WO2012127779A1 - フレキシブル半導体装置及びその製造方法 - Google Patents
フレキシブル半導体装置及びその製造方法 Download PDFInfo
- Publication number
- WO2012127779A1 WO2012127779A1 PCT/JP2012/001151 JP2012001151W WO2012127779A1 WO 2012127779 A1 WO2012127779 A1 WO 2012127779A1 JP 2012001151 W JP2012001151 W JP 2012001151W WO 2012127779 A1 WO2012127779 A1 WO 2012127779A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- semiconductor device
- layer
- flexible
- vias
- flexible semiconductor
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 284
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 54
- 229910052751 metal Inorganic materials 0.000 claims abstract description 146
- 239000002184 metal Substances 0.000 claims abstract description 146
- 239000003550 marker Substances 0.000 claims abstract description 91
- 239000011888 foil Substances 0.000 claims abstract description 85
- 239000002243 precursor Substances 0.000 claims abstract description 27
- 238000012545 processing Methods 0.000 claims abstract description 16
- 238000000034 method Methods 0.000 claims description 60
- 229920002120 photoresistant polymer Polymers 0.000 claims description 43
- 230000008569 process Effects 0.000 claims description 24
- 230000005540 biological transmission Effects 0.000 claims description 14
- 239000004020 conductor Substances 0.000 claims description 9
- 238000005530 etching Methods 0.000 claims description 7
- 230000001678 irradiating effect Effects 0.000 claims description 6
- 238000009434 installation Methods 0.000 claims description 4
- 239000010410 layer Substances 0.000 description 248
- 239000010408 film Substances 0.000 description 129
- 239000011347 resin Substances 0.000 description 71
- 229920005989 resin Polymers 0.000 description 71
- 239000000463 material Substances 0.000 description 42
- 239000000758 substrate Substances 0.000 description 36
- 239000010949 copper Substances 0.000 description 18
- 230000015572 biosynthetic process Effects 0.000 description 13
- 238000010586 diagram Methods 0.000 description 13
- 230000006870 function Effects 0.000 description 11
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 10
- 239000011521 glass Substances 0.000 description 10
- 229910052802 copper Inorganic materials 0.000 description 9
- 238000007639 printing Methods 0.000 description 9
- 239000000853 adhesive Substances 0.000 description 8
- 230000001070 adhesive effect Effects 0.000 description 8
- 239000003990 capacitor Substances 0.000 description 8
- 238000002347 injection Methods 0.000 description 7
- 239000007924 injection Substances 0.000 description 7
- 239000011229 interlayer Substances 0.000 description 7
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 7
- 238000000206 photolithography Methods 0.000 description 7
- 238000007747 plating Methods 0.000 description 7
- 229920001721 polyimide Polymers 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- 238000011049 filling Methods 0.000 description 6
- 239000011810 insulating material Substances 0.000 description 6
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 6
- -1 polyethylene terephthalate Polymers 0.000 description 6
- 229920002799 BoPET Polymers 0.000 description 4
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 229910021417 amorphous silicon Inorganic materials 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 239000003822 epoxy resin Substances 0.000 description 4
- 239000010931 gold Substances 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 4
- 229920000647 polyepoxide Polymers 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 229920000178 Acrylic resin Polymers 0.000 description 3
- 239000004925 Acrylic resin Substances 0.000 description 3
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- 239000004642 Polyimide Substances 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 238000009825 accumulation Methods 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- 239000011651 chromium Substances 0.000 description 3
- 239000003086 colorant Substances 0.000 description 3
- 239000011889 copper foil Substances 0.000 description 3
- 229910000365 copper sulfate Inorganic materials 0.000 description 3
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 229920003023 plastic Polymers 0.000 description 3
- 229910052697 platinum Inorganic materials 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- VXQBJTKSVGFQOL-UHFFFAOYSA-N 2-(2-butoxyethoxy)ethyl acetate Chemical compound CCCCOCCOCCOC(C)=O VXQBJTKSVGFQOL-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- 229910006404 SnO 2 Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 239000000412 dendrimer Substances 0.000 description 2
- 229920000736 dendritic polymer Polymers 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 238000001312 dry etching Methods 0.000 description 2
- 238000007772 electroless plating Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 238000007646 gravure printing Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 229910052809 inorganic oxide Inorganic materials 0.000 description 2
- 229910052741 iridium Inorganic materials 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 239000002346 layers by function Substances 0.000 description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N palladium Substances [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- 230000003071 parasitic effect Effects 0.000 description 2
- 238000000059 patterning Methods 0.000 description 2
- 230000000149 penetrating effect Effects 0.000 description 2
- 229920002098 polyfluorene Polymers 0.000 description 2
- 229920005591 polysilicon Polymers 0.000 description 2
- 238000007650 screen-printing Methods 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 239000010944 silver (metal) Substances 0.000 description 2
- 238000003980 solgel method Methods 0.000 description 2
- 238000004528 spin coating Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 2
- 229910001887 tin oxide Inorganic materials 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 229920000106 Liquid crystal polymer Polymers 0.000 description 1
- 239000004977 Liquid-crystal polymers (LCPs) Substances 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 239000004734 Polyphenylene sulfide Substances 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229910003363 ZnMgO Inorganic materials 0.000 description 1
- YKIOKAURTKXMSB-UHFFFAOYSA-N adams's catalyst Chemical compound O=[Pt]=O YKIOKAURTKXMSB-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 239000010407 anodic oxide Substances 0.000 description 1
- 238000002048 anodisation reaction Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000011231 conductive filler Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- HTXDPTMKBJXEOW-UHFFFAOYSA-N dioxoiridium Chemical compound O=[Ir]=O HTXDPTMKBJXEOW-UHFFFAOYSA-N 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005401 electroluminescence Methods 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- RBTKNAXYKSUFRK-UHFFFAOYSA-N heliogen blue Chemical compound [Cu].[N-]1C2=C(C=CC=C3)C3=C1N=C([N-]1)C3=CC=CC=C3C1=NC([N-]1)=C(C=CC=C3)C3=C1N=C([N-]1)C3=CC=CC=C3C1=N2 RBTKNAXYKSUFRK-UHFFFAOYSA-N 0.000 description 1
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 238000007641 inkjet printing Methods 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 229920000592 inorganic polymer Polymers 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- FBAFATDZDUQKNH-UHFFFAOYSA-M iron chloride Chemical compound [Cl-].[Fe] FBAFATDZDUQKNH-UHFFFAOYSA-M 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 239000011133 lead Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 150000002898 organic sulfur compounds Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- SLIUAWYAILUBJU-UHFFFAOYSA-N pentacene Chemical compound C1=CC=CC2=CC3=CC4=CC5=CC=CC=C5C=C4C=C3C=C21 SLIUAWYAILUBJU-UHFFFAOYSA-N 0.000 description 1
- CVLHDNLPWKYNNR-UHFFFAOYSA-N pentasilolane Chemical compound [SiH2]1[SiH2][SiH2][SiH2][SiH2]1 CVLHDNLPWKYNNR-UHFFFAOYSA-N 0.000 description 1
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 1
- 229920000301 poly(3-hexylthiophene-2,5-diyl) polymer Polymers 0.000 description 1
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 239000011112 polyethylene naphthalate Substances 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 229920001955 polyphenylene ether Polymers 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 150000004033 porphyrin derivatives Chemical class 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- WOCIAKWEIIZHES-UHFFFAOYSA-N ruthenium(iv) oxide Chemical compound O=[Ru]=O WOCIAKWEIIZHES-UHFFFAOYSA-N 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- SBIBMFFZSBJNJF-UHFFFAOYSA-N selenium;zinc Chemical compound [Se]=[Zn] SBIBMFFZSBJNJF-UHFFFAOYSA-N 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- JBQYATWDVHIOAR-UHFFFAOYSA-N tellanylidenegermanium Chemical compound [Te]=[Ge] JBQYATWDVHIOAR-UHFFFAOYSA-N 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66477—Unipolar field-effect transistors with an insulated gate, i.e. MISFET
- H01L29/66742—Thin film unipolar transistors
- H01L29/6675—Amorphous silicon or polysilicon transistors
- H01L29/66765—Lateral single gate single channel transistors with inverted structure, i.e. the channel layer is formed after the gate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09F—DISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
- G09F9/00—Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09F—DISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
- G09F9/00—Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
- G09F9/30—Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/027—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
- H01L21/0271—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
- H01L21/0273—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
- H01L21/0274—Photolithographic processes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3205—Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
- H01L21/321—After treatment
- H01L21/3213—Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/544—Marks applied to semiconductor devices or parts, e.g. registration marks, alignment structures, wafer maps
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/786—Thin film transistors, i.e. transistors with a channel being at least partly a thin film
- H01L29/78603—Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the insulating substrate or support
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/786—Thin film transistors, i.e. transistors with a channel being at least partly a thin film
- H01L29/78651—Silicon transistors
- H01L29/7866—Non-monocrystalline silicon transistors
- H01L29/78663—Amorphous silicon transistors
- H01L29/78669—Amorphous silicon transistors with inverted-type structure, e.g. with bottom gate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/786—Thin film transistors, i.e. transistors with a channel being at least partly a thin film
- H01L29/78651—Silicon transistors
- H01L29/7866—Non-monocrystalline silicon transistors
- H01L29/78672—Polycrystalline or microcrystalline silicon transistor
- H01L29/78678—Polycrystalline or microcrystalline silicon transistor with inverted-type structure, e.g. with bottom gate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/786—Thin film transistors, i.e. transistors with a channel being at least partly a thin film
- H01L29/7869—Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/10—OLED displays
- H10K59/12—Active-matrix OLED [AMOLED] displays
- H10K59/1201—Manufacture or treatment
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2223/00—Details relating to semiconductor or other solid state devices covered by the group H01L23/00
- H01L2223/544—Marks applied to semiconductor devices or parts
- H01L2223/5442—Marks applied to semiconductor devices or parts comprising non digital, non alphanumeric information, e.g. symbols
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2223/00—Details relating to semiconductor or other solid state devices covered by the group H01L23/00
- H01L2223/544—Marks applied to semiconductor devices or parts
- H01L2223/54426—Marks applied to semiconductor devices or parts for alignment
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2102/00—Constructional details relating to the organic devices covered by this subclass
- H10K2102/301—Details of OLEDs
- H10K2102/311—Flexible OLED
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/10—OLED displays
- H10K59/12—Active-matrix OLED [AMOLED] displays
- H10K59/121—Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
- H10K59/1213—Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements the pixel elements being TFTs
Definitions
- the present invention relates to a flexible semiconductor device having flexibility and a method for manufacturing the same. More specifically, the present invention relates to a flexible semiconductor device that can be used as a TFT and a method for manufacturing the same. Furthermore, the present invention also relates to an image display device using such a flexible semiconductor device and a manufacturing method thereof.
- a display medium is formed using an element utilizing liquid crystal, organic EL (organic electroluminescence), electrophoresis, or the like.
- a technique using an active drive element (TFT element) as an image drive element has become mainstream in order to ensure uniformity of screen brightness, screen rewrite speed, and the like.
- TFT element active drive element
- these TFT elements are formed on a substrate, and liquid crystal, organic EL elements, etc. are sealed.
- a semiconductor such as a-Si (amorphous silicon) or p-Si (polysilicon) can be mainly used for the TFT element.
- a TFT element is manufactured by multilayering these Si semiconductors (and a metal film if necessary) and sequentially forming source, drain and gate electrodes on the substrate.
- a material that can withstand a high process temperature must be used as a substrate material. Therefore, in practice, it is necessary to use a glass substrate having excellent heat resistance as the substrate. Although a quartz substrate can be used, it is expensive, and there is an economical problem in increasing the size of the display. Therefore, a glass substrate is generally used as the substrate on which the TFT element is formed.
- the display is heavy, lacks flexibility, and may be broken by a drop impact.
- These characteristics resulting from the formation of TFT elements on a glass substrate are undesirable in satisfying the need for an easy-to-use portable thin display accompanying the progress of computerization.
- a flexible semiconductor device in which a TFT element is formed on a resin substrate ie, a plastic substrate
- a resin substrate ie, a plastic substrate
- Patent Document 2 after a TFT is manufactured on a support (for example, a glass substrate) by a process substantially similar to the conventional method, the TFT is peeled off from the glass substrate and transferred onto a resin substrate (that is, a plastic substrate).
- a resin substrate that is, a plastic substrate
- a TFT element is formed on a glass substrate, and the TFT element is adhered to the resin substrate through a sealing layer such as an acrylic resin, and then the glass substrate is peeled off, whereby the TFT element is formed on the resin substrate. Is being transcribed.
- a peeling process of a support becomes a problem. That is, when peeling a support body from a resin substrate, it is necessary to perform the process which reduces the adhesiveness of a support body and TFT, for example. Alternatively, it is necessary to form a peeling layer between the support and the TFT and to perform a treatment for physically or chemically removing the peeling layer. Due to such processing, the process becomes complicated, and there remains concern in terms of productivity.
- a method of directly forming a TFT on a resin substrate instead of transferring it to a resin substrate has been proposed.
- a peeling process of the support (for example, a glass substrate) after the transfer is not necessary, so that the flexible semiconductor device can be easily manufactured.
- the present invention is a flexible semiconductor device, Metal foil; An insulating layer formed on the metal foil; A semiconductor layer formed on the insulating layer; A source electrode / drain electrode provided on the insulating layer in contact with the semiconductor layer; and a flexible film layer formed so as to cover the semiconductor layer and the source electrode / drain electrode.
- the gate electrode is composed of a part of the metal foil, the gate insulating film is composed of a part of the insulating layer, and the flexible film layer has a plurality of vias extending along the thickness direction.
- a flexible semiconductor device characterized in that at least one of the plurality of vias serves as a positioning marker (alignment marker).
- the term “flexible” of “flexible semiconductor device” substantially means that the semiconductor device has flexibility to bend.
- the “flexible semiconductor device” in the present invention can be referred to as a “flexible semiconductor device” or a “flexible semiconductor element” in view of its configuration.
- One feature of the flexible semiconductor device of the present invention is that at least one of the plurality of vias serves as a positioning marker.
- Positioning refers to alignment (positioning) of the relative positional relationship of various elements constituting the flexible semiconductor device or the relative positional relationship of various elements related to the flexible semiconductor device.
- the positioning marker is formed as a group of at least two vias. That is, an assembly of at least two vias is configured as a substantial positioning marker.
- At least one of the plurality of vias has a taper shape in the thickness direction. That is, the via as the positioning marker has a tapered shape in the thickness direction.
- At least one of the plurality of vias extends from one main surface side to the other main surface side of the flexible film layer.
- a via as a positioning marker extends through the film layer so as to extend from one main surface side of the flexible film layer to the other main surface side.
- At least one via is formed of a conductive member containing metal.
- a flexible substrate provided with vias as such positioning markers can be defined, for example, as follows: Metal foil; An insulating layer formed on the metal foil; A semiconductor layer formed on the insulating layer; A source electrode / drain electrode provided on the insulating layer in contact with the semiconductor layer; and a flexible film layer formed so as to cover the semiconductor layer and the source electrode / drain electrode.
- the gate electrode is composed of a part of the metal foil, and the gate insulating film is composed of a part of the insulating layer.
- a plurality of vias extend along the thickness direction, and the metal foil is removed at an installation location of at least one of the plurality of vias.
- the insulating layer has "an upper main surface in contact with the flexible film layer” and "a lower main surface opposite to the upper main surface", and at least the via One (that is, via as a positioning marker) preferably extends from the “upper main surface” to the “lower main surface” of the insulating layer.
- the metal foil forms a metal layer.
- the flexible semiconductor device of the present invention may be defined as follows: A flexible semiconductor device, Metal layer; An insulating layer formed on the metal layer; A semiconductor layer formed on the insulating layer; A source electrode / drain electrode provided on the insulating layer in contact with the semiconductor layer; and a flexible film layer formed so as to cover the semiconductor layer and the source electrode / drain electrode.
- the gate electrode is composed of a part of the metal layer
- the gate insulating film is composed of a part of the insulating layer, and in the flexible film layer, a plurality of vias extend along the thickness direction.
- a flexible semiconductor device, wherein at least one of the plurality of vias is a positioning marker.
- a flexible semiconductor device Metal layer; An insulating layer formed on the metal layer; A semiconductor layer formed on the insulating layer; A source electrode / drain electrode provided on the insulating layer in contact with the semiconductor layer; and a flexible film layer formed so as to cover the semiconductor layer and the source electrode / drain electrode.
- the gate electrode is composed of a part of the metal layer, and the gate insulating film is composed of a part of the insulating layer, In the flexible film layer, a plurality of vias extend along the thickness direction, and the metal layer is removed at an installation location of at least one of the plurality of vias.
- a method for manufacturing the flexible semiconductor device includes: (I) forming an insulating layer on one main surface of the metal foil; (Ii) forming a semiconductor layer on the insulating layer and forming a source electrode and a drain electrode so as to be in contact with the semiconductor layer; (Iii) forming a flexible film layer so as to cover the semiconductor layer and the source / drain electrodes; (Iv) forming a via in the flexible film layer, thereby obtaining a semiconductor device precursor; and (v) processing the metal foil to form a gate electrode from the metal foil, When processing the metal foil in the step (v), the gate electrode is formed at a predetermined position by using at least one via of the semiconductor device precursor as a positioning marker (alignment marker).
- One feature of the manufacturing method of the present invention is that the gate electrode is formed at a predetermined position using at least one via of the plurality of vias of the semiconductor device precursor as a positioning marker. That is, the gate electrode is accurately formed at a predetermined position by using the via of the semiconductor device precursor as an alignment reference.
- forming a gate electrode at a predetermined position means forming a gate electrode at a desired position originally intended. More specifically, a manufactured flexible semiconductor device This means that a gate electrode is formed at a position that will function as a TFT.
- an embodiment in which the gate electrode is formed at a predetermined position can include an embodiment in which the gate electrode is formed at a position facing the channel without deviation so as to overlap.
- step (v) in step (v), (V1) forming a photoresist film on the other main surface of the metal foil; (V2) exposing and developing the photoresist film to remove at least a part of the photoresist film; and (v3) etching the metal foil through the photoresist film from which at least a part has been removed.
- the step of forming a gate electrode from a metal foil is carried out, and at the time of exposing the photoresist film in step (v2), at least one of the vias of the semiconductor device precursor is used as a positioning marker. A predetermined position is exposed.
- the direct exposure of the photoresist film can be suitably performed so that the gate electrode is formed at a desired position, and as a result, the gate electrode can be accurately formed at a predetermined position. That is, due to the alignment during direct exposure to the photoresist film, the gate electrode can be accurately formed at a predetermined position with respect to the channel portion of the TFT structure of the flexible semiconductor device.
- exposing a predetermined position of the photoresist film in this aspect means that the desired local photoresist region originally intended is exposed.
- the expression “expose a predetermined position of the photoresist film” means that the local photoresist region is exposed so that a gate electrode is formed at a position where the flexible semiconductor device functions as a TFT. Is meant to be applied.
- a photomask is arranged on the photoresist film, and the photoresist is arranged with the photomask.
- the film may be exposed and developed to thereby remove at least a portion of the photoresist film.
- arranging the photomask at a predetermined position means that the photomask is arranged at a desired position originally intended. More specifically, the expression “place the photomask at a predetermined position” means that the photomask is placed so that the gate electrode is formed at a position where the flexible semiconductor device functions as a TFT. ing.
- an X-ray transmission image obtained by irradiating the semiconductor device precursor with X-rays is used.
- the via corresponding point in may be used as an alignment reference.
- a via is formed by supplying a conductive material containing a metal to the opening.
- the present invention also provides an image display device using the flexible semiconductor device.
- Such an image display device A flexible semiconductor device; and an image display unit composed of a plurality of pixels formed on the flexible semiconductor device, At least one of the plurality of vias of the flexible semiconductor device is a positioning marker (alignment marker).
- One of the features of the image display device of the present invention is that at least one of the plurality of vias of the flexible semiconductor device serves as a positioning marker.
- the image display unit is A pixel electrode formed on the flexible semiconductor device; A light emitting layer formed on the pixel electrode; and a transparent electrode layer formed on the light emitting layer.
- the light emitting layer may be formed in a region partitioned by the pixel restricting portion.
- the image display apparatus according to the present invention is Flexible semiconductor devices; A pixel electrode formed on the flexible semiconductor device; A plurality of light-emitting layers formed on the pixel electrode and partitioned by the pixel restricting portion; and a transparent electrode layer formed on the plurality of light-emitting layers, At least one of the plurality of vias of the flexible semiconductor device may be a positioning marker.
- the image display unit may have a color filter on a transparent electrode.
- the image display apparatus is Flexible semiconductor devices; A pixel electrode formed on the flexible semiconductor device; A light emitting layer formed on the pixel electrode; A transparent electrode layer formed on the light emitting layer; and a color filter formed on the transparent electrode layer, At least one of the plurality of vias of the flexible semiconductor device may be a positioning marker.
- the present invention also provides a method for manufacturing the image display device.
- a manufacturing method includes: (I) providing a flexible semiconductor device provided with a pixel electrode; and (II) forming an image display unit composed of a plurality of pixels on the flexible semiconductor device, In the step (II), at least one of the plurality of vias of the flexible semiconductor device is used as a positioning marker (alignment marker), thereby performing alignment for forming the image display unit.
- One feature of the manufacturing method of the image display device of the present invention is that alignment is performed for forming the image display portion using at least one of the vias of the flexible semiconductor device as a positioning marker. For example, when forming a plurality of pixel restricting portions in the step (II) and forming a pixel on the pixel electrode in a region partitioned by the plurality of pixel restricting portions, at least one of the plurality of vias of the flexible semiconductor device is formed. Positioning may be performed when the pixel restricting portion is formed by using it as a positioning marker. In such a case, alignment of the photomask for forming the pixel restricting portion can be performed, and as a result, the light emitting layer can be formed without misalignment.
- the light emitting layer can be accurately formed at a predetermined position with respect to the pixel (circuit including the TFT).
- the step (II) when a light emitting layer is formed on the pixel electrode so as to cover the pixel electrode and a color filter is formed on the light emitting layer, at least one of the plurality of vias of the flexible semiconductor device is positioned. You may use it as a marker and may perform alignment about formation of a color filter.
- the relative positional relationship between the components of the flexible semiconductor device or the relative positional relationship between the components of the image display device using the flexible semiconductor device is preferably aligned.
- the gate electrode can be accurately formed at a predetermined position with respect to the channel portion of the TFT structure of the flexible semiconductor device, or the light emitting layer can be accurately formed at a predetermined position with respect to the pixel (circuit including the TFT) of the image display device. Can be formed.
- the positioning marker can be easily formed in accordance with the formation of an element that may be required in a flexible semiconductor device such as a contact via, and the flexible semiconductor device or the image display device is improved by the alignment improvement caused by such a positioning marker. Therefore, the present invention provides a manufacturing method with excellent productivity.
- the flexible semiconductor device and the image display device according to the present invention constitute a high-performance device in that various elements are formed with high accuracy without causing displacement due to the positioning marker. I can say that.
- FIG. 1A is a cross-sectional view schematically showing the flexible semiconductor device of the present invention
- FIG. 1B is a plan view taken along line Ib-Ib in FIG. is there
- FIG. 2 is a cross-sectional view schematically showing the flexible semiconductor device of the present invention
- FIG. 3 is a schematic cross-sectional view showing the relative positional relationship between the gate electrode and the channel.
- 4A to 4E are process cross-sectional views schematically showing the manufacturing process of the flexible semiconductor device of the present invention.
- 5A to 5D are process cross-sectional views schematically showing the manufacturing process of the flexible semiconductor device of the present invention.
- 6A to 6C are process cross-sectional views schematically showing the manufacturing process of the flexible semiconductor device of the present invention.
- FIG. 7A and 7B are process cross-sectional views schematically showing the manufacturing process of the flexible semiconductor device of the present invention.
- FIG. 8 is a diagram schematically illustrating an embodiment in which direct exposure is performed.
- FIGS. 9A and 9B are diagrams schematically showing an alignment mode of a photomask using an X-ray transmission image of a positioning marker.
- FIGS. 10A to 10C are schematic diagrams for explaining the arrangement mode of the positioning markers.
- FIG. 11 is a schematic diagram for explaining an aspect of a positioning maker formed as a group.
- 12 (a) to 12 (c) are diagrams schematically showing a photomask alignment mode using visible light.
- FIG. 13A is a cross-sectional view schematically showing a flexible semiconductor device in which the positioning marker extends to the lower main surface of the insulating layer
- FIG. FIG. 6A is a plan view cut along Ic-Ic of (a).
- FIG. 14 is a circuit diagram for explaining a drive circuit of the image display device of the present invention.
- FIG. 15 is a plan view showing an example in which the drive circuit of FIG. 14 is configured by a flexible semiconductor device.
- FIG. 16 is a cross-sectional view schematically showing the image display device of the present invention.
- FIG. 17 is a cross-sectional view schematically showing an aspect of an image display device provided with a color filter.
- FIG. 18A to 18E are process cross-sectional views schematically showing the manufacturing process of the pixel display device of the present invention.
- 19A to 19D are process cross-sectional views schematically showing a manufacturing process of an image display device provided with a color filter.
- FIG. 20 is a schematic diagram illustrating a product application example (television image display unit) of the flexible semiconductor device.
- FIG. 21 is a schematic diagram showing a product application example (image display unit of a mobile phone) of a flexible semiconductor device.
- FIG. 22 is a schematic diagram showing a product application example of a flexible semiconductor device (an image display unit of a mobile personal computer or a notebook personal computer).
- FIG. 23 is a schematic diagram illustrating a product application example (image display unit of a digital still camera) of a flexible semiconductor device.
- FIG. 24 is a schematic diagram showing a product application example (camcorder image display unit) of a flexible semiconductor device.
- FIG. 25 is a schematic diagram illustrating a product application example (an image display
- the “direction” described in this specification is a direction based on the positional relationship between the metal layer 10 and the semiconductor layer 30 and will be described in the vertical direction in the drawing for convenience. Specifically, it corresponds to the vertical direction in each figure, the side on which the semiconductor layer 30 is formed with reference to the metal layer 10 is “upward”, and the side on which the semiconductor layer 30 is not formed with reference to the metal layer 10 Is “downward”.
- FIGS. 1 (a) and 1 (b) A flexible semiconductor device 100 according to an embodiment of the present invention will be described with reference to FIGS. 1 (a) and 1 (b).
- 1A is a cross-sectional view schematically showing a cross-sectional configuration of the flexible semiconductor device 100
- FIG. 1B is a plan view showing a cross-section along Ib-Ib in FIG. 1A. .
- the flexible semiconductor device is a device provided with a flexible film.
- the flexible semiconductor device 100 includes a semiconductor structure portion and a film layer 50 formed so as to substantially cover the semiconductor structure portion. More specifically, the flexible semiconductor device 100 of the present invention includes a metal layer 10, an insulating layer 20 formed on the metal layer 10, a semiconductor layer 30 formed on the insulating layer 20, and an insulating layer 20. Source film 40s and drain electrode 40d provided in contact with semiconductor layer 30 above, and flexible film layer formed so as to cover semiconductor layer 30 and source / drain electrodes (40s, 40d) 50.
- the gate electrode 10g of the flexible semiconductor device 100 of the present invention is composed of a part of the metal layer 10, and the gate insulating film 20a is composed of a part of the insulating layer 20.
- the film layer 50 of the flexible semiconductor device 100 of the present invention includes an opening 50a penetrating between the upper surface of the semiconductor structure and the upper surface of the semiconductor device 100 when viewed as a device cross section, and the insulating layer 20. And an opening 50b penetrating between the semiconductor device 100 and the upper surface of the semiconductor device 100 is formed. Conductive members are formed in the openings 50a and 50b. The conductive member in the opening 50a functions as a contact via 60a that electrically connects the circuit of the layer in which the semiconductor structure is formed and the circuit formed on the resin film.
- the conductive member in the opening 50b is similar to the case of the opening 50a in that it is formed of a conductive material, but functions as a positioning marker 60b instead of as a contact via as described later. That is, in the flexible film layer 50 of the flexible semiconductor device 100, a plurality of vias extend along the thickness direction, and at least one of the plurality of vias is a positioning marker (or “alignment”). Marker "or" alignment mark ").
- FIG. 1 shows a mode in which only “via 60b” forms a positioning marker
- FIG. 2 shows a mode in which two vias (60b, 60b ′) as such positioning markers are provided. Has been.
- the film layer 50 is preferably made of a flexible resin material. That is, the flexible film layer 50 is preferably a resin film.
- a resin film can be said to be a support substrate for supporting a semiconductor structure (or a TFT structure including the semiconductor structure), and is composed of a thermosetting resin material or a thermoplastic resin material having flexibility after curing. It is preferable.
- the resin film is a thing suitable for opening part formation.
- the resin film is at least selected from the group consisting of epoxy resin, polyimide resin, acrylic resin, polyethylene terephthalate resin, polyethylene naphthalate resin, polyphenylene sulfide resin, polyphenylene ether resin, liquid crystal polymer, and polytetrafluoroethylene. It is preferable that it comprises one or more resins (for example, the resin film may be a polyimide film). Since such a resin material is excellent in dimensional stability, it can be said that the resin material is preferable as a material for the flexible substrate according to the present invention. In order to form the opening with these resin films, laser processing using a carbon dioxide laser, a YAG laser, or the like may be used.
- a technique such as photolithography may be used for forming the opening.
- a resin specialized for photolithography for example, a film made of a photosensitive resin
- the film which consists of siloxane polymer of an inorganic polymer material also has flexibility and is suitable for opening formation, it can be used suitably as the flexible film layer 50 of this invention. it can.
- the thickness of the flexible film layer is about 2 ⁇ m to about 100 ⁇ m, and the thickness of the adhesive material layer is May be from about 3 ⁇ m to about 20 ⁇ m.
- the conductive member in the flexible semiconductor device 100 has conductivity for functioning as a contact via and visibility for functioning as a positioning marker.
- the conductive member preferably comprises a metal.
- the conductive members (that is, the vias 60a and 60b) formed in the openings 50a and 50b of the flexible film layer 50 are made of a conductive paste material.
- Conductive paste materials include simple metals such as Au, Ag, Cu, Pt, Pd, Al and / or Pb, mixtures or alloys thereof, conductive fillers such as carbon fillers and carbon nanotubes, and organic resins such as epoxy resins. And / or a paste material obtained by dispersing in a binder comprising a solvent such as butyl carbitol acetate (BCA) may be used.
- Conductive members (vias 60a and 60b) are obtained by filling the openings 50a and 50b with such a conductive paste material.
- a metal such as Au, Ag, Cu, Ni, Co, Cr, Mn, Fe, Ru, Rh, Pd, Ag, Os, Ir, and / or Pt is filled in the openings 50a and 50b by plating to form conductive members (vias). 60a, 60b).
- Cu plating is preferable because it is relatively inexpensive, has high Cu conductivity, and is also preferable in terms of visibility by X-rays because of its large atomic number.
- a semiconductor such as silicon (eg, Si) or germanium (Ge) may be used, or an oxide semiconductor may be used. May be.
- the oxide semiconductor include simple oxides such as ZnO, SnO 2 , In 2 O 3 and / or TiO 2 , and composite oxides such as InGaZnO, InSnO, InZnO and / or ZnMgO.
- a compound semiconductor for example, GaN, SiC, ZnSe, CdS, and / or GaAs
- organic semiconductors for example, pentacene, poly-3-hexylthiophene, porphyrin derivatives, copper phthalocyanine and / or C60 can also be used.
- the semiconductor structure is subjected to annealing treatment.
- the semiconductor layer 30 is preferably heat-treated by laser irradiation or the like, and thereby, the film quality of the semiconductor structure portion is preferably changed as compared with that before irradiation.
- a semiconductor layer made of amorphous silicon before irradiation is changed to a semiconductor layer made of polycrystalline silicon (for example, average particle size: about several hundred nm to 2 ⁇ m) by laser irradiation. It may be.
- the semiconductor layer 30 is polycrystalline silicon, the crystallinity can be improved by laser irradiation.
- the mobility of the semiconductor layer 30 is improved by the change in the film quality of the semiconductor structure, and the mobility may be significantly increased before and after irradiation.
- film quality in the present specification substantially means characteristics such as “crystal state”, “crystallinity” and / or “mobility” of a semiconductor layer. Therefore, “change in film quality” substantially means that “crystal state”, “crystallinity”, and / or “mobility” and the like are changed and improved as far as the semiconductor layer is concerned.
- semiconductor characteristics can be improved even when an oxide semiconductor is used instead of a silicon semiconductor.
- a crystalline oxide semiconductor such as ZnO
- many amorphous layers are included in a crystalline layer immediately after film formation by sputtering or the like. Therefore, a crystalline oxide semiconductor such as ZnO often does not exhibit characteristics as a semiconductor device.
- the annealing treatment improves the crystallinity of an oxide semiconductor such as ZnO, As a result, semiconductor characteristics can be improved.
- the mobility is about 1 cm 2 before excimer laser irradiation. Only low values below / Vs are shown.
- XeCl excimer laser is irradiated, semiconductor operation can be performed, and mobility of about 20 cm 2 / Vs can be realized.
- an amorphous oxide semiconductor such as InGaZnO can have an effect of improving semiconductor characteristics.
- oxygen vacancies can be repaired by laser irradiation in an oxygen atmosphere (for example, in the air), and as a result, mobility can be improved.
- an oxide film made of SiO 2 , Al 2 O 3, or the like is disposed as the gate insulating layer 20, oxygen vacancies in the amorphous oxide semiconductor are amorphous through the insulating layer 20 from the openings (50 a, 50 b). It can be repaired by oxygen supplied to the oxide semiconductor.
- a TFT is manufactured using InGaZnO as a semiconductor, mobility with a low value of about 1 cm 2 / Vs or less before laser irradiation can be improved to about 10 cm 2 / Vs after laser irradiation.
- the semiconductor structure is supported by the metal layer 10.
- the metal layer 10 may be made of a metal foil.
- the metal constituting the metal foil 10 is preferably a metal having electrical conductivity and a relatively high melting point, such as copper (Cu, melting point: 1083 ° C.), nickel (Ni, melting point: 1453 ° C.), aluminum (Al, Melting point: 660 ° C.) and / or stainless steel (SUS) can be used.
- An insulating layer 20 is formed on the metal foil 10.
- an insulating layer 20 made of an inorganic insulating material (for example, silicon oxide or silicon nitride) is formed on at least a part of the surface (upper surface) of the metal foil 10.
- a semiconductor layer 30 is formed on the insulating layer 20.
- the insulating layer 20 may be formed by oxidizing the surface of the metal layer 10 (for example, metal foil).
- the metal layer 10 is preferably made of a valve metal such as an aluminum foil. Then, by performing anodization of the valve metal using the chemical conversion liquid, an anodized film can be formed on the surface of the metal layer, so that it can be used as the insulating layer 20.
- This “anodic oxide coating” is a very thin and dense oxide coating, which provides the advantage that the insulating layer 20 is free of defects or has reduced defects.
- the material of the insulating layer 20 is not limited to the above, and various suitable materials may be adopted according to the required characteristics of the gate insulating film. For example, silicon oxide or silicon nitride can be used. Further, the material of the insulating layer 20 is not limited to the inorganic insulating material, and other insulating materials (such as an organic insulating material such as polyimide) may be employed.
- a gate electrode 10g and wirings (10a, 10b) are composed of a metal layer 10 that can function as a support layer. Specifically, for example, the metal layer 10 is patterned to form an opening (for example, an opening 10 ′) in the metal layer 10. As a result, the gate electrode 10g and the wiring (10a, 10a, 10b) is provided.
- the source electrode 40 s and the drain electrode 40 d are in contact with the semiconductor layer 30.
- a region between the source electrode 40s and the drain electrode 40d is a channel region or a channel portion.
- the material of the source electrode and the drain electrode (40s, 40d) include gold (Au), silver (Ag), copper (Cu), nickel (Ni), chromium (Cr), cobalt (Co), and magnesium (Mg).
- tin oxide SnO 2
- Conductive oxides such as indium tin oxide (ITO), fluorine-containing tin oxide (FTO), ruthenium oxide (RuO 2 ), iridium oxide (IrO 2 ) and / or platinum oxide (PtO 2 ).
- ITO indium tin oxide
- FTO fluorine-containing tin oxide
- RuO 2 ruthenium oxide
- IrO 2 iridium oxide
- platinum oxide PtO 2
- the source electrode and the drain electrode (40s, 40d) using the paste material can be formed by printing (for example, ink jet printing).
- a via opening 20c may be formed in a part of the insulating layer 20 located on the metal layer 10, and an interlayer connection portion (via) 60c made of a conductive material may be formed in the via opening 20c.
- the interlayer connection part (via) 60c may be formed by filling the via opening 20c with a conductive material (for example, Ag paste).
- the wiring 10a is connected to a drain electrode 40d formed on the insulating layer 20 via an interlayer connection part (via) 60c.
- a part of the drain electrode 40d may extend to the via opening 20c, thereby forming an interlayer connection part (via) 60c.
- the gate electrode 10g is disposed below the channel of the semiconductor layer 30 via the gate insulating film 20a. It is preferable that the gate electrode and the channel have the same size and are disposed so as not to overlap each other. The reason for this will be described with reference to FIG. First, consider a case where the gate electrode 10g and the channel 30a are displaced and a case where the gate electrode 10g is smaller than the channel 30a (FIG. 3A). In either case, a portion without the gate electrode 10g exists below the channel 30a. In such a case, even when a voltage is applied to the gate electrode 10g, no charge is induced in the portion without the gate electrode. Since the channel portion 30a where no charge is induced has a low conductivity, the channel does not function sufficiently and the current taken out from the drain electrode is reduced. Therefore, the entire channel portion is preferably covered with the gate electrode.
- the gate electrode 10g and the channel 30a are displaced and when the gate electrode 10g is formed larger than the channel portion 30a (FIG. 3B), the gate electrode 10g overlaps the source electrode 40s and / or the drain electrode 40d. There is a part. In this case, parasitic capacitance is generated at the overlapping portion of the gate electrode 10g and the source electrode 40s, and the characteristics of the transistor are deteriorated. That is, problems such as the loss of the output signal of the transistor due to the parasitic capacitance and the increase in power consumption due to an increase in the required amount of current occur.
- the relationship between the gate electrode 10g and the drain electrode 40d is the same. Therefore, it is preferable that the overlap / overlap between the gate electrode 40g and the source electrode 40s is small.
- the gate electrode 10g and the channel 30a have the same size and are arranged to face each other without any deviation (FIG. 3). (See (c)).
- FIGS. 4 (a) to (e), FIGS. 5 (a) to (d), FIGS. 6 (a) to (c) and FIGS. 7 (a) and 7 (b) illustrate a method for manufacturing the flexible semiconductor device 100.
- step (i) is carried out. That is, an insulating layer is formed on one main surface of the metal foil.
- a metal foil 10 to be a support layer is prepared.
- a copper foil is prepared.
- a commercially available metal foil 10 can be used.
- the thickness of the metal foil 10 is preferably in the range of about 3 ⁇ m to about 100 ⁇ m, more preferably in the range of about 4 ⁇ m to about 20 ⁇ m, and even more preferably in the range of about 8 ⁇ m to about 16 ⁇ m.
- an insulating layer 20 is formed on the surface of the metal foil 10.
- Such an insulating layer 20 may be formed by “anodic oxidation of a valve metal” as described above (particularly when a metal foil made of a valve metal is used), but may be formed by another method. For example, it may be formed by a sol-gel method. When the sol-gel method is performed, specifically, an insulating material is applied by applying an organic-inorganic hybrid material in which organic molecules are combined with a siloxane skeleton (for example, spin coating) and baking at about 300 ° C. to about 600 ° C. Layer 20 can be obtained. The thickness of the insulating layer 20 may be, for example, about 0.1 ⁇ m to 1 ⁇ m.
- the insulating layer 20 is preferably formed with a via portion 60c serving as an interlayer connection portion.
- an opening 20c may be formed in the insulating layer region where the via 60c is formed and filled with a conductive material (typical photolithography may be used for forming the opening 20c. Etching of the layer may be performed by dry etching using CF 3 ).
- step (ii) is performed. That is, a semiconductor layer is formed over the insulating layer, and a source electrode and a drain electrode are formed so as to be in contact with the semiconductor layer. Specifically, first, as shown in FIG. 4C, the semiconductor layer 30 is formed on the insulating layer 20.
- the thickness of the semiconductor layer may be, for example, about 5 nm to about 990 nm (by the way, the thickness of the semiconductor structure as shown in FIG. 1 may be, for example, about 10 nm to about 1 ⁇ m).
- the formation of the semiconductor layer 30 may be performed, for example, by a thin film forming method such as vacuum deposition, sputtering, or plasma CVD, or may be performed by a printing method such as relief printing, gravure printing, screen printing, or inkjet. Good.
- a cyclic silane compound-containing solution for example, a toluene solution of cyclopentasilane
- the semiconductor layer 30 including amorphous silicon can be formed.
- the source electrode 40s and the drain electrode 40d are formed on the insulating layer 20 so as to be in contact with the semiconductor layer 30, as shown in FIG.
- the drain electrode 40d is disposed so as to extend above the via portion 60c.
- the drain electrode 40 d is formed so that one end of the drain electrode 40 d is in contact with the via portion 60 c and the other end of the drain electrode 40 d is in contact with the semiconductor layer 30.
- each of the source electrode and the drain electrode may be about 50 nm to about 5 ⁇ m, for example.
- the source electrode 40s and the drain electrode 40d can be formed by applying an Ag paste by a printing method such as screen printing, gravure printing, or ink jet method. If a part of the drain electrode 40d is formed so as to fill the opening 20c, the drain electrode and the via 60c can be formed together.
- the source electrode when it is necessary to connect the source electrode to a wiring formed of a metal foil, it may be the same as in the case of the drain electrode.
- step (iii) is performed. That is, as shown in FIG. 4E, the flexible film layer 50 is formed so as to cover the semiconductor layer 30 and the source / drain electrodes (40s, 40d). Specifically, first, a semi-cured resin film (adhesive material may be applied to the bonding surface of the resin sheet) is prepared, and the resin film is superimposed on the metal layer on which the semiconductor structure is formed. Adhere temporarily. Temporary bonding conditions can be appropriately selected depending on the type of semi-cured resin film or adhesive material.
- an epoxy resin is applied as an adhesive material to a bonding surface of a polyimide film (thickness: about 12.5 ⁇ m) (thickness: When a resin film having a thickness of about 10 ⁇ m is used, the metal foil and the resin film can be laminated, heated to about 60 ° C., and temporarily pressed under a pressure of about 3 MPa.
- the thickness of the formed resin film layer 50 is, for example, about 4 ⁇ m to about 100 ⁇ m.
- the formation of the resin film 30 protects the semiconductor structure and can stably handle and convey the next process (patterning process of the metal foil 10 and the like).
- step (iv) is performed. That is, a via is formed in the flexible film layer, thereby obtaining a semiconductor device precursor.
- a via is formed in the flexible film layer, thereby obtaining a semiconductor device precursor.
- FIGS. 5A and 5B after forming openings (50a, 50b) in the flexible film layer 50, a conductive material is supplied to the openings to form vias ( The semiconductor device precursor 100 ′ is obtained by forming 60a, 60b).
- the openings (50a, 50b) provided in the resin film layer can be formed by laser processing.
- the laser used for processing include a carbon dioxide gas laser, a YAG laser, and an excimer laser.
- the energy density can be about 50 mJ / cm 2 to about 500 mJ / cm 2 .
- the contact via opening (50a) is formed so that the resin film layer 50 is irradiated with laser to expose the surface of the electrode of the circuit connected to the semiconductor structure.
- the opening (50b) for the positioning marker is formed so as to expose the upper surface of the metal film-like insulating film.
- the size (diameter) of the openings (50a, 50b) can be set to a desired size by reducing the laser diameter.
- the size of the opening (diameter of the opening surface) formed by laser irradiation may be about 5 ⁇ m to about 80 ⁇ m.
- the opening surface may have a diameter of about 30 ⁇ m.
- a desired beam diameter can be obtained not only by narrowing the laser diameter but also by masking the laser beam.
- the shape of the openings can be tapered (a so-called mortar shape or an inverted substantially conical shape). That is, the wall surface of the opening (50a, 50b) and the upper surface of the resin film layer 50 can be obtuse (> 90 °).
- the taper angle ⁇ as shown in FIG. 5A can be about 110 ° to about 160 °.
- Steps such as filling the openings (50a, 50b) with a conductive material can be easily performed.
- an insulating layer made of an inorganic material such as silica (SiO 2 ) can be processed at the same time. That is, by extending the opening to the insulating layer 20 as well as the resin film 50, the conductive member can extend to the metal layer on the lower surface of the semiconductor structure. With such a configuration, when the metal layer on the lower surface is removed, the positioning marker can be recognized from the lower side by visible light. This is a preferable configuration also when a functional layer is laminated on the lower surface of the flexible semiconductor device of the present invention.
- the formation method (50a, 50b) of the opening is not limited to laser processing, and may be a punching method or a mechanical drill method.
- the opening can be formed using a technique such as photolithography.
- conductive members are formed in the openings (50a, 50b).
- the conductive member is made of a conductive paste
- the conductive member can be formed by filling the openings (50a, 50b) with the conductive paste by a printing method.
- a printing mask can be arranged on the surface of the resin film 50 and the conductive paste can be filled in the openings (50a, 50b) with a squeegee.
- the printing mask is for preventing the surface of the resin film from being contaminated with the conductive paste, and a printing mask opening corresponding to the opening of the resin film is formed.
- Examples of such a mask include a screen plate and the like, and a mask obtained by pasting a PET film on the surface of a resin film in advance. That is, when a PET film is laminated on the surface of the resin film in advance and an opening is formed by laser from the PET film, a mask in which the opening of the resin film and the mask opening are aligned can be formed. The PET film is peeled off after filling the conductive member.
- the metal foil 15 is superposed on the resin film 50 and thermocompression-bonded (that is, a further metal layer 15 is formed on the semiconductor device precursor 100 ′.
- the conditions for thermocompression bonding can be appropriately selected depending on the type of semi-cured resin film or adhesive material.
- an epoxy resin is applied as an adhesive material to a bonding surface of a polyimide film (thickness of about 12.5 ⁇ m) (thickness of about
- the metal foil 15 may be laminated on the resin film 50 and the adhesive material may be fully cured at about 140 ° C. and about 5 MPa for about 1 hour.
- the metal layer 15 can be formed by plating (in this case, the step of thermocompression bonding by overlapping the metal foil can be omitted, which is preferable because production efficiency is increased).
- a Cu seed layer may be formed by electroless copper plating, and then the opening may be filled with Cu by electrolytic copper plating.
- electroless copper plating can be performed by immersing a sample in an electroless plating bath in which formaldehyde is added as a reducing agent to an aqueous copper sulfate solution.
- Electroplating can be performed by immersing a sample in an aqueous copper sulfate solution and using the sample as a cathode and phosphorous copper as an anode.
- An additive such as a polyether compound, an organic sulfur compound and / or an amine compound can be added to the copper sulfate aqueous solution, and plating can be performed by flowing a current of about 3 A / dm 2 (in addition, an opening on the upper surface of the resin film)
- a resist opening may be formed in a portion corresponding to 50b).
- step (v) is performed. That is, the metal foil 10 is processed to form the gate electrode 10 g from the metal foil 10. Preferably, when forming the gate electrode 10g from the metal foil 10, wirings (10a, 10b) are also formed from the metal foil.
- a photoresist 11 is formed on a portion corresponding to a gate electrode or wiring of a metal foil. Specifically, as shown in FIG. 5D, a photoresist film 11 is formed on substantially the entire bottom surface of the metal foil 10.
- a photomask 12 is disposed below the photoresist film 11.
- the photoresist film 11 is exposed through a photomask 12, and finally developed to remove unnecessary portions.
- the photomask 12 is arranged by superimposing positioning markers 60b provided on the resin film and patterns corresponding to the positioning markers provided on the photomask 12 (see FIGS. 6A and 6B).
- the positioning marker provided on the resin film can be confirmed using an X-ray transmission image obtained on the lower side of the metal foil 10 by irradiating X-rays from the upper side of the semiconductor device precursor 100 ′.
- Lighter elements (elements with smaller atomic numbers) transmit X-rays better, and heavier elements such as metals are less likely to transmit X-rays. Therefore, if X-rays having such intensity as to transmit through the metal foil are irradiated, the positioning marker portion formed from the metal conductive member in the transmission image is favorably visually recognized with a large contrast with respect to the resin film portion.
- the metal foil is etched through the photoresist film 11 ′ from which a part has been removed, thereby forming the gate electrode 10g, the wiring (10a, 10b), etc. from the metal foil 10 ( FIG. 6 (c) and FIG. 7 (a)).
- the etching method can be appropriately selected according to the type of metal foil. For example, when the metal foil is a copper foil, it can be performed by dipping in an aqueous iron chloride solution. Also, a dry etching technique such as RIE may be used.
- the “partly removed photoresist 11 ′” used in development may be formed in a mode using direct exposure instead of the mode using the photomask (see FIG. 8).
- direct exposure exposure is performed by locally irradiating a desired position (pattern) of the photoresist with a laser (for example, a wavelength of 355 nm). That is, the photoresist is directly exposed without using a photomask.
- the position to be irradiated with the laser can be determined based on the recognition of the positioning marker 60b, and the recognition of the positioning marker itself can be performed in the same manner as the mode using the photomask.
- the desired position of the photoresist film can be directly exposed without using a photomask by using at least one of the vias of the semiconductor device precursor as a positioning marker.
- a photoresist on the metal foil 15 formed on the upper surface of the resin film by forming a photoresist on the metal foil 15 formed on the upper surface of the resin film and performing etching or the like, a desired wiring pattern 70, a pixel electrode 150 (to be described later), and the like can be formed ( (Refer FIG.7 (b)).
- the metal foil on the lower surface of the semiconductor structure and the metal foil on the resin film are separately etched.
- a photoresist on the entire surface of the other metal foil is formed. It is preferable to protect.
- the types and thicknesses of the metal foils on both sides can be appropriately selected separately.
- the productivity can be improved because etching can be performed at the same time.
- a photoresist can be formed on both metal foils (10, 15) and then immersed in an etching solution to simultaneously etch the metal foils (10, 15) on both sides to form a desired pattern. .
- the flexible semiconductor device 100 having the structure shown in FIG. 7B and FIG. 1 can be constructed.
- the gate electrode 10g is composed of a part of the metal layer 10
- the gate insulating film 20a is the insulating layer 20. It consists of a part.
- a plurality of vias 60a, 60b, 60c, etc Extend along the thickness direction, and at least one of the plurality of vias (FIG. 7 (b), the metal layer is removed where the via 60b) is located (as shown in FIG.
- the via 60b serving as a positioning marker is different from the contact via 60a and the interlayer connection part via 60c from the one main surface side of the flexible film layer 50 to the other. It has a form extending to the main surface side.
- the conductive member is configured by filling the openings (50a, 50b) provided in the resin film layer 50 with a conductive material such as metal. Therefore, the contact via and the positioning marker can be formed in substantially the same process. If the positioning marker of the present invention is used, a TFT that can be visually recognized well by an X-ray transmission image and has a small shift between the gate electrode and the channel can be obtained. In other words, in the present invention, it can be said that the manufacturing process efficiency can be improved and the TFT characteristics can be improved by the “positioning marker by the conductive member formed on the resin film”.
- an X-ray transmission image 110 obtained by irradiating the semiconductor device precursor 100 ′ with X-rays is used, and a via corresponding point 120 in the X-ray transmission image 110 is used. It is preferable to use (an image point corresponding to a via position) obtained by irradiating the precursor region including the positioning markers 60b and 60b ′ with X-rays as an alignment reference.
- Positioning markers may be arranged in one set (for example, two (or group) positioning markers) for each exposure range, for example, for each photomask. That is, when a photomask is overlapped for each transistor, a positioning marker is disposed for each transistor (FIG. 10A), and when a plurality of transistors are grouped to overlap a photomask, a positioning marker is disposed for each group (FIG. 10). 10 (b)). When all the transistors in the work are exposed and developed at one time with one photomask, a set of positioning markers may be arranged on the work (FIG. 10C).
- a set of positioning markers may be arranged on the work (FIG. 10C).
- the positioning marker may be arranged at a position that can correspond to the central portion of the short side of the rectangle. By arranging in this way, the positional deviation between the photomask and the workpiece can be minimized (that is, the overlay accuracy can be improved).
- the photomask is arranged by measuring, for example, two positioning marks using an X-ray transmission image, finding the center of gravity of the entire alignment range, correcting specified dimensions and errors, and distributing the design value from the center of gravity. You can do that.
- one via can function alone as a positioning marker.
- a plurality of vias may function as positioning markers. . That is, four vias may be grouped to form a square positioning marker, or five vias may be grouped to form a cross-shaped positioning marker. It is preferable to form a plurality of via groups as a positioning marker with a desired shape as a whole because it is easy to distinguish from contact vias and facilitates image recognition.
- the positioning marker 60b is formed so as to extend to the lower surface of the insulating layer 20 (FIG. 12A), and the metal layer positioned near the lower side of the positioning marker 60b.
- FIG. 12B the position of the positioning marker 60b can be grasped by applying visible light from the lower side (FIG. 12C). Therefore, using it as an alignment reference, alignment of the photomask and alignment during direct exposure can be performed.
- the finally obtained flexible semiconductor device 100b has a mode as shown in FIG. That is, as illustrated, the positioning marker 60 b of the flexible semiconductor device 100 b extends beyond the “upper main surface” of the insulating layer 20 to reach the “lower main surface” of the insulating layer 20.
- FIG. 14 is a circuit diagram for explaining the drive circuit 90 of the image display device.
- FIG. 15 is a plan view showing an example in which the drive circuit is configured by the flexible semiconductor device 100 of the present embodiment.
- a circuit 90 shown in FIG. 14 is a drive circuit mounted on an image display device (for example, an organic EL display), and here represents a configuration of one pixel of the image display device.
- Each pixel of the image display apparatus of this example is configured by a circuit of a combination of two transistors (100A, 100B) and one capacitor 85.
- This driving circuit includes a switching transistor (hereinafter also referred to as “Sw-Tr”) 100A and a driving transistor (hereinafter also referred to as “Dr-Tr”) 100B. Both transistors (100A, 100B) are composed of the flexible semiconductor device 100 according to the present invention. Note that a capacitor may be formed in part of the structure of the flexible semiconductor device 100.
- the gate electrode of the Sw-Tr 100A is connected to the selection line 94.
- One of the source electrode and the drain electrode of the Sw-Tr 100A is connected to the data line 92, and the other is connected to the gate electrode of the Dr-Tr 100B.
- one of the source electrode and the drain electrode of the Dr-Tr 100B is connected to the power supply line 93, and the other is connected to the display unit (for example, organic EL element) 80.
- the capacitor 85 is connected between the source electrode and the gate electrode of the Dr-Tr 100B.
- FIG. 15 is a plan view of a flexible semiconductor device in which an example of the circuit 90 shown in FIG. 14 is formed.
- 15A is a plan view seen from the top surface of the resin film
- FIG. 15B is a plan view with the metal layer and the resin film on the resin film removed
- FIG. 15C further shows a semiconductor. It is a top view of the state which removed the structure part, the electrically-conductive member, and the insulating layer on metal foil.
- a drive circuit that drives the image display device requires a capacitor 85 that retains a capacitance.
- a capacitor is incorporated in a part of the substrate structure, and therefore it is not necessary to separately arrange a capacitor outside the substrate structure. Therefore, it is possible to realize a small image display device capable of high-density mounting.
- FIG. 16 is a cross-sectional view of an OLED (organic EL) image display device 200 in which three colors of R (red), G (green), and B (blue) are arranged in three pixels on the flexible semiconductor device of the present invention.
- OLED organic EL
- FIG. 16 is a cross-sectional view of an OLED (organic EL) image display device 200 in which three colors of R (red), G (green), and B (blue) are arranged in three pixels on the flexible semiconductor device of the present invention.
- a resin film, a pixel electrode (cathode), and a positioning marker are illustrated.
- a light emitting layer 170 made of a light emitting material corresponding to each color is disposed on the pixel electrode 150 of each of the R, G, and B pixels.
- a pixel restricting portion 160 is formed between adjacent pixels to prevent light emitting materials from being mixed and at the same time to facilitate positioning when arranging the EL material.
- a transparent electrode layer (anode layer) 180 is formed on the upper
- the material used for the pixel electrode 150 is a metal such as Cu as described above.
- the surface has a laminated structure with 0.1 ⁇ m of Al ( For example, an Al / Cu) reflective electrode may be used.
- the material used for the light-emitting layer 170 is not particularly limited.
- a polyfluorene-based light-emitting material and a substance having a tree-like multi-branched structure use heavy metals such as Ir and Pt at the center of a so-called dendrimer dendron skeleton.
- a dendrimer-based light emitting material can be used.
- the light emitting layer 170 may have a single layer structure, but in order to facilitate charge injection, MoO 3 is used as a hole injection layer and LiF is used as an electron injection layer, and a laminated structure such as an electron injection layer / light emitting layer / hole injection layer It is good.
- ITO can be used for the transparent electrode of the anode.
- the pixel restricting portion 160 may be any insulating material, but for example, a photosensitive resin mainly composed of polyimide or SiN can be used.
- the image display device may have a color filter as shown in FIG.
- a flexible semiconductor device 100 a plurality of pixel electrodes 150 formed on the flexible semiconductor device 100, a light emitting layer 170 formed so as to entirely cover the pixel electrodes 150, and A transparent electrode layer 180 formed on the light emitting layer 170 and a color filter 190 formed on the transparent electrode layer 180 are provided.
- the color filter 190 has a function of converting the light from the light emitting layer 170 into three colors of red, green, and blue, whereby R (red) G (blue) B Three (blue) pixels can be configured. That is, in the image display device 200 shown in FIG.
- each light emitting layer divided by the pixel restricting section emits red, green, and blue separately, whereas in the image display device 200 ′ shown in FIG.
- the light emitted from the light emitting layer itself has no distinction of color (for example, it is white light), but the light passes through the color filter 190 to generate red, green, and blue light. Yes.
- step (I) is performed. That is, as shown in FIG. 18A, the flexible semiconductor device 100 including the pixel electrode 150 is prepared. Specifically, as described above, the pixel electrode 150 can be formed by patterning the metal foil 15 when the flexible semiconductor device 100 is manufactured (that is, the metal foil provided on the flexible film layer is formed by photolithography or the like). The pixel electrode 150 can be formed by applying a pixel electrode raw material to a predetermined portion by a printing method or the like.
- step (II) is performed.
- the “image display unit including a plurality of pixels” is formed on the flexible semiconductor device.
- a plurality of pixel restricting portions 160 are formed on the flexible semiconductor device 100, and the regions partitioned by the plurality of pixel restricting portions 160 and the pixel electrodes 150 are formed.
- a light emitting layer 170 is formed.
- the pixel regulation layer 160 is formed so as to cover the entire pixel electrode with a photosensitive resin material mainly composed of polyimide to form a precursor layer 160 ′ of the pixel regulation part, and then the precursor layer 160 ′ is formed on the precursor layer 160 ′.
- the light emitting layer 170 of a predetermined color is formed on a predetermined pixel electrode.
- a method for forming the light-emitting layer 170 for example, a polyfluorene-based light-emitting material can be dissolved in xylene to form a 1% solution, which can be disposed on the pixel electrode by an ink-jet method.
- the thickness of the light emitting layer 170 can be about 80 nm.
- the positioning markers (60b, 60b ′) of the flexible semiconductor device 100 are used. Is preferably used.
- positioning markers 60b, 60b '
- the metal foil on the positioning marker is removed. This is because the positioning marker can be recognized by visible light. The removal of the metal foil on the positioning marker can be performed simultaneously in the process of processing the metal foil and forming a pattern, so there is no increase in the number of processes.
- a transparent conductive layer 180 (for example, an ITO film) is formed so as to cover the light emitting layer 170.
- the ITO film of the transparent conductive layer can be formed by sputtering.
- the image display device 200 having the structure shown in FIG. 18 (e) and FIG. 16 can be constructed through the above steps.
- a manufacturing mode of the image display device 200 ′ having a color filter will be described.
- Such a manufacturing mode is substantially the same as the above manufacturing method, although there are some differences.
- the white light emitting layer 170 is formed in a solid film shape on the entire surface (see FIG. 19B).
- the transparent electrode layer 180 is formed in the same manner as described above (see FIG. 19C).
- the three colors R (red), G (green), and B (blue) of the color filter 190 are placed at desired pixel positions.
- FIG. 19D the image display device 200 ′ can be completed.
- the positioning markers (60b, 60b ') of the flexible semiconductor device 100 can be used.
- the positioning markers (60b, 60b ') it is possible to effectively prevent the accumulation of misalignment among the components of the pixel display device.
- it is preferable that the metal foil on the positioning marker is removed. This is because the positioning marker can be recognized by visible light. The removal of the metal foil on the positioning marker can be performed simultaneously in the process of processing the metal foil and forming a pattern, so there is no increase in the number of processes.
- the contact via and the positioning marker are not limited to being configured separately, and a part of the contact via may be used as the positioning marker.
- the positioning marker is not necessarily limited to one having a via shape, and may be a through hole shape in which a metal layer such as copper is formed on the inner wall surface of the hole forming the opening by electroless plating.
- the formation of the flexible film layer of the flexible semiconductor device is not necessarily limited to the mode of laminating the resin film.
- the flexible film layer is formed by applying a semi-cured resin material or a photosensitive resin material by spin coating or the like. The form to form may be sufficient.
- the flexible semiconductor device mounted on the organic EL display is exemplified, but it may be mounted on the inorganic EL display. Moreover, not only an EL display but also electronic paper may be used. Furthermore, not only the display but also a communication device such as an RFID or a memory can be mounted.
- a flexible semiconductor device is manufactured in a form corresponding to one device has been illustrated, the present invention is not limited thereto, and a method of manufacturing in a form corresponding to a plurality of devices may be executed. As such a production method, a roll-to-roll manufacturing method can be used.
- the method for manufacturing a flexible semiconductor device of the present invention is excellent in productivity of the flexible semiconductor device.
- the obtained flexible semiconductor device can be used for various image display units (that is, image display devices), and can also be used for electronic paper, digital paper, and the like.
- a television image display unit as shown in FIG. 20 an image display unit of a mobile phone as shown in FIG. 21, an image display unit of a mobile personal computer or a notebook personal computer as shown in FIG. 22, FIG. 23 and FIG.
- it can be used in an image display unit of a digital still camera and a camcorder, an image display unit of electronic paper as shown in FIG.
- the flexible semiconductor device obtained by the manufacturing method of the present invention is applicable to various uses (for example, RF-ID, memory, MPU, solar cell, sensor, etc.) that are currently being studied for application in printed electronics. be able to.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Computer Hardware Design (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- Theoretical Computer Science (AREA)
- Thin Film Transistor (AREA)
- Devices For Indicating Variable Information By Combining Individual Elements (AREA)
- Electroluminescent Light Sources (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Abstract
Description
金属箔;
金属箔の上に形成されている絶縁層;
絶縁層の上に形成されている半導体層;
絶縁層上にて半導体層と接して設けられているソース電極・ドレイン電極;ならびに
半導体層およびソース電極・ドレイン電極を覆うように形成されている可撓性フィルム層
を有して成り、
ゲート電極が金属箔の一部から構成されていると共に、ゲート絶縁膜が絶縁層の一部から構成されており、また
可撓性フィルム層においては、その厚み方向に沿って複数のビアが延在しており、それら複数のビアのうちの少なくとも1つのビアが位置決めマーカー(位置合せマーカー)となっていることを特徴とする、フレキシブル半導体装置が提供される。
金属箔;
金属箔の上に形成されている絶縁層;
絶縁層の上に形成されている半導体層;
絶縁層上にて半導体層と接して設けられているソース電極・ドレイン電極;ならびに
半導体層およびソース電極・ドレイン電極を覆うように形成されている可撓性フィルム層
を有して成り、
ゲート電極が金属箔の一部から構成されていると共に、ゲート絶縁膜が絶縁層の一部から構成されており、
可撓性フィルム層においては、その厚み方向に沿って複数のビアが延在しており、また、複数のビアのうちの少なくとも1つのビアの設置箇所では、金属箔が除去されている。このような特徴を有するフレキシブル半導体装置においては、絶縁層が「可撓性フィルム層と接する上側主面」および「上側主面と対向する下側主面」を有しており、前記ビアの少なくとも1つ(即ち、位置決めマーカーとしてのビア)が絶縁層の“上側主面”から“下側主面”に至るまで延在していることが好ましい。
フレキシブル半導体装置であって、
金属層;
金属層の上に形成されている絶縁層;
絶縁層の上に形成されている半導体層;
絶縁層上にて半導体層と接して設けられているソース電極・ドレイン電極;ならびに
半導体層およびソース電極・ドレイン電極を覆うように形成されている可撓性フィルム層
を有して成り、
ゲート電極が金属層の一部から構成されていると共に、ゲート絶縁膜が絶縁層の一部から構成されており、また
可撓性フィルム層においては、その厚み方向に沿って複数のビアが延在しており、その複数のビアのうちの少なくとも1つのビアが位置決めマーカーであることを特徴とする、フレキシブル半導体装置。
フレキシブル半導体装置であって、
金属層;
金属層の上に形成されている絶縁層;
絶縁層の上に形成されている半導体層;
絶縁層上にて半導体層と接して設けられているソース電極・ドレイン電極;ならびに
半導体層およびソース電極・ドレイン電極を覆うように形成されている可撓性フィルム層
を有して成り、
ゲート電極が金属層の一部から構成されていると共に、ゲート絶縁膜が絶縁層の一部から構成されており、
可撓性フィルム層においては、その厚み方向に沿って複数のビアが延在しており、また、その複数のビアのうちの少なくとも1つのビアの設置箇所では、金属層が除去されていることを特徴とする、フレキシブル半導体装置。
(i)金属箔の一方の主面上に絶縁層を形成する工程;
(ii)絶縁層の上にて半導体層を形成すると共に、半導体層と接するようにソース電極・ドレイン電極を形成する工程;
(iii)半導体層およびソース電極・ドレイン電極を覆うように可撓性フィルム層を形成する工程;
(iv)可撓性フィルム層にビアを形成し、それによって、半導体装置前駆体を得る工程;ならびに
(v)金属箔を加工して、金属箔からゲート電極を形成する工程
を含んで成り、
工程(v)の金属箔の加工に際しては、半導体装置前駆体のビアの少なくとも1つを位置決めマーカー(位置合せマーカー)として用いることによって、ゲート電極を所定位置に形成することを特徴とする。
(v1)金属箔の他方の主面上にフォトレジスト膜を形成する工程;
(v2)フォトレジスト膜に対して露光および現像を行い、フォトレジスト膜の少なくとも一部を除去する工程;ならびに
(v3)少なくとも一部を除去されたフォトレジスト膜を介して金属箔にエッチングを施し、金属箔からゲート電極を形成する工程
を実施し、工程(v2)のフォトレジスト膜への露光に際しては、半導体装置前駆体のビアの少なくとも1つを位置決めマーカーとして用いることによって、フォトレジスト膜の所定位置を露光する。かかる態様では、ゲート電極が所望の位置に形成されるように、フォトレジスト膜のダイレクト露光を好適に行うことができ、その結果、ゲート電極を所定位置に精度良く形成することができる。つまり、フォトレジスト膜へのダイレクト露光時の位置合せに起因して、フレキシブル半導体装置のTFT構造体のチャネル部分に対してゲート電極を所定の位置に精度良く形成することができる。尚、上記と同様であるが、かかる態様でいう「フォトレジスト膜の所定位置を露光する」とは、当初意図された所望の局所的なフォトレジスト領域に露光を施すことを意味している。より具体的には、「フォトレジスト膜の所定位置を露光する」なる表現は、フレキシブル半導体装置がTFTとして機能することになる位置にゲート電極が形成されるように局所的なフォトレジスト領域に露光を施すことを意味している。
フレキシブル半導体装置;および
フレキシブル半導体装置上に形成されている複数の画素より構成された画像表示部
を有して成り、
フレキシブル半導体装置の複数のビアのうちの少なくとも1つのビアが位置決めマーカー(位置合せマーカー)となっていることを特徴としている。
フレキシブル半導体装置上に形成されている画素電極;
画素電極上に形成されている発光層;および
発光層上に形成されている透明電極層
を有して成る。
かかる態様では、画素規制部によって仕切られた領域に発光層が形成されていてもよい。つまり、本発明に係る画像表示装置が、
フレキシブル半導体装置;
フレキシブル半導体装置上に形成されている画素電極;
画素電極上にあって、画素規制部によって仕切られた領域に形成されている複数の発光層;および
複数の発光層上に形成されている透明電極層
を有して成り、
フレキシブル半導体装置の複数のビアのうちの少なくとも1つのビアが位置決めマーカーとなっていてよい。
また、画像表示部は透明電極上にカラーフィルターを有して成るものであってもよい。つまり、本発明に係る画像表示装置が、
フレキシブル半導体装置;
フレキシブル半導体装置上に形成されている画素電極;
画素電極上に形成されている発光層;
発光層上に形成されている透明電極層;および
透明電極層上に形成されているカラーフィルター
を有して成り、
フレキシブル半導体装置の複数のビアのうちの少なくとも1つのビアが位置決めマーカーとなっていてもよい。
(I)画素電極を備えたフレキシブル半導体装置を供する工程;および
(II)フレキシブル半導体装置上に、複数の画素より構成されている画像表示部を形成する工程
を含んで成り、
工程(II)に際しては、フレキシブル半導体装置の複数のビアの少なくとも1つのビアを位置決めマーカー(位置合せマーカー)として用いることによって、画像表示部の形成につき位置合せを行うことを特徴とする。
10g ゲート電極
10a,10b 金属層から形成された配線
12 フォトマスク
15 金属層または金属箔(上側)
20 絶縁層(絶縁膜)
20a ゲート絶縁膜・ゲート絶縁層
20c 絶縁層に形成されたビア開口部
30 半導体層
40s,40d ソース電極・ドレイン電極
50 可撓性フィルム層
50a,50b 可撓性フィルム層に形成された開口部
60 ビア
60a 位置決めマーカー(ビア)
60b コンタクトビア(ビア)
60c 層間接続部位
70 配線層および/または画素電極
80 表示部
82 配線
85 コンデンサ
90 駆動回路
92 データライン
93 電源ライン
94 選択ライン
100,100a,100b フレキシブル半導体装置
100’ 半導体装置前駆体
110 X線透過画像
120 ビア対応ポイント
150 画素電極
160 画素規制部
160’画素規制部の前駆体層
165 画素規制部の形成に用いるフォトマスク
170 発光層
180 透明電極層
190 カラーフィルター
200 画像表示装置
200’ 画像表示装置
図1(a)及び(b)を参照しながら、本発明の一実施形態に係るフレキシブル半導体装置100について説明する。図1(a)は、フレキシブル半導体装置100の断面構成を模式的に示す断面図であり、図1(b)は、図1(a)のIb-Ibに沿った断面を示す平面図である。
次に、図4~7を参照して、本発明に係るフレキシブル半導体装置100の製造方法について説明する。図4(a)~(e)、図5(a)~(d)、図6(a)~(c)ならびに図7(a)および(b)は、フレキシブル半導体装置100の製造方法を説明するための工程断面図である。
ここで、本発明の特徴部分であるアライメントと位置決めマーカーについて詳述する。本発明では、フォトマスクの位置合せに際して、位置決めマーカーを利用したX線透過画像を用いることが好ましい。具体的には、図9に示すように、X線を半導体装置前駆体100’に照射することで得られるX線透過画像110を利用しており、かかるX線透過画像110におけるビア対応ポイント120(位置決めマーカー60b,60b’を含んだ前駆体領域にX線が照射されることで得られる“ビア位置に対応した画像ポイント”)を位置合せ基準として用いることが好ましい。
次に以下においては、本発明に係るフレキシブル半導体装置を画像表示装置に搭載する態様について説明する。
図14は、画像表示装置の駆動回路90を説明するための回路図である。図15は、当該駆動回路が本実施形態のフレキシブル半導体装置100によって構成された一例を示す平面図である。
次に、前記したトランジスタあるいはトランジスタより構成された回路上に画像表示部が形成される態様(特に、フレキシブル半導体装置上に形成されている複数の画素より構成された画像表示部の態様)を説明する。
次に、画素表示装置の製造方法について説明する。具体的には、図18を参照して本態様のOLEDの製造方法について説明する。
● 位置決めマーカーは、ビア形態を有するものに必ずしも限定されず、開口部を成す孔の内壁面に無電解メッキにより銅などの金属層が形成されたスルーホール形態であってもよい。
● フレキシブル半導体装置の可撓性フィルム層の形成は樹脂フィルムを貼り合わせる態様に必ずしも限定されず、半硬化の樹脂材料や感光性樹脂材料をスピンコートなどで塗布することを通じて可撓性フィルム層を形成する態様であってもよい。
● ディスプレイの構成によっては、TFT素子は各画素に2個(第1および第2のTFT素子)だけでなく、それ以上設けられることもあるので、それに対応して本実施形態のフレキシブル半導体装置を改変することも可能である。
● 上記実施形態では、有機ELディスプレイに搭載されるフレキシブル半導体装置について例示したが、無機ELディスプレイに搭載してもよい。また、ELディスプレイに限らず電子ペーパーであってもよい。更にいえば、ディスプレイに限らず、RFIDなどの通信機器やメモリなどに搭載することも可能である。
● フレキシブル半導体装置を1デバイスに対応した形で作製するような態様を例示したが、それに限らず、複数のデバイスに対応した形で作製する手法を実行してもよい。そのような作製手法として、ロール・ツー・ロール製法を用いることができる。
Claims (22)
- フレキシブル半導体装置を製造するための方法であって、
(i)金属箔の一方の主面上に絶縁層を形成する工程;
(ii)前記絶縁層の上にて半導体層を形成すると共に、該半導体層と接するようにソース電極・ドレイン電極を形成する工程;
(iii)前記半導体層および前記ソース電極・ドレイン電極を覆うように可撓性フィルム層を形成する工程;
(iv)前記可撓性フィルム層にビアを形成し、それによって、半導体装置前駆体を得る工程;ならびに
(v)前記金属箔を加工して該金属箔からゲート電極を形成する工程
を含んで成り、
前記工程(v)の金属箔の加工に際しては、前記半導体装置前駆体の前記ビアの少なくとも1つを位置決めマーカーとして用いることによって、前記ゲート電極を所定位置に形成することを特徴とする、フレキシブル半導体装置の製造方法。 - 前記工程(v)において、
(v1)前記金属箔の他方の主面上にフォトレジスト膜を形成する工程;
(v2)前記フォトレジスト膜に対して露光および現像を行い、該フォトレジスト膜の少なくとも一部を除去する工程;ならびに
(v3)前記少なくとも一部を除去された前記フォトレジスト膜を介して前記金属箔にエッチングを施し、該金属箔からゲート電極を形成する工程
を実施し、また
前記工程(v2)の前記フォトレジスト膜への露光に際しては、前記半導体装置前駆体の前記ビアの少なくとも1つを位置決めマーカーとして用いることによって、前記フォトレジスト膜の所定位置を露光することを特徴とする、請求項1に記載のフレキシブル半導体装置の製造方法。 - 前記工程(v2)として、前記フォトレジスト膜上にフォトマスクを配置した後、該フォトマスクが配置された前記フォトレジスト膜に対して露光および現像を行い、該フォトレジスト膜の少なくとも一部を除去する工程を実施し、また、
前記フォトレジスト膜への露光に際して前記位置決めマーカーを用いることの代わりに、前記フォトマスクの配置に際して、前記半導体装置前駆体の前記ビアの少なくとも1つを位置決めマーカーとして用いて前記フォトマスクの位置合せを行うことを特徴とする、請求項2に記載のフレキシブル半導体装置の製造方法。 - 前記ビアを形成する工程(iv)においては、前記可撓性フィルム層に開口部を形成した後、該開口部に金属を含有する導電性材料を供給してビアを形成することを特徴とする、請求項1~3のいずれかに記載のフレキシブル半導体装置の製造方法。
- 前記金属箔の加工、前記フォトレジスト膜への露光、または、前記フォトマスクの配置に際しては、X線を前記半導体装置前駆体に照射することで得られるX線透過画像を利用し、該X線透過画像におけるビア対応ポイントを位置合せ基準として用いることを特徴とする、請求項1~4のいずれかに記載のフレキシブル半導体装置の製造方法。
- 前記位置決めマーカーを前記ビアの少なくとも2つから成るグループとして用いており、該グループを成すビアについての前記X線透過画像の前記ビア対応ポイントを前記位置合せ基準として用いることを特徴とする、請求項5に記載のフレキシブル半導体装置の製造方法。
- フレキシブル半導体装置であって、
金属箔;
前記金属箔の上に形成されている絶縁層;
前記絶縁層の上に形成されている半導体層;
前記絶縁層上にて前記半導体層と接して設けられているソース電極・ドレイン電極;ならびに
前記半導体層および前記ソース電極・ドレイン電極を覆うように形成されている可撓性フィルム層
を有して成り、
ゲート電極が前記金属箔の一部から構成されていると共に、ゲート絶縁膜が前記絶縁層の一部から構成されており、また
前記可撓性フィルム層においては、その厚み方向に沿って複数のビアが延在しており、該複数のビアのうちの少なくとも1つのビアが位置決めマーカーであることを特徴とする、フレキシブル半導体装置。 - 前記位置決めマーカーが、前記ビアの少なくとも2つから成るグループとして形成されていることを特徴とする、請求項7に記載のフレキシブル半導体装置。
- フレキシブル半導体装置であって、
金属箔;
前記金属箔の上に形成されている絶縁層;
前記絶縁層の上に形成されている半導体層;
前記絶縁層上にて前記半導体層と接して設けられているソース電極・ドレイン電極;ならびに
前記半導体層および前記ソース電極・ドレイン電極を覆うように形成されている可撓性フィルム層
を有して成り、
ゲート電極が前記金属箔の一部から構成されていると共に、ゲート絶縁膜が前記絶縁層の一部から構成されており、
前記可撓性フィルム層においては、その厚み方向に沿って複数のビアが延在しており、また、該複数のビアのうちの少なくとも1つのビアの設置箇所では、前記金属箔が除去されていることを特徴とする、フレキシブル半導体装置。 - 前記絶縁層が、前記可撓性フィルム層と接する上側主面および該上側主面と対向する下側主面を有しており、
前記少なくとも1つのビアが前記絶縁層の前記下側主面に至るまで延在していることを特徴とする、請求項9に記載のフレキシブル半導体装置。 - 前記少なくとも1つのビアが、金属を含有した導電性部材により構成されていることを特徴とする、請求項7~10のいずれかに記載のフレキシブル半導体装置。
- 前記少なくとも1つのビアが、その厚み方向にテーパ形状を有していることを特徴とする、請求項7~11のいずれかに記載のフレキシブル半導体装置。
- 前記少なくとも1つのビアが、前記可撓性フィルム層の一方の主面側から他方の主面側に至るまで延在していることを特徴とする、請求項7~12のいずれかに記載のフレキシブル半導体装置。
- フレキシブル半導体装置であって、
金属層;
前記金属層の上に形成されている絶縁層;
前記絶縁層の上に形成されている半導体層;
前記絶縁層上にて前記半導体層と接して設けられているソース電極・ドレイン電極;ならびに
前記半導体層および前記ソース電極・ドレイン電極を覆うように形成されている可撓性フィルム層
を有して成り、
ゲート電極が前記金属層の一部から構成されていると共に、ゲート絶縁膜が前記絶縁層の一部から構成されており、また
前記可撓性フィルム層においては、その厚み方向に沿って複数のビアが延在しており、該複数のビアのうちの少なくとも1つのビアが位置決めマーカーであることを特徴とする、フレキシブル半導体装置。 - フレキシブル半導体装置であって、
金属層;
前記金属層の上に形成されている絶縁層;
前記絶縁層の上に形成されている半導体層;
前記絶縁層上にて前記半導体層と接して設けられているソース電極・ドレイン電極;ならびに
前記半導体層および前記ソース電極・ドレイン電極を覆うように形成されている可撓性フィルム層
を有して成り、
ゲート電極が前記金属層の一部から構成されていると共に、ゲート絶縁膜が前記絶縁層の一部から構成されており、
前記可撓性フィルム層においては、その厚み方向に沿って複数のビアが延在しており、また、該複数のビアのうちの少なくとも1つのビアの設置箇所では、前記金属層が除去されていることを特徴とする、フレキシブル半導体装置。 - 請求項7~15のいずれかに記載のフレキシブル半導体装置を用いた画像表示装置であって、
前記フレキシブル半導体装置;および
前記フレキシブル半導体装置上に形成されている複数の画素より構成された画像表示部
を有して成り、
前記フレキシブル半導体装置の前記複数のビアのうちの少なくとも1つのビアが位置決めマーカーであることを特徴とする、画像表示装置。 - 前記画像表示部が、
前記フレキシブル半導体装置上に形成されている画素電極;
前記画素電極上に形成されている発光層;および
前記発光層上に形成されている透明電極層
を有して成ることを特徴とする、請求項16に記載の画像表示装置。 - 前記発光層が、画素規制部によって仕切られた領域に形成されていることを特徴とする、請求項17に記載の画像表示装置。
- 前記透明電極層上にカラーフィルターを有して成ることを特徴とする、請求項17に記載の画像表示装置。
- 請求項7~15のいずれかに記載のフレキシブル半導体装置を備えた画像表示装置の製造方法であって、
(I)画素電極を備えた前記フレキシブル半導体装置を供する工程;および
(II)前記フレキシブル半導体装置上に、複数の画素より構成されている画像表示部を形成する工程
を含んで成り、
前記工程(II)に際しては、前記フレキシブル半導体装置の前記複数のビアの少なくとも1つを位置決めマーカーとして用いることによって、前記画像表示部の形成につき位置合せを行うことを特徴とする、画像表示装置の製造方法。 - 前記工程(II)において、複数の画素規制部を形成し、該複数の画素規制部によって仕切られた領域の前記画素電極上に前記画素を形成しており、該工程(II)に際しては、前記フレキシブル半導体装置の前記複数のビアの少なくとも1つを位置決めマーカーとして用いることによって、前記画素規制部の形成につき位置合せを行うことを特徴とする、請求項20に記載の画像表示装置の製造方法。
- 前記工程(II)において、前記画素電極を覆うように前記画素電極上に発光層を形成し、該発光層上にカラーフィルターを形成しており、該工程(II)に際しては、前記フレキシブル半導体装置の前記複数のビアの少なくとも1つを位置決めマーカーとして用いることによって、前記カラーフィルターの形成につき位置合せを行うことを特徴とする、請求項20に記載の画像表示装置の製造方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012538898A JP5842180B2 (ja) | 2011-03-24 | 2012-02-21 | フレキシブル半導体装置及びその製造方法 |
US13/821,352 US8993387B2 (en) | 2011-03-24 | 2012-02-21 | Flexible semiconductor device, method for manufacturing the same, image display device using the same and method for manufacturing the image display device |
CN201280000786.6A CN102812540B (zh) | 2011-03-24 | 2012-02-21 | 挠性半导体装置及其制造方法、使用该挠性半导体装置的图像显示装置及其制造方法 |
KR1020127022898A KR20140024789A (ko) | 2011-03-24 | 2012-02-21 | 플렉서블 반도체 장치 및 그 제조 방법 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011-066139 | 2011-03-24 | ||
JP2011066139 | 2011-03-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012127779A1 true WO2012127779A1 (ja) | 2012-09-27 |
Family
ID=46878962
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/001151 WO2012127779A1 (ja) | 2011-03-24 | 2012-02-21 | フレキシブル半導体装置及びその製造方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US8993387B2 (ja) |
JP (1) | JP5842180B2 (ja) |
KR (1) | KR20140024789A (ja) |
CN (1) | CN102812540B (ja) |
WO (1) | WO2012127779A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016158180A1 (ja) * | 2015-03-30 | 2016-10-06 | 日本写真印刷株式会社 | 薄膜トランジスタの製造方法、および薄膜トランジスタ |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104659038A (zh) * | 2015-03-13 | 2015-05-27 | 京东方科技集团股份有限公司 | 显示背板及其制作方法、显示装置 |
US10003023B2 (en) * | 2016-04-15 | 2018-06-19 | Semiconductor Energy Laboratory Co., Ltd. | Display device and electronic device |
US10867890B2 (en) * | 2018-09-27 | 2020-12-15 | Taiwan Semiconductor Manufacturing Company, Ltd. | Mutli-chip package with encapsulated conductor via |
CN109643700B (zh) | 2018-11-21 | 2019-09-10 | 长江存储科技有限责任公司 | 用于接合界面处的接合对准标记的方法、器件和结构 |
CN111681990B (zh) * | 2020-07-27 | 2023-04-07 | 合肥鑫晟光电科技有限公司 | 一种显示基板的制备方法、显示基板及显示装置 |
CN114784216A (zh) * | 2022-04-08 | 2022-07-22 | 信利(惠州)智能显示有限公司 | 应用于屏下摄像头的显示屏的制作方法、amoled显示屏 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07302881A (ja) * | 1994-04-28 | 1995-11-14 | Mitsubishi Electric Corp | 半導体装置および故障解析マーク形成方法 |
JP2000305109A (ja) * | 1999-04-16 | 2000-11-02 | Seiko Epson Corp | 電気光学装置の製造方法及び電気光学装置 |
JP2005236186A (ja) * | 2004-02-23 | 2005-09-02 | Seiko Epson Corp | 半導体装置とその製造方法並びに電子機器 |
JP2010145772A (ja) * | 2008-12-19 | 2010-07-01 | Sony Corp | 表示装置および電子機器 |
JP2010238873A (ja) * | 2009-03-31 | 2010-10-21 | Panasonic Corp | フレキシブル半導体装置およびその製造方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3364081B2 (ja) | 1995-02-16 | 2003-01-08 | 株式会社半導体エネルギー研究所 | 半導体装置の作製方法 |
KR100715943B1 (ko) * | 2001-01-29 | 2007-05-08 | 삼성전자주식회사 | 액정표시장치 및 그 제조방법 |
JP2007067263A (ja) | 2005-09-01 | 2007-03-15 | Konica Minolta Holdings Inc | 有機半導体材料、有機半導体膜、有機半導体デバイス及び有機薄膜トランジスタ |
JP5313406B2 (ja) * | 2011-01-20 | 2013-10-09 | シャープ株式会社 | 被成膜基板、有機el表示装置 |
US8847229B2 (en) * | 2011-03-24 | 2014-09-30 | Panasonic Corporation | Flexible semiconductor device, method for manufacturing the same, image display device using the same and method for manufacturing the image display device |
-
2012
- 2012-02-21 US US13/821,352 patent/US8993387B2/en active Active
- 2012-02-21 JP JP2012538898A patent/JP5842180B2/ja active Active
- 2012-02-21 WO PCT/JP2012/001151 patent/WO2012127779A1/ja active Application Filing
- 2012-02-21 KR KR1020127022898A patent/KR20140024789A/ko not_active Application Discontinuation
- 2012-02-21 CN CN201280000786.6A patent/CN102812540B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07302881A (ja) * | 1994-04-28 | 1995-11-14 | Mitsubishi Electric Corp | 半導体装置および故障解析マーク形成方法 |
JP2000305109A (ja) * | 1999-04-16 | 2000-11-02 | Seiko Epson Corp | 電気光学装置の製造方法及び電気光学装置 |
JP2005236186A (ja) * | 2004-02-23 | 2005-09-02 | Seiko Epson Corp | 半導体装置とその製造方法並びに電子機器 |
JP2010145772A (ja) * | 2008-12-19 | 2010-07-01 | Sony Corp | 表示装置および電子機器 |
JP2010238873A (ja) * | 2009-03-31 | 2010-10-21 | Panasonic Corp | フレキシブル半導体装置およびその製造方法 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016158180A1 (ja) * | 2015-03-30 | 2016-10-06 | 日本写真印刷株式会社 | 薄膜トランジスタの製造方法、および薄膜トランジスタ |
JP2016192437A (ja) * | 2015-03-30 | 2016-11-10 | 日本写真印刷株式会社 | 薄膜トランジスタの製造方法、および薄膜トランジスタ |
CN107408509A (zh) * | 2015-03-30 | 2017-11-28 | 日本写真印刷株式会社 | 薄膜晶体管的制造方法以及薄膜晶体管 |
Also Published As
Publication number | Publication date |
---|---|
KR20140024789A (ko) | 2014-03-03 |
US20130168681A1 (en) | 2013-07-04 |
CN102812540B (zh) | 2016-01-20 |
US8993387B2 (en) | 2015-03-31 |
CN102812540A (zh) | 2012-12-05 |
JP5842180B2 (ja) | 2016-01-13 |
JPWO2012127779A1 (ja) | 2014-07-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5906396B2 (ja) | フレキシブル半導体装置及びその製造方法 | |
JP5842180B2 (ja) | フレキシブル半導体装置及びその製造方法 | |
JP4550944B2 (ja) | フレキシブル半導体装置およびその製造方法 | |
JP4653860B2 (ja) | フレキシブル半導体装置およびその製造方法 | |
WO2011142089A1 (ja) | フレキシブル半導体装置およびその製造方法ならびに画像表示装置 | |
WO2011142088A1 (ja) | フレキシブル半導体装置およびその製造方法ならびに画像表示装置 | |
US7977741B2 (en) | Manufacturing method of flexible semiconductor device and flexible semiconductor device | |
KR20100047851A (ko) | 반도체 장치와 그 제조 방법 및 화상 표시 장치 | |
WO2011142081A1 (ja) | フレキシブル半導体装置およびその製造方法 | |
KR20100051628A (ko) | 반도체 장치와 그 제조 방법 및 화상 표시 장치 | |
EP2246879A1 (en) | Method for manufacturing flexible semiconductor device and multilayer film used therein | |
JP2010238873A (ja) | フレキシブル半導体装置およびその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201280000786.6 Country of ref document: CN |
|
ENP | Entry into the national phase |
Ref document number: 2012538898 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20127022898 Country of ref document: KR Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12760453 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13821352 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12760453 Country of ref document: EP Kind code of ref document: A1 |