WO2012127827A1 - 錠剤検査装置およびこれを用いた錠剤検査方法 - Google Patents

錠剤検査装置およびこれを用いた錠剤検査方法 Download PDF

Info

Publication number
WO2012127827A1
WO2012127827A1 PCT/JP2012/001828 JP2012001828W WO2012127827A1 WO 2012127827 A1 WO2012127827 A1 WO 2012127827A1 JP 2012001828 W JP2012001828 W JP 2012001828W WO 2012127827 A1 WO2012127827 A1 WO 2012127827A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
tablet
unit
inspection
medicine package
Prior art date
Application number
PCT/JP2012/001828
Other languages
English (en)
French (fr)
Inventor
貴頌 谷本
山下 仁
後藤 誠
松川 善彦
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to EP12760388.4A priority Critical patent/EP2690430A1/en
Priority to CN2012800140260A priority patent/CN103443617A/zh
Priority to JP2012535520A priority patent/JP5496348B2/ja
Priority to US13/696,163 priority patent/US20130058550A1/en
Publication of WO2012127827A1 publication Critical patent/WO2012127827A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/9508Capsules; Tablets

Definitions

  • the present invention relates to a tablet inspection apparatus that supports inspection of tablets enclosed in a medicine package, and a tablet inspection method using the same.
  • a tablet is an example of the dispensing target of this dispensing operation.
  • the tablet inspection is performed by the tablet packaging machine detecting the number of tablets in the medicine package with respect to the medicine package in which the tablets are separately sealed.
  • tablet inspection is performed in this manner, it is difficult to distinguish the printed portion of the medicine package such as characters and patterns and patterns from the tablets. For this reason, the number of tablets may not be detected accurately. Therefore, a tablet inspection apparatus has been proposed in which an inspection image of a medicine package in which a tablet is left is generated by removing a printed portion and a tablet inspection of the medicine package is performed from this inspection image (see, for example, Patent Document 1). ).
  • FIG. 1 is a perspective view of a conventional tablet inspection apparatus 1.
  • the tablet inspection apparatus 1 performs noise removal of the transmission image by performing binarization processing, contraction processing, and expansion processing in this order on the transmission image of the medicine package 2 captured by the camera 3. Thereby, the tablet inspection apparatus 1 generates an inspection image of the medicine package from which the printing unit has been removed.
  • the tablet inspection apparatus 1 processes the camera 3 for photographing the medicine package 2 positioned at the inspection position, the illuminator 6 disposed below the camera 3, and the transmission image with light and shade photographed by the camera 3 And a display 5 connected to the image processing unit 4.
  • the image processing unit 4 takes in the transmission image taken by the camera 3 and then binarizes the transmission image with a predetermined threshold to calculate a binarized image. Subsequently, the image processing unit 4 performs noise removal processing including contraction and expansion on the binarized image to remove the print portion applied to the medicine package 2.
  • the tablet inspection apparatus 1 detects the number of tablets from the inspection image from which the printing unit has been removed, and determines whether the number of tablets is an appropriate number to be enclosed in the medicine package. Thus, the tablet inspection apparatus 1 automatically performs tablet inspection of the medicine package.
  • Patent Document 2 a tablet inspection device that extracts tablets using reflective illumination of slit light has also been proposed (see, for example, Patent Document 2).
  • the conventional tablet inspection apparatus 1 can not remove the printing portion having a high light absorption rate and a thick line from the inspection image.
  • the printed portion reflected in the transmission image has a high light absorption rate, and the tablet does not transmit light. Therefore, the lightness on the transmission image of the printing part and the tablet is low (the pixel values are both small), and when the transmission image is subjected to the binarization processing, the printing part becomes a black pixel. Therefore, in the conventional tablet inspection apparatus 1, the printing unit remains in the inspection image as black pixels as in the case of the tablet.
  • the lines of the printing unit become thick. For this reason, even if the binarized image obtained by binarizing the transmission image is contracted and expanded, the printed portion can not be removed. As a result, when the printing unit is configured of a pattern or a pattern, the printing unit remains in the inspection image.
  • the conventional tablet inspection apparatus has a problem that the number of tablets enclosed in the medicine package may not be accurately detected.
  • the present invention has been made to solve the above-mentioned conventional problems, and it is an object of the present invention to provide a tablet inspection apparatus and a tablet inspection method capable of accurately detecting the number of tablets enclosed in a medicine package. I assume.
  • a tablet having an infrared light absorption rate lower than that of the printed portion is formed between two films having the printed portion on one film.
  • At least a mounting portion on which the sealed medicine package is mounted, a transmission illumination unit emitting infrared light, a reflection illumination unit emitting infrared light, and the transmission illumination unit is the medicine package.
  • a transmission image is obtained by imaging the medicine package from the side of the other film of the two films, and the reflection illumination unit
  • a camera unit configured to obtain a reflected image by imaging the medicine package from the side of the other film in a state where the medicine package is irradiated with infrared light from the side of the other film;
  • the tablet inspection method is a medicine package in which at least a tablet having an infrared light absorption rate lower than that of the printed portion is enclosed between two films having the printed portion on one film. Is prepared, and the medicine package is imaged from the side of the other of the two films in a state where the transmission illumination unit irradiates the medicine package with infrared light from the side of the one film. Thus, a transmission image is obtained, and in a state where the reflection illumination unit irradiates the medicine package with infrared light from the side of the other film, the medicine package is imaged by being imaged from the side of the other film. An image is acquired, a test
  • a tablet inspection apparatus capable of accurately detecting the number of tablets enclosed in a medicine package and a tablet inspection method using the same.
  • FIG. 1 is a perspective view of a conventional tablet inspection apparatus.
  • FIG. 2 is a block diagram showing a schematic configuration of hardware of the tablet inspection apparatus according to Embodiment 1 of the present invention.
  • FIG. 3 is a plan view of a medicine package according to Embodiment 1 of the present invention.
  • FIG. 4 is a view showing an example of an image obtained by binarizing the reflection image of the medicine package taken by the camera unit according to Embodiment 1 of the present invention.
  • FIG. 5 is a view showing an example of an image obtained by binarizing a transmission image of a medicine package taken by a camera unit according to Embodiment 1 of the present invention.
  • FIG. 6 is a view showing an example of a test image of the medicine package in the first embodiment of the present invention.
  • FIG. 1 is a perspective view of a conventional tablet inspection apparatus.
  • FIG. 2 is a block diagram showing a schematic configuration of hardware of the tablet inspection apparatus according to Embodiment 1 of the present invention.
  • FIG. 7 is a flowchart showing a method of performing a tablet inspection using the tablet inspection apparatus in the first embodiment of the present invention.
  • FIG. 8 is a view showing an example of a reflected image of the medicine package taken by the camera unit according to Embodiment 2 of the present invention.
  • FIG. 9 is a flow chart showing a method of performing tablet inspection using the tablet inspection apparatus in the second embodiment of the present invention.
  • FIG. 10 is a view showing an example of a transmission image of a medicine package taken by a camera unit according to Embodiment 2 of the present invention.
  • FIG. 11 is a diagram showing an example of an image obtained by binarizing a difference image according to Embodiment 2 of the present invention.
  • FIG. 12 is a view showing an example of an image showing a highly absorbent tablet region according to Embodiment 2 of the present invention.
  • FIG. 13 is a view showing an example of an image showing an inspection image according to Embodiment 2 of the present invention.
  • FIG. 2 is a block diagram showing a schematic configuration of hardware of the tablet inspection apparatus 11 according to Embodiment 1 of the present invention.
  • the tablet inspection apparatus 11 is an apparatus which removes a printing part from the image which image
  • the printing unit includes not only characters but also portions printed with figures or symbols.
  • the tablet inspection apparatus 11 includes a mounting table 12 on which the medicine package 21 is mounted, a reflective illumination unit 13 that illuminates the mounting table 12, and the mounting table 12.
  • a transmission illumination unit 14 that emits light to the mounting table 12 from the opposite side of the reflection illumination unit 13, a camera unit 15, and a calculation unit 16 are provided.
  • the mounting table 12 is an example of the mounting unit.
  • the display part 17 may be provided.
  • the medicine package 21 is one in which a tablet is enclosed between a transparent film (the other film) and a white film (the one film).
  • the white film here is a film having a high transmittance to infrared light, and a white display surface on which printing is possible is coated.
  • the medicine package 21 has a print portion printed on the white film with the ink having a high infrared light absorption rate. Specifically, it is assumed that the printed portion has an infrared light absorption rate higher than that of the tablet sealed in the medicine package 21.
  • a high absorptivity of infrared light means a high absorptivity of light in a wavelength band of infrared light and a low transmittance and reflectance of infrared light.
  • the ink having a high absorptivity for such infrared light examples include an ink containing a pigment such as carbon black as a main raw material. Carbon black has a high absorptivity in the visible light wavelength band as well as the infrared light. In addition, carbon black has a large difference in absorptivity with tablets in the wavelength band of infrared light.
  • the absorptivity of infrared light in the printing portion can be made higher than the absorptivity of infrared light in the tablet and the white film enclosed in the medicine package 21.
  • the printing unit is often printed at the stage of enclosing the tablet in the medicine package 21. Examples of the printing unit include, for example, the patient name, the time taken to take a tablet, the medicine package number, the barcode, and the like. In addition, although one film was demonstrated by the white film here, one film may be a colored film.
  • the mounting table 12 is a table for mounting the medicine package 21 having a printing unit.
  • the mounting table 12 has a guide portion 20 provided at an end portion, and a transparent plate 22 located between the camera portion 15 and the transmissive illumination portion 14.
  • the guide portion 20 internally includes a drive roller and a guide roller (not shown). Then, the medicine package 21 is moved along the guide portion 20 by rotating the drive roller while holding the end of the medicine package 21 between the drive roller and the guide roller.
  • the transparent plate 22 of the mounting table 12 transmits illumination light (infrared light) from the transmission illumination unit 14 located below.
  • the position of the transparent plate 22 is also a position where the medicine package 21 photographed by the camera unit 15 is placed.
  • the transmission illumination unit 14 irradiates the medicine package 21 with infrared light from the side of the white film. Further, the reflective illumination unit 13 irradiates the medicine package 21 with infrared light from the side of the transparent film.
  • the camera unit 15 is a camera that captures an image of the medicine package 21 irradiated with light by the reflective illumination unit 13 and acquires a reflected image.
  • the camera unit 15 is a camera that captures the medicine package 21 to which light is emitted by the transmission illumination unit 14 and acquires a transmission image.
  • the transmissive illumination unit 14 does not emit light.
  • the transmission illumination unit 14 emits light
  • the reflection illumination unit 13 does not emit light. Switching of the illumination light (infrared light) of the reflective illumination unit 13 and the illumination light (infrared light) of the transmissive illumination unit 14 is performed by the control unit 15 a of the camera unit 15.
  • the transparent film of the medicine package 21 is positioned on the camera unit 15 side. That is, the white film of the medicine package 21 is located on the transparent plate 22 side (the transmitting illumination unit 14 side) of the mounting table 12.
  • the photographing lens of the camera unit 15 is located above the cylindrical reflection illumination unit 13.
  • the camera unit 15 is at a position facing the transmitting illumination unit 14 with the mounting table 12 interposed therebetween.
  • the calculation unit 16 generates an inspection image from the difference between the reflection image and the transmission image.
  • the illumination light of the reflection illumination unit 13 and the illumination light of the transmission illumination unit 14 are infrared light.
  • the infrared light here is light in a wavelength band of 700 nm or more.
  • infrared light As irradiation light is that, in general, the ink in the printed portion of the medicine package 21 often uses carbon black having a high infrared light absorptivity.
  • a further reason for using infrared light as the illumination light is that common tablets reflect infrared light. Many common tablets do not reflect visible light. Therefore, in the first embodiment, infrared light is used so that the tablet inspection apparatus 11 can be applied to general tablets.
  • the tablet inspection apparatus 11 uses the difference between the reflected image with low lightness of the printed portion and the transmitted image with low lightness of the printed portion and the tablet, and removes the printed portion while including the tablet. Can be generated.
  • the lightness and the pixel value are not particularly distinguished, and the lightness may mean a pixel value.
  • the tablet inspection apparatus 11 further includes a binarization processing unit 18 that binarizes the image acquired by the camera unit 15.
  • the binarization processing unit 18 compares the lightness with the threshold value for each pixel included in the image.
  • the binarization processing unit 18 sets a pixel whose lightness is equal to or more than a threshold value as a white pixel (for example, a pixel having a pixel value of 255) and sets a pixel whose lightness is less than the threshold value as a black pixel (for example, a pixel having a pixel value of 0).
  • the operation unit 16 leaves a desired area and removes the other areas to generate an inspection image.
  • the desired area is an area where the lightness of the transmission image binarized by the binarization processing unit 18 is low and the lightness of the binarized reflection image is high.
  • the printed portion is removed and only the tablet is shown. The reason why the print unit is removed will be described later.
  • the tablet inspection apparatus 11 further includes a tablet counting unit 19.
  • the tablet counting unit 19 counts the number of tablets in the inspection image.
  • the tablet inspection apparatus 11 can calculate the number of tablets included in the inspection image, and mechanically inspect whether the medicine package 21 contains an appropriate number of tablets.
  • FIG. 3 is a plan view of the medicine package 21 according to the first embodiment.
  • the medicine package 21 is such that the plurality of tablets 31 and the printing portion 32 printed on the white film can be seen from the transparent film side of the medicine package 21.
  • the tablet inspection apparatus 11 captures such medicine package 21 with the camera unit 15 to obtain a transmission image and a reflection image, and binarizes the obtained transmission image and the reflection image in the binarization processing unit 18 .
  • FIG. 3 is also a reflection image captured by the camera unit 15 before being binarized.
  • FIG. 4 is a view showing an example of the reflected image 35 according to the first embodiment.
  • the reflected image 35 is an image obtained by binarizing the reflected image of the medicine package 21 captured by the camera unit 15.
  • FIG. 5 is a view showing an example of a transmission image 36 according to Embodiment 1 of the present invention.
  • the transmission image 36 is an image obtained by binarizing the transmission image of the medicine package 21 captured by the camera unit 15.
  • the image of the tablet 31 disappears, and it appears that only the image of the printing unit 32 is present.
  • the printing unit 32 is printed with ink having a high absorptivity of infrared light, and absorbs infrared light to lower the lightness of the printing unit 32 in the reflected image 35.
  • the reflected image 35 is binarized at a predetermined threshold value, the image of the printing unit 32 with low lightness is blackened.
  • the tablet 31 reflects the infrared light of the reflective illumination unit 13 on its surface, the brightness of the tablet 31 in the reflected image 35 is high.
  • the reflected image 35 is binarized at a predetermined threshold value, the image of the tablet 31 with high brightness is whitened.
  • the transmission image 36 of the binarized medicine package 21 looks as if the image of the printing unit 32 and the tablet 31 is present. This is because the printing unit 32 has a high absorptivity of infrared light of the transmission illumination unit 14 irradiated to the medicine package 21 and the lightness of the printing unit 32 in the transmission image 36 is low.
  • the tablet 31 does not transmit the infrared light of the transmission illumination unit 14
  • the brightness of the tablet 31 in the transmission image 36 also decreases.
  • the transmission image 36 is binarized at a predetermined threshold value, the images of the print portion 32 and the tablet 31 with low brightness in the transmission image 36 become black.
  • the white film since the white film has a high transmittance, the brightness of the white film is high in any of the reflection image 35 and the transmission image 36. When these images are binarized, the image showing a white film becomes white. Thus, the white film image is removed from the generated inspection image.
  • the high transmittance printing unit is either the reflection image 35 or the transmission image 36.
  • the lightness is high.
  • the image showing the high transmittance printed portion becomes white. Therefore, the high transmittance printed portion is removed from the binarized inspection image.
  • the transmittance of infrared light in the color printing portion is often high.
  • the high transmittance printing unit is an example of a second printing unit.
  • the printing unit 32 does not have high infrared light absorptivity or transmittance.
  • the transmittance of the infrared light of the printing unit 32 is not high, the lightness of the printing unit 32 is low in the transmission image 36.
  • the absorptivity of the infrared light of the printing unit 32 is not high, the lightness of the printing unit 32 is high in the reflected image 35. Therefore, the lightness of the printing unit 32 is the same as the lightness of the tablet 31 in both the transmission image 36 and the reflection image 35. In this case, only the print unit 32 can not be removed.
  • the absorptivity of infrared light in the printing unit 32 is increased.
  • the image of the area showing the printing unit 32 is black
  • the image of the area showing the tablet 31 is white.
  • the binarized transmission image 36 the image of the area showing the printing unit 32 and the tablet 31 becomes black. Therefore, by removing the area indicating the printing unit 32 using the difference between the transmission image 36 and the reflection image 35, it is possible to generate an inspection image in which the area indicating the tablet 31 is left. At this time, only black pixels and white pixels remain in the binarized reflection image 35 and the transmission image 36.
  • the calculation unit 16 When generating the inspection image from the reflection image 35 and the transmission image 36, the calculation unit 16 sets the black pixel for the white image in the transmission image 36 and the white pixel for the reflection image 35, and the white pixels for the other pixels. By doing this, an inspection image is generated.
  • FIG. 6 is a view showing an inspection image 37 of the medicine package 21 in the first embodiment. As shown in FIG. 6, in the inspection image 37 of the medicine package 21, the image of the tablet 31 is present but the image of the printing unit 32 is removed.
  • the calculation unit 16 performs the following processing.
  • a black pixel in both of the transmission image 36 and the reflection image 35 means a printing unit 32 that absorbs infrared light. Therefore, the calculation unit 16 sets a black pixel in both of the transmission image 36 and the reflection image 35 as a white pixel in the inspection image 37.
  • black pixels in the transmission image 36 and white pixels in the reflection image 35 mean tablets 31 which do not transmit infrared light and reflect infrared light. Therefore, the calculation unit 16 sets a black pixel in the transmission image 36 and a white pixel in the reflection image 35 as a black pixel in the inspection image 37.
  • white pixels in the transmission image 36 mean portions where neither the printing portion 32 nor the tablet 31 is transmitted because transmission of infrared light is occurring. Therefore, the calculation unit 16 sets a white pixel in the transmission image 36 as a white pixel in the inspection image 37 whether the pixel of the reflection image 35 is white or black.
  • black pixels in the inspection image 37 become only when the combination of the pixels of the transmission image 36 and the reflection image 35 means the tablet 31. For this reason, the image of the tablet 31 present only in the transmission image 36 remains in the inspection image 37 as black pixels, and the image of the printing portion 32 present in both the reflected image 35 and the transmission image 36 is removed from the inspection image 37.
  • the print unit 32 remaining in the reflected image 35 and the transmissive image 36 subjected to the binarization process is black. It becomes a pixel.
  • a pixel having a pixel value equal to or more than a threshold value is binarized is regarded as a white pixel, and the case where a pixel having a pixel value less than the threshold value is binarized is described as a black pixel.
  • the relationship between the white pixel and the black pixel may be reversed.
  • a pixel having a pixel value equal to or higher than the threshold is a black pixel
  • a pixel having a pixel value smaller than the threshold is a white pixel.
  • the calculation unit 16 sets the pixel as a black pixel in the inspection image only in the case of a combination of pixels meaning the tablet 31 (a white pixel in the transmission image 36 and a black pixel in the reflection image 35). Do. Also, in this case, the calculation unit 16 sets white pixels in the inspection image for the pixels of other combinations. Thus, even when the relationship between the white pixel and the black pixel in the binarization process is reversed, it is possible to calculate an inspection image in which only the tablet 31 is captured.
  • the relevant pixel of the inspection image 37 may be a white pixel instead of a black pixel.
  • the combination meaning the tablet 31 is a combination in which the pixel of the transmission image 36 is black and the pixel of the reflection image 35 is white. is there. Therefore, the calculation unit 16 sets the pixel of the inspection image 37 as a white pixel only in the case of this combination. In the case of other combinations, the calculation unit 16 sets the corresponding pixel of the inspection image 37 as a black pixel.
  • the tablet is left as a white pixel, and the other portion is set as a black pixel.
  • the inspection image 37 can be calculated.
  • the pixel value of the reflected image 35 or the transmission image 36 may be left in the inspection image 37 instead of leaving the pixel value of the black pixel in the inspection image 37.
  • the combination meaning the tablet 31 is a case where the pixel of the transmission image 36 is black and the pixel of the reflection image 35 is white. Therefore, only in this case, the pixel values of the reflected image 35 or the transmitted image 36 are left in the inspection image 37.
  • the inspection image 37 leaves the minimum value or the maximum value of the pixel values of the reflection image 35 or the transmission image 36.
  • the tablet 31 can be represented by the pixel value of the reflected image 35 or the transmitted image 36, and the other can be represented by the minimum value or the maximum value of the pixel values of the reflected image 35 or the transmitted image 36. Therefore, it is possible to calculate the inspection image 37 which can be confirmed by human eyes without being affected by the printing unit 32.
  • the print unit 32 remaining in the reflected image 35 and the transmissive image 36 subjected to the binarization process is black. It becomes a pixel.
  • areas with low lightness areas having pixels with pixel values less than the threshold value
  • the printing unit can be removed and the inspection image 37 including the tablet can be generated.
  • Binarization allows both areas to have the same lightness level. Therefore, even if the illumination levels of the transmissive illumination unit 14 and the reflective illumination unit 13 are not strictly adjusted, the printed portion can be removed and the inspection image 37 including the tablet can be generated.
  • the tablet counting unit 19 calculates the number of tablets 31 contained in the inspection image 37, and checks whether or not the medicine package 21 contains an appropriate tablet. At this time, in the inspection image 37, the print unit 32 is removed. Therefore, the tablet counting unit 19 does not count the printing unit 32 as the tablet 31 by mistake, and the tablet inspection apparatus 11 can perform accurate tablet inspection.
  • the tablet inspection apparatus 11 As described above, the tablet inspection apparatus 11 according to the first embodiment generates the inspection image 37 using the reflection image 35 and the transmission image 36 based on infrared light, and the printing unit 32 with the tablet 31 left. To generate an inspection image 37. Also, the tablet inspection apparatus 11 can perform accurate tablet inspection using this inspection image 37.
  • the shape of the reflecting mirror of the reflecting illumination unit 13 be dome-shaped to reflect infrared light.
  • the shape of the reflecting mirror of the reflecting illumination unit 13 may be, for example, a semi-spherical shape, that is, a shape obtained by dividing a true sphere into halves, instead of the dome shape.
  • the reflective illumination unit 13 can irradiate light to the tablet 31 from a plurality of directions. Therefore, the specular reflection by the film (wrapping sheet) of the medicine package 21 can be suppressed by the configuration using the dome-shaped reflecting mirror. Therefore, it is possible to more accurately remove the print unit 32 from the inspection image 37. Further, with the configuration using this dome-shaped reflecting mirror, since light is irradiated from a plurality of directions, it is possible to reduce the possibility of the occurrence of a shadow on adjacent tablets 31. Therefore, the configuration using the dome-shaped reflecting mirror makes it possible to more accurately capture the shape of the tablet 31 in the inspection image 37.
  • the film (packaging sheet) of the medicine package 21 is likely to cause specular reflection when light in the vertical direction is applied to the medicine package 21 from above.
  • the shadows of the adjacent tablets 31 overlap the tablets 31, and the tablets 31 may not reflect light.
  • the transparent plate 22 of the mounting table 12 through which the irradiation light of the transmissive illumination unit 14 passes has a louver structure.
  • the transparent plate 22 is an inspection position for mounting the medicine package 21 and is a transparent portion of the mounting table 12.
  • the transparent plate 22 having a louver structure is a laminated plate in which a light transmitting plate and a light shielding plate are laminated. When light is transmitted to the laminate from a direction perpendicular to the stacking direction, the light becomes parallel light.
  • the light of the transmissive illumination unit 14 becomes parallel light and illuminates the medicine package 21. Therefore, it is possible to prevent the outline of the tablet 31 from being blurred and to generate the transmission image 36 in which the shape of the tablet 31 is more accurate. The reason is that if the light from the transmissive illumination unit 14 is diffused light, the outer periphery of the tablet 31 becomes bright and the outline is blurred. In such a case, since the transmission image 36 does not include the image of the tablet 31 that is accurate, the shape of the tablet 31 in the inspection image 37 is also incorrect.
  • the difference image may be generated after the difference image is generated without generating the difference image. That is, after the difference image of the reflected image 35 and the transmission image 36 is generated, the tablet inspection apparatus 11 binarizes the difference image obtained from the calculation unit 16 in order to generate the inspection image 37 from the difference image.
  • a digitization processor may be provided.
  • the calculation unit 16 sets the maximum value and the minimum value of the lightness of the image to the maximum value of the lightness in the ideal state with respect to the transmission image or the reflection image which has not been binarized.
  • a correction process may be performed to correct the value and the minimum value.
  • the correction processing first, from the maximum value and the minimum value of the lightness of the reflection image, multiplication values for converting into the maximum value and the minimum value of the ideal lightness are respectively calculated. Next, by linearly approximating the converted values of the maximum value and the minimum value of the lightness of the reflection image, a multiplication value for converting the lightness between the maximum value and the minimum value of the lightness of the reflection image is calculated.
  • the lightness of each pixel after correction is obtained by multiplying the lightness of each pixel of the reflection image by the conversion value of the lightness.
  • the brightness of the transmission image is corrected by the same method.
  • the brightness of the tablet 31 is high, and the brightness of the printing unit 32 is low.
  • the lightness of the tablet 31 is slightly different depending on each tablet, the lightness of the tablet 31 is high and the lightness of the printed portion 32 is low. Therefore, the maximum value and the minimum value of the lightness of the reflected image are stable and constant in any medicine package 21 The value of is obtained. Therefore, it can be used as a reference value for performing correction processing.
  • the calculation unit 16 sets the average value and the dispersion value of the lightness in the image to the lightness in the ideal state with respect to at least one of the transmission image and the reflection image before the binarization processing.
  • a correction process may be performed to correct the values of the mean and the variance of.
  • the auditor may calculate the number of tablets 31. Specifically, the arithmetic unit 16 causes the inspection image 37 to be displayed on the display unit 17, and the auditor looks at the inspection image 37 displayed on the display unit 17, from the number of tablets 31 and the shape of the tablets, Tablet inspection may be performed.
  • the tablet inspection method for performing a tablet inspection of the medicine package 21 using the tablet inspection device 11 comprises a first step of acquiring a transmission image, a second step of acquiring a reflection image, and a third step of generating an inspection image including.
  • the first step using a medicine pack made up of a transparent film having a printing part and a white film, the medicine pack containing a tablet having a lower absorptivity of infrared light than the printing part is enclosed in a white film
  • the medicine package is transparent film in a state where the reflection illumination unit 13 irradiates infrared light from the side of the transparent film to the medicine package and the transmission illumination unit 14 does not irradiate infrared light
  • It is a step of acquiring a reflected image by imaging from the side of.
  • the third step is a step of generating an inspection image from the difference image between the reflection image and the transmission image.
  • the inspection image 37 when the inspection image 37 is generated using the difference between the reflected image 35 and the transmission image 36, the inspection image 37 including the tablet 31 and from which the printing unit 32 is removed can be obtained.
  • FIG. 7 is a flowchart showing a method of performing a tablet inspection using the tablet inspection apparatus 11 according to the first embodiment.
  • a band of drug package 21 to which a plurality of drug packages 21 are connected is prepared, and after this drug package 21 is placed on the mounting table 12, infrared light is irradiated from the reflective illumination unit 13, The medicine package 21 at the examination position is illuminated from above the mounting table 12 with infrared light. At this time, only the reflective illumination unit 13 emits light, and the transmissive illumination unit 14 does not emit light. At this time, the guide portion 20 fixes the medicine package 21 so as not to move. In a state where the reflected light unit 13 irradiates infrared light to the medicine package 21, the camera unit 15 captures the medicine package 21 and acquires a reflection image of the medicine package (step S01).
  • the binarization processing unit 18 binarizes the reflection image of the medicine package 21 acquired by the camera unit 15, and generates a binarized reflection image 35 (step S02).
  • the reflection illumination unit 13 stops the irradiation of the infrared light, and the transmission illumination unit 14 irradiates the infrared light to the medicine package 21 from below the mounting table 12. Shine with infrared light.
  • the guide portion 20 fixes the medicine package 21 so as not to move.
  • the camera unit 15 captures an image of the medicine package 21 (step S03).
  • the binarization processing unit 18 binarizes the transmission image of the medicine package 21 acquired by the camera unit 15, and generates a binarized transmission image 36 (step S04).
  • step S04 After the binarization processing is performed in step S04, the irradiation of the infrared light of the transmission illumination unit 14 is stopped. Then, the calculation unit 16 generates the inspection image 37 of the medicine package 21 from the difference between the reflection image 35 subjected to the binarization processing and the transmission image 36 subjected to the binarization processing (step S05).
  • the inspection image 37 is generated using the reflection image and the transmission image based on the infrared light, whereby the image of the medicine package 21 in which the printing portion 32 is removed and the tablet 31 is left is generated.
  • the tablet counting unit 19 counts the number of tablets 31 in the inspection image 37, and calculates this number as the number of tablets (step S06).
  • the tablet counting section 19 the total number of tablets to be enclosed in the medicine package 21 is recorded.
  • the total number of tablets to be enclosed in the medicine package 21 is calculated based on a prescription.
  • the tablet counting section 19 checks whether or not the total number of tablets based on the recorded prescription and the number of tablets 31 calculated in step S05 are the same (step S07).
  • the calculating unit 16 causes the display unit 17 to differ in the number of tablets enclosed in the medicine package 21. Display a message to that effect.
  • the calculation unit 16 causes the display unit 17 to calculate the number of tablets 31 enclosed in the medicine package 21 Display a message stating that the numbers are the same.
  • the tablet counting section 19 automatically checks whether the number of tablets of the medicine package 21 is the appropriate number of tablets 31 or not.
  • the arithmetic unit 16 causes the inspection image 37 to be displayed on the display unit 17, and the inspector looks at the inspection image 37 displayed on the display unit 17 to check the tablets 31 of the medicine package 21 with the eyes of the inspector. You may
  • the reflection image is binarized (step S02) before the transmission image 36 is acquired (step S03) before the transmission image 36 is acquired (step S03), the transmission image 36 is acquired ( After step S03), the reflection image may be binarized (step S02).
  • the printing performed on a white film has a higher absorptivity of infrared light than a tablet, so the lightness of the printed portion is low in both of the transmission image and the reflection image.
  • tablets have lower lightness in the transmitted image but higher lightness in the reflected image. Therefore, in the tablet inspection apparatus 11 according to the first embodiment as described above, an inspection image is generated from the difference image between the transmission image and the reflection image, thereby removing the printing portion and leaving only the tablet. I am generating an image. Therefore, the number of tablets sealed in the medicine package can be accurately detected from the test image.
  • the printing unit 32 absorbs light of a predetermined wavelength band other than infrared light
  • tablet inspection is performed even with the medicine package 21 having the printing unit 32 that absorbs light of a predetermined wavelength band other than infrared light. You can do it.
  • an inspection method using the tablet inspection apparatus 11 of the first embodiment can be obtained. It can be realized.
  • the tablet inspection apparatus 11 When the printing unit 32 absorbs light of a predetermined wavelength band other than infrared light, the tablet inspection apparatus 11 has the following configuration.
  • the transmitting illumination unit 14 is for a medicine package in which a tablet having a lower light absorption rate of a predetermined wavelength band than a printing portion is enclosed between two films having the printing portion on one film (white film). Then, light of a predetermined wavelength band is irradiated from the side of the white film.
  • the reflective illumination unit 13 irradiates the medicine package with light of a predetermined wavelength band from the side of the other film (transparent film) of the two films.
  • the camera unit 15 captures an image of the medicine package from the side of the transparent film in a state where the transmission illumination unit 14 emits body light of a predetermined wavelength band and the reflection illumination unit 13 does not emit light of a predetermined wavelength band. By doing this, a transmission image is obtained. Moreover, the camera part 15 images a medicine package from the transparent film side in the state which the reflective illumination part 13 irradiates the light of a predetermined wavelength range, and the transmissive illumination part 14 does not irradiate the light of a predetermined wavelength range The reflection image is acquired by doing.
  • the calculation unit 16 generates an inspection image from the difference image between the reflection image and the transmission image. Then, the number of tablets is checked based on the inspection image.
  • the tablet 31 reflects light in a predetermined wavelength range, and the brightness of the tablet 31 captured in the reflected image is increased. In addition, since the tablet 31 does not transmit light of a predetermined wavelength range, the brightness of the tablet 31 captured in the transmission image is lowered. On the other hand, the lightness of the printing unit 32 is low in both the reflection image and the transmission image.
  • the tablet inspection apparatus 11 uses the difference between the reflected image with low lightness of the print unit 32 and the transmitted image with low lightness of the print unit 32 and the tablet 31 to remove the test image 37 including the tablet 31 and from which the print unit 32 is removed.
  • the above-mentioned predetermined wavelength band is a band having a width of 100 nm to 150 nm.
  • the tablet inspection method performed using the tablet inspection apparatus 11 includes a first step of acquiring a transmission image, a second step of acquiring a reflection image, and a third step of generating an inspection image.
  • a medicine pack made of a transparent film having a printing portion and a white film is used, and the transparent illumination portion 14 is sealed with a tablet having a lower absorption of light in a predetermined wavelength band than the printing portion.
  • the medicine pack is irradiated with light of a predetermined wavelength band from the side of the white film, and the medicine pack is not irradiated with light of the predetermined wavelength band from the side of the transparent film.
  • the transmission illumination unit 14 does not irradiate light of the predetermined wavelength band. It is a step of acquiring a reflected image by imaging the medicine package from the side of the transparent film.
  • the third step is a step of generating an inspection image showing the area of the tablet from the difference image between the reflection image and the transmission image.
  • the inspection image 37 when the inspection image 37 is generated using the difference between the reflection image and the transmission image, the inspection image 37 including the tablet 31 and from which the printing unit 32 is removed can be obtained.
  • a tablet inspection apparatus according to a second embodiment of the present invention will be described.
  • the printed portion of the medicine package has a higher infrared light absorption rate than all the tablets enclosed in the medicine package. That is, in Embodiment 1 described above, it is assumed that all the tablets have a lower infrared light absorption rate than the printed portion.
  • black tablets for example, as tablets having a higher infrared light absorption rate than the printed portion.
  • highly absorbent tablets As a representative example of the high absorption tablet, there is SURKANETTEN (registered trademark) tablet.
  • a superabsorbent tablet is an example of a second tablet.
  • the high absorption tablet has a high absorptivity of infrared light, so it appears black in both the transmission image and the reflection image. For this reason, in the inspection image obtained from the difference between the transmission image and the reflection image, the high absorption tablet is removed as in the printing unit. Therefore, when a highly absorbent tablet is contained in the medicine package, the tablets in the medicine package can not be accurately counted, and an accurate tablet inspection may not be possible. So, in Embodiment 2, the process which extracts a high absorption tablet is added.
  • the inspection image is created from the difference between the binarized transmission image and the reflection image.
  • the binarization may not be stable at the edge of the high absorption tablet.
  • the edge of the superabsorbent tablet may not be determined as a region of the superabsorbent tablet.
  • the tablet area of the superabsorbent tablet may not be accurately indicated in the test image. Therefore, in the second embodiment, the difference image between the transmission image and the reflection image not subjected to the binarization processing is binarized, and the tablet area of the superabsorbent tablet is specified from the binarized reflection image. And generates an inspection image.
  • the schematic configuration of the hardware of the tablet inspection apparatus according to the second embodiment is the same as the schematic configuration of the hardware of the tablet inspection apparatus 11 according to the first embodiment shown in FIG.
  • the image to be binarized by the binarization processing unit 18 and the process executed by the calculation unit 16 are different from those in the first embodiment described above. Therefore, the description other than the binarization processing unit 18 is omitted.
  • the image to be binarized by the binarization processing unit 18 is a difference image between the transmission image and the reflection image which has not been subjected to the binarization processing as described above.
  • FIG. 8 is a plan view of a medicine package 21 according to the second embodiment.
  • This medicine package 21 is the same medicine package 21 as the medicine package 21 according to the first embodiment shown in FIG. 3, and in addition to the medicine package 21 shown in FIG.
  • the medicine package 21 is
  • the reflected image which has not been subjected to the binarization processing and captured by the camera unit 15 is as shown in FIG.
  • FIG. 9 is a flowchart showing a method of performing tablet inspection using the tablet inspection apparatus 11 according to the second embodiment.
  • the same steps as those in the flowchart shown in FIG. 7 have the same step numbers, and the description will be omitted as appropriate.
  • the camera unit 15 performs the same processing as steps S01 and S03 in FIG. 7 to obtain a reflection image and a transmission image (steps S01 and S03).
  • the reflection image is an image as shown in FIG. 8
  • the transmission image is an image as shown in FIG.
  • the high absorption tablet 33 appears black in any of the images.
  • the calculation unit 16 generates a difference image between the reflection image acquired in step S01 and the transmission image acquired in step S03 (step S11). That is, the computing unit 16 subtracts the pixel value of the transmission image from the pixel value of the reflection image for each pixel, and generates the difference image by setting the absolute value of the subtraction result as the pixel value of the pixel.
  • FIG. 11 is a diagram illustrating an example of an image obtained by binarizing a difference image.
  • the tablet 31 appears as a black pixel, but the print portion 32 and the superabsorbent tablet 33 are removed. This is because the printed portion 32 and the high absorption tablet 33 have high infrared light absorption rates and low lightness in both the reflection image and the transmission image. That is, in the difference image 47, the pixel values of the printing unit 32 and the high absorption tablet 33 become small, so that the printing unit 32 and the high absorption tablet 33 are removed by binarizing the difference image.
  • the binarization processing unit 18 binarizes the reflection image acquired in step S01 (step S13).
  • the binarized reflection image is used to separate the printing unit 32 and the superabsorbent tablet 33 from each other.
  • the high absorption tablet 33 has a higher infrared light absorption rate than the printing unit 32. That is, in the reflection image, the lightness of the high absorption tablet 33 is lower than the lightness of the printing unit 32. For this reason, the value of the lightness between the lightness of the high absorption tablet 33 and the lightness of the printing unit 32 is set as the threshold value.
  • the binarization processing unit 18 binarizes the reflected image by setting a pixel whose brightness is lower than the threshold as a black pixel and setting a pixel whose brightness is equal to or more than the threshold as a white pixel.
  • FIG. 12 shows an example of the binarized reflection image 45. As shown in FIG. The reflection image 45 is an image showing the area of the high absorption tablet 33.
  • the calculation unit 16 specifies the area indicated by the black pixels of the reflection image 45 as the area of the superabsorbent tablet 33 (step S14).
  • the calculation unit 16 generates an inspection image based on the difference image after binarization in step S12 and the region of the superabsorbent tablet 33 specified in step S14 (step S15). That is, the calculation unit 16 generates an inspection image by replacing the pixel at the same position as the area of the high absorption tablet 33 shown in FIG. 12 among the pixels of the difference image 47 shown in FIG. 11 with a black pixel.
  • FIG. 13 is a diagram showing an example of the generated inspection image. The printed portion 32 is removed from the inspection image 57, and the tablet 31 and the superabsorbent tablet 33 appear in the inspection image 57.
  • the tablet counting unit 19 counts the total number of the tablets 31 and the high absorption tablet 33 in the inspection image 57, and calculates this number as the number of tablets (step S06).
  • the tablet counting section 19 records the total number of tablets to be enclosed in the medicine package 21 based on the prescription. Then, the tablet counting unit 19 checks whether the total number of tablets based on the recorded prescription and the number of tablets calculated in step S05 are the same (step S07).
  • the medicine package 21 includes the superabsorbent tablet 33 having a lower infrared light absorption rate than the print portion 32. Even in this case, the number of tablets can be accurately counted without being affected by the printing unit 32.
  • the maximum value and the minimum value of the lightness on the image are the maximum value and the minimum value of the lightness in the ideal state.
  • a process of correcting to the value of may be performed.
  • the generated difference image can be generated.
  • step S11 for at least one image of the transmission image and the reflection image, the values of the average and the variance of the lightness on the image are changed to the values of the average and the variance of the lightness in the ideal state A correction step to correct may be performed.
  • the generated difference image can be generated.
  • Embodiment 2 demonstrated the process which extracts a highly absorptive tablet, this process is applicable also in Embodiment 1.
  • FIG. 1 shows the process which extracts a highly absorptive tablet, this process is applicable also in Embodiment 1.
  • the tablet inspection apparatus 11 according to the first and second embodiments of the present invention has been described above, but the present invention is not limited to these embodiments.
  • the arithmetic unit 16, the binarization processing unit 18, and the tablet counting unit 19 are specifically from a microprocessor, ROM, RAM, hard disk drive, display unit, keyboard, mouse, etc. It may be configured as a computer system configured.
  • a computer program is stored in the RAM or the hard disk drive.
  • the tablet inspection apparatus 11 achieves its function by the microprocessor operating according to the computer program.
  • the computer program is configured by combining a plurality of instruction codes indicating instructions to the computer in order to achieve a predetermined function.
  • a part or all of the operation unit 16, the binarization processing unit 18 and the tablet counting unit 19 are constituted by one system LSI (Large Scale Integration: large scale integrated circuit) You may
  • the system LSI is a multi-function LSI manufactured by integrating a plurality of components on one chip, and more specifically, is a computer system including a microprocessor, a ROM, a RAM, and the like. A computer program is stored in the RAM.
  • the system LSI achieves its functions by the microprocessor operating according to the computer program.
  • a part or all of the operation unit 16, the binarization processing unit 18 and the tablet counting unit 19 are constituted by an IC card or a single module detachable to the tablet inspection apparatus 11.
  • the IC card or module is a computer system including a microprocessor, a ROM, a RAM, and the like.
  • the IC card or module may include the above-described ultra-multifunctional LSI.
  • the IC card or module achieves its functions by the microprocessor operating according to the computer program. This IC card or this module may be tamper resistant.
  • the present invention may be the method shown above. Further, the present invention may be a computer program that realizes these methods by a computer, or may be a digital signal composed of the computer program.
  • the present invention is a non-transitory recording medium that can read the computer program or the digital signal from a computer, such as a flexible disk, a hard disk, a CD-ROM, an MO, a DVD, a DVD-ROM, a DVD-RAM, a BD It may be recorded on a Blu-ray Disc (registered trademark), a semiconductor memory or the like.
  • the digital signal may be recorded on the non-temporary recording medium.
  • the computer program or the digital signal may be transmitted via a telecommunication line, a wireless or wired communication line, a network represented by the Internet, data broadcasting, and the like.
  • the present invention may be a computer system comprising a microprocessor and a memory, wherein the memory stores the computer program, and the microprocessor operates according to the computer program.
  • another computer is independent by recording and transferring the program or the digital signal on the non-temporary recording medium, or transferring the program or the digital signal via the network or the like. It may be implemented by a system.
  • the tablet inspection apparatus of the present invention and the tablet inspection method using the same can generate an inspection image including a tablet and having the printed portion removed. Therefore, a tablet inspection device that automatically performs an audit by automatically counting the tablets of the medicine package used in a pharmacy, a hospital facility, etc. that must perform a dispensing operation, or a tablet of the medicine package is displayed It is useful as a tablet inspection device etc. which assists a visual inspection by an auditor.
  • tablet inspection apparatus mounting table 13 reflection illumination unit 14 transmission illumination unit 15 camera unit 16 calculation unit 17 display unit 18 binarization processing unit 19 tablet count unit 20 guide unit 21 medicine package 22 transparent plate 31 tablet 32 printing unit 33 High absorption tablet 35, 45 reflection image 36 transmission image 37, 57 inspection image 47 difference image

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Medical Preparation Storing Or Oral Administration Devices (AREA)

Abstract

 錠剤検査装置(11)は、一方のフィルムに印字部を有する2枚のフィルム間に、印字部よりも赤外光の吸収率が低い錠剤が封入された薬包体に対して、一方のフィルムの側から赤外光を照射する透過照明部(14)と、薬包体に対して、2枚のフィルムのうちの他方のフィルムの側から赤外光を照射する反射照明部(13)と、透過照明部(14)が赤外光を照射し、かつ反射照明部(13)が赤外光を照射しない状態において、薬包体を他方のフィルムの側から撮像することにより透過画像を取得し、反射照明部(13)が赤外光を照射し、かつ透過照明部(14)が赤外光を照射しない状態において、薬包体を他方のフィルムの側から撮像することにより反射画像を取得するカメラ部(15)と、反射画像と透過画像との差分画像から、錠剤の領域を示す検査画像を生成する演算部(16)とを備える。

Description

錠剤検査装置およびこれを用いた錠剤検査方法
 本発明は、薬包体に封入された錠剤の監査を支援する錠剤検査装置およびこれを用いた錠剤検査方法に関する。
 病院施設および薬局等では、処方箋に対して正確な調剤作業を行なう必要がある。そのために、病院施設および薬局等では、調剤作業の後に調剤の監査が行われている。この調剤作業の調剤対象の一例として、錠剤がある。錠剤の監査は、錠剤を区分封入した薬包体に対して、錠剤分包機が薬包体内の錠剤の個数を検出することで、行われる。このように錠剤監査を行う場合、文字および模様および図柄などの薬包体の印字部と錠剤との判別が難しい。このため、正確に錠剤の個数を検出できない場合がある。そこで、印字部を除去して錠剤を残した薬包体の検査画像を生成し、この検査画像から薬包体の錠剤監査を行う錠剤検査装置が提案されている(例えば、特許文献1参照。)。
 図1は、従来の錠剤検査装置1の斜視図である。
 錠剤検査装置1は、カメラ3で撮影された薬包体2の透過画像に対し、二値化処理および収縮処理および膨張処理をこの順で行うことにより、透過画像のノイズ除去を行う。これにより、錠剤検査装置1は、印字部を除去した薬包体の検査画像を生成する。
 錠剤検査装置1は、検査位置に位置する薬包体2を撮影するカメラ3と、カメラ3の下方位置に配置された照明器6と、カメラ3で撮影された濃淡のある透過画像を画像処理する画像処理部4と、画像処理部4に接続されたディスプレイ5とを有する。
 画像処理部4は、カメラ3で撮影された透過画像を取り込んだ後、透過画像を所定の閾値で二値化し、二値化画像を算出する。続いて、画像処理部4は、二値化画像に対して収縮および膨張からなるノイズ除去処理を施して、薬包体2に施された印字部の除去を行う。
 そして、錠剤検査装置1は、印字部が除去された検査画像から錠剤の個数を検出すると共に、この錠剤の個数が薬包体に封入されるべき適切な個数であるか否かを判定する。このようにして、錠剤検査装置1は、薬包体の錠剤監査を自動的に行う。
 また、スリット光の反射照明を用いて、錠剤を抽出する錠剤監査装置も提案されている(例えば、特許文献2参照。)。
特開平9-231342号公報 特開平7-204253号公報
 しかしながら、従来の錠剤検査装置1は、光の吸収率が高いと共に線が太い印字部を、検査画像から除去することができない。透過画像に写る印字部は、光の吸収率が高く、錠剤は光を透過させない。そのため、印字部と錠剤の透過画像上の明度は共に低くなり(画素値は共に小さくなり)、その透過画像に対して二値化処理が行われると、印字部は黒い画素となる。そのため、従来の錠剤検査装置1では、印字部が、錠剤と同様に黒い画素として検査画像に残ってしまう。また、印字部が模様または図柄から構成されている場合には、印字部の線が太くなる。このため、透過画像を二値化した二値化画像を収縮および膨張しても、その印字部を除去することはできない。結果として、印字部が模様または図柄から構成されている場合、印字部が検査画像に残ってしまう。
 このように、透過画像を二値化した後、収縮および膨張により二値化画像からノイズ除去を行っても、印字部の光の吸収率が高くかつ印字部の線が太い場合には、検査画像の一部に印字部が残ってしまう。このため、従来の錠剤検査装置では、薬包体に封入された錠剤の個数を正確に検出できない可能性があるという課題を有する。
 本発明は、上記従来の課題を解決するためになされたものであり、薬包体に封入された錠剤の個数を正確に検出することができる錠剤検査装置および錠剤検査方法を提供することを目的とする。
 上記目的を達成するために、本発明のある局面に係る錠剤検査装置は、一方のフィルムに印字部を有する2枚のフィルム間に、前記印字部よりも赤外光の吸収率が低い錠剤が少なくとも封入された薬包体を載置する載置部と、赤外光を照射する透過照明部と、赤外光を照射する反射照明部と、前記透過照明部が前記薬包体に前記一方のフィルムの側から赤外光を照射した状態において、前記薬包体を前記2枚のフィルムのうちの他方のフィルムの側から撮像することにより透過画像を取得すると共に、前記反射照明部が前記薬包体に前記他方のフィルムの側から赤外光を照射した状態において、前記薬包体を前記他方のフィルムの側から撮像することにより反射画像を取得するカメラ部と、前記反射画像と前記透過画像との差分画像から検査画像を生成し、前記検査画像に基づいて前記錠剤を検査する演算部とを備える。
 本発明の他の局面に係る錠剤検査方法は、一方のフィルムに印字部を有する2枚のフィルム間に、前記印字部よりも赤外光の吸収率が低い錠剤が少なくとも封入された薬包体を準備し、透過照明部が前記薬包体に前記一方のフィルムの側から赤外光を照射した状態において、前記薬包体を前記2枚のフィルムのうちの他方のフィルムの側から撮像することにより透過画像を取得し、反射照明部が前記薬包体に前記他方のフィルムの側から赤外光を照射した状態において、前記薬包体を前記他方のフィルムの側から撮像することにより反射画像を取得し、前記反射画像と前記透過画像との差分画像から検査画像を生成し、前記検査画像に基づいて前記錠剤を検査する。
 本発明によると、薬包体に封入された錠剤の個数を正確に検出することができる錠剤検査装置およびこれを用いた錠剤検査方法を提供することができる。
図1は、従来の錠剤検査装置の斜視図である。 図2は、本発明の実施の形態1に係る錠剤検査装置のハードウェアの概略構成を示すブロック図である。 図3は、本発明の実施の形態1に係る薬包体の平面図である。 図4は、本発明の実施の形態1に係るカメラ部で撮影された薬包体の反射画像を二値化した画像の一例を示す図である。 図5は、本発明の実施の形態1に係るカメラ部で撮影された薬包体の透過画像を二値化した画像の一例を示す図である。 図6は、本発明の実施の形態1における薬包体の検査画像の一例を示す図である。 図7は、本発明の実施の形態1における錠剤検査装置を用いて錠剤検査を行う方法を示すフローチャートである。 図8は、本発明の実施の形態2に係るカメラ部で撮影された薬包体の反射画像の一例を示す図である。 図9は、本発明の実施の形態2における錠剤検査装置を用いて錠剤検査を行う方法を示すフローチャートである。 図10は、本発明の実施の形態2に係るカメラ部で撮影された薬包体の透過画像の一例を示す図である。 図11は、本発明の実施の形態2に係る差分画像を二値化した画像の一例を示す図である。 図12は、本発明の実施の形態2に係る高吸収錠剤領域を示す画像の一例を示す図である。 図13は、本発明の実施の形態2に係る検査画像を示す画像の一例を示す図である。
 以下、本発明の実施の形態について、図面を用いて詳細に説明する。なお、以下で説明する実施の形態は、いずれも本発明の好ましい一具体例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、ステップ、ステップの順序などは、一例であり、本発明を限定する主旨ではない。
 なお、同じ構成要素には同じ符号を付しており、説明を省略する場合もある。また、図面は理解しやすくするために、それぞれの構成要素を主体に模式的に示している。
 (実施の形態1)
 図2は、本発明の実施の形態1に係る錠剤検査装置11のハードウェアの概略構成を示すブロック図である。錠剤検査装置11は、印字部を有する薬包体21を撮影した画像から印字部を除去して、錠剤を含む検査画像を生成する装置である。さらに、この錠剤検査装置11は、検査画像から錠剤の個数を計数し、薬包体21に封入された錠剤が適切な個数であるか否かの錠剤監査を、自動的に行う装置でもある。なお、印字部とは、文字のみならず図または記号等が印刷された部分も含むものとする。
 図2に示すように、本実施の形態1に係る錠剤検査装置11は、薬包体21を載置する載置台12と、載置台12を照らす反射照明部13と、載置台12を挟んで反射照明部13の反対側から載置台12に光を照射する透過照明部14と、カメラ部15と、演算部16とを備える。載置台12は、載置部の一例である。
 また、演算部16での演算結果を表示するために、表示部17を設けても良い。
 薬包体21とは、透明フィルム(他方のフィルム)と白色フィルム(一方のフィルム)との間に、錠剤を封入したものである。ここでの白色フィルムは、赤外光に対する透過率が高いフィルムであり、印字可能な白色の表示面がコーティングされたものである。薬包体21は、白色フィルムに、赤外光の吸収率が高いインクで印刷された印字部を有する。具体的には、印字部は、薬包体21に封入された錠剤よりも、赤外光の吸収率が高いものとする。赤外光の吸収率が高いとは、赤外光の波長帯において光の吸収率が高いと共に、赤外光の透過率及び反射率の低いことを意味する。このような赤外光に対して高い吸収率を有するインクとしては、カーボンブラック等の顔料を主原料としたインクが挙げられる。カーボンブラックは、赤外光だけでなく、可視光の波長帯においても吸収率が高い。また、カーボンブラックは、赤外光の波長帯において、錠剤との吸収率の差が大きくなる。このようなインクを印字部に用いることにより、印字部の赤外光の吸収率を、薬包体21に封入された錠剤および白色フィルムの赤外光の吸収率よりも、高くすることができる。また、印字部は、錠剤を薬包体21に封入する段階で印刷されることが多い。印字部の一例としては、例えば、患者名、錠剤の服用時間、薬包番号およびバーコード等が挙げられる。なお、ここでは、一方のフィルムを白色フィルムで説明したが、一方のフィルムは、有色フィルムでもよい。
 載置台12は、印字部を有する薬包体21を載置するための台である。載置台12は、端部に設けたガイド部20と、カメラ部15および透過照明部14の間に位置する透明板22とを有する。
 ガイド部20は、内部に駆動ローラとガイドローラ(図示せず)を有する。そして、駆動ローラとガイドローラの間に薬包体21の端部を挟んだ状態で駆動ローラを回転させることで、薬包体21をガイド部20に沿って移動させる。
 また、載置台12の透明板22は、下方にある透過照明部14からの照明光(赤外光)を透過させる。透明板22の位置は、カメラ部15で撮影する薬包体21が載置される位置でもある。
 このような構成により、透過照明部14は、薬包体21に対して、白色フィルムの側から赤外光を照射する。また、反射照明部13は、薬包体21に対して、透明フィルムの側から赤外光を照射する。
 カメラ部15は、反射照明部13によって光が照射された薬包体21を撮影して反射画像を取得するカメラである。また、カメラ部15は、透過照明部14によって光が照射された薬包体21を撮影して透過画像を取得するカメラである。なお、反射照明部13が光を照射しているとき、透過照明部14は、光を照射しない。また、透過照明部14が光を照射しているとき、反射照明部13は、光を照射しない。反射照明部13の照明光(赤外光)と透過照明部14の照明光(赤外光)の切り替えは、カメラ部15が有する制御部15aによって行われる。
 画像撮影時、薬包体21の透明フィルムは、カメラ部15側に位置する。つまり、薬包体21の白色フィルムは、載置台12の透明板22側(透過照明部14側)に位置する。また、カメラ部15の撮影レンズは、筒状の反射照明部13の上方にある。また、カメラ部15は、載置台12を挟んで透過照明部14に対向する位置にある。
 演算部16は、反射画像と透過画像との差分から、検査画像を生成する。
 反射照明部13の照射光および透過照明部14の照射光は、赤外光である。ここでの赤外光は、700nmの以上の波長の波長帯の光である。ただし、通常のカメラでの赤外光の撮像感度は、近赤外光の範囲のみである。このため、実施の形態1の反射照明部13および透過照明部14の赤外光は、波長が750nm~950nmの波長帯の赤外光を想定している。より特定的には、反射照明部13および透過照明部14の赤外光は、850nmの波長の赤外光であっても良い。
 なお、照射光として赤外光を利用する理由は、一般的に薬包体21の印字部のインクが、赤外光の吸収率が高いカーボンブラックを使用していることが多いためである。照射光として赤外光を利用する更なる理由は、一般的な錠剤が、赤外光を反射するためである。一般的な錠剤の中には、可視光を反射しないものも多い。このため、一般的な錠剤に対しても錠剤検査装置11を適用できるように、本実施の形態1では赤外光を利用する。
 この構成では、錠剤が赤外光を反射するため、反射画像に写る錠剤の明度は高くなる(画素値は大きくなる)。また、この構成では、錠剤が赤外光を透過させないため、透過画像に写る錠剤の明度は、低くなる(画素値は小さくなる)。一方、印字部のインクが赤外光を吸収するため、反射画像と透過画像の印字部の明度は低くなる(画素値は小さくなる)。本実施の形態1の錠剤検査装置11は、印字部の明度が低い反射画像と印字部および錠剤の明度が低い透過画像との差分を利用して、錠剤を含むと共に印字部を除去した検査画像を、生成することができる。なお、本明細書中では、明度と画素値とは特に区別せず、明度は画素値を意味する場合もある。
 錠剤検査装置11は、さらに、カメラ部15で取得した画像を二値化する二値化処理部18を備える。二値化処理部18は、画像に含まれる画素ごとに、明度と閾値とを比較する。二値化処理部18は、明度が閾値以上の画素を白い画素(例えば、画素値255の画素)とし、明度が閾値未満の画素を黒い画素(例えば、画素値0の画素)とすることで、二値化する。演算部16は、所望の領域を残し、その他の領域を除去して、検査画像を生成する。ここでの所望の領域とは、二値化処理部18で二値化された透過画像の明度が低い領域であって、二値化された反射画像の明度が高い領域である。この検査画像では、印字部が除去され、錠剤のみが映っている。印字部が除去される理由については、後述する。
 錠剤検査装置11は、さらに、錠剤カウント部19を備える。錠剤カウント部19は、検査画像における錠剤の数を計数する。
 錠剤検査装置11は、この構成により、検査画像に含まれる錠剤の個数を算出し、薬包体21に適切な個数の錠剤が入っているか否かを機械的に検査することができる。
 ここで、錠剤検査装置11を用いて透過画像と反射画像から検査画像を生成することで、印字部が除去される理由について、説明する。
 図3は、本実施の形態1に係る薬包体21の平面図である。
 この薬包体21は、図3に示すように、複数の錠剤31と白色フィルムに印刷された印字部32とが、薬包体21の透明フィルム側から見ることができるものである。錠剤検査装置11は、このような薬包体21をカメラ部15で撮影して透過画像および反射画像を取得すると共に、取得した透過画像および反射画像を二値化処理部18で二値化する。なお、図3は、カメラ部15で撮影された二値化する前の反射画像でもある。
 図4は、本実施の形態1に係る反射画像35の一例を示す図である。反射画像35は、カメラ部15で撮影された薬包体21の反射画像を、二値化した画像である。図5は、本発明の実施の形態1に係る透過画像36の一例を示す図である。透過画像36は、カメラ部15で撮影された薬包体21の透過画像を、二値化した画像である。
 図4に示すように、二値化された反射画像35は、錠剤31の画像が消えて、印字部32の画像のみが存在するように見える。なぜならば、印字部32が赤外光の吸収率が高いインクを印刷したものであり、赤外光を吸収して反射画像35の中の印字部32の明度が低くなるためである。さらに、反射画像35は所定の閾値で二値化されるため、明度の低い印字部32の画像は黒くなる。一方、錠剤31は、その表面で反射照明部13の赤外光を反射するため、反射画像35の中の錠剤31の明度は高くなる。さらに、反射画像35は所定の閾値で二値化されるため、明度の高い錠剤31の画像は白くなる。
 図5に示すように、二値化された薬包体21の透過画像36は、印字部32および錠剤31の画像が存在するように見える。なぜならば、印字部32は薬包体21に照射された透過照明部14の赤外光の吸収率が高く、透過画像36の中の印字部32の明度が低くなるためである。また、錠剤31は、透過照明部14の赤外光を通さないために、透過画像36の中の錠剤31の明度も低くなる。さらに、透過画像36は所定の閾値で二値化されるため、透過画像36の中で明度の低い印字部32および錠剤31の画像は黒くなる。
 なお、白色フィルムは透過率が高いために、反射画像35および透過画像36のいずれでも白色フィルムの明度は高い。これらの画像を二値化すると、白色フィルムを示す画像は白くなる。よって、生成された検査画像から白色フィルムの画像は除去される。
 また、印字部32の他に透過率の高いインクを用いた高透過率印字部が薬包体21に印刷されている場合、高透過率印字部は、反射画像35および透過画像36のいずれでも明度は高い。これらの画像を二値化すると、高透過率印字部を示す画像は白くなる。よって、二値化された検査画像から高透過率印字部が除去される。カラー印字の場合は、特定の色の波長のみを反射する材料で印字されることが多いため、カラーの印字部における赤外光の透過率は高くなることが多い。なお、高透過率印字部とは、第二印字部の一例である。
 ここで、印字部32が、赤外光の吸収率または透過率が高くないものである場合について考える。この場合、印字部32の赤外光の透過率が高くないため、透過画像36では印字部32の明度が低くなる。また、印字部32の赤外光の吸収率が高くないため、反射画像35では印字部32の明度が高くなる。そのため、透過画像36および反射画像35のどちらにおいても、印字部32の明度は、錠剤31の明度と同じとなる。この場合、印字部32のみを除去することができない。
 しかし、本実施の形態では、上述したように、印字部32において赤外光の吸収率が高くなるようにしている。このため、二値化された反射画像35において、印字部32を示す領域の画像は黒く、錠剤31を示す領域の画像は白くなる。一方、二値化された透過画像36において、印字部32および錠剤31を示す領域の画像が黒くなる。そのため、透過画像36と反射画像35との差分を利用して印字部32を示す領域を除去することで、錠剤31を示す領域を残した検査画像を、生成することができる。このとき、二値化された反射画像35と透過画像36には黒い画素と白い画素しか残らない。演算部16は、反射画像35と透過画像36とから検査画像を生成する際、透過画像36では黒く反射画像35では白い画素についてはその画素を黒い画素とし、それ以外の画素については白い画素とすることで、検査画像を生成する。
 図6は、本実施の形態1における薬包体21の検査画像37を示す図である。図6に示すように、薬包体21の検査画像37では、錠剤31の画像は存在するが印字部32の画像は除去されている。
 演算部16は、具体的には、以下の処理を行う。透過画像36および反射画像35の両方において黒い画素は、赤外光を吸収する印字部32を意味する。このため、演算部16は、透過画像36および反射画像35の両方において黒い画素を、検査画像37において白い画素とする。また、透過画像36において黒く反射画像35において白い画素は、赤外光を透過させず、かつ赤外光を反射する錠剤31を意味する。このため、演算部16は、透過画像36において黒く、反射画像35において白い画素を、検査画像37において黒い画素とする。さらに、透過画像36において白い画素は、赤外光の透過が起こっていることから、印字部32でも錠剤31でもない箇所を意味する。そのため、演算部16は、透過画像36において白い画素を、反射画像35の画素が白い場合であっても黒い場合であっても、検査画像37において白い画素とする。
 このような処理により、検査画像37において黒い画素は、透過画像36および反射画像35の画素の組み合わせが錠剤31を意味する場合のみになる。このため、透過画像36のみに存在する錠剤31の画像は黒い画素として検査画像37に残り、反射画像35と透過画像36の両方に存在する印字部32の画像は検査画像37から除去される。また、このような処理により、透過照明部14および反射照明部13の照明レベルを厳密に調整しない場合でも、二値化処理が施された反射画像35および透過画像36に残る印字部32は黒い画素となる。
 以上の説明では、画像上で閾値以上の画素値を有する画素を二値化した場合を白い画素とし、画像上で閾値未満の画素値を有する画素を二値化した場合を黒い画素として説明した。だが、この白い画素と黒い画素との関係は、逆の場合でもよい。この場合、閾値以上の画素値を有する画素(明度の高い画素)は黒い画素となり、閾値未満の画素値を有する画素(明度の低い画素)は白い画素となる。また、この場合、演算部16は、錠剤31を意味する画素の組み合わせの場合(透過画像36において白い画素で、反射画像35において黒い画素の場合)のみ、検査画像において、その画素を黒い画素とする。また、この場合、演算部16は、それ以外の組み合わせの画素については、検査画像において白い画素とする。このように、二値化処理における白い画素と黒い画素との関係が逆の場合でも、錠剤31のみが写る検査画像を算出することができる。
 なお、錠剤31を意味する画素の組み合わせにおいて、検査画像37の当該画素を黒い画素ではなく、白い画素としてもよい。このように、二値化の際に閾値以上の画素値を有する画素を白い画素とする場合、錠剤31を意味する組み合わせは、透過画像36の画素が黒く、反射画像35の画素が白い組み合わせである。そのため、演算部16は、この組み合わせの場合にのみ、検査画像37の当該画素を白い画素とする。それ以外の組み合わせの場合、演算部16は、検査画像37の当該画素を黒い画素とする。このように、二値化処理の際に閾値以上の画素値を有する画素を白い画素とする場合、これにより錠剤を白い画素として残し、それ以外を黒い画素とすることで、印字部に影響されない検査画像37を算出することができる。
 なお、錠剤31を意味する画素の組み合わせの場合、黒い画素の画素値を検査画像37に残すのではなく、反射画像35または透過画像36の画素値を検査画像37に残してもよい。二値化の際に閾値以上の画素値を有する画素を白い画素として残す場合、錠剤31を意味する組み合わせは、透過画像36の画素が黒く、反射画像35の画素が白い場合である。このため、この場合のみ、検査画像37に反射画像35または透過画像36の画素値を残す。それ以外の組み合わせの場合、検査画像37に反射画像35または透過画像36の画素値の最小値または最大値を残す。これにより錠剤31は反射画像35または透過画像36の画素値で表し、それ以外を反射画像35または透過画像36の画素値の最小値または最大値で表すことができる。よって、印字部32に影響されず、人の目でも確認が可能な検査画像37を算出することができる。また、このような処理により、透過照明部14および反射照明部13の照明レベルを厳密に調整しない場合でも、二値化処理が施された反射画像35および透過画像36に残る印字部32は黒い画素となる。
 この構成により、図4および図5にそれぞれ示すような透過画像36および反射画像35を用いて明度が低い領域(閾値未満の画素値の画素を有する領域)を除去して、図6に示すような検査画像37を生成する際、印字部が除去されると共に錠剤を含んだ検査画像37を生成することができる。さらに、本実施の形態の構成によれば、二値化前の反射画像における印字部を示す領域の明度と二値化前の透過画像における印字部を示す領域の明度レベルが異なっていても、二値化によりどちらの領域も同じ明度レベルとすることができる。このため、透過照明部14および反射照明部13の照明レベルを厳密に調整しなくとも、印字部が除去されると共に錠剤を含んだ検査画像37を生成することができる。
 そして、これらの処理を行った後、錠剤カウント部19が、検査画像37に含まれる錠剤31の個数を算出し、薬包体21に適切な錠剤が入っているか否かを、検査する。このとき、検査画像37では、印字部32が除去されている。このため、錠剤カウント部19は、印字部32を錠剤31と間違えて計数することがなく、錠剤検査装置11は正確な錠剤監査をすることができる。
 このように、本実施の形態1の錠剤検査装置11は、赤外光に基づく反射画像35および透過画像36を用いて検査画像37を生成することで、錠剤31を残した状態で印字部32を除去した検査画像37を生成する。また、錠剤検査装置11は、この検査画像37を用いて正確な錠剤監査をすることができる。
 さらに正確な検査画像37を生成するためには、図2に示すように、反射照明部13の反射鏡の形状をドーム型として赤外光を反射することが望ましい。なお、反射照明部13の反射鏡の形状は、ドーム型に代えて、例えば、半真球形状、つまり真球を半分に割った形状としても良い。
 このドーム型の反射鏡を用いた構成により、反射照明部13は、錠剤31に対して複数の方向から光を照射することができる。そのため、このドーム型の反射鏡を用いた構成により、薬包体21のフィルム(包装シート)による鏡面反射を抑えることができる。よって、さらに正確に検査画像37から印字部32の除去を行うことができる。また、このドーム型の反射鏡を用いた構成により、光が複数方向から照射されるため、隣り合う錠剤31で影が発生する可能性を軽減することができる。よって、このドーム型の反射鏡を用いた構成により、さらに正確に検査画像37に錠剤31の形状を写すことができる。なぜならば、鉛直方向の光が上方から薬包体21に照射されると、薬包体21のフィルム(包装シート)が鏡面反射を起こし易いためである。また、鏡面反射を避けるため側方から光を照射すると、隣り合う錠剤31の影が錠剤31に重なり、錠剤31が光を反射しない場合が生じてしまうためでもある。
 透過照明部14の照射光を通す載置台12の透明板22は、ルーバー構造を有する。透明板22は、薬包体21を載置するための検査位置であって、載置台12の透明な部分である。
 ルーバー構造を有する透明板22は、光透過板と遮光板とを積層した積層板である。積層方向に対して直角の方向から積層板へ光を通すと、光は平行光となる。
 この構成により、透過照明部14の光は平行光となって薬包体21を照らす。そのため、錠剤31の輪郭がぼやけてしまうことを防ぎ、錠剤31の形状がより正確な透過画像36を生成することができる。なぜならば、透過照明部14の光が拡散する照射光であると、錠剤31の外周が明るくなり輪郭がぼやけてしまうためである。そのような場合、透過画像36には正確な錠剤31の画像が含まれないため、検査画像37の錠剤31の形状も不正確なものになる。
 なお、前述のように反射画像35と透過画像36を二値化した後で差分画像を生成せずに、差分画像を生成した後で二値化しても良い。つまり、反射画像35と透過画像36の差分画像を生成した後、差分画像から検査画像37を生成するために、錠剤検査装置11は、演算部16から得られた差分画像を二値化する二値化処理部を備えてもよい。
 また、演算部16は、検査画像37を生成する前に、二値化処理がされていない透過画像または反射画像に対して、画像の明度の最大値および最小値を、理想状態の明度の最大値および最小値へ補正する補正処理を行ってもよい。補正処理として、まず反射画像の明度の最大値および最小値から、理想とする明度の最大値および最小値に変換するための乗算値をそれぞれ算出する。次に、反射画像の明度の最大値および最小値のそれぞれの変換値を線形近似することにより、反射画像の明度の最大値および最小値の間の明度を変換するための乗算値を算出する。最後に、反射画像の各画素の明度に対し、上記明度の変換値を乗算することで、補正後の各画素の明度を得る。透過画像についても同様の方法により明度を補正する。この補正演算により、各画像の明度が本来理想とする明度の範囲からずれた場合にも、反射画像35と透過画像36の差分画像の二値化処理を行う際の閾値を、厳密に調整する必要がなくなる。
 ここで、閾値の厳密な調整が必要となり、錠剤31と印字部32との明確な分離が困難となる場合がある。これは、カメラ部15の露光時間や照明の強度を、理想とする値まで上げられない場合に、反射画像の錠剤31の明度が低くなり、二値化処理がされていない反射画像と透過画像の差分画像において錠剤31と印字部32の明度が近くなるために起こる。この場合は、反射画像の明度の最大値と最小値を理想とする明度の最大値と最小値に補正することで、差分画像において錠剤31と印字部32の明度の差が大きくなり、錠剤31と印字部32の分離が可能となる。すなわち、閾値の厳密な調整を行う必要がなくなる。なお、反射画像において、錠剤31の明度は高くなり、印字部32の明度は低くなる。一方、錠剤31の明度は各錠剤によって若干異なるが、錠剤31の明度は高く印字部32の明度は低いため、反射画像の明度の最大値と最小値はどの薬包体21においても安定した一定の値が得られる。そのため、補正処理を行う基準値として利用する事が可能となる。
 また、演算部16は、検査画像37を生成する前に、二値化処理前の透過画像および反射画像の少なくとも1つの画像に対し、画像上の明度の平均と分散の値を理想状態の明度の平均と分散の値へ補正する補正処理を行ってもよい。
 また、錠剤カウント部19が錠剤31の個数を算出して、自動的に錠剤監査を行う以外にも、監査者が錠剤31の個数を算出してもよい。具体的には、演算部16が検査画像37を表示部17へ表示させて、監査者が、表示部17に表示された検査画像37を見ることにより、錠剤31の個数や錠剤の形状から、錠剤監査を行ってもよい。
 以上説明した錠剤検査装置11を用いて行う錠剤検査の方法について説明する。
 錠剤検査装置11を用いて薬包体21の錠剤検査を行う錠剤検査方法は、透過画像を取得する第1ステップと、反射画像を取得する第2ステップと、検査画像を生成する第3ステップとを含む。第1ステップは、印字部を有する透明フィルムと白色フィルムで構成された薬包体を用い、印字部よりも赤外光の吸収率が低い錠剤が封入された薬包体に対して白色フィルムの側から赤外光を照射し、かつ、反射照明部13が赤外光を照射しない状態において、薬包体を透明フィルムの側から撮像することにより透過画像を取得するステップである。第2ステップは、反射照明部13が、薬包体に対して透明フィルムの側から赤外光を照射し、かつ透過照明部14が赤外光を照射しない状態において、薬包体を透明フィルムの側から撮像することにより反射画像を取得するステップである。第3ステップは、反射画像と透過画像との差分画像から、検査画像を生成するステップである。
 このようにして、反射画像35と透過画像36との差分を利用して検査画像37を生成すると、錠剤31を含み、印字部32が除去された検査画像37を得ることができる。
 図7は、本実施の形態1における錠剤検査装置11を用いて錠剤検査を行う方法を示すフローチャートである。
 まず、複数個の薬包体21が繋げられた薬包体21の帯を準備し、この薬包体21を載置台12に置いた後、反射照明部13から赤外光を照射して、検査位置にある薬包体21を載置台12の上方から赤外光で照らす。この時、反射照明部13のみが光を照射し、透過照明部14は光を照射しない。この時、ガイド部20は薬包体21が動かないように固定する。薬包体21に反射照明部13が赤外光を照射している状態で、カメラ部15は、薬包体21を撮影して薬包体の反射画像を取得する(ステップS01)。
 二値化処理部18は、カメラ部15で取得した薬包体21の反射画像の二値化を行い、二値化された反射画像35を生成する(ステップS02)。
 ステップS02で二値化処理が行われた後、反射照明部13は赤外光の照射を止め、透過照明部14は赤外光を照射して、薬包体21を載置台12の下方から赤外光で照らす。この時、ガイド部20は薬包体21が動かないように固定する。この状態で、カメラ部15が薬包体21を撮影する(ステップS03)。
 二値化処理部18は、カメラ部15で取得した薬包体21の透過画像の二値化を行い、二値化された透過画像36を生成する(ステップS04)。
 ステップS04で二値化処理が行われた後、透過照明部14の赤外光の照射を止める。そして、演算部16は、二値化処理された反射画像35と二値化処理された透過画像36の差分から、薬包体21の検査画像37を生成する(ステップS05)。
 このように、赤外光に基づく反射画像および透過画像を用いて検査画像37を生成することで、印字部32が除去されると共に錠剤31を残した薬包体21の画像を生成する。
 錠剤カウント部19は、検査画像37における錠剤31の個数を数え、この数を錠剤の個数として算出する(ステップS06)。
 さらに、錠剤カウント部19には、薬包体21に封入されているべき錠剤の総数が記録されている。ここで、薬包体21に封入されているべき錠剤の総数は、処方箋に基づいて算出される。そして、錠剤カウント部19は、記録されている処方箋に基づく錠剤の総数と、ステップS05で算出された錠剤31の個数とが、同数であるか否かをチェックする(ステップS07)。
 そして、処方箋に基づく錠剤31の総数とステップS07で算出された錠剤31の個数とが異なっている場合、演算部16は、表示部17に、薬包体21に封入された錠剤の個数が異なる旨のメッセージを表示させる。また、処方箋に基づく錠剤31の総数とステップS07で算出された錠剤31の個数とが同数である場合、演算部16は、表示部17に、薬包体21に封入された錠剤31の個数が同数である旨のメッセージを表示させる。
 その後、載置台12のガイド部20が動き、別の薬包体21をカメラ部15の下方にある透明板22上の検査位置へ移動させる。その後、別の薬包体21に対して、ステップS01~ステップS07を繰り返して、薬包体21の錠剤検査が行われる。
 なお、上述した錠剤検査装置11を用いた検査方法では、錠剤カウント部19で自動的に薬包体21の錠剤の個数が適切な錠剤31の個数であるか否かのチェックを行っている。だが、演算部16が検査画像37を表示部17に表示させて、監査者が表示部17に表示された検査画像37を見ることにより、監査者の目で薬包体21の錠剤31をチェックしてもよい。
 また、上述した錠剤検査装置11を用いた検査方法では、透過画像36の取得(ステップS03)の前に、反射画像の二値化(ステップS02)を行っているが、透過画像36の取得(ステップS03)の後に、反射画像の二値化(ステップS02)を行ってもよい。
 一般に、白色フィルムに施された印字は錠剤よりも赤外光の吸収率が高いため、透過画像および反射画像のいずれにおいても印字部の明度は低くなる。その一方、錠剤は、透過画像において明度が低くなるものの、反射画像において明度が高くなる。このため、以上説明したような本実施の形態1に係る錠剤検査装置11では、透過画像と反射画像との差分画像から検査画像を生成することで印字部を除去し、錠剤のみを残した検査画像を生成している。よって、検査画像から薬包体に封入された錠剤の個数を正確に検出することができる。
 なお、印字部32が赤外光以外の所定の波長帯の光を吸収する場合は、赤外光以外の所定の波長帯の光を吸収する印字部32を有する薬包体21でも錠剤監査ができるようにすることができる。具体的には、反射照明部13の照射光および透過照明部14の照射光の波長帯を上記所定の波長帯とすることで、本実施の形態1の錠剤検査装置11を用いた検査方法を実現することができる。
 印字部32が赤外光以外の所定の波長帯の光を吸収する場合、錠剤検査装置11は以下の構成を有する。
 透過照明部14は、一方のフィルム(白色フィルム)に印字部を有する2枚のフィルム間に、印字部よりも所定の波長帯の光の吸収率が低い錠剤が封入された薬包体に対して、白色フィルムの側から所定の波長帯の光を照射する。
 反射照明部13は、薬包体に対して、2枚のフィルムのうちの他方のフィルム(透明フィルム)の側から所定の波長帯の光を照射する。
 カメラ部15は、透過照明部14が所定の波長帯の体の光を照射し、かつ反射照明部13が所定の波長帯の光を照射しない状態において、薬包体を透明フィルムの側から撮像することにより、透過画像を取得する。また、カメラ部15は、反射照明部13が所定の波長帯の光を照射し、かつ透過照明部14が所定の波長帯の光を照射しない状態において、薬包体を透明フィルムの側から撮像することにより反射画像を取得する。
 演算部16は、反射画像と透過画像との差分画像から、検査画像を生成する。そして、この検査画像に基づいて錠剤数のチェックを行う。
 この構成により、錠剤31が所定の波長帯の光を反射するため、反射画像に写る錠剤31の明度は高くなる。また、錠剤31が所定の波長帯の光を透過させないため、透過画像に写る錠剤31の明度は低くなる。一方、反射画像と透過画像のどちらにおいても印字部32の明度は低くなる。錠剤検査装置11は、印字部32の明度が低い反射画像と印字部32および錠剤31の明度が低い透過画像との差分を利用して、錠剤31を含み印字部32を除去した検査画像37を生成する。
 なお、上述した所定の波長帯とは、100nm~150nmの幅を持つ帯域である。
 また、この場合において錠剤検査装置11を用いて行う錠剤検査方法は、透過画像を取得する第1ステップと、反射画像を取得する第2ステップと、検査画像を生成する第3ステップとを含む。第1ステップは、印字部を有する透明フィルムと白色フィルムで構成された薬包体を用い、透過照明部14が、印字部よりも所定の波長帯の光の吸収率が低い錠剤が封入された薬包体に対して、白色フィルムの側から所定の波長帯の光を照射し、かつ、反射照明部13が所定の波長帯の光を照射しない状態において、薬包体を透明フィルムの側から撮像することにより透過画像を取得するステップである。第2ステップは、反射照明部13が、薬包体に対して透明フィルムの側から所定の波長帯の光を照射し、かつ透過照明部14が所定の波長帯の光を照射しない状態において、薬包体を透明フィルムの側から撮像することにより反射画像を取得するステップである。第3ステップは、反射画像と透過画像との差分画像から、錠剤の領域を示す検査画像を生成するステップである。
 この構成により、反射画像と透過画像の差分を利用して検査画像37を生成すると、錠剤31を含み印字部32を除去した検査画像37を得ることができる。
 (実施の形態2)
 次に、本発明の実施の形態2に係る錠剤検査装置について説明する。前述の実施の形態1では、薬包体の印字部は薬包体に封入された全ての錠剤よりも赤外光の吸収率が高いとした。つまり、前述の実施の形態1では、全ての錠剤が、錠剤の方が印字部よりも赤外光の吸収率が低いとした。しかし、錠剤の中には印字部よりも赤外光の吸収率が高い錠剤として、例えば黒色の錠剤がある。以下、このような錠剤を特別に高吸収錠剤と呼ぶ。高吸収錠剤の代表例としてサーカネッテン(登録商標)錠がある。高吸収錠剤は、第二錠剤の一例である。
 高吸収錠剤は赤外光の吸収率が高いため、透過画像および反射画像の双方において黒く写ってしまう。このため、透過画像と反射画像の差分から得られる検査画像においては、印字部と同様に高吸収錠剤は除去されてしまう。よって、薬包内に高吸収錠剤が含まれている場合には、薬包内の錠剤を正確に計数することができず、正確な錠剤監査をすることができない場合がある。そこで、実施の形態2では、高吸収錠剤を抽出する処理を加えている。
 前述の実施の形態1では、それぞれ二値化された透過画像と反射画像との差分から検査画像を作成していた。しかし、透過画像と反射画像とをそれぞれ二値化すると、高吸収錠剤の縁において二値化が安定しない場合がある。具体的には、高吸収錠剤と背景との境界の画素値は二値化閾値に近い値を示すため、高吸収錠剤の縁において、高吸収錠剤の領域と判断されない場合がある。このため、検査画像に高吸収錠剤の錠剤領域が正確に示されない場合がある。そこで、実施の形態2では、二値化処理が施されていない透過画像と反射画像の差分画像を二値化すると共に、二値化された反射画像から高吸収錠剤の錠剤領域を特定することで、検査画像を生成している。
 実施の形態2に係る錠剤検査装置のハードウェアの概略構成は、図2に示した実施の形態1に係る錠剤検査装置11のハードウェアの概略構成と同様である。ただし、二値化処理部18が二値化対象とする画像と、演算部16が実行する処理とが、前述の実施の形態1とは異なる。そのため、二値化処理部18以外の説明は省略している。
 二値化処理部18が二値化対象とする画像は、上述のように二値化処理が施されていない透過画像と反射画像の差分画像である。
 演算部16が実行する処理については、具体例を示しながら以下に説明する。
 図8は、実施の形態2に係る薬包体21の平面図である。この薬包体21は、図3に示した実施の形態1に係る薬包体21と同様の薬包体21であり、図3に示した薬包体21に加え、高吸収錠剤33が封入された薬包体21である。なお、カメラ部15で撮像された二値化処理がされていない反射画像は、図8のようになる。
 図9は、実施の形態2における錠剤検査装置11を用いて錠剤検査を行う方法を示すフローチャートである。図7に示したフローチャートと同様のステップについては同じステップ番号を付し、適宜説明を省略する。
 カメラ部15は、図7のステップS01とステップS03と同様の処理を行い、反射画像および透過画像を取得する(ステップS01、S03)。
 反射画像は図8に示すような画像であり、透過画像は図10に示すような画像である。いずれの画像においても高吸収錠剤33は黒く映っている。
 演算部16は、ステップS01で取得された反射画像とステップS03で取得された透過画像との差分画像を生成する(ステップS11)。つまり、演算部16は、画素ごとに反射画像の画素値から透過画像の画素値を減算し、減算結果の絶対値を当該画素の画素値とすることで差分画像を生成する。
 演算部16は、二値化処理部18に、ステップS11で生成された差分画像を二値化させる。二値化処理部18は、ステップS11で生成された差分画像を二値化する(ステップS12)。図11は、差分画像を二値化した画像の一例を示す図である。二値化された差分画像47には、錠剤31が黒い画素として映っているが、印字部32と高吸収錠剤33とが除去されている。これは、印字部32および高吸収錠剤33は、赤外光の吸収率が高く、反射画像および透過画像においてともに明度が低いためである。つまり、差分画像47において、印字部32および高吸収錠剤33は画素値が小さくなるため、差分画像を二値化することにより印字部32および高吸収錠剤33が除去される。
 続いて、二値化処理部18は、ステップS01で取得された反射画像を二値化する(ステップS13)。この二値化された反射画像を用いて、印字部32と高吸収錠剤33との分離を行う。上述のように高吸収錠剤33は、印字部32よりもさらに赤外光の吸収率が高い。つまり、反射画像において、高吸収錠剤33の明度は印字部32の明度よりもさらに低い。このため、高吸収錠剤33の明度と印字部32の明度との間の明度の値を閾値とする。二値化処理部18は、閾値よりも明度が低い画素を黒い画素とし、閾値以上の明度の画素を白い画素とすることで反射画像の二値化を行う。図12は、二値化された反射画像45の一例を示す図である。反射画像45は、高吸収錠剤33の領域を示す画像である。
 演算部16は、反射画像45の黒い画素で示される領域を、高吸収錠剤33の領域として特定する(ステップS14)。
 演算部16は、ステップS12で二値化された後の差分画像と、ステップS14で特定された高吸収錠剤33の領域とに基づいて、検査画像を生成する(ステップS15)。つまり、演算部16は、図11に示す差分画像47の画素のうち、図12に示す高吸収錠剤33の領域と同じ位置の画素を黒い画素に置き換えることで、検査画像を生成する。図13は、生成された検査画像の一例を示す図である。検査画像57からは印字部32が除去されており、検査画像57には錠剤31と高吸収錠剤33とが映っている。
 錠剤カウント部19は、検査画像57における錠剤31および高吸収錠剤33を合わせた個数を数え、この数を錠剤の個数として算出する(ステップS06)。
 さらに、錠剤カウント部19には、処方箋に基づいて薬包体21に封入されているべき錠剤の総数が記録されている。そして、錠剤カウント部19は、記録されている処方箋に基づく錠剤の総数と、ステップS05で算出された錠剤の個数とが同数であるか否かをチェックする(ステップS07)。
 以上説明したように、実施の形態2に係る錠剤検査装置11によると、薬包体21の中に、印字部32よりも赤外光の吸収率が低い高吸収錠剤33が含まれている場合であっても、印字部32の影響を受けずに、正確に錠剤の個数を計数することができる。
 なお、差分画像生成処理(ステップS11)の前に、透過画像と反射画像の少なくとも1つの画像に対し、画像上の明度の最大値と最小値の値を理想状態の明度の最大値と最小値の値へ補正する処理を行ってもよい。
 この構成により、差分画像を二値化するための閾値を、理想的な閾値にするための厳密な調整をしなくとも、印字部32が除去され、かつ錠剤31が含まれた二値化処理された差分画像を生成することができる。
 また、差分画像生成処理(ステップS11)の前に、透過画像と反射画像の少なくとも1つの画像に対し、画像上の明度の平均と分散の値を、理想状態の明度の平均と分散の値へ補正する補正ステップを行ってもよい。
 この構成により、差分画像を二値化するための閾値を、理想的な閾値にするための厳密な調整をしなくとも、印字部32が除去され、かつ錠剤31が含まれた二値化処理された差分画像を生成することができる。
 また、実施の形態2では、高吸収錠剤を抽出する処理について説明したが、この処理は実施の形態1においても適用可能である。
 以上、本発明の実施の形態1および2に係る錠剤検査装置11について説明したが、本発明は、これらの実施の形態に限定されるものではない。
 例えば、上記の錠剤検査装置11のうち演算部16、二値化処理部18および錠剤カウント部19は、具体的には、マイクロプロセッサ、ROM、RAM、ハードディスクドライブ、ディスプレイユニット、キーボード、マウスなどから構成されるコンピュータシステムとして構成されても良い。RAMまたはハードディスクドライブには、コンピュータプログラムが記憶されている。マイクロプロセッサが、コンピュータプログラムに従って動作することにより、錠剤検査装置11は、その機能を達成する。ここでコンピュータプログラムは、所定の機能を達成するために、コンピュータに対する指令を示す命令コードが複数個組み合わされて構成されたものである。
 さらに、上記の錠剤検査装置11のうち演算部16、二値化処理部18および錠剤カウント部19の一部または全部は、1個のシステムLSI(Large Scale Integration:大規模集積回路)から構成されているとしても良い。システムLSIは、複数の構成部を1個のチップ上に集積して製造された多機能LSIであり、具体的には、マイクロプロセッサ、ROM、RAMなどを含んで構成されるコンピュータシステムである。RAMには、コンピュータプログラムが記憶されている。マイクロプロセッサが、コンピュータプログラムに従って動作することにより、システムLSIは、その機能を達成する。
 さらにまた、上記の錠剤検査装置11のうち演算部16、二値化処理部18および錠剤カウント部19の一部または全部は、錠剤検査装置11に脱着可能なICカードまたは単体のモジュールから構成されているとしても良い。ICカードまたはモジュールは、マイクロプロセッサ、ROM、RAMなどから構成されるコンピュータシステムである。ICカードまたはモジュールは、上記の超多機能LSIを含むとしても良い。マイクロプロセッサが、コンピュータプログラムに従って動作することにより、ICカードまたはモジュールは、その機能を達成する。このICカードまたはこのモジュールは、耐タンパ性を有するとしても良い。
 また、本発明は、上記に示す方法であるとしても良い。また、本発明は、これらの方法をコンピュータにより実現するコンピュータプログラムであるとしても良いし、前記コンピュータプログラムからなるデジタル信号であるとしても良い。
 さらに、本発明は、上記コンピュータプログラムまたは上記デジタル信号をコンピュータ読み取り可能な非一時的な記録媒体、例えば、フレキシブルディスク、ハードディスク、CD-ROM、MO、DVD、DVD-ROM、DVD-RAM、BD(Blu-ray Disc(登録商標))、半導体メモリなどに記録したものとしても良い。また、これらの非一時的な記録媒体に記録されている上記デジタル信号であるとしても良い。
 また、本発明は、上記コンピュータプログラムまたは上記デジタル信号を、電気通信回線、無線または有線通信回線、インターネットを代表とするネットワーク、データ放送等を経由して伝送するものとしても良い。
 また、本発明は、マイクロプロセッサとメモリを備えたコンピュータシステムであって、上記メモリは、上記コンピュータプログラムを記憶しており、上記マイクロプロセッサは、上記コンピュータプログラムに従って動作するとしても良い。
 また、上記プログラムまたは上記デジタル信号を上記非一時的な記録媒体に記録して移送することにより、または上記プログラムまたは上記デジタル信号を上記ネットワーク等を経由して移送することにより、独立した他のコンピュータシステムにより実施するとしても良い。
 さらに、上記実施の形態及び上記変形例をそれぞれ組み合わせるとしても良い。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。
 本発明の錠剤検査装置およびこれを用いた錠剤検査方法は、錠剤を含み印字部を除去した検査画像を生成することができる。このため、調剤作業を行わなければならない薬局、病院施設等で利用する薬包体の錠剤を自動計数することで監査を自動的に行う錠剤検査装置、または、薬包体の錠剤を表示して監査者による視認監査の補助をする錠剤検査装置等として有用である。
 11  錠剤検査装置
 12  載置台
 13  反射照明部
 14  透過照明部
 15  カメラ部
 16  演算部
 17  表示部
 18  二値化処理部
 19  錠剤カウント部
 20  ガイド部
 21  薬包体
 22  透明板
 31  錠剤
 32  印字部
 33  高吸収錠剤
 35、45  反射画像
 36  透過画像
 37、57  検査画像
 47  差分画像

Claims (17)

  1.  一方のフィルムに印字部を有する2枚のフィルム間に、前記印字部よりも赤外光の吸収率が低い錠剤が少なくとも封入された薬包体を載置する載置部と、
     赤外光を照射する透過照明部と、
     赤外光を照射する反射照明部と、
     前記透過照明部が前記薬包体に前記一方のフィルムの側から赤外光を照射した状態において、前記薬包体を前記2枚のフィルムのうちの他方のフィルムの側から撮像することにより透過画像を取得すると共に、前記反射照明部が前記薬包体に前記他方のフィルムの側から赤外光を照射した状態において、前記薬包体を前記他方のフィルムの側から撮像することにより反射画像を取得するカメラ部と、
     前記反射画像と前記透過画像との差分画像から検査画像を生成し、前記検査画像に基づいて前記錠剤を検査する演算部と
     を備える
     錠剤検査装置。
  2.  さらに、
     画像を二値化する二値化処理部を備え、
     前記演算部は、前記二値化処理部で二値化された前記差分画像から、前記検査画像を生成する
     請求項1記載の錠剤検査装置。
  3.  さらに、
     画像を二値化する二値化処理部を備え、
     前記演算部は、前記二値化処理部で二値化された前記反射画像と前記二値化処理部で二値化された前記透過画像との差分画像から、前記検査画像を生成する
     請求項1記載の錠剤検査装置。
  4.  前記演算部は、二値化された前記反射画像において閾値以上の画素値を有する領域であると共に二値化された前記透過画像において閾値未満の画素値を有する領域を残し、その他の領域を除去して前記検査画像を生成する
     請求項3記載の錠剤検査装置。
  5.  前記薬包体には、前記印字部よりも赤外光の吸収率が高い錠剤である第二錠剤が封入されており、
     前記演算部は、前記二値化処理部で二値化された前記反射画像から前記第二錠剤の領域を特定し、特定した前記第二錠剤の領域を示す像を前記検査画像に追加する
     請求項2~4のいずれか1項に記載の錠剤検査装置。
  6.  前記第二錠剤は、サーカネッテン(登録商標)錠である
     請求項5記載の錠剤検査装置。
  7.  前記一方のフィルムが有色フィルムであり、前記他方のフィルムが透明フィルムである
     請求項1~6のいずれか1項に記載の錠剤検査装置。
  8.  前記赤外光は、750nm~950nmの波長帯の光である
     請求項7記載の錠剤検査装置。
  9.  さらに、
     前記検査画像に含まれる錠剤の領域を計数することにより、前記薬包体に含まれる錠剤の個数を計数する錠剤カウント部を備える
     請求項1~8のいずれか1項に記載の錠剤検査装置。
  10.  前記載置部は、前記薬包体を載置する部分が透明な部分である載置台である
     請求項1~9のいずれか1項に記載の錠剤検査装置。
  11.  前記載置台の透明な部分は、ルーバー構造を有する透明板から構成される
     請求項10記載の錠剤検査装置。
  12.  前記反射照明部は、赤外光を反射するドーム形状の反射鏡を備える
     請求項1~11のいずれか1項に記載の錠剤検査装置。
  13.  一方のフィルムに印字部を有する2枚のフィルム間に、前記印字部よりも赤外光の吸収率が低い錠剤が少なくとも封入された薬包体を準備し、
     透過照明部が前記薬包体に前記一方のフィルムの側から赤外光を照射した状態において、前記薬包体を前記2枚のフィルムのうちの他方のフィルムの側から撮像することにより透過画像を取得し、
     反射照明部が前記薬包体に前記他方のフィルムの側から赤外光を照射した状態において、前記薬包体を前記他方のフィルムの側から撮像することにより反射画像を取得し、
     前記反射画像と前記透過画像との差分画像から検査画像を生成し、前記検査画像に基づいて前記錠剤を検査する
     錠剤検査方法。
  14.  二値化処理部で二値化された前記差分画像から、前記検査画像を生成する
     請求項13記載の錠剤検査方法。
  15.  二値化処理部で二値化された前記反射画像と前記二値化処理部で二値化された前記透過画像との差分画像から、前記検査画像を生成する
     請求項13記載の錠剤検査方法。
  16.  前記薬包体には、前記印字部よりも赤外光の吸収率が高い錠剤である第二錠剤が封入されており、
     二値化処理部で二値化された前記反射画像から前記第二錠剤の領域を特定し、特定した前記第二錠剤の領域を示す像を前記検査画像に追加した後、前記第二錠剤の領域を示す像が追加された前記検査画像に基づいて前記錠剤を検査する
     請求項13~15のいずれか1項に記載の錠剤検査方法。
  17.  前記第二錠剤は、サーカネッテン(登録商標)錠である
     請求項16記載の錠剤検査方法。
PCT/JP2012/001828 2011-03-24 2012-03-15 錠剤検査装置およびこれを用いた錠剤検査方法 WO2012127827A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP12760388.4A EP2690430A1 (en) 2011-03-24 2012-03-15 Tablet inspection device and tablet inspection method using same
CN2012800140260A CN103443617A (zh) 2011-03-24 2012-03-15 药片检查装置以及采用了该装置的药片检查方法
JP2012535520A JP5496348B2 (ja) 2011-03-24 2012-03-15 錠剤検査装置およびこれを用いた錠剤検査方法
US13/696,163 US20130058550A1 (en) 2011-03-24 2012-03-15 Tablet inspection apparatus and tablet inspection method using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011065560 2011-03-24
JP2011-065560 2011-03-24

Publications (1)

Publication Number Publication Date
WO2012127827A1 true WO2012127827A1 (ja) 2012-09-27

Family

ID=46879007

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/001828 WO2012127827A1 (ja) 2011-03-24 2012-03-15 錠剤検査装置およびこれを用いた錠剤検査方法

Country Status (5)

Country Link
US (1) US20130058550A1 (ja)
EP (1) EP2690430A1 (ja)
JP (1) JP5496348B2 (ja)
CN (1) CN103443617A (ja)
WO (1) WO2012127827A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014188650A1 (ja) * 2013-05-22 2017-02-23 パナソニックヘルスケアホールディングス株式会社 錠剤検査装置及び錠剤検査方法
JP2021009088A (ja) * 2019-07-02 2021-01-28 フロイント産業株式会社 印刷検査装置、及び印刷検査方法

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9888839B2 (en) 2009-04-01 2018-02-13 Tearscience, Inc. Methods and apparatuses for determining contact lens intolerance in contact lens wearer patients based on dry eye tear film characteristic analysis and dry eye symptoms
EP2420180B1 (en) 2009-04-01 2019-05-22 Tearscience, Inc. Apparatus for measuring ocular tear film layer thickness(es)
US9642520B2 (en) 2009-04-01 2017-05-09 Tearscience, Inc. Background reduction apparatuses and methods of ocular surface interferometry (OSI) employing polarization for imaging, processing, and/or displaying an ocular tear film
US9339177B2 (en) 2012-12-21 2016-05-17 Tearscience, Inc. Full-eye illumination ocular surface imaging of an ocular tear film for determining tear film thickness and/or providing ocular topography
JP6615748B2 (ja) * 2013-05-03 2019-12-04 テイアサイエンス・インコーポレーテツド マイボーム腺分析のためにマイボーム腺を画像化するための眼瞼照射システムおよび方法
US9795290B2 (en) 2013-11-15 2017-10-24 Tearscience, Inc. Ocular tear film peak detection and stabilization detection systems and methods for determining tear film layer characteristics
US10373311B2 (en) * 2014-09-25 2019-08-06 Yuyama Mfg. Co., Ltd. Medicine inspection assistance device
US9956145B2 (en) * 2015-09-23 2018-05-01 Derek William THOMPSON Visual counting system
US10187593B2 (en) 2016-09-27 2019-01-22 Rxsafe Llc Verification system for a pharmacy packaging system
US11595595B2 (en) 2016-09-27 2023-02-28 Rxsafe Llc Verification system for a pharmacy packaging system
JP6767565B2 (ja) * 2017-03-23 2020-10-14 富士フイルム富山化学株式会社 薬剤認識装置、薬剤認識方法、及び薬剤認識プログラム
CN110892445B (zh) * 2017-08-22 2023-10-10 富士胶片富山化学株式会社 药剂检查辅助装置、药剂识别装置、图像处理装置、图像处理方法以及程序
WO2019039015A1 (ja) * 2017-08-25 2019-02-28 富士フイルム株式会社 薬剤検査支援装置、画像処理装置、画像処理方法及びプログラム
AU2018347638B2 (en) 2017-10-13 2024-02-01 Rxsafe Llc Universal feed mechanism for automatic packager
US10991264B2 (en) 2017-11-23 2021-04-27 Omnicell, Inc. Multi-camera imaging for IV compounding
US10596319B2 (en) 2017-11-23 2020-03-24 Aesynt Incorporated Compounding device system
US11335444B2 (en) 2017-11-30 2022-05-17 Omnicell, Inc. IV compounding systems and methods
JP6595662B1 (ja) * 2018-05-30 2019-10-23 Ckd株式会社 検査装置及びptp包装機
CN114067122B (zh) * 2022-01-18 2022-04-08 深圳市绿洲光生物技术有限公司 一种两级式二值化图像处理方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06255671A (ja) * 1993-02-25 1994-09-13 Toppan Printing Co Ltd 包装材料
JPH07204253A (ja) 1994-01-24 1995-08-08 Sanyo Electric Co Ltd 錠剤検査システム
JPH07209196A (ja) * 1994-01-17 1995-08-11 Sanyo Electric Co Ltd 錠剤検査システム
JPH09231342A (ja) 1996-02-26 1997-09-05 Sanyo Electric Co Ltd 錠剤検査方法及び装置
JP2000276583A (ja) * 1999-03-26 2000-10-06 Takazono Sangyo Kk 薬剤の検査装置及び検査方法
JP2006258778A (ja) * 2005-03-15 2006-09-28 Nippon Electro Sensari Device Kk 表面欠陥検査方法および表面欠陥検査装置
JP2007178242A (ja) * 2005-12-27 2007-07-12 Kirin Techno-System Corp 壜胴部の欠陥検査装置
JP4652480B1 (ja) * 2010-07-02 2011-03-16 オオクマ電子株式会社 薬包中の薬剤個数計数装置
JP2012078265A (ja) * 2010-10-05 2012-04-19 Panasonic Corp 錠剤検査装置および錠剤検査方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3969227A (en) * 1974-11-01 1976-07-13 Smithkline Corporation Photoelectric inspection of transparent or translucent medicinal capsules
JPS63119887A (ja) * 1986-11-06 1988-05-24 カネボウ株式会社 選別装置
JP3022145B2 (ja) * 1994-04-08 2000-03-15 三洋電機株式会社 画像認識手段を具えた錠剤検査装置及び錠剤検査方法
CN2596352Y (zh) * 2002-07-29 2003-12-31 西安交通大学 一种用于工业生产中产品质量实时监控的光学图像检测装置
US20070189597A1 (en) * 2005-08-23 2007-08-16 Limer Daniel J Machine vision counting system apparatus and method
GB2446166B (en) * 2007-01-29 2010-05-12 Teraview Ltd A pharmaceutical analysis method and apparatus
EP2591761A1 (en) * 2010-07-09 2013-05-15 Panasonic Corporation Tablet inspection assistance method and tablet inspection assistance system
WO2012081261A1 (ja) * 2010-12-17 2012-06-21 パナソニック株式会社 錠剤鑑査装置
EP2733480A1 (en) * 2011-07-13 2014-05-21 Panasonic Corporation Tablet inspection device and tablet inspection method
WO2013021543A1 (ja) * 2011-08-08 2013-02-14 パナソニック株式会社 薬包体監査システム

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06255671A (ja) * 1993-02-25 1994-09-13 Toppan Printing Co Ltd 包装材料
JPH07209196A (ja) * 1994-01-17 1995-08-11 Sanyo Electric Co Ltd 錠剤検査システム
JPH07204253A (ja) 1994-01-24 1995-08-08 Sanyo Electric Co Ltd 錠剤検査システム
JPH09231342A (ja) 1996-02-26 1997-09-05 Sanyo Electric Co Ltd 錠剤検査方法及び装置
JP2000276583A (ja) * 1999-03-26 2000-10-06 Takazono Sangyo Kk 薬剤の検査装置及び検査方法
JP2006258778A (ja) * 2005-03-15 2006-09-28 Nippon Electro Sensari Device Kk 表面欠陥検査方法および表面欠陥検査装置
JP2007178242A (ja) * 2005-12-27 2007-07-12 Kirin Techno-System Corp 壜胴部の欠陥検査装置
JP4652480B1 (ja) * 2010-07-02 2011-03-16 オオクマ電子株式会社 薬包中の薬剤個数計数装置
JP2012078265A (ja) * 2010-10-05 2012-04-19 Panasonic Corp 錠剤検査装置および錠剤検査方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014188650A1 (ja) * 2013-05-22 2017-02-23 パナソニックヘルスケアホールディングス株式会社 錠剤検査装置及び錠剤検査方法
JP2021009088A (ja) * 2019-07-02 2021-01-28 フロイント産業株式会社 印刷検査装置、及び印刷検査方法

Also Published As

Publication number Publication date
CN103443617A (zh) 2013-12-11
EP2690430A1 (en) 2014-01-29
JP5496348B2 (ja) 2014-05-21
US20130058550A1 (en) 2013-03-07
JPWO2012127827A1 (ja) 2014-07-24

Similar Documents

Publication Publication Date Title
WO2012127827A1 (ja) 錠剤検査装置およびこれを用いた錠剤検査方法
JP5747150B2 (ja) 錠剤検査装置および錠剤検査方法
JP5414917B2 (ja) 錠剤検査装置及び錠剤検査方法
US9084714B2 (en) Device for counting the number of medicines in medicine packaging envelope
CN105208995B (zh) 药片检查装置以及药片检查方法
TW201036830A (en) Authentification method for print media, image processing and inspection system suitable for the same and print medium
CN101107616A (zh) 用于通过针孔光圈将物体光学成像到检测装置上的系统和方法
JP2012073822A (ja) 帳票読取装置
TWI417650B (zh) 多調式光罩之評估方法
JP2013148454A (ja) 錠剤監査装置
JP5370953B2 (ja) 印刷物の検査装置
JP2017127407A (ja) 調剤監査装置及び方法、並びにプログラム
WO2019193924A1 (ja) 薬剤判定装置及び薬剤判定方法
JP4034033B2 (ja) 錠剤の外観検査装置およびptp包装機
CN106483338A (zh) 图像输出装置、图像发送装置、图像接收装置、图像输出方法
JP2014095652A (ja) 薬剤認識方法および薬剤認識装置
US20230164279A1 (en) Reading apparatus
WO2021145266A1 (ja) 画像処理装置及び方法
JP2007248376A (ja) Ovd箔上の印刷模様の検査方法及び検査装置
JP2004077495A (ja) 外観検査装置
JP2005227302A (ja) 外観検査装置及び外観検査装置を備えたptp包装機
JP2006084289A (ja) 外観検査装置及びptp包装機
JP4659970B2 (ja) 光学システムの欠陥検査装置
JP2009110169A (ja) 薬剤監査装置および画像処理方法
JP2007192572A (ja) 印字マーク検査装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012535520

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13696163

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12760388

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012760388

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE