WO2012128462A1 - 디니트릴 화합물의 제조방법 - Google Patents

디니트릴 화합물의 제조방법 Download PDF

Info

Publication number
WO2012128462A1
WO2012128462A1 PCT/KR2012/000485 KR2012000485W WO2012128462A1 WO 2012128462 A1 WO2012128462 A1 WO 2012128462A1 KR 2012000485 W KR2012000485 W KR 2012000485W WO 2012128462 A1 WO2012128462 A1 WO 2012128462A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
dinitrile
potassium
bis
producing
Prior art date
Application number
PCT/KR2012/000485
Other languages
English (en)
French (fr)
Inventor
이병배
오재승
심유진
홍연숙
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP12760109.4A priority Critical patent/EP2687505B1/en
Priority to JP2013557635A priority patent/JP5802284B2/ja
Priority to CN201280014212.4A priority patent/CN103429566B/zh
Publication of WO2012128462A1 publication Critical patent/WO2012128462A1/ko
Priority to US14/026,233 priority patent/US9394242B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C255/00Carboxylic acid nitriles
    • C07C255/01Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms
    • C07C255/02Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms of an acyclic and saturated carbon skeleton
    • C07C255/04Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms of an acyclic and saturated carbon skeleton containing two cyano groups bound to the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C253/00Preparation of carboxylic acid nitriles
    • C07C253/30Preparation of carboxylic acid nitriles by reactions not involving the formation of cyano groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the alkali- or alkaline earth metals or beryllium
    • B01J23/04Alkali metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0201Oxygen-containing compounds
    • B01J31/0211Oxygen-containing compounds with a metal-oxygen link
    • B01J31/0212Alkoxylates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C253/00Preparation of carboxylic acid nitriles
    • C07C253/32Separation; Purification; Stabilisation; Use of additives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C255/00Carboxylic acid nitriles
    • C07C255/01Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms
    • C07C255/11Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms containing cyano groups and singly-bound oxygen atoms bound to the same saturated acyclic carbon skeleton
    • C07C255/13Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms containing cyano groups and singly-bound oxygen atoms bound to the same saturated acyclic carbon skeleton containing cyano groups and etherified hydroxy groups bound to the carbon skeleton
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/30Addition reactions at carbon centres, i.e. to either C-C or C-X multiple bonds
    • B01J2231/32Addition reactions to C=C or C-C triple bonds

Definitions

  • the present invention relates to a method for producing a dinitrile compound. More specifically, the present invention relates to a method for producing a dinitrile compound simply without generating impurities.
  • Lithium secondary batteries are the batteries that can best meet these demands, and research on these is being actively conducted.
  • lithium secondary batteries developed in the early 1990's include lithium salts dissolved in an appropriate amount of a negative electrode such as a carbon material capable of occluding and releasing lithium ions, a positive electrode made of lithium-containing oxide, and a mixed organic solvent. It consists of a nonaqueous electrolyte.
  • the organic solvent used in the nonaqueous electrolyte is deteriorated due to the generation of gas due to oxidation of the electrolyte and swelling due to the storage of the solvent for a long time at high temperature.
  • the decomposition gas generated at this time deforms the pouch-type or can-type battery assembly, causing an internal short circuit, and in severe cases, the battery may ignite or explode.
  • the oxidation of the electrolyte may be further accelerated by the transition metal eluted under high voltage conditions.
  • various additives have been proposed for preventing swelling of a battery in a nonaqueous electrolyte, one of which is a dinitrile compound having two or more ether bonds.
  • the dinitrile compound is known to inhibit the oxidation reaction between the electrolyte solution and the positive electrode, thereby suppressing heat generation, and to inhibit the oxidative decomposition reaction of the nonaqueous electrolyte itself to prevent swelling of the battery.
  • a base such as caustic alkali or quaternary ammonium is generally used as a catalyst for cyanoethylation reaction with an alcohol compound and acrylonitrile, and among these, the most economical and easy to synthesize Methods of using sodium hydroxide are widely known.
  • Japanese Patent Publication No. 3946825 discloses a method for producing a cyano ethyl compound using a lithium hydroxide compound as a reaction catalyst used under anhydrous conditions to solve these problems. Using this method is reported to inhibit the production of bis 2-cyanoethyl ether and to reduce the coloring by polymerization of acrylonitrile.
  • lithium hydroxide also does not effectively prevent the polymerization reaction of the nitrile compound having an unsaturated bond and has a problem in that the reaction time is long because the solubility is relatively low.
  • the problem to be solved by the present invention is to provide a method capable of producing a high-purity dinitrile compound by a simple method having a short reaction time and excellent productivity.
  • the present invention by reacting an alcohol compound and a nitrile compound having a carbon-carbon unsaturated bond at the terminal under anhydrous conditions, using alkoxy potassium of 1 to 5 carbon atoms in the reaction process as a catalyst It provides a method for producing a dinitrile compound.
  • the alkoxy potassium is not particularly limited as long as it is a compound in which the alkoxy group having 1 to 5 carbon atoms is bonded to potassium (K).
  • K potassium
  • methoxy potassium, ethoxy potassium, tert-butoxy potassium, tertiary Pentoxium potassium and the like may be used alone or in combination of two or more, but is not limited thereto.
  • the alkoxy potassium according to the present invention may be used in various contents according to the kind of the specific dinitrile compound, for example, but may be used in an amount of 0.01 to 5 parts by weight based on 100 parts by weight of the alcohol compound, but is not limited thereto.
  • the alcohol compound used in the production of the dinitrile compound may be a polyhydric alcohol, preferably a dihydric alcohol compound.
  • ethylene glycol, propylene glycol, butylene glycol, pentylene glycol, etc. can be used individually or in mixture of 2 or more types, respectively.
  • examples of the nitrile compound having a carbon-carbon unsaturated bond at the terminal used in the production of the dinitrile compound include acrylonitrile, 3-butenenitrile, 4-pentenenitrile and the like, alone or two kinds. It can mix and use the above.
  • the reaction may be carried out at a relatively low temperature of 20 °C to 50 °C.
  • FIG. 1 is a nuclear magnetic resonance spectroscopy (NMR) graph of a dinitrile compound prepared according to Example 1.
  • FIG. 1 is a nuclear magnetic resonance spectroscopy (NMR) graph of a dinitrile compound prepared according to Example 1.
  • an alcohol compound and a nitrile compound having a carbon-carbon unsaturated bond at the terminal are reacted under anhydrous conditions, and alkoxy potassium having 1 to 5 carbon atoms is reacted in the reaction process. It is characterized by using as a catalyst.
  • the alkoxy potassium according to the present invention when used as a catalyst, the polymerization reaction of the nitrile compound having an unsaturated bond does not occur, thereby solving the problem of coloring the reactants. Moreover, since the alkoxy potassium according to the present invention has excellent solubility, the dissolution time can be shortened and the productivity is excellent.
  • the alkoxy potassium that can be used in the present invention is not particularly limited as long as it is a compound in which alkoxy groups having 1 to 5 carbon atoms are bonded to potassium (K).
  • K potassium
  • methoxy potassium, ethoxy potassium, tert-butoxy potassium, tertiary pen Potassium potassium and the like may be used alone or in combination of two or more, but is not limited thereto.
  • the content of alkoxy potassium used in the reaction can be variously selected depending on the kind of specific dinitrile compound desired, the kind and content of the alcohol compound or the nitrile compound having an unsaturated bond as a reactant, and the like. For example, it may be used in an amount of 0.01 parts by weight to 5 parts by weight based on 100 parts by weight of the alcohol compound, but is not limited thereto. If the content is less than 0.01 parts by weight, the reaction rate may be slow. If the content is more than 5 parts by weight, the increase in reactivity, which is an effect of using the catalyst, no longer occurs, and the catalyst may not be easily removed after the reaction is finished.
  • the alcohol compound used as the reactant is a compound having an alcohol group (-OH) as long as it is a compound capable of producing a dinitrile compound, for example, alcohol having 1 to 10 carbon atoms, preferably Preferably, an alcohol having 1 to 5 carbon atoms may be used, but more preferably, an alcohol having 2 to 5 carbon atoms may be used, but is not limited thereto. Also preferably, a dihydric alcohol compound can be used.
  • alcohol compound usable in accordance with the present invention may be used alone or in combination of two or more of ethylene glycol, propylene glycol, butylene glycol, pentylene glycol, and the like, but is not limited thereto.
  • the nitrile compound having a carbon-carbon unsaturated bond at the terminal used as another reactant is a compound having a nitrile group at one terminal of the compound and a carbon-carbon unsaturated bond at the other terminal.
  • the nitrile group and the carbon-carbon unsaturated bond may be a compound connected by an alkylene bond.
  • acrylonitrile, 3-butenenitrile, 4-pentenenitrile and the like may be used alone or in combination of two or more thereof, but is not limited thereto. .
  • the dinitrile compound may be prepared by a simple method.
  • an embodiment of the manufacturing method will be described in more detail.
  • the alkoxy potassium catalyst is added to the alcohol compound according to the present invention, and the mixture is sufficiently mixed by heating and / or stirring until the catalyst is completely dissolved.
  • the unsaturated acrylic compound is slowly added dropwise to proceed with the production of the dinitrile compound.
  • the reactants are sufficiently mixed by stirring or the like to complete the dinitrile formation reaction.
  • the target dinitrile compound may be separated and filtered using a suitable solvent.
  • the production process according to the invention can be carried out at a temperature which is not high. For example, it can be carried out at a temperature of 20 °C to 50 °C it is performed simply and easily.
  • nitrile compound having an unsaturated bond with the alcohol compound may be appropriately adopted by those skilled in the art according to the kind of specific dinitrile compound to be produced.
  • the dinitrile compound which can be produced according to the preparation method of the present invention is preferably a dinitrile compound having two or more ether bonds.
  • the dinitrile compound according to the present invention may be represented by the following Chemical Formula 1, for example:
  • R 1 , R 2 , R 3 are independently of each other alkylene or alkenylene having 1 to 5 carbon atoms, and m is an integer of 1 to 5;
  • the dinitrile compound according to the present invention include 3,5-dioxa-heptanedinitrile, 1,4-bis (cyanoethoxy) butane, bis (2-cyanoethyl) -monoformal, bis (2 -Cyanoethyl) -diformal, bis (2-cyanoethyl) -triformal, ethylene glycol bis (2-cyanoethyl) ether, bis (2- (2-cytoethoxy) ethyl) ether, 4 , 7,10,13-tetraoxahexadecanedinitrile, 4,7,10,13,16-pentaoxanodecane-1,14-dinitrile, 3,6,9,12,15,18-hexaoxa Eicosane dinitrile, 4,10-dioxane-undecandinitrile, 1,10-diocyano-3,8-dioxadecane, 4,10-dioxitrile
  • the dinitrile compound according to the present invention may be used as an additive in a nonaqueous electrolyte solution for lithium secondary batteries containing a lithium salt and an organic solvent.
  • the dinitrile compound having an ether bond according to the present invention forms a complex on the surface of the positive electrode composed of lithium-transition metal oxide, thereby suppressing the heat generation by inhibiting the oxidation reaction between the electrolyte and the positive electrode, and then due to the rapid temperature rise of the battery. Internal short circuit can be prevented.
  • various compounds are present in the nonaqueous electrolyte during charge and discharge, among which HF and PF 5 make the nonaqueous electrolyte an acidic atmosphere.
  • HF and PF 5 make the nonaqueous electrolyte an acidic atmosphere.
  • oxygen (-O-) in the dinitrile compound having an ether bond according to the present invention is combined with HF, PF 5 and the like in the nonaqueous electrolyte solution to suppress the acidic atmosphere composition and also suppress the oxidative decomposition reaction of the nonaqueous electrolyte solution.
  • the dinitrile compound having an ether bond according to the present invention may exhibit an improved effect than conventional additives in terms of battery performance.
  • the dinitrile compound having excellent capacity retention rate has excellent electrochemical properties such as improvement of charge and discharge cycle life.
  • a battery can be provided.
  • Lithium salt included as an electrolyte in the nonaqueous electrolyte according to the present invention may be used without limitation those conventionally used in the electrolyte for lithium secondary batteries, for example, as the anion of the lithium salt F - , Cl - , Br - , I - , NO 3 - , N (CN) 2 - , BF 4 - , ClO 4 - , AlO 4 - , AlCl 4 - , PF 6 - , SbF 6 - , AsF 6 - , BF 2 C 2 O 4 - , BC 4 O 8 - , (CF 3 ) 2 PF 4 - , (CF 3 ) 3 PF 3 - , (CF 3 ) 4 PF 2 - , (CF 3 ) 5 PF - , (CF 3 ) 6 P - , CF 3 SO 3 - , C 4 F 9 SO 3 - , CF 3 CF 2 SO 3 -
  • organic solvent included in the nonaqueous electrolyte according to the present invention those conventionally used in the lithium secondary battery electrolyte may be used without limitation.
  • ethers, esters, amides, linear carbonates, cyclic carbonates, and the like may be used alone or two. It can mix and use species.
  • carbonate compounds which are typically cyclic carbonates, linear carbonates, or mixtures thereof may be included.
  • the cyclic carbonate compound include ethylene carbonate (EC), propylene carbonate (PC), 1,2-butylene carbonate, 2,3-butylene carbonate, 1,2-pentylene carbonate, 2,3-pentylene carbonate, vinylene carbonate, and any one selected from the group consisting of halides thereof or mixtures of two or more thereof.
  • linear carbonate compound include dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate, ethylmethyl carbonate (EMC), methylpropyl carbonate and ethylpropyl carbonate. Any one selected or a mixture of two or more thereof may be representatively used, but is not limited thereto.
  • ethylene carbonate and propylene carbonate which are cyclic carbonates among the carbonate-based organic solvents, may be preferably used as high-viscosity organic solvents because they have high dielectric constants to dissociate lithium salts in electrolytes.
  • low viscosity, low dielectric constant linear carbonate is mixed and used in an appropriate ratio, an electrolyte having high electrical conductivity can be made, and thus it can be used more preferably.
  • any one selected from the group consisting of dimethyl ether, diethyl ether, dipropyl ether, methylethyl ether, methylpropyl ether, and ethylpropyl ether, or a mixture of two or more thereof may be used. It is not limited to this.
  • esters in the organic solvent include methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -caprolactone, ⁇ -valerolactone and One or a mixture of two or more selected from the group consisting of ⁇ -caprolactone may be used, but is not limited thereto.
  • the nonaqueous electrolyte solution for a lithium secondary battery according to the present invention may be manufactured into a lithium secondary battery by injecting an electrode structure including a cathode, a cathode, and a separator interposed between the cathode and the anode.
  • an electrode structure including a cathode, a cathode, and a separator interposed between the cathode and the anode.
  • the positive electrode, the negative electrode, and the separator constituting the electrode structure all those conventionally used for manufacturing a lithium secondary battery may be used.
  • the mixture was stirred for 4 hours, and the resultant was extracted with 200 g of methylene chloride and 500 g of distilled water. After the extraction process was repeated one more time, the methylene chloride solution was separated and distilled under reduced pressure to obtain a colorless transparent ethylene glycol bis (2-cyanoethyl) ether.
  • the material obtained at this time was measured by gas chromatography and the results are shown in FIG. 2. As shown in FIG. 2, the purity of ethylene glycol bis (2-cyanoethyl) ether was 99% or more.
  • the mixture was stirred for 3 hours, and the resultant was extracted with 200 g of methylene chloride and 500 g of distilled water. After the extraction process was repeated one more time, the methylene chloride solution was separated and distilled under reduced pressure to obtain a colorless transparent ethylene glycol bis (2-cyanoethyl) ether.
  • the material thus obtained was measured by gas chromatography and the results are shown in FIG. 3. As shown in FIG. 3, the purity of ethylene glycol bis (2-cyanoethyl) ether was 79%, and a byproduct bis (2-cyanoethyl) ether was produced 21%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

본 발명은 디니트릴 화합물의 제조방법에 관한 것이다. 보다 상세하게는, 본 발명은 알코올 화합물과 말단에 탄소-탄소 불포화결합을 갖는 니트릴 화합물을 무수 조건 하에서 반응시키고, 상기 반응 과정에서 탄소수 1 내지 5의 알콕시칼륨을 촉매로 사용하는 디니트릴 화합물의 제조방법을 제공한다. 본 발명의 제조방법은 반응 시간이 짧아 생산성이 우수하며, 고순도의 디니트릴 화합물을 제조할 수 있는 간단한 방법을 제공한다.

Description

디니트릴 화합물의 제조방법
본 발명은 디니트릴 화합물의 제조방법에 관한 것이다. 보다 상세하게는 불순물이 발생하지 않으면서도 간단하게 디니트릴 화합물을 제조할 수 있는 방법에 관한 것이다.
본 출원은 2011년 3월 18일에 출원된 한국특허출원 제10-2011-0024437호에 기초한 우선권을 주장하며, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 본 출원에 원용된다.
또한, 본 출원은 2012년 1월 12일에 출원된 한국특허출원 제10-2012-0003863호에 기초한 우선권을 주장하며, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 본 출원에 원용된다.
최근 에너지 저장 기술에 대한 관심이 갈수록 높아지고 있다. 휴대폰, 캠코더 및 노트북 PC, 나아가서는 전기 자동차의 에너지까지 적용 분야가 확대되면서, 이러한 전자 기기의 전원으로 사용되는 전지의 고에너지 밀도화에 대한 요구가 높아지고 있다. 리튬 이차전지는 이러한 요구를 가장 잘 충족시킬 수 있는 전지로서, 현재 이에 대한 연구가 활발히 진행되고 있다.
현재 적용되고 있는 이차전지 중에서 1990년대 초에 개발된 리튬 이차전지는 리튬이온을 흡장 및 방출할 수 있는 탄소재 등의 음극, 리튬 함유 산화물 등으로 된 양극 및 혼합 유기용매에 리튬염이 적당량 용해된 비수 전해액으로 구성되어 있다.
비수 전해액에 사용되는 유기 용매는 일반적으로 고온에서 장시간 보관할 경우 전해액의 산화로 인한 기체 발생 및 이로 인한 부풀음(swelling) 현상 등으로 전지의 열화가 나타나게 된다. 이 때 발생하는 분해 가스는 파우치형 또는 캔형 전지 조립체를 변형시켜 내부 단락을 유발시키며 심할 경우 전지가 발화 또는 폭발될 수 있다. 그런데 이러한 전해액의 산화는 고전압 조건에서 용출된 전이금속에 의해 더욱 가속화될 수 있다.
이러한 문제점을 해결하기 위해, 비수 전해액에 전지의 부풀음을 방지하기 위한 다양한 첨가제가 제시되었으며, 그 중에 하나가 2개 이상의 에테르 결합을 갖는 디니트릴 화합물이다. 상기 디니트릴 화합물은 전해액과 양극의 산화 반응을 억제하여 발열을 억제하며, 비수 전해액 자체의 산화 분해 반응을 억제하여 전지의 부풀음을 방지한다고 알려져 있다.
이러한 디니트릴 화합물을 제조하기 위해서는 일반적으로 알코올 화합물과 아크릴로니트릴에 의한 시아노에틸화 반응에는 가성 알칼리나 4급 암모늄 등의 염기가 촉매로 사용되는데, 그 중에서 가장 경제성이 우수하고 합성이 용이한 수산화나트륨을 이용하는 방법이 널리 알려져 있다.
그러나, 이러한 반응에서 매개체로서 사용되는 물(水)이 아크릴로니트릴과 반응하여 시아노 에틸화되고 다시 아크릴로니트릴과 반응하여 비스 2-시아노에틸 에테르가 생성됨으로써 불순물로 작용하는 문제점이 있다.
이러한 부생성물의 생성을 억제하기 위해서는 반응으로 소비되는 아크릴로니트릴 양을 조절하고, 아크릴로니트릴의 적하속도를 느리게 하여 그 농도를 조절하는 방법 등이 있지만, 이로 인하여 반응물 중 알코올 화합물의 잔존량이 증가하는 문제점 등으로 품질이 저하되는 문제점이 초래된다.
다른 방법으로, 물로 인한 시아노 에틸화를 막기 위하여 비수 조건하에서 반응하면 가능할 것으로 예측되지만, 이 경우 가성 알칼리나 유기 염기의 존재에 따라서 아크릴로니트릴의 중합이 일어나고 그 중합에 의하여 반응물의 색이 변하는 문제가 발생한다.
한편, 일본 특허등록공보 3946825호에서는 이러한 문제점들을 해결하고자 무수 조건 하에서 사용하는 반응 촉매를 수산화 리튬 화합물을 이용하여 시아노 에틸 화합물을 제조하는 방법을 개시하였다. 이 방법을 사용하면 비스 2-시아노에틸 에테르의 생성이 억제되고 아크릴로니트릴의 중합에 의한 착색도 감소하는 것으로 보고되고 있다.
하지만, 수산화 리튬 역시 불포화 결합을 갖는 니트릴 화합물의 중합반응을 효과적으로 방지하지 못할 뿐만 아니라 용해성이 상대적으로 낮기 때문에 반응 시간이 길어지는 문제점이 있다.
따라서 본 발명이 해결하고자 하는 과제는, 반응 시간이 짧아 생산성이 우수하며, 간단한 방법으로 고순도의 디니트릴 화합물을 제조할 수 있는 방법을 제공하는 것이다.
상기 과제를 해결하기 위하여, 본 발명은, 알코올 화합물과 말단에 탄소-탄소 불포화결합을 갖는 니트릴 화합물을 무수(無水) 조건 하에서 반응시키고, 상기 반응 과정에서 탄소수 1 내지 5의 알콕시칼륨을 촉매로 사용하는 디니트릴 화합물의 제조방법을 제공한다.
본 발명에 있어서, 상기 알콕시칼륨은 칼륨(K)에 탄소수가 1 내지 5인 알콕시기가 결합된 화합물이라면 특별히 제한은 없으며, 예를 들면 메톡시 칼륨, 에톡시 칼륨, 3차 부톡시 칼륨, 3차 펜톡시 칼륨 등을 각각 단독으로 또는 2종 이상 혼합하여 사용할 수 있으나, 이에 한정되는 것은 아니다.
본 발명에 따른 알콕시 칼륨은 목적하는 구체적인 디니트릴 화합물의 종류 등에 따라 다양한 함량으로 사용될 수 있으며, 예를 들면 상기 알코올 화합물 100 중량부 대비 0.01 중량부 내지 5 중량부로 사용될 수 있으나 이에 한정되는 것은 아니다.
본 발명에 있어서, 디니트릴 화합물의 제조에 사용되는 알코올 화합물은 다가 알코올을 사용할 수 있으며, 바람직하게는 2가 알코올 화합물을 사용할 수 있다. 보다 구체적인 예를 들면 에틸렌 글리콜, 프로필렌 글리콜, 부틸렌 글리콜, 펜틸렌 글리콜 등을 각각 단독으로 또는 2종 이상 혼합하여 사용할 수 있다.
본 발명에 있어서, 디니트릴 화합물의 제조에 사용되는 말단에 탄소-탄소 불포화결합을 갖는 니트릴 화합물의 예를 들면, 아크릴로니트릴, 3-부텐니트릴, 4-펜텐니트릴 등을 각각 단독으로 또는 2종 이상 혼합하여 사용할 수 있다.
본 발명에 있어서, 상기 반응은 20℃ 내지 50℃의 상대적으로 낮은 온도에서 수행될 수 있다.
본 발명의 디니트릴 화합물의 제조방법은 무수(無水) 조건에서 진행되므로 부생성물인 비스 2-시아노에틸 에테르의 생성이 억제되며, 불포화 탄소-탄소 결합을 갖는 니트릴 화합물의 중합을 억제하여 착색을 방지할 수 있다. 또한, 반응 시간도 길지 않으므로 생산성이 대폭 향상된다.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 전술한 발명의 내용과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니된다.
도 1은 실시예 1에 따라 제조된 디니트릴 화합물의 핵자기공명 분광 분석(NMR) 그래프이다.
도 2는 실시예 1에 따라 제조된 디니트릴 화합물의 가스크로마토그래피이다.
도 3은 비교예 1에 따라 제조된 디니트릴 화합물의 가스크로마토그래피이다.
이하, 본 발명을 상세히 설명하기로 한다. 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
전술한 바와 같이, 본 발명에 따른 디니트릴 화합물의 제조방법은, 알코올 화합물과 말단에 탄소-탄소 불포화결합을 갖는 니트릴 화합물을 무수 조건 하에서 반응시키고, 상기 반응 과정에서 탄소수 1 내지 5의 알콕시칼륨을 촉매로 사용하는 것을 특징으로 한다.
종래 디니트릴 화합물의 제조방법에서 사용하던 촉매인 가성 알칼리, 유기 염기는 불포화 결합을 갖는 니트릴 화합물의 중합반응을 야기시켜 반응물의 색(color)이 변하는 문제점이 있었다.
하지만, 본 발명에 따른 알콕시 칼륨을 촉매로 사용하면 불포화 결합을 갖는 니트릴 화합물의 중합 반응이 발생하지 않으므로 반응물의 착색 문제를 해결할 수 있다. 더욱이, 본 발명에 따른 알콕시 칼륨은 용해성이 우수하므로 용해시간을 단축시킬 수 있어 생산성이 뛰어나다.
또한, 본 발명의 제조방법은 알콕시 칼륨을 사용하게 되므로 무수 조건에서 반응이 진행되어 불순물의 생성도 억제할 수 있으므로 고순도의 디니트릴 화합물을 산출할 수 있다.
본 발명에 사용가능한 알콕시 칼륨은 칼륨(K)에 탄소수가 1 내지 5인 알콕시기가 결합된 화합물이라면 특별히 제한은 없으며, 예를 들면 메톡시 칼륨, 에톡시 칼륨, 3차 부톡시 칼륨, 3차 펜톡시 칼륨 등을 각각 단독으로 또는 2종 이상 혼합하여 사용할 수 있으나, 이에 한정되는 것은 아니다.
반응에 사용되는 알콕시 칼륨의 함량은 목적하는 구체적인 디니트릴 화합물의 종류, 반응물인 알코올 화합물이나 불포화 결합을 갖는 니트릴 화합물의 종류 및 함량 등에 따라 다양하게 채택될 수 있다. 예를 들면 상기 알코올 화합물 100 중량부 대비 0.01 중량부 내지 5 중량부로 사용될 수 있으나, 이에 한정되는 것은 아니다. 함량이 0.01 중량부 미만이면 반응 속도가 늦어질 수 있고, 5중량부 초과이면 더 이상 촉매 사용의 효과인 반응성의 증가가 나타나지 않으며 반응 종료 후 촉매 제거가 용이하지 않을 수 있다.
본 발명의 제조방법에 있어서, 반응물로 사용되는 알코올 화합물은 알코올기(―OH)를 갖는 화합물로서 디니트릴 화합물의 제조가 가능한 화합물이면 특별한 제한은 없으며, 예를 들면 탄소수 1 내지 10인 알코올, 바람직하게는 탄소수 1 내지 5인 알코올을 사용할 수 있으나, 더욱 바람직하게는 탄소수 2 내지 5인 알코올을 사용할 수 있으나 이에 한정되는 것은 아니다. 또한 바람직하게는 2가 알코올 화합물을 사용할 수 있다.
본 발명에 따라 사용가능한 알코올 화합물의 구체적인 예시로는 에틸렌 글리콜, 프로필렌 글리콜, 부틸렌 글리콜, 펜틸렌 글리콜 등을 각각 단독으로 또는 2종 이상 혼합하여 사용할 수 있으나, 이에 한정되는 것은 아니다.
본 발명의 제조방법에 있어서, 또 다른 반응물로 사용되는 말단에 탄소-탄소 불포화결합을 갖는 니트릴 화합물은 화합물의 한 말단에는 니트릴기가 다른 말단에는 탄소-탄소 불포화 결합을 갖는 화합물이다. 예를 들면, 니트릴기와 탄소-탄소 불포화 결합이 알킬렌 결합으로 연결된 화합물일 수 있다. 본 발명에서 사용가능한 불포화 결합을 갖는 니트릴 화합물의 보다 구체적인 예로는, 아크릴로니트릴, 3-부텐니트릴, 4-펜텐니트릴 등을 각각 단독으로 또는 2종 이상 혼합하여 사용할 수 있으나, 이에 한정되는 것은 아니다.
전술한 바와 같은 반응물과 촉매가 준비되면 간단한 방법으로 디니트릴 화합물을 제조할 수 있다. 제조방법의 일 구현예를 보다 구체적으로 설명하면 다음과 같다.
본 발명에 따른 알코올 화합물에 알콕시 칼륨 촉매를 첨가하고, 상기 촉매가 전부 용해될 때까지 가열 및/또는 교반 등을 통해 충분히 혼합한다. 촉매의 용해가 완료되면 불포화 아크릴 화합물을 천천히 적가하여 디니트릴 화합물의 생성을 진행시키며 적가가 완료된 후에도 교반 등의 과정을 통해 반응물들을 충분히 혼합하여 디니트릴 생성 반응을 완료시킨다. 반응이 완료되면 적당한 용매를 사용하여 목적물인 디니트릴 화합물을 분리 및 여과하여 얻을 수 있다.
본 발명에 따른 제조방법은 높지 않은 온도에서 진행될 수 있다. 예를 들어 20℃ 내지 50℃의 온도에서 진행될 수 있으므로 간편하고 용이하게 수행된다.
또한, 알코올 화합물과 불포화 결합을 갖는 니트릴 화합물은 혼합비는 생성하고자 하는 구체적인 디니트릴 화합물의 종류에 따라 당업자라면 적절하게 채택될 수 있다.
본 발명의 제조방법에 따라 생성될 수 있는 디니트릴 화합물은 바람직하게는 둘 이상의 에테르 결합을 갖는 디니트릴 화합물이다. 본 발명에 따른 디니트릴 화합물은, 구체적인 예를 들면 하기 화학식 1로 표시될 수 있다:
[화학식 1]
Figure PCTKR2012000485-appb-I000001
상기 화학식1에서,
R1, R2, R3은 서로 독립적으로 탄소수 1 내지 5인 알킬렌 또는 알케닐렌이고, m은 1 내지 5의 정수이다.
본 발명에 따른 디니트릴 화합물의 구체적인 예로는 3,5-디옥사-헵탄디니트릴, 1,4-비스(시아노에톡시)부탄, 비스(2-시아노에틸)-모노포멀, 비스(2-시아노에틸)-디포멀, 비스(2-시아노에틸)-트리포멀, 에틸렌글리콜 비스(2-시아노에틸)에테르, 비스(2-(2-시아토에톡시)에틸)에테르, 4,7,10,13-테트라옥사헥사데칸디니트릴, 4,7,10,13,16-펜타옥사노나데칸-1,14-디니트릴, 3,6,9,12,15,18-헥사옥사에이코산 디니트릴, 4,10-디옥사-운데칸디니트릴, 1,10-디시아노-3,8-디옥사데칸, 4,10-디옥사-트리데칸디니트릴, 6,9-디옥사-테트라데칸디니트릴 등을 들 수 있으나, 이에 한정되는 것은 아니다.
본 발명에 따른 디니트릴 화합물은 리튬염 및 유기용매를 포함하는 리튬 이차전지용 비수 전해액에 첨가제로서 혼합되어 사용될 수 있다.
본 발명에 따른 상기 에테르 결합을 갖는 디니트릴 화합물은 리튬-전이금속 산화물로 구성된 양극 표면에 착물을 형성함으로써, 전해액과 양극의 산화 반응을 억제하여 발열을 억제하고, 이어 전지의 급격한 온도 상승으로 인한 내부 단락을 방지할 수 있다.
또한, 충방전 과정에서 비수 전해액 내에는 다양한 화합물들이 존재하게 되는데, 그 중에서 HF, PF5 등은 비수 전해액을 산성 분위기로 만들게 된다. 그런데, 전술한 비수 전해액의 양극 표면에서의 산화 반응은 산성 분위기 하에서 가속화된다. 그런데, 본 발명에 따른 상기 에테르 결합을 갖는 디니트릴 화합물 내의 산소(-O-)가 비수 전해액 내의 HF, PF5 등과 결합함으로써 산성 분위기 조성을 억제하여 역시 비수 전해액의 산화 분해 반응을 억제할 수 있다.
나아가, 본 발명에 따른 상기 에테르 결합을 갖는 디니트릴 화합물은 전지의 성능 측면에서도 종래 첨가제들보다 개선된 효과를 나타낼 수 있는데, 구체적으로 용량 유지율이 우수하여 충방전 사이클 수명 개선 등 전기화학적 특성이 우수한 전지를 제공할 수 있다.
본 발명에 따라 비수 전해액에 전해질로서 포함되는 리튬염은 리튬 이차전지용 전해액에 통상적으로 사용되는 것들이 제한 없이 사용될 수 있으며, 예를 들어 상기 리튬염의 음이온으로는 F-, Cl-, Br-, I-, NO3 -, N(CN)2 -, BF4 -, ClO4 -, AlO4 -, AlCl4 -, PF6 -, SbF6 -, AsF6 -, BF2C2O4 -, BC4O8 -, (CF3)2PF4 -, (CF3)3PF3 -, (CF3)4PF2 -, (CF3)5PF-, (CF3)6P-, CF3SO3 -, C4F9SO3 -, CF3CF2SO3 -, (CF3SO2)2N-, (FSO2)2N- , CF3CF2(CF3)2CO-, (CF3SO2)2CH-, (SF5)3C-, (CF3SO2)3C-, CF3(CF2)7SO3 -, CF3CO2 -, CH3CO2 -, SCN- 및 (CF3CF2SO2)2N-로 이루어진 군에서 선택된 어느 하나일 수 있다.
본 발명에 따라 비수 전해액에 포함되는 유기 용매로는 리튬 이차전지용 전해액에 통상적으로 사용되는 것들을 제한 없이 사용할 수 있으며, 예를 들면 에테르, 에스테르, 아미드, 선형 카보네이트, 환형 카보네이트 등을 각각 단독으로 또는 2종 이상 혼합하여 사용할 수 있다.
그 중에서 대표적으로는 환형 카보네이트, 선형 카보네이트, 또는 이들의 혼합물인 카보네이트 화합물을 포함할 수 있다. 상기 환형 카보네이트 화합물의 구체적인 예로는 에틸렌 카보네이트(ethylene carbonate, EC), 프로필렌 카보네이트(propylene carbonate, PC), 1,2-부틸렌 카보네이트, 2,3-부틸렌 카보네이트, 1,2-펜틸렌 카보네이트, 2,3-펜틸렌 카보네이트, 비닐렌 카보네이트 및 이들의 할로겐화물로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물이 있다. 또한 상기 선형 카보네이트 화합물의 구체적인 예로는 디메틸 카보네이트(dimethyl carbonate, DMC), 디에틸 카보네이트(diethyl carbonate, DEC), 디프로필 카보네이트, 에틸메틸 카보네이트(EMC), 메틸프로필 카보네이트 및 에틸프로필 카보네이트 로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물 등이 대표적으로 사용될 수 있으나, 이에 한정되는 것은 아니다.
특히, 상기 카보네이트계 유기용매 중 환형 카보네이트인 에틸렌 카보네이트 및 프로필렌 카보네이트는 고점도의 유기용매로서 유전율이 높아 전해질 내의 리튬염을 잘 해리시키므로 바람직하게 사용될 수 있으며, 이러한 환형 카보네이트에 디메틸 카보네이트 및 디에틸 카보네이트와 같은 저점도, 저유전율 선형 카보네이트를 적당한 비율로 혼합하여 사용하면 높은 전기 전도율을 갖는 전해액을 만들 수 있어 더욱 바람직하게 사용될 수 있다.
또한, 상기 유기 용매 중 에테르로는 디메틸 에테르, 디에틸 에테르, 디프로필 에테르, 메틸에틸 에테르, 메틸프로필 에테르 및 에틸프로필 에테르로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 사용할 수 있으나, 이에 한정되는 것은 아니다.
그리고 상기 유기 용매 중 에스테르로는 메틸 아세테이트, 에틸 아세테이트, 프로필 아세테이트, 메틸 프로피오네이트, 에틸 프로피오네이트, γ-부티로락톤, γ-발레로락톤, γ-카프로락톤, σ-발레로락톤 및 ε-카프로락톤으로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 사용할 수 있으나, 이에 한정되는 것은 아니다.
본 발명에 따른 리튬 이차전지용 비수 전해액은 양극, 음극 및 양극과 음극 사이에 개재된 세퍼레이터로 이루어진 전극 구조체에 주입하여 리튬 이차전지로 제조될 수 있다. 전극 구조체를 이루는 양극, 음극 및 세퍼레이터는 리튬 이차전지 제조에 통상적으로 사용되던 것들이 모두 사용될 수 있다.
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.
실시예
플라스크에 알코올 화합물로서 에틸렌 글리콜 124.2g과 칼륨 3차 부톡사이드 0.2g을 넣고 40℃에서 가열 및 교반하였다. 여기에 아크릴로니트릴 222.8g을 1시간에 걸쳐 적가하였다.
적가 종료 후 4시간 동안 다시 교반한 후, 염화 메틸렌 200g과 증류수 500g으로 결과물을 추출한다. 상기 추출 과정을 1회 더 반복한 후에 염화 메틸렌 용액을 분리하고 감압 증류하여 무색 투명한 에틸렌 글리콜 비스(2-시아노에틸)에테르를 얻었다.
제조된 물질이 에틸렌 글리콜 비스(2-시아노에틸)에테르인 것을 NMR로 확인하였으며, 그 결과를 도 1에 도시하였다.
이 때 얻어진 물질을 가스크로마토그래피로 측정하여 그 결과를 도 2에 도시하였다. 도 2에 나타난 바와 같이, 에틸렌 글리콜 비스(2-시아노에틸)에테르의 순도는 99% 이상이었다.
비교예 1
플라스크에 알코올 화합물로서 에틸렌 글리콜 124.2g과 수산화 나트륨 2% 수용액을 넣고 40℃에서 가열 및 교반하였다. 여기에 아크릴로니트릴 222.8g을 1시간에 걸쳐 적가하였다.
적가 종료 후 3시간 동안 다시 교반한 후, 염화 메틸렌 200g과 증류수 500g으로 결과물을 추출한다. 상기 추출 과정을 1회 더 반복한 후에 염화 메틸렌 용액을 분리하고 감압 증류하여 무색투명한 에틸렌 글리콜 비스(2-시아노에틸)에테르을 수득하였다.
이 때 얻어진 물질을 가스크로마토그래피로 측정하였으며 그 결과를 도 3에 도시하였다. 도 3에 나타난 바와 같이, 에틸렌 글리콜 비스(2-시아노에틸)에테르의 순도는 79% 이었으며, 부생성물인 비스 (2-시아노에틸)에테르가 21% 생성되었다.
비교예 1은 수용액 조건에서 반응을 진행하였으며, 무수 조건에서 진행된 상기 실시예와 비교하면, 부생성물인 비스 (2-시아노에틸)에테르가 생성되어 수율이 높지 않은 것을 확인할 수 있다.
비교예 2
플라스크에 알코올 화합물로서 에틸렌 글리콜 124.2g과 수산화 나트륨 0.1g을 넣고 40~50℃에서 가열 및 교반하였다. 여기에 아크릴로니트릴 222.8g을 2시간에 걸쳐 적가하였다.
적가 후 1 시간 후부터 서서히 색이 변하기 시작하면서 적가 종료 후에는 침전물과 함께 검은 색으로 변하였으며, 반응 종료 후 목적물인 에틸렌 글리콜 비스(2-시아노에틸)에테르가 생성되었는지는 가스크로마토그래피로 확인할 수 없었다.
비교예 2는 목적물의 원료인 아크릴로니트릴이 중합반응을 일으켜 목적물은 생성하지 못하고 착색 현상이 발생한 것을 알 수 있다.

Claims (10)

  1. 알코올 화합물과 말단에 탄소-탄소 불포화결합을 갖는 니트릴 화합물을 무수 조건 하에서 반응시키며, 상기 반응 과정에서 탄소수 1 내지 5의 알콕시칼륨을 촉매로 사용하는 디니트릴 화합물의 제조방법.
  2. 제1항에 있어서,
    상기 알콕시칼륨은 메톡시 칼륨, 에톡시 칼륨, 3차 부톡시 칼륨 및 3차 펜톡시 칼륨으로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물인 것을 특징으로 하는 디니트릴 화합물의 제조방법.
  3. 제1항에 있어서,
    상기 알콕시칼륨은 알코올 화합물 100 중량부 대비 0.01 중량부 내지 5 중량부로 사용되는 것을 특징으로 하는 디니트릴 화합물의 제조방법.
  4. 제1항에 있어서,
    상기 알코올 화합물은 탄소수가 1 내지 10인 알코올인 것을 특징으로 하는 디니트릴 화합물의 제조방법.
  5. 제1항에 있어서,
    상기 알코올 화합물은 2가 알코올 화합물인 것을 특징으로 하는 디니트릴 화합물의 제조방법.
  6. 제1항에 있어서,
    상기 알코올 화합물은 에틸렌 글리콜, 프로필렌 글리콜, 부틸렌 글리콜 및 펜틸렌 글리콜로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물인 것을 특징으로 하는 디니트릴 화합물의 제조방법.
  7. 제1항에 있어서,
    상기 말단에 탄소-탄소 불포화결합을 갖는 니트릴 화합물은 아크릴로니트릴, 3-부텐니트릴 및 4-펜텐니트릴로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물인 것을 특징으로 하는 디니트릴 화합물의 제조방법.
  8. 제1항에 있어서,
    상기 반응은 20℃ 내지 50℃의 온도에서 수행되는 것을 특징으로 하는 디니트릴 화합물의 제조방법.
  9. 제1항에 있어서,
    상기 디니트릴 화합물은 하기 화학식 1로 표시되는 것을 특징으로 하는 디니트릴 화합물의 제조방법:
    [화학식 1]
    Figure PCTKR2012000485-appb-I000002
    상기 화학식1에서,
    R1, R2, R3은 서로 독립적으로 탄소수 1 내지 5인 알킬렌 또는 알케닐렌이고, m은 1 내지 5의 정수이다.
  10. 제1항에 있어서,
    상기 디니트릴 화합물은 3,5-디옥사-헵탄디니트릴, 1,4-비스(시아노에톡시)부탄, 비스(2-시아노에틸)-모노포멀, 비스(2-시아노에틸)-디포멀, 비스(2-시아노에틸)-트리포멀, 에틸렌글리콜 비스(2-시아노에틸)에테르, 비스(2-(2-시아토에톡시)에틸)에테르, 4,7,10,13-테트라옥사헥사데칸디니트릴, 4,7,10,13,16-펜타옥사노나데칸-1,14-디니트릴, 3,6,9,12,15,18-헥사옥사에이코산 디니트릴, 4,10-디옥사-운데칸디니트릴, 1,10-디시아노-3,8-디옥사데칸, 4,10-디옥사-트리데칸디니트릴 및 6,9-디옥사-테트라데칸디니트릴로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물인 것을 특징으로 하는 디니트릴 화합물의 제조방법.
PCT/KR2012/000485 2011-03-18 2012-01-19 디니트릴 화합물의 제조방법 WO2012128462A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP12760109.4A EP2687505B1 (en) 2011-03-18 2012-01-19 Method for preparing a dinitrile compound
JP2013557635A JP5802284B2 (ja) 2011-03-18 2012-01-19 ジニトリル化合物の製造方法
CN201280014212.4A CN103429566B (zh) 2011-03-18 2012-01-19 二腈化合物的制备方法
US14/026,233 US9394242B2 (en) 2011-03-18 2013-09-13 Method for preparing dinitrile compound

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20110024437 2011-03-18
KR10-2011-0024437 2011-03-18
KR10-2012-0003863 2012-01-12
KR1020120003863A KR101440529B1 (ko) 2011-03-18 2012-01-12 디니트릴 화합물의 제조방법

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/026,233 Continuation US9394242B2 (en) 2011-03-18 2013-09-13 Method for preparing dinitrile compound

Publications (1)

Publication Number Publication Date
WO2012128462A1 true WO2012128462A1 (ko) 2012-09-27

Family

ID=47113225

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/000485 WO2012128462A1 (ko) 2011-03-18 2012-01-19 디니트릴 화합물의 제조방법

Country Status (6)

Country Link
US (1) US9394242B2 (ko)
EP (1) EP2687505B1 (ko)
JP (1) JP5802284B2 (ko)
KR (1) KR101440529B1 (ko)
CN (1) CN103429566B (ko)
WO (1) WO2012128462A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114621117A (zh) * 2022-05-16 2022-06-14 山东海科新源材料科技股份有限公司 一种无水法乙二醇双(丙腈)醚粗品制备方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103980156B (zh) * 2014-05-22 2016-04-06 中国科学院福建物质结构研究所 一种烷基二醇(双丙腈基)醚的制备方法
CN105481718A (zh) * 2015-12-07 2016-04-13 张家港瀚康化工有限公司 丁烯二醇双(丙腈)醚的制备方法
CN105418456A (zh) * 2015-12-07 2016-03-23 张家港瀚康化工有限公司 丁二醇双(丙腈)醚的制备方法
CN109134309B (zh) * 2018-09-19 2020-12-29 张家港瀚康化工有限公司 乙二醇双(丙腈)醚的纯化方法
CN115322119B (zh) * 2022-07-29 2023-09-29 抚顺顺能化工有限公司 一种乙二醇双(丙腈)醚的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005263717A (ja) * 2004-03-19 2005-09-29 Mitsubishi Chemicals Corp シアノアルコキシ化合物の製造方法
JP2005263716A (ja) * 2004-03-19 2005-09-29 Mitsubishi Chemicals Corp シアノアルコキシ化合物の製造方法
JP3946825B2 (ja) 1997-09-10 2007-07-18 サンスター技研株式会社 リチウムまたはリチウムイオン2次電池電解液用シアノエチル化合物の製造法
WO2009152392A2 (en) * 2008-06-11 2009-12-17 University Of Toledo Muscarinic agonists for neurological disorders and methods of making the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2977337A (en) * 1956-03-21 1961-03-28 American Cyanamid Co Cyanoethylated polyacrylonitrile compositions
US2941990A (en) * 1957-07-15 1960-06-21 American Cyanamid Co Cyanoethylated polymers
JPS554380A (en) * 1978-06-16 1980-01-12 Suntech Continuous cyanoethylation
JP2013075837A (ja) * 2011-09-29 2013-04-25 Fujifilm Corp ニトリル化合物の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3946825B2 (ja) 1997-09-10 2007-07-18 サンスター技研株式会社 リチウムまたはリチウムイオン2次電池電解液用シアノエチル化合物の製造法
JP2005263717A (ja) * 2004-03-19 2005-09-29 Mitsubishi Chemicals Corp シアノアルコキシ化合物の製造方法
JP2005263716A (ja) * 2004-03-19 2005-09-29 Mitsubishi Chemicals Corp シアノアルコキシ化合物の製造方法
WO2009152392A2 (en) * 2008-06-11 2009-12-17 University Of Toledo Muscarinic agonists for neurological disorders and methods of making the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2687505A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114621117A (zh) * 2022-05-16 2022-06-14 山东海科新源材料科技股份有限公司 一种无水法乙二醇双(丙腈)醚粗品制备方法

Also Published As

Publication number Publication date
EP2687505B1 (en) 2018-04-04
JP5802284B2 (ja) 2015-10-28
EP2687505A4 (en) 2014-10-08
EP2687505A1 (en) 2014-01-22
US9394242B2 (en) 2016-07-19
CN103429566A (zh) 2013-12-04
CN103429566B (zh) 2017-03-22
US20140018567A1 (en) 2014-01-16
KR101440529B1 (ko) 2014-09-17
JP2014519473A (ja) 2014-08-14
KR20120106546A (ko) 2012-09-26

Similar Documents

Publication Publication Date Title
WO2012128462A1 (ko) 디니트릴 화합물의 제조방법
WO2013176421A1 (ko) 리튬 이차전지용 비수 전해액 및 이를 포함하는 리튬이차전지
KR101449353B1 (ko) 환상 황산 에스테르 화합물, 그것을 함유하는 비수 전해액, 및 리튬이차전지
KR102070647B1 (ko) 리튬 비스옥살레이토보레이트의 합성방법
US20140093787A1 (en) Non-aqueous electrolytic solution, electrical storage device utilizing same, and cyclic sulfonic acid ester compound
KR102612816B1 (ko) 리튬 비스옥살레이토보레이트를 고순도로 제조하는 방법 및 이를 이용한 2차 전지용 비수계 전해액
US9742034B2 (en) Cyano-benzimidazole salts for electrochemical cells and method for synthesis thereof
CN112062715B (zh) 一种新型三氟甲磺酰胺类锂盐及其制备方法与应用
CN1304937A (zh) 用于电化学电池的烷基螺硼酸盐
US20240088443A1 (en) Isocyanate electrolyte solution additive based on imidazole structural group and use thereof
CN110048162A (zh) 高电压电解液添加剂、含有该添加剂的电解液和电池
CN110518284A (zh) 一种非水电解液、含有该非水电解液的电池和电动车辆
CN110112463A (zh) 一种电解液添加剂、含有该添加剂的高电压电解液和电池
CN107936062B (zh) 一种环磷腈衍生物及其制备方法和用作电解液添加剂的用途
CN105449283B (zh) 一种高电压锂离子电池用电解液
CN111490293B (zh) 非水电解液添加剂、非水电解液及锂离子电池
KR20160060449A (ko) 신규한 리튬염 화합물, 이의 제조방법, 및 이를 포함하는 이차전지용 전해질
WO2022220554A1 (ko) 세슘 이온 또는 루비듐 이온을 포함하는 비스플루오로설포닐이미드 리튬염
KR102294130B1 (ko) 이차전지용 전해질 첨가제, 이를 포함하는 전해질 및 이차전지
CN115959645B (zh) 一种六氟磷酸碱金属盐的制备方法、电解液及锂离子电池
CN117229325A (zh) 一种含三苯基硅侧基的环磷腈化合物及其制备方法和应用
CN116315108A (zh) 一种电解质盐及其制备方法和应用
CN116031486A (zh) 电解液添加剂、电解液及其制备方法、锂金属电池和应用
CN117164607A (zh) 一种含锂的环状硫酸酯的制备方法及其应用
KR20230060368A (ko) 환형 포스핀 화합물의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12760109

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013557635

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE