, 其特 征在于所述蓄电池的每一所述蓄电池单体槽产生工作输出电压为至少 2.6V。
12、 根据权利要求 11所述具有激发式的高能量供电装置, 其特征在于所述 蓄电池的每一所述蓄电池单体槽产生工作输出电压为至少 3.0V。
13、 根据权利要求 10所述具有激发式的高能量供电装置, 其特征在于所述 蓄电池的每一所述蓄电池单体槽产生工作输出电压为至少 2.6V。
14、 根据权利要求 13所述具有激发式的高能量供电装置, 其特征在于所述 蓄电池的每一所述蓄电池单体槽产生工作输出电压为至少 3.0V。
15、根据权利要求 1至 9任意之一所述具有激发式的高能量供电装置,其特 征在于所述多个电能体采用相同材料制成。
16、根据权利要求 15所述具有激发式的高能量供电装置, 其特征在于所述 电能体包括二氧化铅或者铅。
17、 根据权利要求 10所述具有激发式的高能量供电装置, 其特征在于所述 多个电能体采用相同材料制成。
18、根据权利要求 17所述具有激发式的高能量供电装置, 其特征在于所述 电能体包括二氧化铅或者铅。
19、 根据权利要求 11所述具有激发式的高能量供电装置, 其特征在于所述 多个电能体采用相同材料制成。
20、根据权利要求 19所述具有激发式的高能量供电装置, 其特征在于所述 电能体包括二氧化铅或者铅。
21、 根据权利要求 12所述具有激发式的高能量供电装置, 其特征在于所述 多个电能体采用相同材料制成。
22、根据权利要求 21所述具有激发式的高能量供电装置, 其特征在于所述 电能体包括二氧化铅或者铅。
23、根据权利要求 1至 9所述具有激发式的高能量供电装置,其特征在于所 述至少一个电能体为正电能体或负电能体。
24、 根据权利要求 23所述具有激发式的高能量供电装置, 其特征在于所述 正电能体和所述负电能体交替分布在所述蓄电池单体槽中。
25、根据权利要求 1至 9所述具有激发式的高能量供电装置,其特征在于所 述至少一个电能体为板式电能体或管式电能体。
26、 根据权利要求 25所述具有激发式的高能量供电装置, 其特征在于所述 板式电能体包括支撑件和涂接在所述支撑件中的铅膏。
27、 根据权利要求 25所述具有激发式的高能量供电装置, 其特征在于所述 管式电能体包括上盖、 电能管、 下盖和填充在电能管内的铅粉或铅膏。
28、 根据权利要求 25所述具有激发式的高能量供电装置, 其特征在于所述 管式电能体包括上盖、加强骨栅、电能管、下盖和填充在电能管内的铅粉或铅膏。
29、根据权利要求 27或 28所述具有激发式的高能量供电装置,其特征在于 所述电能管为玻璃纤维制成。
30、根据权利要求 1至 9任意之一所述具有激发式的高能量供电装置,其特 征在于所述集电体采用导电材料制成。
31、根据权利要求 30所述具有激发式的高能量供电装置, 其特征在于所述 集电体采用的导电材料为金属材料或碳纤维材料。
32、根据权利要求 31所述具有激发式的高能量供电装置, 其特征在于所述 集电体采用的金属材料为铅板或不锈钢或其他金属板。
33、 根据权利要求 30所述具有激发式的高能量供电装置, 其特征在于所述 集电体为片状或管状或网片状。
34、根据权利要求 1至 9任意之一所述具有激发式的高能量供电装置,其特 征在于所述蓄电池单体槽的壁设置通孔,所述集电体与所述外接端子通过所述通 孔相连接或通过所述通孔穿过槽壁相焊接。
35、 根据权利要求 6或 Ί所述具有激发式的高能量供电装置, 其特征在于 所述中间格中设置通孔,设置在所述中间格两边的所述集电体通过所述通孔相连 接或通过所述通孔穿过中间格相焊接。
36、根据权利要求 6或 7所述具有激发式的高能量供电装置,其特征在于设 置在所述中间格两边的所述集电体通过跨桥相连接。
37、 根据权利要求 36所述具有激发式的高能量供电装置, 其特征在于所述 中间格两边的所述集电体通过跨桥固接或跨桥相焊接。
38、根据权利要求 1至 9任意之一所述具有激发式的高能量供电装置,其特 征在于所述隔离件由离子穿透电绝缘材料制成。
39、 根据权利要求 38所述具有激发式的高能量供电装置, 其特征在于所述 离子穿透电绝缘材料采用包括纤维质或聚丙乙烯或聚氯乙烯。
40、根据权利要求 1至 9任意之一所述具有激发式的高能量供电装置,其特 征在于所述隔离件为袋状或 W字形或 U字形或 S字形或片状。
41、 根据权利要求 40所述具有激发式的高能量供电装置, 其特征在于所述 袋状隔离件为半封闭或全封闭结构。
42、根据权利要求 1至 9任意之一所述具有激发式的高能量供电装置,其特 征在于所述电解质包括纳米二氧化硅、 分析纯硫酸、 集丙烯酰胺、 硅酸钠、硫酸 钠、 无水乙醇和高纯水。
43、根据权利要求 1至 9任意之一所述具有激发式的高能量供电装置,其特 征在于还包括设置逆变装置, 所述蓄电池输出的负电压经所述逆变装置转向后, 由所述逆变装置输出正电压。
44、 根据权利要求 43所述具有激发式的高能量供电装置, 其特征在于所述 逆变装置包括稳压管、 两极管、 三极管、 电容、 电阻和变压器。
45、 根据权利要求 44所述具有激发式的高能量供电装置, 其特征在于所述 逆变装置还包括散热垫件、 场效应管和电感。
46、 根据权利要求 43所述具有激发式的高能量供电装置, 其特征在于所述 蓄电池与逆变装置之间设置导线,所述蓄电池与所述逆变装置通过所述导线相连 接。
47、 根据权利要求 46所述具有激发式的高能量供电装置, 其特征在于所述 蓄电池通过所述蓄电池与所述逆变装置之间设置的导线与所述逆变装置的输入 口相连接。
48、 根据权利要求 43所述具有激发式的高能量供电装置, 其特征在于所述 逆变装置可将输入电压的负 220V至 12V至逆变输出为直流的 12V或 24V或 48V 或 60V或 72V或 110V。
49、 根据权利要求 43所述具有激发式的高能量供电装置, 其特征在于所述 逆变装置可将输入电压的负 220V至 12V逆变输出 220V或 380V的交流电。
50、根据权利要求 1至 9任意之一所述具有激发式的高能量供电装置,其特 征在于还包括设置电动机,所述蓄电池与所述电动机相通,所述电动机使用所述 蓄电池输出的电压工作。
51、 根据权利要求 50所述具有激发式的高能量供电装置, 其特征在于所述 电动机包括外壳、 定子永磁极、转子电磁极和换向器, 所述与定子永磁极对应的 所述电磁极绕组的端部电压在额定状态下设置为零,使所述电动机形成与所述具 有输出负电压的蓄电池相配合工作的结构。
52、根据权利要求 1至 9任意之一所述具有激发式的高能量供电装置,其特 征在于还包括设置转向装置, 所述蓄电池输出的负电压经所述转向装置换向后, 由所述转向装置输出正电压。
53、 根据权利要求 52所述具有激发式的高能量供电装置, 其特征在于所述 转向装置包括架体、 转向开关、 第一接头、 第二接头、 第三接头、 第四接头、 第 五接头和第六接头, 所述第五接头和第六接头对外连接。
54、 根据权利要求 53所述具有激发式的高能量供电装置, 其特征在于所述 第五接头和第六接头设置在所述架体的中部,所述第一接头和第二接头相对应设 置在所述第五接头和第六接头的下部,所述第三接头和第四接头相对应设置在所 述第五接头和第六接头的上部。
55、 根据权利要求 54所述具有激发式的高能量供电装置, 其特征在于还包 括设置第一导线、 第二导线、 第三导线和第四导线, 所述第二接头、 第三接头分 别通过所述第二导线、第三导线与所述蓄电池其中一个外接端子相连接,所述第 一接头、第四接头分别通过所述第一导线、第四导线与所述蓄电池另一外接端子 相连接。
56、根据权利要求 1至 9任意之一所述具有激发式的高能量供电装置,其特 征在于所述蓄电池还包括至少一个减震垫。
57、 根据权利要求 56所述具有激发式的高能量供电装置, 其特征在于所述 减震垫设置在所述电能体与所述盖子之间。
58、 根据权利要求 56所述具有激发式的高能量供电装置, 其特征在于所述 减震垫为海绵体或弹簧片。
59、根据权利要求 1至 9任意之一所述具有激发式的高能量供电装置,其特 征在于所述蓄电池上方的盖子中设置注液孔。
PCT/CN2011/080422 2011-03-31 2011-09-30 一种具有激发式的高能量供电装置 WO2012129900A1 (zh)

Applications Claiming Priority (18)

Application Number Priority Date Filing Date Title
CN2011100814576A CN102201562A (zh) 2011-03-31 2011-03-31 一种蓄电池
CN201110081457.6 2011-03-31
CN201110086888 2011-04-07
CN201110086888.1 2011-04-07
CN201110114404.X 2011-05-04
CN201110114404XA CN102263296A (zh) 2011-05-04 2011-05-04 一种高能量蓄电池
CN201110187663.5 2011-07-06
CN201110187663 2011-07-06
CN201110187684 2011-07-06
CN201110187684.7 2011-07-06
CN201110187640 2011-07-06
CN201110187640.4 2011-07-06
CN201110187665.4 2011-07-06
CN201110187662 2011-07-06
CN201110187662.0 2011-07-06
CN201110187665 2011-07-06
CN201120342926.0 2011-09-05
CN2011203429260U CN202363553U (zh) 2011-09-05 2011-09-05 一种具有激发式的高能量供电装置

Publications (1)

Publication Number Publication Date
WO2012129900A1 true WO2012129900A1 (zh) 2012-10-04

Family

ID=46929384

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/080422 WO2012129900A1 (zh) 2011-03-31 2011-09-30 一种具有激发式的高能量供电装置

Country Status (1)

Country Link
WO (1) WO2012129900A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4405697A (en) * 1981-05-29 1983-09-20 California Institute Of Technology Lead-acid battery
JPH0594835A (ja) * 1991-10-01 1993-04-16 Matsushita Electric Ind Co Ltd 密閉形鉛蓄電池
JPH11302752A (ja) * 1998-04-24 1999-11-02 Shigenori Okudaira チタンの精製法
CN1289154A (zh) * 1999-09-21 2001-03-28 松下电器产业株式会社 电池及其制造方法
CN1674346A (zh) * 2005-05-18 2005-09-28 禹文华 组装式铅酸蓄电池
CN201655911U (zh) * 2009-12-11 2010-11-24 中国人民解放军63971部队 一种铅酸电池的炭质电极板

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4405697A (en) * 1981-05-29 1983-09-20 California Institute Of Technology Lead-acid battery
JPH0594835A (ja) * 1991-10-01 1993-04-16 Matsushita Electric Ind Co Ltd 密閉形鉛蓄電池
JPH11302752A (ja) * 1998-04-24 1999-11-02 Shigenori Okudaira チタンの精製法
CN1289154A (zh) * 1999-09-21 2001-03-28 松下电器产业株式会社 电池及其制造方法
CN1674346A (zh) * 2005-05-18 2005-09-28 禹文华 组装式铅酸蓄电池
CN201655911U (zh) * 2009-12-11 2010-11-24 中国人民解放军63971部队 一种铅酸电池的炭质电极板

Similar Documents

Publication Publication Date Title
CN106058106A (zh) 一种电池模组
CN203056668U (zh) 一种风能和太阳能发电存储式电动汽车充换电站
CN204685293U (zh) 一种太阳能静电除尘器
CN101030664A (zh) 电动车辆用的可直接充电的锌空气电池
CN201286066Y (zh) 能量可双向流动的双pwm逆变器
WO2012129900A1 (zh) 一种具有激发式的高能量供电装置
CN217074067U (zh) 一种节能扩容充电系统
CN101656485A (zh) 能量可双向流动的双pwm逆变器
CN103457509B (zh) 负电性气体离子储能电池及其发电方法
CN206323150U (zh) 基于碳基电容电池组的发供电独立系统
CN103094623A (zh) 一种蓄电池
CN203733910U (zh) 复合式铅酸蓄电池修复器
CN207409630U (zh) 用于新能源空铁驱动的铝-空气燃料电池单体
CN202363553U (zh) 一种具有激发式的高能量供电装置
CN202405385U (zh) 一种具有激发式的高能量供电装置
CN206610859U (zh) 绿色长循环动力电池系统
CN206148566U (zh) 一种低速电动公交车用电池
CN204067479U (zh) 一种高倍率水性磷酸铁锂电池
CN205680736U (zh) 一种电池成组结构
CN202183607U (zh) 微功耗清洁能源存贮系统
CN102624024A (zh) 微功耗清洁能源存贮系统
CN103545884A (zh) 一种湿式化学燃烧瓦斯发电工艺
CN215869631U (zh) 一种太阳能直流风扇
CN208182671U (zh) 一种净化河流水污染的装置
CN116315144B (zh) 一种新能源车用低压辅助电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11862534

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11862534

Country of ref document: EP

Kind code of ref document: A1