WO2012126364A1 - 一种测量投影物镜畸变的方法 - Google Patents

一种测量投影物镜畸变的方法 Download PDF

Info

Publication number
WO2012126364A1
WO2012126364A1 PCT/CN2012/072693 CN2012072693W WO2012126364A1 WO 2012126364 A1 WO2012126364 A1 WO 2012126364A1 CN 2012072693 W CN2012072693 W CN 2012072693W WO 2012126364 A1 WO2012126364 A1 WO 2012126364A1
Authority
WO
WIPO (PCT)
Prior art keywords
exposure
projection objective
stage
substrate
distortion
Prior art date
Application number
PCT/CN2012/072693
Other languages
English (en)
French (fr)
Inventor
方立
孙刚
闵金华
张俊
Original Assignee
上海微电子装备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海微电子装备有限公司 filed Critical 上海微电子装备有限公司
Priority to SG2013063508A priority Critical patent/SG192887A1/en
Priority to EP12761311.5A priority patent/EP2690496B1/en
Priority to US14/002,917 priority patent/US9256138B2/en
Publication of WO2012126364A1 publication Critical patent/WO2012126364A1/zh

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70591Testing optical components
    • G03F7/706Aberration measurement
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/38Masks having auxiliary features, e.g. special coatings or marks for alignment or testing; Preparation thereof
    • G03F1/44Testing or measuring features, e.g. grid patterns, focus monitors, sawtooth scales or notched scales
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • G03F7/70633Overlay, i.e. relative alignment between patterns printed by separate exposures in different layers, or in the same layer in multiple exposures or stitching
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70716Stages
    • G03F7/70725Stages control

Definitions

  • the present invention relates to the field of integrated circuit fabrication, and more particularly to a method for measuring projection lens distortion used in a lithographic apparatus.
  • Photolithography or optical etching
  • the technique exposes the mask pattern of the design to the photoresist by exposure through a lithography system. Since the feature size of the integrated circuit is ultimately determined, the lithography system is an important device in the fabrication process of integrated circuits, and its accuracy requirements are self-evident for the importance of the lithography process. For the best imaging results, the photoresist-coated silicon wafer is attracted to the wafer stage during exposure, and the upper surface is placed at the optimum image height.
  • a lithography machine is an apparatus for manufacturing integrated circuits, and the apparatus using the equipment includes but is not limited to: integrated circuit manufacturing lithography apparatus, liquid crystal panel lithography apparatus, photomask marking apparatus, MEMS (micro electro mechanical system) /MOMS (micro-light system) lithography apparatus, advanced package lithography apparatus, printed circuit board lithography apparatus, and printed circuit board processing apparatus.
  • integrated circuit manufacturing lithography apparatus liquid crystal panel lithography apparatus, photomask marking apparatus, MEMS (micro electro mechanical system) /MOMS (micro-light system) lithography apparatus, advanced package lithography apparatus, printed circuit board lithography apparatus, and printed circuit board processing apparatus.
  • MEMS micro electro mechanical system
  • MOMS micro-light system
  • the first method of measurement is to use a mask alignment sensor of a lithography machine to perform the measurement of the image quality of the projection object, as disclosed in the prior patents US Pat. No. 7,733,175 and WO 94/01808.
  • the optical path passes through the objective lens when the lithography mask is aligned, so the alignment result can be used to express the distortion of the objective lens.
  • the disadvantages of this method are as follows: First, the accuracy of measuring the distortion of the objective lens is based on the repeatability of the measurement of the mask alignment mark, and the performance of the interferometer and the mask alignment subsystem of the lithography machine is relatively high. And there is a dependency on the mask alignment mode.
  • the lithography machine adopts CCD alignment or other alignment methods, it is impossible to measure the distortion of the objective lens.
  • the manufacturing and processing of the alignment mark grating is relatively difficult, and the special mask for fabricating a high-precision alignment mark array is costly.
  • the objective lens High-order distortion itself has an effect on the alignment of the mask alignment sensor. Therefore, this method has limitations. It is only suitable for measuring the low-order distortion of the objective lens, and it is not possible to measure the high-order distortion of the objective lens.
  • the second measurement method measuring the projection lens distortion by the image quality sensor, such as the prior patent
  • the method uses a special measuring object image quality sensor, which can measure the high-order phase difference and performance of the objective lens, and the measurement accuracy is high, but the sensor is sophisticated and complicated, and the processing of the special optical component is extremely expensive.
  • the distortion of the objective lens it is necessary to match the high-performance lithography machine to fully utilize the measurement performance of the sensor. Therefore, not every lithography machine can be equipped with such a sensor, and it is mainly applied to the highest-end lithography machine, and the adaptability to the lithography machine is not strong.
  • the present invention discloses a method for measuring distortion of a projection objective, comprising: placing a reticle containing a feature mark on a mask table, placing a substrate on the workpiece stage; performing step exposure on the mask stage, Specifically, the method comprises: moving the substrate to an exposure field position of the projection objective; performing a first exposure, obtaining the first characteristic pattern corresponding to the current exposure field on the substrate; fixing the workpiece table, stepping the mask table Performing a second exposure after a first distance, obtaining a second characteristic pattern corresponding to the current exposure field on the substrate; obtaining a first positional deviation between the first characteristic graphic and the second characteristic graphic ;
  • step exposure of the workpiece stage specifically comprising: moving the substrate to an exposure field position of the projection objective; performing a first exposure, obtaining the third feature of the feature mark corresponding to the current exposure field on the substrate
  • a difference between the second correction deviation and the first correction deviation is obtained, and a projection objective distortion is calculated based on the difference.
  • the substrate is placed on the workpiece table at a position corresponding to the center of the projection objective. Further, the stepper exposure of the mask stage is performed first, and then the step exposure of the workpiece stage is performed, or the step exposure of the workpiece stage is performed first, and then the step exposure of the mask stage is performed.
  • the mask stage stepwise exposure further comprises the step of optimizing the exposure path before moving the substrate to an exposure field position of the projection objective lens; the workpiece stage step exposure is moving the substrate to an exposure field of the projection objective lens
  • the location also includes the steps to optimize the exposure path.
  • the feature mark includes two parts arranged in parallel.
  • the feature mark is a scribe mark.
  • the mask table is stepped by a first distance along a direction of a center line of the two portions of the feature mark; and the workpiece stage is stepped along a direction of a center line of the two portions of the feature mark. distance.
  • the first distance is D*Nom—mag, where D is the distance between the centers of the two parts of the feature mark, and Nom—mag is the nominal magnification of the projection objective.
  • the second distance is D, where D is the distance between the centers of the two parts of the feature mark.
  • the motion errors of the mask table and/or the motion stage include translation errors and rotation errors of the mask stage and/or the motion stage.
  • the present invention also discloses a method for measuring distortion of a projection objective, comprising: placing a reticle containing a feature mark on a mask table, placing a substrate on the workpiece stage; Exposure, specifically includes:
  • A2) performing a first exposure, obtaining, on the substrate, the feature pattern corresponding to the first feature pattern of the current exposure field;
  • Stepping exposure of the workpiece stage includes:
  • the exposure mark can be a general-purpose engraved mark, which is shared with the engraved mask, and can also be designed with a special mark. Therefore, the technical solution is not dependent on the mark.
  • the process of measuring the distortion of the objective lens is consistent with the real working state of the lithography machine, which can reflect the image distortion of the lithography machine during the exposure process, and the measurement result is more objective and accurate.
  • the direct exposure method of the technical solution the measurement accuracy directly reflects the object image quality parameters, the peripheral equipment and configuration requirements of the lithography machine are not high, and can be applied to the measurement of various high- and low-end lithography machines. .
  • the adoption of the technical solution there is no restriction on the alignment mode of the optical engraving machine, the cost of the photolithography machine is reduced, and the application adaptability is strong.
  • FIG. 1 is a schematic structural view of main parts of a lithography machine used in a method for measuring projection lens distortion according to the present invention
  • FIG. 2 is a schematic structural view of a feature mark used in a method for measuring distortion of a projection objective lens according to a preferred embodiment of the present invention
  • FIG. 3 is a flow chart of a method for measuring distortion of a projection objective lens according to the present invention.
  • FIG. 4A to 4C are schematic diagrams showing the features of the features shown in Fig. 2 after exposure on a silicon wafer;
  • FIG. 5 is a detailed flow chart of a method for measuring distortion of a projection objective according to a preferred embodiment of the present invention. detailed description
  • the main inventive concept used in the present invention is to measure the distortion of the objective lens by using an exposure method.
  • the main principle is to use the feature mark on the mask, and the step exposure through the workpiece stage and the step exposure of the mask table can be respectively performed from the substrate. The positional deviation of the corresponding characteristic pattern after exposure is measured.
  • the exposure position is at a different position in the projection objective lens, and the objective lens distortion is included in the position deviation of the corresponding feature pattern; If the mask stage is fixed while the workpiece stage is fixed, the exposure position is the same position in the projection objective lens, and the distortion of the projection objective lens is not included in the positional deviation of the corresponding feature pattern.
  • Fig. 1 is a schematic view showing the configuration of main parts of a lithography machine used in the method of measuring projection lens distortion according to the present invention.
  • main components include: a reticle 5, which is clamped or fixed on the mask table 6, and the reticle 5 can be moved with the mask table 6 in a plurality of degrees of freedom, and the reticle 5 is uniformly distributed in the exposed area.
  • a substrate 2 for example, a silicon wafer, a glass substrate, a sapphire substrate, etc.
  • adsorbed on the workpiece stage 3 adsorbed on the workpiece stage 3
  • a projection objective 7 for placing the reticle 5
  • the feature mark is imaged on the substrate 2.
  • the feature mark can be exposed to any position on the substrate by moving the workpiece stage 3 and/or the mask stage 6.
  • the measurement of the distortion of the projection objective ⁇ can be achieved. Since the above-described components are included in the existing lithography machine, the method of the present invention is highly adaptable and does not require any special and expensive additional components.
  • FIG. 2 A schematic structural view of a feature mark according to a preferred embodiment of the present invention is shown in FIG. 2.
  • the feature mark 1 is a general-purpose overlay mark and is composed of two parts, wherein the center and the first part of the first part 101 The distance between the centers of the two portions 102 is D.
  • the feature mark 1 can be shared with the engraving mask, or can be designed as other more special marks. There is no fixed requirement for the signature 1 and therefore the dependency on the signature is not strong.
  • the first portion 101 of the feature mark 1 is surrounded by four lines of the same shape and the same size to form a larger square; the second portion 102 is arranged in parallel with the first portion 101, which is a smaller square. And the smaller The square can be nested in the larger square.
  • the feature mark 1 shown in Fig. 2 is not intended to limit the invention, and any general-purpose mandrel mark or any feature mark capable of achieving the measurement of the registration deviation can be used in the present invention.
  • Fig. 3 is a flow chart showing a method of measuring projection lens distortion according to the present invention.
  • the method mainly includes four stages, wherein the first stage S1 is a preparation stage, the second stage is an exposure stage, the third stage S3 is a silicon wafer processing stage, and the fourth stage S4 is an objective lens distortion statistical stage.
  • the second stage further includes two stages, a mask stage step exposure S21 and a workpiece stage step exposure S22, and the mask stage step exposure S21 and the workpiece stage step exposure S22 can be performed sequentially, without prioritization. .
  • the reticle 5 including the feature mark 1 needs to be placed on the mask table 6 in a relatively fixed position in advance, and the feature mark 1 is uniformly and evenly distributed on the reticle 5 Exposure in the graphics area.
  • the substrate in this embodiment, a silicon wafer 2, is placed on top of the workpiece stage 3. At least two wafers 2 are required throughout the measurement process, one of which is an ideal silicon wafer containing silicon wafer markings that can be used for mask alignment and wafer alignment.
  • the silicon wafer 2 can be placed at the center of the projection objective 7, so that the exposed area substantially coincides with the measured area of the projection objective 7.
  • the purpose of the above preparation stage S 1 is to make each component of the lithography machine each.
  • the second phase is the exposure phase, which further includes two phases: a mask stage step exposure S21 and a workpiece stage step exposure S22.
  • the specific execution process of the exposure phase is shown in Figure 5.
  • Stepping exposure S21 for the mask table includes the following steps:
  • Step S211 is to optimize the exposure path.
  • Step S212 is a condition for adjusting the exposure system to cause the lithography machine to reach the exposed silicon pattern.
  • Step S213 is to perform the first exposure on the first silicon wafer 2, mainly including moving the workpiece table 3, The first wafer is first exposed by placing the silicon wafer 2 on the workpiece stage 3 at the position of the first exposure field. After the exposure is completed, the first characteristic pattern 11 appears on the silicon wafer, as shown in Fig. 4A.
  • the position of the first feature pattern 11 in the silicon 2 coordinate system (Wx11, Wyll) and the position in the first exposure field coordinate system (Fxll, Fyll) are easily measured, wherein ( Wxll , Wyll ) may be the center of the first portion 101 of the first characteristic pattern 11 or the coordinates of the center of the second portion 102 with respect to the center of the silicon wafer 2 on the silicon wafer surface; (Fx11 , Fyll ) may be the entire first characteristic pattern The center of 11 is the coordinate of the center of the first portion 101 or the second portion 102 of the first characteristic pattern 11 with respect to the center of the current exposure field (i.e., the first exposure field) on the silicon wafer surface; (Wxll, Wyll), (Fxll "11” in Fyll) means the first " ⁇ , exposure field, "1" exposure.
  • Step S214 is to perform a second exposure on the first wafer.
  • This step is the second exposure of the first exposure field, and after the exposure is completed, a second characteristic pattern 12 is formed on the silicon wafer 2, as shown by the shaded portion in gray in Fig. 4C.
  • the position of the second characteristic pattern 12 in the wafer 2 coordinate system (Wxl2, Wyl2) and the position in the first exposure field coordinate system (Fxl2, Fyl2), and twice are easily measured.
  • the exposure pattern that is, the positional deviation (Exl, Eyl) between the first and second characteristic patterns 11, 12, wherein "12" in (Wxl2, Wyl2), (Fxl2, Fyl2) represents the "1" exposure field "2" exposure; positional deviation (Exl, Eyl) represents the distance from the center of the second portion 102 of the first characteristic pattern 11 obtained at the first exposure field to the center of the first portion 101 of the second characteristic pattern 12. That is, the engraving deviation between the two exposure patterns 11 and 12 in the first exposure field, which can be read by an existing engraving machine or the like, and is not developed in detail here.
  • the exposure position is the same position in the projection objective lens 7, so corresponding to the Positional deviation (Exl, Eyl) between the two exposure patterns 11, 12 of an exposure field
  • the distortion of the projection objective 7 is not included, and mainly includes the translation and rotation errors caused by the movement of the mask stage 6 and/or the workpiece stage 3 and the manufacturing error of the mask 5.
  • step S215 the workpiece stage 3 is moved to the next exposure field (ie, the second exposure field), and then the two exposure processes are completed in the second exposure field by referring to the foregoing steps S213, S214, specifically including:
  • the silicon wafer 2 on the stage 3 is moved to the position of the second exposure field, the first exposure of the silicon wafer 2 is performed, a feature pattern is obtained on the silicon wafer 2, and the corresponding characteristic pattern is easily measured (Wx21, Wy21) And (Fx21, Fy21); then, fixing the workpiece table 3, controlling the mask table 6 to step the distance L in the negative Y direction, performing a second exposure on the silicon wafer 2, and obtaining another characteristic pattern on the silicon wafer 2, And it is easy to measure (Wx22, Wy22) and (Fx22,
  • the workpiece stage step exposure S22 is similar to the mask stage step exposure S21. The main difference is that the workpiece stage step exposure S22 is the fixed mask stage 6 and moves the workpiece stage 3, which specifically includes the following steps:
  • the optimized exposure path S221 is performed.
  • Steps S221, S222 and S211, S212 are similar, so reference can be made to the above description.
  • Step S223 is to perform the first exposure on the second silicon wafer 2, mainly comprising moving the workpiece stage 3, so that the silicon wafer 2 on the workpiece stage 3 is located at the position of the first exposure field, and the second wafer is performed for the first time. exposure.
  • the characteristic pattern 13 appears on the silicon wafer, as shown in Fig. 4B.
  • the position of the characteristic pattern 13 in the silicon wafer 2 coordinate system is easily measured (W'xl l , W'yll) and a position (F'xll, F'yll) in the first exposure field coordinate system, where (W'xll, W'yll) may be the center or the second of the first portion 101 of the feature pattern 13.
  • the center of the portion 102 is relative to the center of the silicon wafer 2 on the silicon wafer surface; (F'x11, F'yll) may be the center of the entire feature pattern 13 or the first portion 101 or the second portion 102 of the feature pattern 13.
  • Step S224 is to perform a second exposure on the second wafer.
  • the mask stage 6 is first fixed, and then the workpiece stage 3 is controlled to step in the positive Y direction (may also be stepped toward the negative Y direction according to the structure of the signature and the exposure path, or toward the positive Step in the X direction, or step in the negative X direction), the step distance is D.
  • This step is the second exposure of the first exposure field, and after the exposure is completed, a feature pattern 14 is formed on the silicon wafer 2, as shown by the shaded gray portion in Fig. 4B.
  • the positional deviation (E'xl, E'yl) between the double exposure patterns 13, 14 of the exposure field includes translation and rotation errors and masks in addition to the movement of the workpiece stage 3 and/or the mask stage 6.
  • the manufacturing error of 5 also includes the distortion of the projection objective 7, so that although the step distance of the workpiece stage 3 is D, the distance between the two exposure patterns actually presented on the silicon wafer 2 (as shown in FIG. 4B) It is quite different from D.
  • step S225 the workpiece stage 3 is moved to the next exposure field (ie, the second exposure field), and then the two exposure processes are completed in the second exposure field by referring to the foregoing steps S223 and S224, specifically including:
  • the silicon wafer 2 on the stage 3 is moved to the position of the second exposure field, the first exposure of the silicon wafer 2 is performed, a characteristic pattern is obtained on the silicon wafer 2, and the corresponding characteristic pattern is easily measured (W'x21 , W'y21 ) and (F'x21 , F'y21 );
  • the mask table 6 is fixed, and the workpiece table 3 is controlled to face the positive Y direction.
  • Stepping distance D performing a second exposure on the silicon wafer 2, obtaining another characteristic pattern on the silicon wafer 2, and easily measuring (W'x22, W'y22) and (F) corresponding to the other characteristic pattern. 'x22, F'y22), and the positional deviation (E'x2, E'y2) between the two exposure patterns obtained under the second exposure field. Similarly, the positional deviation (E'x2, E' Distortion of the projection objective 7 is also included in y2).
  • the fourth stage S4 is the statistical stage of the objective lens distortion, and mainly performs the processing of the characteristic mark exposure deviation.
  • the distortion of the projection objective 7 is solved by the processing of the exposure deviation of the feature mark. The detailed steps are shown in Figure 5.
  • step S41 the positional deviation (Ex, Ey) between the two exposure patterns corresponding to the respective exposure fields is obtained during the mask stage step exposure S21 and the workpiece stage step exposure S22, respectively.
  • the positional deviation (Ex, Ey), (Wx, Wy) and (Fx, Fy) corresponding to each exposure pattern i.e., the characteristic pattern on the silicon wafer
  • the definitions and measurement methods for positional deviation (Ex, Ey) and graphic position (Wx, Wy), (Fx, Fy) have been described above and will not be repeated here.
  • step S42 respectively obtaining a mask stage step exposure S21 and a workpiece stage step exposure
  • the translation error (Tx, Ty) and rotation error (Rx, Ry) of the mask table 6 and/or the workpiece stage 3 are such that the errors (Tx, Ty), (Rx, Ry) are shifted from the position ( Removed in Ex, Ey).
  • the mask stage 6 and the workpiece stage 3 need to be moved in a stepwise manner, and because of the positioning accuracy,
  • the movement of the mask table 6 and the workpiece table 3 causes translation and rotation of the feature mark 1 onto the silicon wafer 2, the error being included in the positional deviation (Ex, Ey) of the feature pattern, and the projection objective 7
  • the distortions are mixed together and the error needs to be removed.
  • the method of removing the above error during the exposure process is as follows: Calculate and fit the residual (dx, dy) of each feature pattern according to the following formula in the field of the exposure field:
  • the inter-field error caused by the translation and rotation of the workpiece table 3 and/or the mask table 6 included in the positional deviation ( ⁇ , Ey) of the feature pattern is removed. .
  • step S43 is performed: obtaining the correction deviation of each characteristic pattern after the mask stage 6 and/or the workpiece stage 3 translation and the rotation error (Tx, Ty), (Rx, Ry) are eliminated in the mask step exposure process S21.
  • (dxl, dyl) that is, for the mask stage step exposure process S21, in the exposure field, calculate and fit the residual (dx, dy) of each feature pattern as the correction deviation (dxl, in accordance with the above formula 1).
  • Dyl corresponds to step S21.
  • the step S21 is a mask stage step exposure, so the step S43 is for eliminating the projection objective deviation caused by the distance D between the two portions 101 and 102 of the signature 1. Therefore, the correction deviation (dxl, dyl) obtained after the step S43 mainly contains the manufacturing error of the mask 5.
  • step S44 is performed: obtaining the correction deviation of each characteristic pattern after the mask table 6 and/or the workpiece table 3 translation and the rotation error (Tx, Ty), (Rx, Ry) are eliminated in the workpiece stage step exposure process S22.
  • (dx2, dy2) that is, for the workpiece stage step exposure process S22, in the field of exposure field, press
  • the residuals (dx, dy) of each feature pattern are calculated and fitted as the correction deviations (dx2, dy2) according to the above formula 1.
  • Step S44 corresponds to step S22.
  • the step S22 is step exposure of the workpiece stage.
  • the image forming position of the feature mark 1 on the projection objective lens 7 at the second exposure position under the same exposure field is different from that of the first exposure position. Therefore, the distortion of the projection objective lens 7 is reflected in the correction deviation (dx2, dy2) by the deviation of the exposure position.
  • step S45 is performed: obtaining a deviation value ( ⁇ , ⁇ ) that reflects the distortion of the projection objective lens 7.
  • step S45 according to the correction deviation (dxl, dyl) after the stepwise exposure of the mask and the correction deviation (dx2, dy2) after the wafer matching exposure, the deviation values ( ⁇ , Ay) and the deviation values (A, The calculation formula for 4y) is:
  • step S46 is performed to fit the distortion of the projection objective.
  • the distortion of the projection objective lens 7 is fitted, and the formula is as follows:
  • Ix Tx + Mx x- Rx y + 7y-x y+ D2x x 2 + ⁇ D2x-Tyx) y 2
  • Ay Ty + My ⁇ ⁇ + Ry ⁇ x + Tyx ⁇ ⁇ x + D2y ⁇ + (D2y - Txy) ⁇ x 2
  • Rx, Ry represents the rotation residual of the workpiece table 3 and/or the mask table 6 after the fitting of the formula 2. (Similar to the above-mentioned translation residual, the rotation residual is also obtained by the formula three fitting.
  • Mx represents the magnification error of the projection objective
  • Txy, Tyx, D2x, D2y represent the 2nd order distortion of the projection objective
  • D3 is the 3rd order distortion
  • D4x, D4y is the 4th order distortion
  • D5 is the 5th order distortion.
  • the fifth-order distortion of the projection objective can be measured at the highest.
  • other industry-known distortion fitting formulas can be used according to the different order requirements of the distortion fitting.
  • the mask stage step exposure S21 and the workpiece stage step exposure S22 can be measured only during the process.
  • One set of data corresponding to one exposure field is then subjected to distortion fitting.
  • the value of each distortion parameter can be obtained according to formula 3, and then the respective values of the same distortion parameter are averaged to obtain the final distortion value; or at least 9 sets of obtained data can be averaged first, and then The distortion value is fitted using Equation 3 based on the average value.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Description

一种测量投影物镜畸变的方法 技术领域
本发明涉及集成电路制造领域, 尤其涉及一种光刻设备中所使用的用于 测量投影物镜畸变的方法。
背景技术
光刻技术或称光学刻蚀术, 已经被广泛应用于集成电路制造工艺中。 该 技术通过光刻系统曝光, 将设计的掩模图形转移到光刻胶上。 由于最终决定 集成电路的特征尺寸, 光刻系统作为集成电路制造工艺中的重要设备, 其精 度要求对于光刻工艺的重要性不言自明。 为获得最佳成像效果, 在曝光时, 涂有光刻胶的硅片被吸附于承片台上, 且其上表面需置于最佳像面高度。 光 刻机是一种应用于集成电路制造的装备, 利用该装备的装置包括但不限于: 集成电路制造光刻装置、 液晶面板光刻装置、 光掩模刻印装置、 MEMS (微电 子机械系统) /MOMS (微光机系统)光刻装置、 先进封装光刻装置、 印刷电路板 光刻装置及印刷电路板加工装置等。
现有技术中所使用的, 在光刻机的使用过程中, 测量投影物镜畸变的方 法主要有以下两种:
第一种测量方法: 利用光刻机的掩模对准传感器进行投影物镜像质的测 量, 如在先专利 US7333175及 WO94/01808中所公开的技术方案。 在这种测 量方法中, 光刻机掩模对准时光路通过物镜, 所以对准结果可以用来表达物 镜的畸变。 但此种方法的缺点为: 首先, 测量物镜畸变的精度基于掩模对准 标记测量的重复性, 对光刻机的干涉仪、 掩模对准分系统的性能要求较高。 并且对掩模对准方式存在依赖性, 如果光刻机采用 CCD对准或者其它的对准 方式, 就无法艮好的测量物镜畸变。 同时, 对准标记光栅的制造和加工的难 度比较高, 制作一个高精度对准标记阵列的专用掩模代价较大。 最后, 物镜 高阶畸变本身就会对掩模对准传感器测量对准位置产生影响, 所以这种方法 存在局限性, 仅适用于测量物镜的低阶畸变, 无法较好的测量物镜的高阶畸 变。
第二种测量方法: 通过像质传感器测量投影物镜畸变, 如在先专利
US0136070, US0144043 , US0264827及 US6650399中所公开的技术内容。 该 方法采用专用测量物镜像质的传感器, 可以测量物镜的高阶相差及性能, 并 且测量的精度高, 但是这种传感器精密复杂, 特别光学元件的加工异常昂贵。 同时, 测量物镜畸变时, 还需要高性能光刻机整机才能够配合, 才能充分发 挥此传感器的测量性能。 因此并不是每台光刻机都可以配备这种传感器, 现 在主要应用在最高端的光刻机上, 对光刻机的适应性不强。
有鉴于此, 现有技术中急需要一种测量精度高且适用性强的用于测量光 刻设备的投影物镜畸变的方法。 发明内容
本发明的目的在于提供一种测量投影物镜畸变的方法, 该方法能够达到 较高的测量精度且适用性强。
为达到上述目的, 本发明公开一种测量投影物镜畸变的方法, 包括: 将一包含有特征标记的掩模版放置于掩模台, 将一基底放置于工件台; 进行掩模台步进曝光, 具体包括: 将基底移至投影物镜的一曝光场位置; 进行第一次曝光, 在基底上获得所述特征标记对应于当前曝光场的第一特征 图形; 固定工件台, 使掩模台步进一第一距离后进行第二次曝光, 在基底上 获得所述特征标记对应于当前曝光场的第二特征图形; 获得所述第一特征图 形和第二特征图形之间的一第一位置偏差;
进行工件台步进曝光, 具体包括: 将基底移至投影物镜的一曝光场位置; 进行第一次曝光, 在基底上获得所述特征标记对应于当前曝光场的第三特征 图形; 固定掩模台, 使工件台步进一第二距离后进行第二次曝光, 在基底上 获得所述特征标记对应于当前曝光场的第四特征图形; 获得所述第三特征图 形和第四特征图形之间的一第二位置偏差;
消除第一位置偏差中所包含的掩模台和 /或工件台的运动误差, 得到一第 一修正偏差; 消除第二位置偏差中所包含的掩模台和 /或工件台的运动误差, 得到一第二修正偏差;
求所述第二修正偏差与所述第一修正偏差的差值, 并根据该差值计算出 投影物镜畸变。
进一步的, 所述基底被放置于工件台上对应于投影物镜中心的位置。 进一步的, 先进行掩模台步进曝光再进行工件台步进曝光, 或者先进行 工件台步进曝光再进行掩模台步进曝光。
进一步的, 所述掩模台步进曝光在将基底移至投影物镜的一曝光场位置 之前还包括优化曝光路径的步骤; 所述工件台步进曝光在将基底移至投影物 镜的一曝光场位置之前还包括优化曝光路径的步骤。
进一步的, 所述特征标记包括并行排列的两部分。
进一步的, 所述特征标记是套刻标记。
进一步的, 使掩模台沿所述特征标记的两部分的中心连线的方向步进一 第一距离; 使工件台沿所述特征标记的两部分的中心连线的方向步进一第二 距离。
进一步的, 所述第一距离为 D*Nom— mag, 其中 D为所述特征标记的两 部分的中心之间的距离, Nom— mag为投影物镜的名义倍率。
进一步的, 所述第二距离为 D, 其中 D为所述特征标记的两部分的中心 之间的距离。
进一步的, 所述掩模台和 /或运动台的运动误差包括掩模台和 /或运动台的 平移误差和旋转误差。 为达到上述目的, 本发明还公开了一种测量投影物镜畸变的方法, 包括: 将一包含有特征标记的掩模版放置于掩模台, 将一基底放置于工件台; 进行掩模台步进曝光, 具体包括:
al )将基底移至投影物镜的一曝光场位置;
a2 )进行第一次曝光, 在基底上获得所述特征标记对应于当前曝光场的 第一特征图形;
a3 ) 固定工件台, 使掩模台步进一第一距离后进行第二次曝光, 在基底 上获得所述特征标记对应于当前曝光场的第二特征图形;
a4 )获得所述第一特征图形和第二特征图形之间的一第一位置偏差; a5 )将基底移至投影物镜的下一曝光场位置;
a6 )重复执行步骤 a2至 a5 , 以获得对应于多个曝光场的多个第一位置偏 差;
进行工件台步进曝光, 具体包括:
bl )将基底移至投影物镜的一曝光场位置;
b2 ) 进行第一次曝光, 在基底上获得所述特征标记对应于当前曝光场的 第三特征图形;
b3 ) 固定掩模台, 使工件台步进一第二距离后进行第二次曝光, 在基底 上获得所述特征标记对应于当前曝光场的第四特征图形;
b4 )获得所述第三特征图形和第四特征图形之间的一第二位置偏差; b5 )将基底移至投影物镜的下一曝光场位置;
b6 )重复执行步骤 b2至 b5 , 以获得对应于多个曝光场的多个第二位置偏 差;
消除所述多个第一位置偏差中所包含的掩模台和 /或工件台的运动误差, 得到相应的多个第一修正偏差; 消除所述多个第二位置偏差中所包含的掩模 台和 /或工件台的运动误差, 得到相应的多个第二修正偏差; 分别对同一曝光场所对应的第二修正偏差与第一修正偏差求差值, 并根 据得到的多个差值计算出投影物镜畸变。
与现有技术相比较, 本发明所提供的技术方案的优点如下:
首先, 该曝光标记可为通用型的套刻标记, 与套刻掩模共用, 也可以设 计特殊的标记, 因此该技术方案对标记的依赖性不强。 其次, 测量物镜畸变 的过程与光刻机真实工作状态一致, 能够反映出光刻机在曝光过程中物镜像 质畸变, 测量结果更加客观准确。 再次, 本技术方案直接曝光的方式, 测量 的精度直接反映的是物镜像质参数, 对光刻机的外设和配置要求不高, 可以 适用于各种高、 低端光刻机的测量中。 最后, 由于采用了本技术方案, 对光 刻机对准方式不作任何限制, 减少光刻机的造价成本, 应用适应性强。 附图说明
关于本发明的优点与精神可以通过以下的发明详述及所附图式得到进一 步的了解。
图 1 是本发明所涉及的测量投影物镜畸变的方法中所采用到的光刻机的 主要部件的结构示意图;
图 2是本发明一较佳实施例的测量投影物镜畸变的方法所采用的特征标 记的结构示意图;
图 3是本发明所涉及的测量投影物镜畸变的方法的流程图;
图 4A〜4C是采用图 2所示的特征标记经过曝光后在硅片上呈现的特征图 形示意图;
图 5是本发明一较佳实施例的测量投影物镜畸变的方法的具体流程图。 具体实施方式
下面结合附图详细说明本发明的具体实施例。 本发明所使用的主要发明构思是采用曝光的方法进行物镜畸变的测量, 其主要的原理为利用掩模上的特征标记, 通过工件台步进曝光和掩模台步进 曝光可以分别从基底上测得经曝光后的相应的特征图形的位置偏差。 由于该 特征标记及其曝光后所获得的特征图形存在尺寸, 如果掩模版固定而移动工 件台, 则曝光位置是在投影物镜中的不同位置, 物镜畸变包含在相应的特征 图形的位置偏差中; 如果固定工件台而移动掩模台, 则曝光位置是在投影物 镜中的同一位置, 相应的特征图形的位置偏差中就不包含投影物镜的畸变。 通过统计这两种不同曝光方式产生的特征图形的位置偏差, 能够分析出来投 影物镜的畸变。
如图 1 中所示, 图 1是本发明所涉及的测量投影物镜畸变的方法中所采 用到的光刻机的主要部件的结构示意图。 这些主要部件包括: 掩模版 5 , 被夹 持或固定在掩模台 6上, 掩模版 5可随掩模台 6产生多个自由度的运动, 且 掩模版 5的曝光区域内均匀分布有特征标记; 基底 2 (例如可以是硅片、 玻璃 基板、 蓝宝石衬底等), 被吸附于工件台 3上, 并能跟随工件台 3—起移动; 投影物镜 7 , 用于把掩模版 5上的特征标记成像于基底 2上。通过移动工件台 3和 /或掩模台 6, 可使该特征标记曝光在基底的任意位置上。 通过上述部件, 即可实现投影物镜 Ί 的畸变的测量。 由于现有的光刻机中都包含上述部件, 因此, 本发明的方法适用性强, 无需配备任何特殊而又昂贵的额外部件。
根据本发明一较佳实施例的特征标记的结构示意图如图 2 中所示, 该特 征标记 1是通用型的套刻标记( overlay mark ), 由两部分组成, 其中第一部分 101的中心与第二部分 102的中心之间的距离为 D。该特征标记 1可以与套刻 掩模共用, 也可以设计为其他较为特殊的标记。 对该特征标记 1 没有固定的 要求, 因此对该特征标记的依赖性也不强。 在本实施例中, 该特征标记 1 的 第一部分 101由四条形状、 大小相同的线条首尾相接围成一个较大的正方形; 第二部分 102与第一部分 101并行排列, 是一个较小的正方形, 并且该较小 的正方形能够嵌套在该较大的正方形中。 本领域的技术人员应当理解, 图 2 所示的特征标记 1 并非用于限制本发明, 任何通用型套刻标记或者任何能够 实现套刻偏差测量的特征标记均可用于本发明。
下面结合附图 3、 图 4A〜4C、 图 5 , 说明如何实现本发明的投影物镜畸变 的测量方法。
如图 3 中所示, 图 3是本发明所涉及的测量投影物镜畸变的方法的流程 图。 该方法主要包括四个阶段, 其中第一阶段 S1是准备阶段, 第二阶段是曝 光阶段, 第三阶段 S3是硅片工艺处理阶段, 第四阶段 S4是物镜畸变统计阶 段。 第二阶段中又进一步包括两个阶段, 掩模台步进曝光 S21 和工件台步进 曝光 S22, 该掩模台步进曝光 S21和工件台步进曝光 S22可以先后进行, 且 不分先后次序。
具体而言, 在准备阶段 S1中, 需要将包含有特征标记 1的掩模版 5预先 以位置相对固定的形式放置于掩模台 6上, 而且该特征标记 1合理均匀地分 布在掩模版 5的曝光图形区域中。 将基底, 本实施例中为硅片 2, 放置于工件 台 3上面。 在整个测量过程中, 至少需要两片硅片 2, 其中一片硅片为含有硅 片标记的理想硅片,可以被用来进行掩模对准和硅片对准。在准备阶段 S 1中, 为了使测试精度达到最佳, 还可以将硅片 2放置于投影物镜 7的中心位置, 使曝光区域与投影物镜 7的被测量区域基本重合。 上述准备阶段 S 1的目的在 于使光刻机的各个组成部分都各就各位。
第二阶段是曝光阶段, 该曝光阶段进一步包括两个阶段: 掩模台步进曝 光 S21和工件台步进曝光 S22。 曝光阶段的具体执行过程如图 5所示。
针对掩模台步进曝光 S21 , 具体包括以下步骤:
步骤 S211是优化曝光路径。
步骤 S212是调整控制曝光系统, 使光刻机达到曝光硅片图形的条件。 步骤 S213是对第一片硅片 2进行第一次曝光, 主要包括移动工件台 3 , 使工件台 3上的硅片 2位于第一曝光场的位置, 对第一片硅片进行第一次曝 光。 曝光完毕后, 在硅片上即会出现第一特征图形 11 , 如图 4A 中所示。 利 用现有技术的方法, 容易测得该第一特征图形 11 在硅片 2 坐标系下的位置 ( Wxll , Wyll )和在第一曝光场坐标系下的位置(Fxll , Fyll ),其中, ( Wxll , Wyll )可以是第一特征图形 11的第一部分 101的中心或者第二部分 102的中 心相对于硅片 2中心在硅片面上的坐标; (Fxll , Fyll )可以是整个第一特征 图形 11的中心或者是第一特征图形 11的第一部分 101或第二部分 102的中 心相对于当前曝光场 (即第一曝光场) 中心在硅片面上的坐标; (Wxll , Wyll )、 ( Fxll , Fyll ) 中的 "11"表示第 "Γ,曝光场、 第 "1"次曝光。
步骤 S214是对第一片硅片进行第二次曝光。 在第二次曝光的过程中, 首 先固定工件台 3 , 然后控制掩模台 6朝负 Υ方向步进(也可以根据特征标记 的结构及曝光路径, 选择朝正 Υ方向步进, 或朝正 X方向步进, 或朝负 X方 向步进), 步进距离 L为 L=D*Nom— mag, Nom— mag为物镜的名义倍率。 该 步骤为第一曝光场的第二次曝光, 曝光完毕后在硅片 2上形成第二特征图形 12, 如图 4C中灰色阴影部分所示。 利用现有技术的方法, 容易测得该第二特 征图形 12在硅片 2坐标系下的位置(Wxl2, Wyl2 )和在第一曝光场坐标系 下的位置(Fxl2, Fyl2 ), 以及两次曝光图形, 即第一、 第二特征图形 11、 12 之间的位置偏差(Exl , Eyl ),其中, (Wxl2, Wyl2 )、 ( Fxl2, Fyl2 )中的" 12" 表示第 "1"曝光场、 第" 2"次曝光; 位置偏差 (Exl , Eyl )表示在第一曝光场 下获得的第一特征图形 11的第二部分 102的中心到第二特征图形 12的第一 部分 101的中心的距离, 即第一曝光场下两次曝光图形 11、 12之间的套刻偏 差, 该套刻偏差可以采用现有的套刻机等设备读取, 在此不详细展开。
由于在上述曝光过程 S213、 S214, 即掩模台步进曝光过程中, 工件台 3 是固定的而仅移动掩模台 2, 因此曝光位置是在投影物镜 7中的同一位置, 所 以对应于第一曝光场的两次曝光图形 11、 12之间的位置偏差(Exl , Eyl ) 中 不包含投影物镜 7的畸变, 主要包含的是掩模台 6和 /或工件台 3的移动带来 的平移和旋转误差以及掩模 5的制造误差。
为了降低掩模台 6、工件台 3运动的随机误差对后续拟合出来的投影物镜 畸变的精度所造成的影响, 需要获取多组数据以提高投影物镜畸变的拟合精 度。因此,在步骤 S215中,将工件台 3移动至下一个曝光场(即第二曝光场), 然后参照前述步骤 S213、 S214, 在第二曝光场完成两次曝光过程, 具体包括: 首先将工件台 3上的硅片 2移动至第二曝光场的位置, 对硅片 2进行第一次 曝光, 在硅片 2上获得一特征图形, 并容易测得该特征图形所对应的(Wx21 , Wy21 )和(Fx21 , Fy21 ); 然后, 固定工件台 3 , 控制掩模台 6朝负 Y方向 步进距离 L, 对硅片 2进行第二次曝光, 在硅片 2上获得另一特征图形, 并容 易测得该另一特征图形所对应的 (Wx22, Wy22 )和(Fx22, Fy22 ), 以及在 第二曝光场下所获得的两次曝光图形之间的位置偏差(Ex2, Ey2 ), 同理, 该 位置偏差 (Ex2, Ey2 ) 中也不包含投影物镜 7的畸变。 然后, 可以将工件台 3 移动至下一个曝光场, 重复两次曝光过程, 如此循环以获得相应的数据 ( Wxil , Wyil )、 ( Fxil , Fyil )、 ( Wxi2, Wyi2 )、 ( Fxi2, Fyi2 )、 ( Exi, Eyi ), i=3, 4, ..., n, 直至 n (为自然数) 达到所需的数目。
工件台步进曝光 S22与掩模台步进曝光 S21类似, 主要的区别在于, 工 件台步进曝光 S22是固定掩模台 6而移动工件台 3 , 具体包括以下步骤:
首先进行优化曝光路径 S221。
然后调整控制曝光系统 S222, 使光刻机达到曝光硅片图形的条件, 步骤 S221、 S222和 S211、 S212类似, 因此可参考上文描述。
步骤 S223是对第二片硅片 2进行第一次曝光, 主要包括移动工件台 3 , 使工件台 3上的硅片 2位于第一曝光场的位置, 对第二片硅片进行第一次曝 光。 曝光完毕后, 在硅片上即会出现特征图形 13 , 如图 4B 中所示。 利用现 有技术的方法, 容易测得该特征图形 13在硅片 2坐标系下的位置( W'xl l , W'yll ) 和在第一曝光场坐标系下的位置 (F'xll , F'yll ), 其中, (W'xll , W'yll )可以是特征图形 13的第一部分 101的中心或者第二部分 102的中心 相对于硅片 2 中心在硅片面上的坐标; (F'xll , F'yll )可以是整个特征图形 13的中心或者是特征图形 13的第一部分 101或第二部分 102的中心相对于当 前曝光场 (即第一曝光场) 中心在硅片面上的坐标。
步骤 S224是对第二片硅片进行第二次曝光。 在第二次曝光的过程中, 首 先固定掩模台 6, 然后控制工件台 3朝正 Y方向步进(也可以根据特征标记 的结构及曝光路径, 选择朝负 Y方向步进, 或朝正 X方向步进, 或朝负 X方 向步进), 步进距离为 D。 该步骤为第一曝光场的第二次曝光, 曝光完毕后在 硅片 2上形成特征图形 14, 如图 4B中灰色阴影部分所示。 利用现有技术的 方法, 容易测得特征图形 14在硅片 2坐标系下的位置(W'xl2, W'yl2 )和在 第一曝光场坐标系下的位置(Fxl2, F'yl2 ), 以及两次曝光图形 13、 14之间 的位置偏差 (E'xl , E'yl )。
由于在上述曝光过程 S223、 S224, 即工件台步进曝光过程中, 掩模台 6 是固定的而仅移动工件台 3 , 因此曝光位置是在投影物镜 7中的不同位置, 所 以对应于第一曝光场的两次曝光图形 13、 14之间的位置偏差 (E'xl , E'yl ) 中除了包含有工件台 3和 /或掩模台 6的移动带来的平移和旋转误差以及掩模 5的制造误差,还包含了投影物镜 7的畸变, 因此尽管工件台 3的步进距离是 D, 在硅片 2上实际呈现出来的两次曝光图形之间的距离 (如图 4B所示) 与 D相差较大。
接着,在步骤 S225中,将工件台 3移动至下一个曝光场(即第二曝光场), 然后参照前述步骤 S223、 S224, 在第二曝光场完成两次曝光过程, 具体包括: 首先将工件台 3上的硅片 2移动至第二曝光场的位置, 对硅片 2进行第一次 曝光,在硅片 2上获得一特征图形,并容易测得该特征图形所对应的(W'x21 , W'y21 )和(F'x21 , F'y21 ); 然后, 固定掩模台 6, 控制工件台 3朝正 Y方向 步进距离 D, 对硅片 2进行第二次曝光, 在硅片 2上获得另一特征图形, 并 容易测得该另一特征图形所对应的 (W'x22, W'y22 )和(F'x22, F'y22 ), 以 及在第二曝光场下所获得的两次曝光图形之间的位置偏差 (E'x2, E'y2 ), 同 理, 该位置偏差(E'x2, E'y2) 中也包含了投影物镜 7的畸变。 然后, 可以将 工件台 3 移动至下一个曝光场, 重复两次曝光过程, 如此循环以获得相应的 数据( W'xil , W'yil )、 ( F'xil , F'yil )、 ( W'xi2, W'yi2 )、 ( F'xi2, F'yi2 )、 ( E'xi, E'yi ), i=3,4, ...,n, 直至 n (为自然数) 达到所需的数目。
第三阶段 S3是硅片工艺处理阶段, 主要包含硅片图像的显影和定形, 上 面所提到的位置数据( Wxil , Wyil )、 ( Wxi2, Wyi2 )、 ( W'xil , W'yil )、 ( W'xi2, W'yi2 ), i=l,2, ...,n, 下文统一采用(Wx, Wy)指代;位置数据(Fxil, Fyil )、 (Fxi2, Fyi2)、 (F'xil, F'yil )、 (F'xi2, F'yi2 ), i=l, 2, n, 下文统一采用 (Fx, Fy)指代; 以及位置偏差数据(Exi, Eyi)、 (E'xi, E'yi), i=l,2, ...,n, 下文统一采用 (Ex, Ey)指代, 都需要经过硅片工艺处理阶段 S3才能读取或 测量。 此部分属于硅片的工艺处理, 在现有文献中已有详细地充分地介绍, 在此省略。
第四阶段 S4是物镜畸变统计阶段, 主要进行特征标记曝光偏差的处理。 通过对特征标记曝光偏差的处理, 求解出投影物镜 7 的畸变。 其详细步骤如 图 5所示。
首先进入步骤 S41: 分别获得掩模台步进曝光 S21和工件台步进曝光 S22 过程中, 对应于各个曝光场的两次曝光图形之间的位置偏差(Ex, Ey)。 在获 取位置偏差 (Ex, Ey) 的过程中, 可以一并测量对应于每一个曝光图形 (即 硅片上的特征图形) 的 (Wx, Wy)和(Fx, Fy)。 关于位置偏差 (Ex, Ey) 及图形位置 (Wx, Wy)、 (Fx, Fy) 的定义及测量方法已在前文加以描述, 在此不复贅述。
然后, 执行步骤 S42: 分别获得掩模台步进曝光 S21 和工件台步进曝光 S22过程中, 掩模台 6和 /或工件台 3的平移误差 (Tx, Ty)、 旋转误差 (Rx, Ry), 以便将这些误差(Tx, Ty)、 (Rx, Ry)从位置偏差(Ex, Ey ) 中去除。 本领域技术人员应当知晓, 在掩模台步进曝光 S21和工件台步进曝光 S22过 程中, 掩模台 6和工件台 3需要以步进的方式移动, 同时因为存在着定位的 精度, 所以由掩模台 6和工件台 3的移动会带来特征标记 1曝光至硅片 2上 的平移和旋转, 该误差被包含在特征图形的位置偏差 (Ex, Ey) 中, 与投影 物镜 7 的畸变混合在一起, 需要去掉该误差。 去掉曝光过程中的上述误差的 方法如下: 以曝光场为单位, 按照下述公式计算并拟合出每个特征图形的残 差 (dx, dy):
Ex - Tx - Rx■ Fy + dx
Ey = Ty + Ry · Fx + dy
Fx e [- Xslit! 2 , Xslit / 2 ], e [- Yslit ll.Yslitil] (公式一 ) 其中, XSlit和 YSlit分别为视场的 X向和 Y向尺寸。
根据上述公式一计算出来的残差( dx , dy ) ,去除了特征图形位置偏差( Εχ , Ey) 中所包含的因工件台 3和 /或掩模台 6的平移、 旋转造成的场间误差。
然后, 执行步骤 S43: 获得掩模步进曝光过程 S21 中消除了掩模台 6和 / 或工件台 3平移、 旋转误差(Tx, Ty)、 (Rx, Ry)后的各个特征图形的修正 偏差 (dxl, dyl ), 即针对掩模台步进曝光过程 S21, 以曝光场为单位, 按照 上述公式一计算并拟合出每个特征图形的残差(dx, dy)作为修正偏差(dxl, dyl )。 步骤 S43对应步骤 S21, 如上文中所述, 该步骤 S21是掩模台步进曝 光, 因此步骤 S43用于消除特征标记 1的两部分 101和 102之间的距离 D所 带来的投影物镜偏差。 因此经过步骤 S43后获得的修正偏差 (dxl, dyl )主 要包含的就是掩模 5的制造误差。
然后, 执行步骤 S44: 获得工件台步进曝光过程 S22 中消除了掩模台 6 和 /或工件台 3平移、 旋转误差(Tx, Ty)、 (Rx, Ry)后的各个特征图形的修 正偏差 (dx2, dy2), 即针对工件台步进曝光过程 S22, 以曝光场为单位, 按 照上述公式一计算并拟合出每个特征图形的残差( dx , dy )作为修正偏差( dx2 , dy2)。 步骤 S44对应步骤 S22, 如上文中所述, 该步骤 S22是工件台步进曝 光。 因为特征标记 1本身具有沿 X、 Y方向的一定的尺寸, 所以特征标记 1 在同一曝光场下的第二次曝光位置在投影物镜 7上的成像位置与第一次曝光 位置不同。 所以, 投影物镜 7 的畸变会通过曝光位置偏差的方式体现在修正 偏差 (dx2, dy2) 中。
然后, 执行步骤 S45: 获得体现投影物镜 7畸变的偏差值 (Δ ,Α))。在步骤 S45中, 根据掩模步进曝光后的修正偏差(dxl, dyl )及硅片匹配曝光后的修 正偏差 (dx2, dy2), 可以获得偏差值(Δ , Ay), 偏差值(A ,4y)的计算公式为:
Figure imgf000015_0001
y = 2d i (公式二 ) 通过相减, 抵消了掩模制造误差, 因而, 偏差值 (Δ ,Δ )中去除了掩模制 造等误差对投影物镜 7畸变的影响。
最后, 执行步骤 S46: 拟合投影物镜的畸变。 根据步骤 S45中所计算出来 的偏差值(A ,Ay), 拟合出投影物镜 7的畸变, 其公式如下:
i x = Tx + Mx x- Rx y + 7y-x y+ D2x x2 + {D2x-Tyx) y2
+D3- x-r2 + D4x- x2 -r2 +D4y- x-y-r2 + D5- x-r
Ay = Ty + My■ γ + Ry■ x + Tyx■ γ■ x + D2y■ + (D2y - Txy)■ x2
+D2 - y■ r2 + DAx■ x - y■ r2 + DAy■ y2■ r2 + D5 - y■
x e [-Xsht f 2, Xslit 12], γ e [-YslH / 2, Ysht 12} (公式三 ) 在以上公式三中, (x,y)为特征标记的成像位置在视场坐标系下的名义坐 标, 且 r2=x2+j2; XSlit和 YSlit分别为视场的 X向和 Y向尺寸; Tx、 Ty表 示经过公式二拟合后的工件台 3和 /或掩模台 6的平移残差 (该平移残差为通 过公式三拟合获得的参数, 而并非代入公式三的已知量, 由于平移残差非常 接近于 0, 因此可以直接将 Tx=Ty=0代入公式三以简化公式), Rx、 Ry表示 经过公式二拟合后的工件台 3和 /或掩模台 6的旋转残差 (与上述平移残差类 似, 该旋转残差也是需要通过公式三拟合获得的参数, 而并非代入公式三的 已知量, 由于旋转残差非常接近于 0, 因此可以直接将 Rx=Ry=0代入公式三 以简化公式); Mx表示投影物镜的倍率误差; Txy、 Tyx、 D2x、 D2y表示投 影物镜的 2阶畸变, D3为 3阶畸变, D4x、 D4y为 4阶畸变, D5为 5阶畸变。 采用上述公式三可以最高测出投影物镜的 5 阶畸变, 当然, 根据畸变拟合的 不同阶数要求也可以采用其它业界知晓的畸变拟合公式。
需要说明的是, 当基于投影物镜 7的畸变远大于工件台 3、掩模台 6的运 动随机误差的假设时, 掩模台步进曝光 S21和工件台步进曝光 S22过程中可 以分别只测量对应于 1个曝光场的 1组数据, 然后进行畸变拟合。 但是在实 际应用中, 一般建议至少测量 9个曝光场的 9组数据, 甚至将整个硅片曝满 以获得最多的数据来进行拟合。 对于每一组数据可以根据公式三求出各个畸 变参数的数值, 然后对同一畸变参数的各个数值求平均, 得到最终的畸变值; 或者也可以将获得的至少 9组数据先求平均值, 再根据该平均值利用公式三 拟合出畸变值。
本说明书中公开的只是本发明的较佳具体实施例, 以上实施例仅用以说 明本发明的技术方案而非对本发明的限制。 凡本领域技术人员依本发明的构 思通过逻辑分析、 推理或者有限的实验可以得到的技术方案, 皆应在本发明 的范围之内。

Claims

权利要求
1、 一种测量投影物镜畸变的方法, 包括:
将一包含有特征标记的掩模版放置于掩模台, 将一基底放置于工件台; 进行掩模台步进曝光, 具体包括:
将基底移至投影物镜的一曝光场位置;
进行第一次曝光, 在基底上获得所述特征标记对应于当前曝光场的第一 特征图形;
固定工件台, 使掩模台步进一第一距离后进行第二次曝光, 在基底上获 得所述特征标记对应于当前曝光场的第二特征图形;
获得所述第一特征图形和第二特征图形之间的一第一位置偏差; 进行工件台步进曝光, 具体包括:
将基底移至投影物镜的一曝光场位置;
进行第一次曝光, 在基底上获得所述特征标记对应于当前曝光场的第三 特征图形;
固定掩模台, 使工件台步进一第二距离后进行第二次曝光, 在基底上获 得所述特征标记对应于当前曝光场的第四特征图形;
获得所述第三特征图形和第四特征图形之间的一第二位置偏差; 消除第一位置偏差中所包含的掩模台和 /或工件台的运动误差, 得到一第 一修正偏差; 消除第二位置偏差中所包含的掩模台和 /或工件台的运动误差, 得到一第二修正偏差;
求所述第二修正偏差与所述第一修正偏差的差值, 并根据该差值计算出 投影物镜畸变。
2、 如权利要求 1所述的测量投影物镜畸变的方法, 其特征在于, 所述 基底被放置于工件台上对应于投影物镜中心的位置。
3、 如权利要求 1所述的测量投影物镜畸变的方法, 其特征在于, 先进 行掩模台步进曝光再进行工件台步进曝光, 或者先进行工件台步进曝光再进 行掩模台步进曝光。
4、 如权利要求 1所述的测量投影物镜畸变的方法, 其特征在于, 所述 掩模台步进曝光在将基底移至投影物镜的一曝光场位置之前还包括优化曝光 路径的步骤; 所述工件台步进曝光在将基底移至投影物镜的一曝光场位置之 前还包括优化曝光路径的步骤。
5、 如权利要求 1所述的测量投影物镜畸变的方法, 其特征在于, 所述 特征标记包括并行排列的两部分。
6、 如权利要求 5所述的测量投影物镜畸变的方法, 其特征在于, 所述 特征标 "^己是套刻标 "^己。
7、 如权利要求 5所述的测量投影物镜畸变的方法, 其特征在于, 使掩 模台沿所述特征标记的两部分的中心连线的方向步进一第一距离; 使工件台 沿所述特征标记的两部分的中心连线的方向步进一第二距离。
8、 如权利要求 7所述的测量投影物镜畸变的方法, 其特征在于, 所述 第一距离为 D*Nom— mag, 其中 D为所述特征标记的两部分的中心之间的距 离, Nom— mag为投影物镜的名义倍率。
9、 如权利要求 7所述的测量投影物镜畸变的方法, 其特征在于, 所述 第二距离为 D, 其中 D为所述特征标记的两部分的中心之间的距离。
10、 如权利要求 1所述的测量投影物镜畸变的方法, 其特征在于, 所述 掩模台和 /或工件台的运动误差包括掩模台和 /或运动台的平移误差和旋转误 差。
11、 一种测量投影物镜畸变的方法, 包括:
将一包含有特征标记的掩模版放置于掩模台, 将一基底放置于工件台; 进行掩模台步进曝光, 具体包括:
al )将基底移至投影物镜的一曝光场位置;
a2 )进行第一次曝光, 在基底上获得所述特征标记对应于当前曝光场的 第一特征图形;
a3 ) 固定工件台, 使掩模台步进一第一距离后进行第二次曝光, 在基底 上获得所述特征标记对应于当前曝光场的第二特征图形;
a4 )获得所述第一特征图形和第二特征图形之间的一第一位置偏差; a5 )将基底移至投影物镜的下一曝光场位置;
a6 )重复执行步骤 a2至 a5 , 以获得对应于多个曝光场的多个第一位置偏 差;
进行工件台步进曝光, 具体包括:
bl )将基底移至投影物镜的一曝光场位置;
b2 )进行第一次曝光, 在基底上获得所述特征标记对应于当前曝光场的 第三特征图形;
b3 ) 固定掩模台, 使工件台步进一第二距离后进行第二次曝光, 在基底 上获得所述特征标记对应于当前曝光场的第四特征图形;
b4 )获得所述第三特征图形和第四特征图形之间的一第二位置偏差; b5 )将基底移至投影物镜的下一曝光场位置;
b6 )重复执行步骤 b2至 b5 , 以获得对应于多个曝光场的多个第二位置偏 差;
消除所述多个第一位置偏差中所包含的掩模台和 /或工件台的运动误差, 得到相应的多个第一修正偏差; 消除所述多个第二位置偏差中所包含的掩模 台和 /或工件台的运动误差, 得到相应的多个第二修正偏差;
分别对同一曝光场所对应的第二修正偏差与第一修正偏差求差值, 并根 据得到的多个差值计算出投影物镜畸变。
12、 如权利要求 11 所述的测量投影物镜畸变的方法, 其特征在于, 所 述基底被放置于工件台上对应于投影物镜中心的位置。
13、 如权利要求 11 所述的测量投影物镜畸变的方法, 其特征在于, 先 进行掩模台步进曝光再进行工件台步进曝光, 或者先进行工件台步进曝光再 进行掩模台步进曝光。
14、 如权利要求 11 所述的测量投影物镜畸变的方法, 其特征在于, 所 述掩模台步进曝光在步骤 al之前还包括优化曝光路径的步骤; 所述工件台步 进曝光在步骤 bl之前还包括优化曝光路径的步骤。
15、 如权利要求 11 所述的测量投影物镜畸变的方法, 其特征在于, 所 述特征标记包括并行排列的两部分。
16、 如权利要求 15所述的测量投影物镜畸变的方法, 其特征在于, 所 述特征标记是套刻标记。
17、 如权利要求 15所述的测量投影物镜畸变的方法, 其特征在于, 步 骤 a3 中使掩模台沿所述特征标记的两部分的中心连线的方向步进一第一距 离; 步骤 b3中使工件台沿所述特征标记的两部分的中心连线的方向步进一第 二距离。
18、 如权利要求 17所述的测量投影物镜畸变的方法, 其特征在于, 所 述第一距离为 D*Nom— mag, 其中 D为所述特征标记的两部分的中心之间的 距离, Nom— mag为投影物镜的名义倍率。
19、 如权利要求 17所述的测量投影物镜畸变的方法, 其特征在于, 所 述第二距离为 D , 其中 D为所述特征标记的两部分的中心之间的距离。
20、 如权利要求 11 所述的测量投影物镜畸变的方法, 其特征在于, 所 述掩模台和 /或工件台的运动误差包括掩模台和 /或运动台的平移误差和旋转 误差。
PCT/CN2012/072693 2011-03-21 2012-03-21 一种测量投影物镜畸变的方法 WO2012126364A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
SG2013063508A SG192887A1 (en) 2011-03-21 2012-03-21 Method for measuring distortion of projection objective
EP12761311.5A EP2690496B1 (en) 2011-03-21 2012-03-21 Method for measuring distortion of projection objective
US14/002,917 US9256138B2 (en) 2011-03-21 2012-03-21 Method for measuring distortion of projection objective

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110068060.3 2011-03-21
CN201110068060.3A CN102692820B (zh) 2011-03-21 2011-03-21 一种测量投影物镜畸变的装置及方法

Publications (1)

Publication Number Publication Date
WO2012126364A1 true WO2012126364A1 (zh) 2012-09-27

Family

ID=46858378

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/072693 WO2012126364A1 (zh) 2011-03-21 2012-03-21 一种测量投影物镜畸变的方法

Country Status (6)

Country Link
US (1) US9256138B2 (zh)
EP (1) EP2690496B1 (zh)
CN (1) CN102692820B (zh)
SG (1) SG192887A1 (zh)
TW (1) TW201245903A (zh)
WO (1) WO2012126364A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170363965A1 (en) * 2014-12-01 2017-12-21 Asml Netherlands B.V. Projection system
CN114002919A (zh) * 2021-11-26 2022-02-01 上海华虹宏力半导体制造有限公司 侦测光刻机中投影物镜异常的方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9052595B2 (en) 2013-03-15 2015-06-09 Taiwan Semiconductor Manufacturing Company, Ltd. Lithography process
CN103324036A (zh) * 2013-07-04 2013-09-25 中国科学院光电技术研究所 一种投影物镜倍率及畸变的检测装置及方法
JP6399739B2 (ja) 2013-09-27 2018-10-03 キヤノン株式会社 露光装置、露光方法、およびデバイスの製造方法
CN109957503B (zh) * 2017-12-14 2022-05-31 长春长光华大智造测序设备有限公司 一种用于高通量基因测序设备的工艺芯片及其应用
CN109974977B (zh) * 2017-12-28 2021-01-15 长春长光华大智造测序设备有限公司 物镜畸变检测方法及装置

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US136070A (en) 1873-02-18 Improvement in inkstands
US144043A (en) 1873-10-28 Improvement in stove-dampers
US264827A (en) 1882-09-19 Lock for breech-loading fire-arms
WO1994001808A1 (en) 1992-07-01 1994-01-20 Interuniversitair Micro-Elektronica Centrum Vzw System for detecting a latent image using an alignment apparatus
US6061119A (en) * 1997-04-14 2000-05-09 Nikon Corporation Method of measuring image-forming error of projection optical system, method of manufacturing exposure apparatus, and method of manufacturing semiconductor device
JP3397654B2 (ja) * 1997-09-30 2003-04-21 キヤノン株式会社 ディストーション変化量の計測方法及びそれを利用した投影露光装置並びにそれらを用いたデバイスの製造方法
US6650399B2 (en) 2001-02-13 2003-11-18 Asml Netherlands B.V. Lithographic projection apparatus, a grating module, a sensor module, a method of measuring wave front aberrations
CN1770419A (zh) * 2004-11-02 2006-05-10 力晶半导体股份有限公司 用于曝光机器的检测装置及检测方法
CN101040367A (zh) * 2005-03-25 2007-09-19 尼康股份有限公司 照射形状的测量方法、掩模
US7333175B2 (en) 2004-09-13 2008-02-19 Asml Netherlands, B.V. Method and system for aligning a first and second marker
CN101387833A (zh) * 2008-11-07 2009-03-18 上海微电子装备有限公司 投影物镜倍率误差及畸变的检测装置及方法
CN101435998A (zh) * 2007-11-15 2009-05-20 上海华虹Nec电子有限公司 降低光刻机镜头畸变引起的光刻对准偏差的方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5473435A (en) * 1992-07-07 1995-12-05 Nikon Corporation Method of measuring the bent shape of a movable mirror of an exposure apparatus
US7099011B2 (en) * 2000-12-08 2006-08-29 Litel Instruments Method and apparatus for self-referenced projection lens distortion mapping
KR100576746B1 (ko) * 2001-06-01 2006-05-03 에이에스엠엘 네델란즈 비.브이. 리소그래피장치, 디바이스제조방법, 그 디바이스,제어시스템, 컴퓨터프로그램, 및 컴퓨터프로그램물
EP1286223B1 (en) * 2001-08-23 2006-03-08 ASML Netherlands B.V. Method of measuring the aberration of a lithographic projection system
US7136144B2 (en) * 2001-09-20 2006-11-14 Litel Instruments Method and apparatus for self-referenced dynamic step and scan intra-field lens distortion
US6960415B2 (en) * 2001-10-01 2005-11-01 Canon Kabushiki Kaisha Aberration measuring method and projection exposure apparatus
JP3626448B2 (ja) * 2001-11-28 2005-03-09 株式会社東芝 露光方法
US7242475B2 (en) * 2004-03-25 2007-07-10 Asml Netherlands B.V. Method of determining aberration of a projection system of a lithographic apparatus
US7283209B2 (en) * 2004-07-09 2007-10-16 Carl Zeiss Smt Ag Illumination system for microlithography
JP2006324311A (ja) * 2005-05-17 2006-11-30 Canon Inc 波面収差測定装置及びそれを有する露光装置
CN100559280C (zh) * 2007-08-03 2009-11-11 上海微电子装备有限公司 一种物镜检验装置以及方法
CN101957562B (zh) * 2009-03-26 2012-11-14 上海微电子装备有限公司 一种双曝光方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US136070A (en) 1873-02-18 Improvement in inkstands
US144043A (en) 1873-10-28 Improvement in stove-dampers
US264827A (en) 1882-09-19 Lock for breech-loading fire-arms
WO1994001808A1 (en) 1992-07-01 1994-01-20 Interuniversitair Micro-Elektronica Centrum Vzw System for detecting a latent image using an alignment apparatus
US6061119A (en) * 1997-04-14 2000-05-09 Nikon Corporation Method of measuring image-forming error of projection optical system, method of manufacturing exposure apparatus, and method of manufacturing semiconductor device
JP3397654B2 (ja) * 1997-09-30 2003-04-21 キヤノン株式会社 ディストーション変化量の計測方法及びそれを利用した投影露光装置並びにそれらを用いたデバイスの製造方法
US6650399B2 (en) 2001-02-13 2003-11-18 Asml Netherlands B.V. Lithographic projection apparatus, a grating module, a sensor module, a method of measuring wave front aberrations
US7333175B2 (en) 2004-09-13 2008-02-19 Asml Netherlands, B.V. Method and system for aligning a first and second marker
CN1770419A (zh) * 2004-11-02 2006-05-10 力晶半导体股份有限公司 用于曝光机器的检测装置及检测方法
CN101040367A (zh) * 2005-03-25 2007-09-19 尼康股份有限公司 照射形状的测量方法、掩模
CN101435998A (zh) * 2007-11-15 2009-05-20 上海华虹Nec电子有限公司 降低光刻机镜头畸变引起的光刻对准偏差的方法
CN101387833A (zh) * 2008-11-07 2009-03-18 上海微电子装备有限公司 投影物镜倍率误差及畸变的检测装置及方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2690496A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10248027B2 (en) * 2014-01-12 2019-04-02 Asml Netherlands B.V. Projection system
US20170363965A1 (en) * 2014-12-01 2017-12-21 Asml Netherlands B.V. Projection system
CN114002919A (zh) * 2021-11-26 2022-02-01 上海华虹宏力半导体制造有限公司 侦测光刻机中投影物镜异常的方法

Also Published As

Publication number Publication date
CN102692820B (zh) 2014-12-17
US9256138B2 (en) 2016-02-09
TW201245903A (en) 2012-11-16
CN102692820A (zh) 2012-09-26
TWI486722B (zh) 2015-06-01
EP2690496A4 (en) 2015-01-28
EP2690496B1 (en) 2016-08-17
SG192887A1 (en) 2013-10-30
EP2690496A1 (en) 2014-01-29
US20130335718A1 (en) 2013-12-19

Similar Documents

Publication Publication Date Title
WO2012126364A1 (zh) 一种测量投影物镜畸变的方法
TWI597581B (zh) 度量衡方法及裝置
JP2007103658A (ja) 露光方法および装置ならびにデバイス製造方法
EP2622414B1 (en) Production methods using two exposure tools and adjacent exposures
WO2000028380A1 (fr) Procede et dispositif d'exposition
WO2008038751A1 (fr) Procédé de mesure de largeur de ligne, procédé de détection de statut de formation d'image, procédé d'ajustement, procédé d'exposition et procédé de fabrication de dispositif
KR20170136446A (ko) 패턴 형성 장치, 기판을 배치하는 방법, 및 물품을 제조하는 방법
JP2018072541A (ja) パターン形成方法、基板の位置決め方法、位置決め装置、パターン形成装置、及び、物品の製造方法
KR101890793B1 (ko) 리소그래피 장치 및 노광 방법
JP3595707B2 (ja) 露光装置および露光方法
WO2008126926A1 (en) Exposure method and electronic device manufacturing method
JP2006310446A (ja) 半導体装置の製造方法、および露光装置
JP2007193243A (ja) 露光用マスク、露光方法、露光用マスクの製造方法、3次元デバイスおよび3次元デバイスの製造方法
WO2018010928A1 (en) Method and apparatus for determining a fingerprint of a performance parameter
JP2005030963A (ja) 位置検出方法
KR102231933B1 (ko) Euv 리소그래피용 리소그래픽 마스크
US7586626B2 (en) Measurement method, exposure method, exposure apparatus, and device fabrication method
JPH113856A (ja) 投影露光方法及び投影露光装置
JP4227470B2 (ja) 位置検出方法
JP2018031980A (ja) 計測方法、計測装置、露光装置及び物品の製造方法
JP2009170559A (ja) 露光装置およびデバイス製造方法
TWI825415B (zh) 用於最佳化取樣方案之方法及相關聯裝置
JP4634929B2 (ja) フォトマスク、ショット重ね合わせ精度測定方法、及び半導体装置の製造方法
JP5593690B2 (ja) 変形計測用基板、露光装置及び露光方法並びにデバイス製造方法
WO2024063968A1 (en) On tool metrology scheme for advanced packaging

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12761311

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14002917

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2012761311

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012761311

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE