WO2012128176A1 - 太陽電池モジュールの製造方法 - Google Patents

太陽電池モジュールの製造方法 Download PDF

Info

Publication number
WO2012128176A1
WO2012128176A1 PCT/JP2012/056697 JP2012056697W WO2012128176A1 WO 2012128176 A1 WO2012128176 A1 WO 2012128176A1 JP 2012056697 W JP2012056697 W JP 2012056697W WO 2012128176 A1 WO2012128176 A1 WO 2012128176A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
wiring material
bonding step
bonding
wiring
Prior art date
Application number
PCT/JP2012/056697
Other languages
English (en)
French (fr)
Inventor
慶之 工藤
賢一 牧
治寿 橋本
幸弘 吉嶺
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Publication of WO2012128176A1 publication Critical patent/WO2012128176A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1876Particular processes or apparatus for batch treatment of the devices
    • H01L31/188Apparatus specially adapted for automatic interconnection of solar cells in a module
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a method for manufacturing a solar cell module having a plurality of solar cells electrically connected by wiring materials.
  • Patent Document 1 describes the following manufacturing method as a manufacturing method of such a solar cell module.
  • a plurality of solar cells 100 in which a resin adhesive 103 is arranged on one surface and a plurality of wiring members 101 in which a resin adhesive 102 is arranged on one side are prepared.
  • the solar cell 100 and the wiring material 101 are temporarily bonded to each other through the resin adhesives 102 and 103 by pressing the solar cell 100 and the wiring material 101 using the crimping tools 104 and 105.
  • a plurality of solar cells 100 are temporarily connected by a plurality of wiring members 101.
  • the solar cell 100 and the wiring member 101 that have been temporarily crimped are heated to perform final crimping while curing the resin adhesives 102 and 103.
  • the plurality of solar cells 100 are electrically connected using the wiring material 101.
  • Patent Document 1 the method for manufacturing a solar cell module described in Patent Document 1 has a problem that the solar cell is warped or the wiring material is easily peeled off from the solar cell.
  • This invention is made
  • the objective is to provide the method which can manufacture the solar cell module which is hard to generate
  • the manufacturing method of the solar cell module according to the present invention includes a plurality of solar cells having first and second electrodes, a first electrode of one solar cell of adjacent solar cells, and a second electrode of the other solar cell. It is related with the manufacturing method of the solar cell module provided with the wiring material which has connected the electrode electrically, and the solar cell and the wiring material were adhere
  • a part of the solar cell and the wiring material in the extending direction of the wiring material are heated in a state where the solar cell and the wiring material face each other with a resin adhesive interposed therebetween.
  • the solar cell and the wiring member are bonded by performing the bonding process of bonding by applying pressure while heating with the pressure tool.
  • the present invention it is possible to provide a method capable of producing a solar cell module in which the solar cell is hardly warped and the wiring material is hardly peeled off.
  • FIG. 1 is a schematic cross-sectional view of a solar cell module manufactured in the first embodiment.
  • FIG. 2 is a schematic plan view of the light receiving surface of the solar cell of the solar cell module manufactured in the first embodiment.
  • FIG. 3 is a schematic perspective plan view of the back surface of the solar cell of the solar cell module manufactured in the first embodiment.
  • FIG. 4 is a schematic side view for explaining the first bonding step in the first embodiment.
  • FIG. 5 is a schematic side view for explaining the second bonding step in the first embodiment.
  • FIG. 6 is a schematic side view for explaining the first bonding step in the second embodiment.
  • FIG. 7 is a schematic side view for explaining the second bonding step in the second embodiment.
  • FIG. 8 is a schematic side view for explaining the first bonding step in the third embodiment.
  • FIG. 9 is a schematic side view for explaining the second bonding step in the third embodiment.
  • FIG. 10 is a schematic side view for explaining the third bonding step in the third embodiment.
  • FIG. 11 is a schematic side view for explaining the method of manufacturing the solar cell module described in Patent Document 1.
  • FIG. 12 is a schematic side view for explaining the method for manufacturing the solar cell module described in Patent Document 1.
  • FIG. 1 is a schematic cross-sectional view of a solar cell module manufactured in the first embodiment.
  • FIG. 2 is a schematic plan view of the light receiving surface of the solar cell of the solar cell module manufactured in the first embodiment.
  • FIG. 3 is a schematic perspective plan view of the back surface of the solar cell of the solar cell module manufactured in the first embodiment.
  • the solar cell module 1 includes at least one solar cell string 2.
  • the solar cell string 2 has a plurality of solar cells 10.
  • the plurality of solar cells 10 are arranged along the x direction.
  • the plurality of solar cells 10 are electrically connected to each other by the wiring material 11.
  • a light receiving surface side protection member 15 is disposed on the light receiving surface side of the solar cell string 2.
  • a back surface side protective member 14 is disposed on the back surface side of the solar cell string 2.
  • a sealing material 13 is provided between the light receiving surface side protection member 15 and the back surface side protection member 14. The plurality of solar cells 10 are sealed with the sealing material 13.
  • the constituent materials of the light-receiving surface side protection member 15, the back surface side protection member 14, and the sealing material 13 are not particularly limited.
  • the light-receiving surface side protection member 15 can be composed of a light-transmitting glass substrate or plastic substrate, for example.
  • the back surface side protection member 14 can be comprised with the resin film which interposed the reflection member which consists of metal foil etc., for example.
  • the sealing material 13 can be formed of a light-transmitting resin such as ethylene / vinyl acetate copolymer (EVA) or polyvinyl butyral (PVB).
  • the solar cell 10 has a photoelectric conversion unit 20.
  • the photoelectric conversion unit 20 generates carriers (electrons and holes) by receiving light.
  • the photoelectric conversion unit 20 is not particularly limited.
  • the photoelectric conversion unit 20 includes a crystalline semiconductor substrate having one conductivity type and a semiconductor layer disposed on the semiconductor substrate and having another conductivity type. it can.
  • the photoelectric conversion unit 20 has a diffusion region in which a dopant of another conductivity type is diffused in a semiconductor substrate having one conductivity type, a compound semiconductor layer, and a thin film semiconductor as a light absorption layer Etc. That is, the solar cell 10 can be composed of, for example, a crystalline silicon solar cell, a thin film silicon solar cell, a compound semiconductor solar cell, or the like.
  • the photoelectric conversion unit 20 has a light receiving surface 20 a and a back surface 20 b that constitute the first and second main surfaces of the solar cell 10.
  • a first electrode 21a is formed on the light receiving surface 20a.
  • a second electrode 21b is formed on the back surface 20b.
  • One of the electrodes 21a and 21b is an electrode that collects electrons, and the other is an electrode that collects holes.
  • each of the electrodes 21a and 21b includes a plurality of finger portions 22a and 22b and a plurality of bus bar portions 23a and 23b.
  • Each of the plurality of finger portions 22a and 22b extends in parallel to each other in a direction y perpendicular to the x direction.
  • the plurality of finger portions 22a and 22b are arranged in parallel to each other at a predetermined interval along the x direction.
  • the plurality of finger portions 22a and 22b are electrically connected to the bus bar portions 23a and 23b.
  • the bus bar portions 23a and 23b are formed along the direction x.
  • each of the first and second electrodes has a plurality of finger portions and a bus bar portion
  • the shapes of the first and second electrodes are not particularly limited.
  • Each of the first and second electrodes may be a so-called bus bar-less electrode having only a plurality of finger portions, for example.
  • the first electrode 21 a of one solar cell of the solar cells 10 adjacent in the x direction and the second electrode 21 b of the other solar cell are electrically connected by the wiring material 11.
  • the wiring member 11 is not particularly limited as long as it has conductivity.
  • the wiring material 11 can be comprised by the wiring material main body and the coating layer which covers a wiring material main body, for example.
  • the wiring material body can be formed of a low resistance metal such as Cu, for example.
  • the coating layer can be formed of, for example, a metal such as Ag or an alloy such as solder.
  • the wiring member 11 and the solar cell 10 are bonded using a resin adhesive. That is, the wiring member 11 and the solar cell 10 are bonded by the adhesive layer 12 made of a cured resin adhesive.
  • thermosetting resin As the resin adhesive, a thermosetting resin is preferably used.
  • the thermosetting resin include epoxy resin, phenoxy resin, acrylic resin, polyimide resin, polyamide resin, and polycarbonate resin. These thermosetting resins may be used singly or in combination of two or more.
  • the resin adhesive may be conductive or may have insulating properties.
  • the resin adhesive may be, for example, an anisotropic conductive resin adhesive including conductive particles.
  • the conductive particles include, for example, particles made of a metal such as nickel, copper, silver, aluminum, tin, and gold, or an alloy containing one or more of these metals, or metal coating treatment or alloy coating treatment. Insulating particles subjected to a conductive coating treatment such as
  • the wiring material 11 and the electrode of the solar cell 10 are directly contacted with each other by using a resin adhesive, and thereby the wiring material 11 Electrical connection with the solar cell 10 can be achieved.
  • the plurality of solar cells 10 are electrically connected using the wiring material 11.
  • the solar cell string 2 is produced.
  • at least one solar cell string 2 is sealed between the protective members 14 and 15 using the sealing material 13.
  • a resin sheet such as an EVA sheet is placed on the light receiving surface side protection member 15.
  • the solar cell string 2 is disposed on the resin sheet.
  • a resin sheet such as an EVA sheet is placed thereon, and the back-side protection member 14 is placed thereon.
  • the solar cell module 1 can be completed by laminating these by thermocompression bonding in a reduced pressure atmosphere.
  • the bonding between the wiring member 11 and the solar cell 10 is performed in a plurality of times. That is, a part of the solar cell 10 and the wiring member 11 in the extending direction (x direction) of the wiring member 11 are heated with the solar cell 10 and the wiring member 11 facing each other with the resin adhesive 12a interposed therebetween.
  • the adhesion process is performed a plurality of times for adhesion and electrical connection by applying pressure while heating with the pressure tool 31. Thereby, the adhesion
  • the pressing tool 31 includes a plurality of tool pairs having first and second tools facing each other in the z direction via the solar cell 10. More specifically, in the present embodiment, the pressing tool 31 includes first to third tool pairs 31a, 31b, and 31c. The first to third tool pairs 31a to 31c are arranged along the x direction that is the direction in which the wiring member 11 extends. The second tool pair 31b is located in the center in the x direction, and the first tool pair 31a and the third tool pair 31c are located on both sides in the x direction of the second tool pair 31b.
  • 1st tool pair 31a has the 1st tool 31a1 and 2nd tool 31a2 which oppose the z direction which is the thickness direction of the solar cell 10 via the solar cell 10.
  • the second tool pair 31b includes a first tool 31b1 and a second tool 31b2 that face each other in the z direction with the solar cell 10 interposed therebetween.
  • the third tool pair 31c includes a first tool 31c1 and a second tool 31c2 that face each other in the z direction with the solar cell 10 interposed therebetween.
  • Each of the first tools 31a1, 31b1, and 31c1 and the second tools 31a2, 31b2, and 31c2 includes a heater (not shown). For this reason, each of the first tools 31a1, 31b1, and 31c1 and the second tools 31a2, 31b2, and 31c2 can be adjusted in temperature.
  • the light receiving surface 20 a of the solar cell 10 and the one side portion 11 a of one wiring member 11 are opposed to each other with a resin adhesive 12 a interposed therebetween, and the back surface 20 b and the other wiring member 11 are made to face each other. It arrange
  • a part of the solar cell 10 in the x direction and the wiring member 11 are bonded by heating and pressing. . Thereafter, at least a part of the remaining part of the solar cell 10 in the x direction and the wiring member 11 are heated using at least a part of the remaining tool pair among the first to third tool pairs 31a to 31c. Adhesion is performed by applying pressure. Of the first to third tool pairs 31a to 31c, a tool pair not used for pressurization is not brought into contact with the solar cell 10 and the wiring member 11. Thus, heat is prevented from being applied to the solar cell 10, the wiring material 11, and the resin adhesive 12a from the tool pair not used for pressurization.
  • first bonding step first, as shown in FIG. 4, by using the first tool pair 31a and the third tool pair 31c, both ends of the light receiving surface 20a in the x direction, Bonding both ends in the x direction of one side portion 11a of one wiring member 11 and both ends of the back surface 20b in the x direction and both ends in the x direction of the other side portion 11b of the other wiring member 11 Bonding (first bonding step).
  • first bonding step the portions of the resin adhesive 12 a located on both ends in the x direction of the solar cell 10 are cured to form the adhesive layer 12.
  • the second tool pair 31b is separated from the solar cell 10 and the wiring material 11. This prevents heat from being transmitted from the second tool pair 31b from the second tool pair 31b to a portion of the resin adhesive 12a located on the central portion of the solar cell 10 in the x direction.
  • the second tool pair 31 b is used to bond the central portion of the light receiving surface 20 a in the x direction and the central portion in the x direction of the one side portion 11 a of the one wiring member 11.
  • the central portion of the back surface 20b in the x direction and the central portion in the x direction of the other side portion 11b of the other wiring member 11 are bonded (second bonding step).
  • the remaining portion of the resin adhesive 12a is cured to form the adhesive layer 12.
  • the heating temperature in the second bonding step may be the same as the heating temperature in the first bonding step, but is preferably lower than the heating temperature in the first bonding step. That is, the temperature of the second tool pair 31b is preferably lower than the temperature of the first and third tool pairs 31a and 31c.
  • the time required for hardening of the resin adhesive 12a becomes long. For this reason, it is preferable to perform a 2nd adhesion process over a long period of time rather than a 1st adhesion process.
  • the first and third tool pairs 31 a and 31 c are separated from the solar cell 10 and the wiring material 11. From the first and third tool pairs 31a and 31c, portions of the adhesive layer 12 formed from the resin adhesive 12a in the first bonding step and located on both ends in the x direction of the solar cell 10 Heat is not transferred from the second tool pair 31b.
  • the process of adhering a part of the solar cell 10 and the wiring member 11 by heating and pressurization is performed a plurality of times, so that the entire wiring member 11 in the x direction of the solar cell 10 is substantially formed. Adhere with. For this reason, compared with the case where a solar cell and a wiring material are adhere
  • both ends in the x direction of the solar cell 10 are bonded to the wiring member 11 in the first bonding step, and then the central portion in the x direction of the solar cell 10 is wired in the second bonding step. Adhere to the material 11.
  • the x direction of solar cell 10 in the state where the central part in the x direction of solar cell 10 and a part of wiring material 11 located in the position corresponding to the central part are unheated.
  • the both ends of the wiring member 11 and the wiring member 11 are bonded. Therefore, the length after cooling of the solar cell 10 and the wiring member 11 bonded in the second bonding step performed thereafter is the same. Accordingly, after cooling, substantially no stress remains in a part of the solar cell 10 and the wiring member 11 bonded in the second bonding step. As a result, warpage of the solar cell 10 and peeling of the wiring material 11 can be more effectively suppressed.
  • the lengths of the first and third tool pairs 31a and 31c along the x direction are set to the second tool pair.
  • the length of 31b along the x direction is preferably 0.02 to 1 times, more preferably 0.1 to 1.0 times.
  • the heating temperature in the second bonding step is set lower than the heating temperature in the first bonding step, and the second bonding step is performed for a longer period than the first bonding step. For this reason, stress is not easily generated between the solar cell 10 and the wiring member 11 in the heating and pressing step in the second bonding step. Therefore, the warp of the solar cell 10 and the peeling of the wiring member 11 can be further effectively suppressed.
  • first to third tool pairs 31a to 31c a tool pair that is not used for pressurization is prevented from contacting the solar cell 10 and the wiring material 11.
  • hardening of the part which is not pressurized of resin adhesive 12a is started prior to pressurization, or adhesive layer 12 which has already hardened is prevented from being heated again. Can do. Therefore, the wiring member 11 and the solar cell 10 can be firmly bonded.
  • the resin adhesive 12a may be temporarily cured prior to the first and second bonding steps.
  • temporary curing means that the resin adhesive has been cured but is not completely cured.
  • pressure may be applied to the solar cell 10 and the wiring material 11. That is, the solar cell 10 and the wiring member 11 may be so-called provisional pressure bonding.
  • FIG. 6 is a schematic side view for explaining the first bonding step in the second embodiment.
  • FIG. 7 is a schematic side view for explaining the second bonding step in the second embodiment.
  • FIG. 8 is a schematic side view for explaining the first bonding step in the third embodiment.
  • FIG. 9 is a schematic side view for explaining the second bonding step in the third embodiment.
  • FIG. 10 is a schematic side view for explaining the third bonding step in the third embodiment.
  • the second tool pair 31 b is used to bond the central portion of the solar cell 10 and the wiring member 11 in the x direction, as shown in FIG. 7.
  • the first and third tool pairs 31a and 31c may be used to bond the both ends of the solar cell 10 and the wiring member 11 in the x direction.
  • the bonding with the wiring member 11 may be sequentially performed from one side in the x direction of the solar cell 10 to the other side.
  • the first tool pair 31 a is used to set the x1 side end portion of the solar cell 10 in the x direction.
  • the wiring material 11 is bonded.
  • the center part in the x direction of the solar cell 10 and the wiring member 11 are bonded using the second tool pair 31 b.
  • the x2 side end of the solar cell 10 in the x direction and the wiring member 11 are bonded using the third tool pair 31c.
  • the curvature of the solar cell 10 and peeling of the wiring material 11 can be suppressed similarly to 1st Embodiment.
  • the present invention includes various embodiments that are not described here. For example, you may make it adhere
  • the solar cell and the wiring material may be bonded by a plurality of heating and pressing processes using the same tool pair. In that case, you may have the part heated and pressurized repeatedly.
  • the solar cell and the wiring material are bonded by a plurality of heating and pressing processes, a portion that is heated only without being pressurized may be provided.
  • adjacent solar cells may be connected by one or three or more wiring materials.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

 太陽電池に反りが発生し難く、配線材の剥離が生じにくい太陽電池モジュールを製造し得る方法を提供する。 太陽電池10と配線材11とを樹脂接着剤12aを介在させて対向した状態で、配線材11の延びる方向xにおける太陽電池10の一部と配線材11とを、加熱された加圧ツール31により加熱しながら加圧することにより接着する接着工程を複数回行うことにより太陽電池10と配線材11とを接着する。

Description

太陽電池モジュールの製造方法
 本発明は、配線材により電気的に接続された複数の太陽電池を有する太陽電池モジュールの製造方法に関する。
 近年、環境負荷が小さいエネルギー源として、太陽電池が大いに注目されている。太陽電池を実際に使用する際には、下記の特許文献1などに示されるように、複数の太陽電池を配線材を用いて電気的に接続することにより、複数の太陽電池をモジュール化して使用される。特許文献1には、そのような太陽電池モジュールの製造方法として、以下のような製造方法が記載されている。
 まず、一方側の表面に樹脂接着剤103を配した複数の太陽電池100(図11を参照)と、一方側の部分に樹脂接着剤102を配した複数の配線材101とを用意する。次に、圧着ツール104,105を用いて、太陽電池100と配線材101とをプレスすることによって、樹脂接着剤102,103を介して太陽電池100と配線材101とを仮圧着する。この工程を繰り返し行うことにより、複数の配線材101により、複数の太陽電池100を仮接続する。
 その後、図12に示す圧着ツール106,107を用いて、仮圧着されている太陽電池100と配線材101とを加熱することにより樹脂接着剤102,103を硬化させながら本圧着する。これにより、複数の太陽電池100を配線材101を用いて電気的に接続する。
WO 2009/011209 A1号公報
 しかしながら、特許文献1に記載の太陽電池モジュールの製造方法では、太陽電池に反りが発生したり、配線材が太陽電池から剥がれやすくなったりするという問題がある。
 本発明は、斯かる点に鑑みてなされたものであり、その目的は、太陽電池に反りが発生し難く、配線材の剥離が生じにくい太陽電池モジュールを製造し得る方法を提供することにある。
 本発明に係る太陽電池モジュールの製造方法は、第1及び第2の電極を有する複数の太陽電池と、隣り合う太陽電池の一方の太陽電池の第1の電極と他方の太陽電池の第2の電極とを電気的に接続している配線材とを備え、太陽電池と配線材とが樹脂接着剤を用いて接着されている太陽電池モジュールの製造方法に関する。本発明に係る太陽電池モジュールの製造方法では、太陽電池と配線材とを樹脂接着剤を介在させて対向した状態で、配線材の延びる方向における太陽電池の一部と配線材とを、加熱された加圧ツールにより加熱しながら加圧することにより接着する接着工程を複数回行うことにより太陽電池と配線材とを接着する。
 本発明によれば、太陽電池に反りが発生し難く、配線材の剥離が生じにくい太陽電池モジュールを製造し得る方法を提供することができる。
図1は、第1の実施形態において製造される太陽電池モジュールの略図的断面図である。 図2は、第1の実施形態において製造される太陽電池モジュールの太陽電池の受光面の略図的平面図である。 図3は、第1の実施形態において製造される太陽電池モジュールの太陽電池の裏面の略図的透視平面図である。 図4は、第1の実施形態における第1の接着工程を説明するための模式的側面図である。 図5は、第1の実施形態における第2の接着工程を説明するための模式的側面図である。 図6は、第2の実施形態における第1の接着工程を説明するための模式的側面図である。 図7は、第2の実施形態における第2の接着工程を説明するための模式的側面図である。 図8は、第3の実施形態における第1の接着工程を説明するための模式的側面図である。 図9は、第3の実施形態における第2の接着工程を説明するための模式的側面図である。 図10は、第3の実施形態における第3の接着工程を説明するための模式的側面図である。 図11は、特許文献1に記載の太陽電池モジュールの製造方法を説明するための模式的側面図である。 図12は、特許文献1に記載の太陽電池モジュールの製造方法を説明するための模式的側面図である。
 以下、本発明を実施した好ましい形態の一例について説明する。但し、下記の実施形態は、単なる例示である。本発明は、下記の実施形態に何ら限定されない。
 また、実施形態等において参照する各図面において、実質的に同一の機能を有する部材は同一の符号で参照することとする。また、実施形態等において参照する図面は、模式的に記載されたものであり、図面に描画された物体の寸法の比率などは、現実の物体の寸法の比率などとは異なる場合がある。図面相互間においても、物体の寸法比率等が異なる場合がある。具体的な物体の寸法比率等は、以下の説明を参酌して判断されるべきである。
 (第1の実施形態)
 図1は、第1の実施形態において製造される太陽電池モジュールの略図的断面図である。図2は、第1の実施形態において製造される太陽電池モジュールの太陽電池の受光面の略図的平面図である。図3は、第1の実施形態において製造される太陽電池モジュールの太陽電池の裏面の略図的透視平面図である。
 まず、本実施形態において製造される太陽電池モジュール1の構成について図1~図3を参照しながら説明する。
 (太陽電池モジュール1の概略構成)
 太陽電池モジュール1は、少なくとも一つの太陽電池ストリング2を備えている。太陽電池ストリング2は、複数の太陽電池10を有する。太陽電池ストリング2において、複数の太陽電池10は、x方向に沿って配列されている。複数の太陽電池10は、配線材11によって互いに電気的に接続されている。
 太陽電池ストリング2の受光面側には、受光面側保護部材15が配されている。一方、太陽電池ストリング2の裏面側には、裏面側保護部材14が配されている。受光面側保護部材15と裏面側保護部材14との間には、封止材13が設けられている。複数の太陽電池10は、この封止材13により封止されている。
 受光面側保護部材15、裏面側保護部材14及び封止材13の構成材料は、特に限定されない。受光面側保護部材15は、例えば、透光性を有するガラス基板やプラスチック基板により構成することができる。一方、裏面側保護部材14は、例えば、金属箔などからなる反射部材を介在させた樹脂フィルムにより構成することができる。封止材13は、例えば、エチレン・酢酸ビニル共重合体(EVA)やポリビニルブチラール(PVB)等の透光性を有する樹脂により形成することができる。
 (太陽電池10の構造)
 太陽電池10は、光電変換部20を有する。光電変換部20は、受光することによってキャリア(電子及び正孔)を生成する。光電変換部20は、特に限定されないが、例えば、一の導電型を有する結晶半導体基板と、半導体基板の上に配されており、他の導電型を有する半導体層とを有するものとすることができる。また、光電変換部20は、一の導電型を有する半導体基板に他の導電型のドーパントが拡散された拡散領域を有するもの、化合物半導体層を有するもの、光吸収層としての薄膜半導体を有するもの等とすることもできる。すなわち、太陽電池10は、例えば、結晶性シリコン太陽電池、薄膜シリコン太陽電池、化合物半導体太陽電池等により構成することができる。
 光電変換部20は、太陽電池10の第1及び第2の主面を構成している受光面20a及び裏面20bを有する。受光面20aの上には、第1の電極21aが形成されている。一方、裏面20bの上には、第2の電極21bが形成されている。電極21a、21bのうちの一方が電子を収集する電極であり、他方が正孔を収集する電極である。
 本実施形態では、電極21a、21bのそれぞれは、複数のフィンガー部22a、22bと、複数のバスバー部23a、23bとを備えている。複数のフィンガー部22a、22bのそれぞれは、x方向に垂直な方向yに相互に平行に延びている。複数のフィンガー部22a、22bは、x方向に沿って所定間隔を隔てて相互に平行に配列されている。複数のフィンガー部22a、22bは、バスバー部23a、23bに電気的に接続されている。バスバー部23a、23bは、方向xに沿って形成されている。
 なお、本実施形態では、第1及び第2の電極のそれぞれが複数のフィンガー部とバスバー部とを有する例について説明するが、本発明において、第1及び第2の電極の形状は特に限定されない。第1及び第2の電極のそれぞれは、例えば、複数のフィンガー部のみを有する所謂バスバーレスの電極であってもよい。
 (配線材11による太陽電池10の電気的接続)
 x方向において隣り合う太陽電池10の一方の太陽電池の第1の電極21aと、他方の太陽電池の第2の電極21bとは、配線材11によって電気的に接続されている。
 配線材11は、導電性を有するものである限りにおいて特に限定されない。配線材11は、例えば、配線材本体と、配線材本体を覆う被覆層とにより構成することができる。配線材本体は、例えば、Cu等の低抵抗の金属により形成することができる。被覆層は、例えば、Agなどの金属や、半田などの合金により形成することができる。
 配線材11と太陽電池10とは、樹脂接着剤を用いて接着されている。すなわち、配線材11と太陽電池10とは、樹脂接着剤の硬化物からなる接着剤層12により接着されている。
 樹脂接着剤としては、熱硬化性の樹脂が好ましく用いられる。熱硬化性の樹脂としては、例えば、エポキシ樹脂、フェノキシ樹脂、アクリル樹脂、ポリイミド樹脂、ポリアミド樹脂、ポリカーボネート樹脂が挙げられる。これら熱硬化性の樹脂は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 樹脂接着剤は、導電性を有するものであってもよいし、絶縁性を有するものであっても良い。樹脂接着剤が導電性を有する場合、樹脂接着剤は、例えば、導電性粒子を含む異方性導電性樹脂接着剤であってもよい。導電性粒子の具体例としては、例えば、ニッケル、銅、銀、アルミニウム、錫、金などの金属や、これらの金属のうちの一種以上を含む合金からなる粒子、もしくは金属コーティング処理または合金コーティング処理などの導電性コーティング処理が施された絶縁性粒子等が挙げられる。
 樹脂接着剤が、導電性粒子を含まず、絶縁性を有する場合は、配線材11と太陽電池10の電極とが直接接触した状態で樹脂接着剤を用いて接着することにより、配線材11と太陽電池10との電気的接続を図ることができる。
 (太陽電池モジュール1の製造方法)
 次に、太陽電池モジュール1の製造方法について説明する。まず、複数の太陽電池10と複数の配線材11とを準備する。
 次に、複数の太陽電池10を、配線材11を用いて電気的に接続していく。これにより、太陽電池ストリング2を作製する。その後、保護部材14,15の間において、少なくとも一つの太陽電池ストリング2を、封止材13を用いて封止する。具体的には、例えば、受光面側保護部材15の上に、EVAシートなどの樹脂シートを載置する。樹脂シートの上に、太陽電池ストリング2を配置する。その上に、EVAシートなどの樹脂シートを載置し、さらにその上に、裏面側保護部材14を載置する。これらを、減圧雰囲気中において、加熱圧着してラミネートすることにより太陽電池モジュール1を完成させることができる。
 次に、太陽電池10と配線材11とを樹脂接着剤により接着していくことにより、複数の太陽電池10を配線材11により電気的に接続する工程について、図4及び図5を主として参照しながら詳細に説明する。
 本実施形態では、配線材11と太陽電池10との接着を複数回に分けて行う。すなわち、太陽電池10と配線材11とを樹脂接着剤12aを介在させて対向した状態で、配線材11の延びる方向(x方向)における太陽電池10の一部と配線材11とを、加熱された加圧ツール31により加熱しながら加圧することにより接着すると共に電気的に接続する接着工程を複数回行う。これにより、配線材11と太陽電池10との接着を完了する。この工程を、複数の太陽電池10に対して繰り返し行うことにより、太陽電池ストリング2を作製する。
 次に、本実施形態における接着工程についてさらに詳細に説明する。
 まず、接着工程において用いる加圧ツール31の構成について説明する。加圧ツール31は、太陽電池10を介してz方向に対向する第1及び第2のツールを有する複数のツール対を備えている。より具体的には、本実施形態では、加圧ツール31は、第1~第3のツール対31a、31b、31cを有する。第1~第3のツール対31a~31cは、配線材11の延びる方向であるx方向に沿って配列されている。第2のツール対31bがx方向における中央に位置しており、第1のツール対31aと第3のツール対31cとは、第2のツール対31bのx方向における両側に位置している。
 第1のツール対31aは、太陽電池10を介して太陽電池10の厚み方向であるz方向に対向する第1のツール31a1と、第2のツール31a2とを有する。第2のツール対31bは、太陽電池10を介してz方向に対向する第1のツール31b1と、第2のツール31b2とを有する。第3のツール対31cは、太陽電池10を介してz方向に対向する第1のツール31c1と、第2のツール31c2とを有する。
 第1のツール31a1,31b1,31c1と、第2のツール31a2,31b2,31c2とのそれぞれは、図示しないヒーターを内蔵している。このため、第1のツール31a1,31b1,31c1と、第2のツール31a2,31b2,31c2とのそれぞれは、温度調節可能とされている。
 まず、図4に示すように、太陽電池10の受光面20aと一の配線材11の一方側部分11aとを樹脂接着剤12aを介在させて対向させると共に、裏面20bと他の配線材11の他方側部分11bとを樹脂接着剤12aを介在させて対向させた状態で加圧ツール31の第1のツール31a1,31b1,31c1と、第2のツール31a2,31b2,31c2との間に配置する。
 次に、第1~第3のツール対31a~31cのうちの一部のツール対を用いて、x方向における太陽電池10の一部と配線材11とを加熱しながら加圧することにより接着する。その後、第1~第3のツール対31a~31cのうちの残りのツール対の少なくとも一部を用いて、x方向における太陽電池10の残りの部分の少なくとも一部と、配線材11とを加熱しながら加圧することにより接着する。なお、第1~第3のツール対31a~31cのうち、加圧に用いていないツール対は、太陽電池10及び配線材11に接触させないようにする。このようにすることにより、加圧に用いていないツール対から太陽電池10、配線材11及び樹脂接着剤12aに熱が加わらないようにする。
 より具体的には、本実施形態では、まず、図4に示すように、第1のツール対31aと、第3のツール対31cとを用いて、x方向における受光面20aの両端部と、一の配線材11の一方側部分11aのx方向における両端部とを接着すると共に、x方向における裏面20bの両端部と、他の配線材11の他方側部分11bのx方向における両端部とを接着する(第1の接着工程)。この第1の接着工程において、樹脂接着剤12aの、太陽電池10のx方向における両端部の上に位置している部分が硬化し、接着剤層12となる。
 なお、第1の接着工程においては、第2のツール対31bは、太陽電池10及び配線材11から離間した状態とする。これにより、第2のツール対31bから、樹脂接着剤12aの、太陽電池10のx方向における中央部の上に位置している部分に第2のツール対31bから熱が伝わらないようにする。
 次に、図5に示すように、第2のツール対31bを用いて、x方向における受光面20aの中央部と、一の配線材11の一方側部分11aのx方向における中央部とを接着すると共に、x方向における裏面20bの中央部と、他の配線材11の他方側部分11bのx方向における中央部とを接着する(第2の接着工程)。この第2の接着工程において、樹脂接着剤12aの残りの部分が硬化し、接着剤層12となる。
 第2の接着工程における加熱温度は、第1の接着工程における加熱温度と同じであってもよいが、第1の接着工程における加熱温度よりも低いことが好ましい。すなわち、第2のツール対31bの温度は、第1及び第3のツール対31a、31cの温度よりも低いことが好ましい。なお、第2のツール対31bの温度を、第1及び第3のツール対31a、31cの温度よりも低くした場合は、樹脂接着剤12aの硬化に要する時間が長くなる。このため、第2の接着工程を第1の接着工程よりも長期間にわたって行うことが好ましい。
 なお、第2の接着工程においては、第1及び第3のツール対31a、31cは、太陽電池10及び配線材11から離間した状態とする。第1及び第3のツール対31a、31cから、第1の接着工程において樹脂接着剤12aから形成された接着剤層12の、太陽電池10のx方向における両端部の上に位置している部分に第2のツール対31bから熱が伝わらないようにする。
 ところで、例えば、特許文献1に記載のように、太陽電池の配線材の延びる方向における全体を配線材と一度に接着する場合は、太陽電池に反りが発生しやすくなると共に、配線材が太陽電池から剥がれやすくなる。すなわち、太陽電池と配線材とは、異なる材料からなる。このため、太陽電池の熱膨張率と、配線材の熱膨張率とは異なる。通常は、配線材の熱膨張率が太陽電池の熱膨張率よりも高い。よって、配線材が太陽電池よりも大きく伸びた状態で配線材と太陽電池とが接着され、その後の冷却工程において、配線材が太陽電池よりも大きく収縮する。従って、太陽電池に反りが生じやすい。また、太陽電池と配線材との間の応力が大きくなるため、配線材が太陽電池から剥離しやすくなる。
 それに対して本実施形態では、太陽電池10の一部と配線材11とを加熱加圧することにより接着する工程を複数回行うことにより、太陽電池10のx方向における実質的に全体を配線材11と接着する。このため、太陽電池と配線材とを一度に接着する場合よりも、一度の接着工程において接着される太陽電池10と配線材11とのx方向における長さを短くすることができる。よって、各接着工程において接着される太陽電池10及び配線材11の一部分の冷却時における収縮量の差を小さくすることができる。従って、太陽電池10と配線材11との間に生じる応力を小さくできる。その結果、太陽電池10が反りにくく、かつ、配線材11が太陽電池10から剥離しにくい。
 また、本実施形態では、まず、第1の接着工程において太陽電池10のx方向における両端部を配線材11と接着した後に、第2の接着工程において太陽電池10のx方向における中央部を配線材11と接着する。このため、第1の接着工程において、太陽電池10のx方向における中央部と、その中央部に対応した位置に位置する配線材11の一部とが非加熱の状態で太陽電池10のx方向における両端部と配線材11とが接着される。よって、その後に行われる第2の接着工程において接着された太陽電池10と配線材11との一部の冷却後の長さが同じになる。従って、冷却後においては、第2の接着工程において接着された太陽電池10と配線材11との一部には実質的に応力が残存しない。その結果、太陽電池10の反り及び配線材11の剥離をより効果的に抑制することができる。
 太陽電池10の反り及び配線材11の剥離をさらに効果的に抑制する観点からは、第1及び第3のツール対31a、31cのそれぞれのx方向に沿った長さを、第2のツール対31bのx方向に沿った長さの0.02倍~1倍とすることが好ましく、0.1倍~1.0倍とすることがより好ましい。
 また、本実施形態では、第2の接着工程における加熱温度を第1の接着工程における加熱温度よりも低くし、第2の接着工程を第1の接着工程よりも長期間にわたって行う。このため、第2の接着工程における加熱加圧工程においても、太陽電池10と配線材11との間に応力が生じにくい。従って、太陽電池10の反り及び配線材11の剥離をさらに効果的に抑制することができる。
 また、第1~第3のツール対31a~31cのうち、加圧には用いていないツール対は、太陽電池10及び配線材11に接触させないようにする。このようにすることにより、樹脂接着剤12aの加圧されていない部分の硬化が加圧に先立って開始したり、既に硬化している接着剤層12が再び加熱されたりすることを抑制することができる。従って、配線材11と太陽電池10とを強固に接着することができる。
 なお、この太陽電池ストリング2を作製する工程において、第1及び第2の接着工程に先立って、樹脂接着剤12aを仮硬化させてもよい。ここで、「仮硬化」とは、樹脂接着剤の硬化が開始しているものの、完全には硬化していない状態にすることをいう。また、樹脂接着剤12aを仮硬化させる際に、太陽電池10と配線材11とに圧力を付与してもよい。すなわち、太陽電池10と配線材11とを、所謂仮圧着してもよい。
 以下、本発明の好ましい実施形態の他の例について説明する。以下の説明において、上記第1の実施形態と実質的に共通の機能を有する部材を共通の符号で参照し、説明を省略する。
 (第2及び第3の実施形態)
 図6は、第2の実施形態における第1の接着工程を説明するための模式的側面図である。図7は、第2の実施形態における第2の接着工程を説明するための模式的側面図である。図8は、第3の実施形態における第1の接着工程を説明するための模式的側面図である。図9は、第3の実施形態における第2の接着工程を説明するための模式的側面図である。図10は、第3の実施形態における第3の接着工程を説明するための模式的側面図である。
 上記第1の実施形態では、太陽電池10のx方向における中央部を配線材11と接着した後に、太陽電池10のx方向における両端部を配線材11と接着する例について説明した。但し、本発明は、これに限定されない。
 例えば、図6に示すように、第1の接着工程において、第2のツール対31bを用いて、x方向における太陽電池10の中央部と配線材11とを接着した後に、図7に示すように、第2の接着工程において、第1及び第3のツール対31a、31cを用いて、x方向における太陽電池10の両端部と配線材11とを接着するようにしてもよい。
 また、例えば、太陽電池10のx方向における一方側から他方側へと配線材11との接着を順次行ってもよい。具体的には、第3の実施形態では、まず、図8に示すように、第1の接着工程において、第1のツール対31aを用いて、太陽電池10のx方向のx1側端部と配線材11とを接着する。次に、図9に示すように、第2の接着工程において、第2のツール対31bを用いて、太陽電池10のx方向の中央部と配線材11とを接着する。最後に、図10に示すように、第3の接着工程において、第3のツール対31cを用いて、太陽電池10のx方向のx2側端部と配線材11とを接着する。
 第2及び第3の実施形態においても、第1の実施形態と同様に、太陽電池10の反り及び配線材11の剥離を抑制することができる。
 尚、本発明はここでは記載していない様々な実施形態を含む。例えば、太陽電池と配線材とを、2回または4回以上の接着工程によって接着するようにしてもよい。
 更に、同一のツール対を用いて複数回の加熱加圧工程により太陽電池と配線材とを接着してもよい。その際、重複して加熱加圧される部分を有してもよい。
 また、複数回の加熱加圧工程により太陽電池と配線材とを接着する際、加圧されずに加熱のみされる部分を有してもよい。
 また、隣り合う太陽電池間を1本または3本以上の配線材により接続してもよい。
 以上のように、本発明はここでは記載していない様々な実施形態を含む。従って、本発明の技術的範囲は上記の説明から妥当な特許請求の範囲に係る発明特定事項によってのみ定められるものである。
 1…太陽電池モジュール
 10…太陽電池
 11…配線材
 12…接着剤層
 12a…樹脂接着剤
 20…光電変換部
 20a…受光面
 20b…裏面
 21a…第1の電極
 21b…第2の電極
 31…加圧ツール
 31a…第1のツール対
 31b…第2のツール対
 31c…第3のツール対

Claims (7)

  1.  第1及び第2の電極を有する複数の太陽電池と、
     隣り合う前記太陽電池の一方の太陽電池の前記第1の電極と他方の太陽電池の前記第2の電極とを電気的に接続している配線材と、
    を備え、
     前記太陽電池と前記配線材とが樹脂接着剤を用いて接着されている太陽電池モジュールの製造方法であって、
     前記太陽電池と前記配線材とを前記樹脂接着剤を介在させて対向した状態で、前記配線材の延びる方向における前記太陽電池の一部と前記配線材とを、加熱された加圧ツールにより加熱しながら加圧することにより接着する接着工程を複数回行うことにより前記太陽電池と前記配線材とを接着する、太陽電池モジュールの製造方法。
  2.  前記加圧ツールは、前記配線材の延びる方向に沿って配列されており、前記太陽電池を介して前記太陽電池の厚み方向に対向する第1及び第2のツールを有する複数のツール対を備え、
     前記接着工程は、
     前記複数のツール対のうちの一部のツール対を用いて、前記配線材の延びる方向における前記太陽電池の一部と前記配線材とを加熱しながら加圧することにより接着する工程と、
     前記複数のツール対のうちの残りのツール対の少なくとも一部を用いて、前記配線材の延びる方向における前記太陽電池の残りの部分の少なくとも一部と前記配線材とを加熱しながら加圧することにより接着する工程と、
    を備える、請求項1に記載の太陽電池モジュールの製造方法。
  3.  前記複数のツール対のうち加圧に用いていないツール対は前記太陽電池及び前記配線材に接触させない、請求項2に記載の太陽電池モジュールの製造方法。
  4.  前記配線材の長さ方向における前記太陽電池の両端部と前記配線材とを接着する第1の接着工程と、
     前記第1の接着工程の後に、前記配線材の長さ方向における前記太陽電池の中央部と前記配線材とを接着する第2の接着工程と、
    を備える、請求項1~3のいずれか一項に記載の太陽電池モジュールの製造方法。
  5.  前記第2の接着工程における加熱温度を前記第1の接着工程における加熱温度よりも低くする、請求項4に記載の太陽電池モジュールの製造方法。
  6.  前記配線材の長さ方向における前記太陽電池の中央部と前記配線材とを接着する第1の接着工程と、
     前記第1の接着工程の後に、前記配線材の長さ方向における前記太陽電池の両端部と前記配線材とを接着する第2の接着工程と、
    を備える、請求項1~3のいずれか一項に記載の太陽電池モジュールの製造方法。
  7.  前記配線材の長さ方向における前記太陽電池の一方側端部と前記配線材を接着する第1の接着工程と、
     前記第1の接着工程の後に、前記配線材の長さ方向における前記太陽電池の中央部と前記配線材とを接着する第2の接着工程と、
     前記第2の接着工程の後に、前記配線材の長さ方向における前記太陽電池の他方側端部と前記配線材を接着する第3の接着工程と、
    を備える、請求項1~3のいずれか一項に記載の太陽電池モジュールの製造方法。
PCT/JP2012/056697 2011-03-24 2012-03-15 太陽電池モジュールの製造方法 WO2012128176A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-065429 2011-03-24
JP2011065429A JP2012204442A (ja) 2011-03-24 2011-03-24 太陽電池モジュールの製造方法

Publications (1)

Publication Number Publication Date
WO2012128176A1 true WO2012128176A1 (ja) 2012-09-27

Family

ID=46879326

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/056697 WO2012128176A1 (ja) 2011-03-24 2012-03-15 太陽電池モジュールの製造方法

Country Status (2)

Country Link
JP (1) JP2012204442A (ja)
WO (1) WO2012128176A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018107217A (ja) * 2016-12-22 2018-07-05 パナソニックIpマネジメント株式会社 太陽電池モジュールの製造方法及び太陽電池モジュール
WO2024077894A1 (zh) * 2022-10-09 2024-04-18 苏州小牛自动化设备有限公司 固连电池串的方法、压具组件及固化装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102175893B1 (ko) * 2014-02-24 2020-11-06 엘지전자 주식회사 태양 전지 모듈의 제조 방법

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008300403A (ja) * 2007-05-29 2008-12-11 Sony Chemical & Information Device Corp 導体線及びその製造方法、並びに太陽電池
JP2011049349A (ja) * 2009-08-27 2011-03-10 Sanyo Electric Co Ltd 太陽電池ストリング及びそれを用いた太陽電池モジュール

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008300403A (ja) * 2007-05-29 2008-12-11 Sony Chemical & Information Device Corp 導体線及びその製造方法、並びに太陽電池
JP2011049349A (ja) * 2009-08-27 2011-03-10 Sanyo Electric Co Ltd 太陽電池ストリング及びそれを用いた太陽電池モジュール

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018107217A (ja) * 2016-12-22 2018-07-05 パナソニックIpマネジメント株式会社 太陽電池モジュールの製造方法及び太陽電池モジュール
WO2024077894A1 (zh) * 2022-10-09 2024-04-18 苏州小牛自动化设备有限公司 固连电池串的方法、压具组件及固化装置

Also Published As

Publication number Publication date
JP2012204442A (ja) 2012-10-22

Similar Documents

Publication Publication Date Title
JP5367569B2 (ja) 太陽電池モジュールの製造方法
TWI390747B (zh) 使用單石模組組合技術製造的光伏打模組
JP5046743B2 (ja) 太陽電池モジュール及びその製造方法
JP5479228B2 (ja) 太陽電池モジュール
JP6043971B2 (ja) 太陽電池モジュール及び太陽電池モジュールの製造方法
JP5089456B2 (ja) 圧着装置及び太陽電池モジュールの製造方法
JP5377409B2 (ja) 太陽電池モジュール及びその製造方法
US8735206B2 (en) Method of manufacturing solar cell module
KR102099246B1 (ko) 결정계 태양 전지 모듈 및 그의 제조 방법
WO2012128176A1 (ja) 太陽電池モジュールの製造方法
WO2014119252A1 (ja) 太陽電池モジュールの製造方法及び太陽電池モジュールの製造装置
JP2012109416A (ja) 太陽電池用バックシートとその製造方法
JP5479222B2 (ja) 太陽電池モジュール
KR102019310B1 (ko) 태양 전지 모듈 및 그의 제조 방법
US20140157594A1 (en) Method for manufacturing a solar module
WO2017043518A1 (ja) 太陽電池モジュールの製造方法、太陽電池モジュール、及び太陽電池セルの接続方法
JP2017055112A (ja) 太陽電池モジュールの製造方法、太陽電池モジュール、及び太陽電池セルの接続方法
JP5558940B2 (ja) 太陽電池モジュール及びその製造方法
WO2019163778A1 (ja) 配線材、並びにそれを用いた太陽電池セル及び太陽電池モジュール
JP6097483B2 (ja) 結晶系太陽電池モジュール
JP2013026611A (ja) 太陽電池モジュールの製造方法
JP2017175016A (ja) 太陽電池モジュールの製造方法、太陽電池モジュール、太陽電池セルの接続方法、及び積層体
JP2017163117A (ja) 太陽電池モジュールおよび太陽電池モジュールの製造方法
JPWO2013030992A1 (ja) 太陽電池モジュールの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12761128

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12761128

Country of ref document: EP

Kind code of ref document: A1