WO2012124238A1 - 電源システム - Google Patents
電源システム Download PDFInfo
- Publication number
- WO2012124238A1 WO2012124238A1 PCT/JP2011/080249 JP2011080249W WO2012124238A1 WO 2012124238 A1 WO2012124238 A1 WO 2012124238A1 JP 2011080249 W JP2011080249 W JP 2011080249W WO 2012124238 A1 WO2012124238 A1 WO 2012124238A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- storage battery
- controller
- signal
- battery pack
- sub
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/44—Methods for charging or discharging
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/48—Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/28—Arrangements for balancing of the load in a network by storage of energy
- H02J3/32—Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0013—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0029—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
- H02J7/00304—Overcurrent protection
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0029—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
- H02J7/00308—Overvoltage protection
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0029—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
- H02J7/0031—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using battery or load disconnect circuits
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0047—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
- H02J7/0048—Detection of remaining charge capacity or state of charge [SOC]
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0047—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
- H02J7/005—Detection of state of health [SOH]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a power supply system including a storage battery.
- a power supply system that combines a commercial power supply and a storage battery has begun to be used. That is, according to the time fluctuation of the load, when the load is large, in addition to the power from the commercial power supply, the discharge power from the storage battery is supplied to the load, and when the load is small, the commercial power supply is charged to the storage battery.
- the power supply from is averaged over time.
- a photovoltaic power generation system and a fuel cell system which have been developed in recent years, are also combined with the power supply system.
- a switch circuit for connecting a storage battery to wiring for charging and discharging, and a controller for controlling opening and closing of a switch included in the switch circuit are provided.
- the controller receives an alarm signal informing the output voltage, output current, temperature, and abnormality from each storage battery, and controls the switch circuit in accordance with these information.
- the communication line connecting each storage battery, the switch circuit and the controller is a metal wiring.
- metal wiring When metal wiring is used, if the number of series connection stages of storage batteries increases and the output voltage becomes high, problems such as noise superposition and insulation deterioration associated with connection / disconnection of storage battery wiring may occur. Get higher.
- the present invention includes a storage battery pack that includes at least one storage battery cell and outputs a status signal indicating a state of the storage battery cell and an abnormal signal indicating an abnormality, a status signal and an abnormal signal from the storage battery pack, and charging the storage battery pack.
- a controller for performing discharge control and provided separately from a first communication line and a first communication line for transmitting a request signal and a status signal for requesting transmission of status information to the storage battery pack from the controller to the storage battery pack
- a second communication line for transmitting an abnormal signal from the storage battery pack to the controller.
- the present invention can improve the reliability of a power supply system using a storage battery.
- the power supply system 100 includes a power management system 102, a storage battery assembly 104, a solar battery system 106, and a system power supply 108.
- the power supply system 100 is used to supply power to the load 110.
- a thick solid line indicates a power flow
- a thin solid line indicates a signal flow.
- the solar cell system 106 and the system power supply 108 are used as power sources.
- the system power supply 108 is a single-phase or three-phase power supply, and may be supplied from an external power company by combining power generated by various power generation methods such as hydropower generation, nuclear power generation, and thermal power generation. it can.
- the solar cell system 106 can be a large-scale solar power generation system of 1 MW, for example.
- the present invention is not limited to these, and a power source using other renewable energy such as a fuel cell or a wind power generation system may be included.
- the power management system 102 includes a system controller 20, a master controller 22, a sub controller 24, a power converter management unit 26, and a power converter 28.
- the power management system 102 is configured as a hierarchical control system, and control is hierarchized from the upper level to the lower level to the system controller 20, the master controller 22, the sub controller 24, and the power converter management unit 26. .
- the system controller 20 has a function of performing integrated power management of the power supply system 100.
- the master controller 22 is a control device that receives the entire charge / discharge control command S ⁇ b> 1 from the system controller 20 and performs charge / discharge control for the entire storage battery assembly 104.
- the power converter management unit 26 controls processing such as power conversion and voltage conversion in each of the power converters 28.
- the sub-controller 24 is provided for each storage battery unit 40 included in the storage battery assembly 104 and controls charging / discharging in each storage battery unit 40.
- the storage battery assembly 104 is provided to supply power corresponding to the required power of the load 110. 2 and 3, the storage battery assembly 104 includes a storage battery pack 44 in which a plurality of storage battery cells 46 are combined, a storage battery control unit 42 in which a plurality of storage battery packs 44 are combined, and a storage battery in which a plurality of storage battery control units 42 are combined.
- the unit 40 is hierarchically configured.
- the storage battery assembly 104 is configured by combining a plurality of assemblies in which a plurality of storage battery units 40 are connected in parallel.
- a power converter 28 is connected to each aggregate, and the power management of each storage battery unit 40 is performed by the power converter 28.
- the power line is indicated by a solid line and the signal line is indicated by a broken line.
- a signal line between the master controller 22 and the power converter management unit 26 and a signal line between the master controller 22 and the sub-controller 24 are connected via the HUB 50.
- metal wiring is used for the signal line between the master controller 22 and the sub-controller 24.
- FIG. 3 shows one storage battery unit 40 in FIG. 2 extracted in detail.
- One storage battery unit 40 is configured by connecting storage battery control units (storage battery pack trains) 42 in which storage battery packs 44 are connected in series as necessary in parallel as necessary.
- storage battery control units storage battery pack trains
- 14 storage battery packs 44 are connected in series to form one storage battery control unit 42
- two storage battery control units 42 are connected in parallel to form one storage battery unit 40.
- one storage battery unit 40 is composed of 24 storage battery packs 44.
- the number of combinations of the storage battery cell 46, the storage battery pack 44, the storage battery control unit 42, and the storage battery unit 40 may be appropriately changed according to the specifications of the power supply system 100.
- a lithium ion battery can be used as a storage battery, you may apply other secondary batteries.
- a nickel metal hydride battery, a nickel cadmium battery, a manganese battery, or the like may be applied.
- One sub-controller 24 and one switch circuit 30 are connected to one storage battery unit 40, respectively.
- the switch circuit 30 is provided with one selection switch SW ⁇ b> 1 for each storage battery control unit 42.
- the storage battery control unit 42 is connected to the power input / output line L1 via the selection switch SW1.
- the selection switch SW1 is controlled to open / close in response to an open / close control signal from the sub-controller 24. That is, the storage battery control unit 42 is a minimum unit of control when the storage battery is connected to the power input / output line L1.
- the storage battery control units 42 (42 (1) to 42 (4)) included in one storage battery unit 40 are connected via resistors R (R (1) to R (4)). Connected to charge / discharge line L2. As a result, a charge / discharge current flows between the storage battery control units 42 (42 (1) to 42 (4)) via the resistors R (R (1) to R (4)), and the storage battery control unit 42 ( 42 (1) to 42 (4)) are equalized. Further, by providing a switch SW2 between the power input / output line L1 and the charge / discharge line L2, the storage battery control unit 42 (42 (1) to 42 (4) is connected via the power input / output line L1 and the charge / discharge line L2. ) Can be charged and discharged. The storage battery control units 42 (42 (1) to 42 (4)) are connected to the power input / output line L1 and the charge / discharge line L2 via the breakers BR (BR (1) to BR (4)), respectively. .
- the storage battery unit 40 is provided with a storage battery current sensor 52, a storage battery voltage sensor 54, a temperature sensor 56, and a ground fault detection sensor 58.
- the storage battery current sensor 52 is provided for each storage battery control unit 42 or each storage battery pack 44 and detects each current.
- the storage battery voltage sensor 54 is a parallel assembly of storage battery cells 46 connected in series in each storage battery control unit 42, each storage battery pack 44, or in the storage battery pack 44 (an assembly of 24 parallel-connected storage battery cells 46). Provided for each. Thereby, the voltage for every storage battery control unit 42, the voltage for every storage battery pack 44, and the voltage between terminals of the parallel assembly of the storage battery cells 46 are detected. In FIG. 3, only one storage battery current sensor 52 and storage battery voltage sensor 54 are illustrated to simplify the drawing.
- the temperature of the storage battery pack 44 is detected by the temperature sensor 56 as the pack temperature.
- a plurality of temperature sensors 56 may be provided for each storage battery pack 44.
- the storage battery unit 40 may be provided with a ground fault detection sensor 58.
- the ground fault detection sensor 58 is preferably provided for each storage battery pack 44.
- the ground fault detection sensor 58 is a sensor that detects that a ground fault has occurred in the storage battery cell 46 included in the storage battery pack 44.
- the storage battery unit 40 may be provided with an air cooling fan for heat removal and a rotation sensor (not shown) for detecting the number of rotations of the air cooling fan. Since an air cooling fan is generally provided for each storage battery unit 40, it is preferable to provide a rotation sensor for each storage battery unit 40.
- the power supply system 100 that charges and discharges the storage battery assembly 104 configured as described above supplies power to a load 110 including general lighting, general air conditioning, kitchen appliances, display cases, air conditioning equipment, and the like of factory facilities.
- the load 110 is provided with a power management device 110a.
- the power management device 110 a includes a load power management device 10, a storage battery power management device 12, and a total power monitoring device 14.
- the load power management apparatus 10 acquires load-side information data S9 indicating the required power of the load 110 from the load 110.
- the load-side information data S9 includes the total required power requirement amount of the load 110 necessary for the system controller 20 to be described later to set the overall charge / discharge control command S1.
- the load power management device 10 is internally an aggregate of four systems of load power management devices.
- the storage battery power management device 12 includes unit state data S6 indicating each state of the storage battery unit 40 included in the storage battery assembly 104 and power converter management data indicating each state of the power converter 28 included in the power management system 102. S7 is received. The storage battery power management device 12 transfers these pieces of information to the total power monitoring device 14.
- Unit state data S6 includes information used to generate overall charge / discharge control command S1. Further, in the unit state data S6, when there is an abnormality in any of the data such as voltage, temperature, current, SOC, etc. of the storage battery constituting the storage battery assembly 104 and the storage battery unit 40 constituting the storage battery assembly 104, The information indicating the abnormality is included.
- the power converter management data S7 includes information regarding abnormality of the power converter 28 related to the setting of the overall charge / discharge control command S1. For example, when any of the power converters 28 included in the storage battery assembly 104 has a problem such as a failure, information for specifying the power converter 28 in which the problem has occurred is included.
- the total power monitoring device 14 receives the load side information data S9 from the load power management device 10 and the unit state data S6 and the power converter management data S7 from the storage battery power management device 12, and is necessary for charge / discharge control from these information. Extract data. The total power monitoring device 14 outputs the extracted information to the system controller 20 as a system management signal S8.
- the system controller 20 receives a system management signal S8 including the load side information data S9 and the storage battery information signal unit state data S6 from the power management apparatus 110a, and is a charge / discharge control command for the entire power supply system 100 based on these information.
- An overall charge / discharge control command S1 is generated and output.
- the system controller 20 considers the state of the storage battery unit 40 and the power converter 28, and changes the charge / discharge state that satisfies the overall required power requirement of the load 110 from the charge / discharge capacity of the storage battery assembly 104. This is obtained and transmitted to the master controller 22 as an overall charge / discharge control command S1.
- the system controller 20 also considers information regarding the charge / discharge state of the storage battery unit 40 connected to the power converter 28 in which the failure has occurred and the charge / discharge state of the storage battery unit 40 in which the failure has occurred. Then, the charging / discharging state satisfying the total required power requirement of the load 110 is obtained from the charging / discharging capacity of the storage battery assembly 104, and this is transmitted to the master controller 22 as the entire charging / discharging control command S1.
- the charge / discharge conditions are indicated by the electric energy and the time, for example, “Charge at XX kW for YY seconds”.
- the SOC is a value in which the SOC (degree of charge) in a state where the electric power is stored at a maximum is 100 in a practical range, and the SOC (degree of charge) in a state where the electric power is stored at a minimum is 0.
- the SOC (degree of charge) in each storage state of electric power is expressed as a percentage based on that.
- the overall charge / discharge control command S1 is “set the charge / discharge to the standby state (or at 0 kW). Charge / discharge) ”and the like.
- the master controller 22 is a control device having a function of receiving the overall charge / discharge control command S1 from the system controller 20 and transmitting the aggregate charge / discharge control command S5 for each power converter 28 to the power converter management unit 26.
- the master controller 22 includes power converter management data S4, which is status data of the power converter 28 from the power converter management unit 26, and each of the sub-controllers 24 provided in each storage battery unit 40 included in the storage battery assembly 104.
- Unit state data S3 indicating the state of the storage battery unit 40 is received. Based on the received unit state data S3, the master controller 22 activates each power converter 28, gives a start instruction command to instruct each power converter 28 to wait, and stops each power converter 28.
- the assembly charge / discharge control instruction S5 including any one of the stop instruction instructions is transmitted to the power converter management unit 26.
- the aggregate charge / discharge control command S5 includes target charge / discharge power for charge / discharge control by each power converter 28 as necessary.
- the master controller 22 determines whether or not the overall charge / discharge control command S1 transmitted from the system controller 20 can be executed based on the power converter management data S4 and the unit state data S3, and based on the determination result.
- the assembly charge / discharge control command S5 is transmitted to the power converter management unit 26. This determination can be made, for example, by applying the unit state data S3 or the like to a predetermined conditional expression. If the overall charge / discharge control command S1 cannot be executed due to power converter capacity restrictions or safety restrictions, the master controller 22 controls the aggregate charge / discharge control while suppressing the charge / discharge amount to an executable one. Command S5 is transmitted to power converter management unit 26.
- the master controller 22 may transmit the result to the storage battery power management device 12.
- the overall charge / discharge control command S1 is a command value indicating the overall charge / discharge amount of the storage battery assembly 104 transmitted to the master controller 22.
- the aggregate charge / discharge control command S5 is a command value obtained by disassembling the command value in the overall charge / discharge control command S1 for each power converter 28. As illustrated in FIG. 2, when eight power converters 28 are provided for the power converter management unit 26, the entire charge / discharge control command S ⁇ b> 1 is “discharge at 320 kW for 1800 seconds”. Then, the assembly charge / discharge control command S5 is "the first power converter 28 is discharged at 40 kW, the second power converter 28 is discharged at 40 kW ... the eighth power converter 28 is discharged at 40 kW" It becomes the contents.
- the individual command value of the assembly charge / discharge control command S5 is a value when the command value of the overall charge / discharge control command S1 is divided evenly by the number of power converters 28.
- Other command values may be used.
- each power is changed depending on the open / close state of the selection switch SW1 or the problem.
- the aggregate charge / discharge control command S 5 having a content that is limited in charge / discharge of the entire charge / discharge control command S 1 is the power converter management unit. 26.
- the master controller 22 uses the overall charge / discharge control command S1 for the other power converters 28 excluding the power converter 28 in which the failure has occurred according to the number of storage battery control units 42 connected thereto.
- An aggregate charge / discharge control command S5 for controlling each power converter 28 is generated and output to the power converter management unit 26 so that the required charge / discharge state is satisfied.
- the master controller 22 outputs a switch control signal S10 to the sub-controller 24, and controls connection of the storage battery control unit 42 to the power input / output line L1 that performs charging / discharging.
- the master controller 22 receives the unit state data S3 from the sub-controller 24 of each storage battery unit 40, and counts the number of storage battery control units 42 whose output voltage is included in the predetermined voltage range ⁇ V for each power converter 28. Then, the connection candidate voltages serving as the reference of the voltage range ⁇ V are sequentially changed so that the number of the storage battery control units 42 in which the output voltage is included in the constant voltage range ⁇ V is maximized, and the storage battery control units 42 are selected as a group. Next, the master controller 22 switches the switch control signal S10 that closes the selection switch SW1 corresponding to the selected storage battery control unit 42 with respect to the sub-controller 24 of the storage battery unit 40 including the selected storage battery control unit 42. Is output.
- Each sub-controller 24 receives the switch control signal S10 and controls the selection switch SW1 instructed to be closed by the switch control signal S10 so as to be closed. Furthermore, the master controller 22 may update the open / close control signal of the selection switch SW1 for the sub-controller 24 according to the unit state data S3 when the state of each storage battery control unit 42 changes due to the progress of charging / discharging.
- control method of the sub-controller 24 by the master controller 22 is not limited to this, and is suitable as the power supply system 100 based on the overall charge / discharge control command S1, the power converter management data S4, and the unit state data S3. What is necessary is just to perform a charging / discharging process.
- the master controller 22 transmits data having the same content as the power converter management data S4 received from the power converter management unit 26 to the storage battery power management apparatus 12 as power converter management data S7.
- the power converter management data S7 is not indirectly transmitted from the power converter management unit 26 to the power management device 110a including the storage battery power management device 12 via the master controller 22, but the power converter management unit 26. To the power management device 110a including the storage battery power management device 12 may be directly transmitted.
- the master controller 22 transmits data having the same content as the unit state data S3 indicating the state of each storage battery unit 40 received from the sub-controller 24 to the storage battery power management apparatus 14 as unit state data S6.
- the sub-controller 24 is provided for each storage battery unit 40, and the switch control signal S10 from the master controller 22 and the switch control included in the switch circuit 30 provided in each storage battery unit 40 according to the state of each storage battery unit 40 are controlled. I do.
- the sub-controller 24 When the power source (not shown) is turned on, the sub-controller 24 closes the unit switch SW3 of the switch circuit 30 shown in FIG. 4 and connects the storage battery unit 40 to the power converter 28. In addition, the timing which makes this unit switch SW3 a closed state may be after connecting the below-mentioned storage battery control unit 42 to the electric power input / output line L1. In addition, the sub-controller 24 controls the unit switch SW3 of the switch circuit 30 according to the current value, voltage value, temperature, abnormality signal, and the like obtained from the storage battery unit 40 and the storage battery control unit 42. Control of the switch circuit 30 by the sub-controller 24 will be described later.
- the sub-controller 24 uses the data and abnormality signals output from the storage battery unit 40, the storage battery control unit 42, and the storage battery pack 44, and the charge / discharge state (SOC: State Of Charge) calculated from these data as the unit state data S3. Output to the master controller 22. Moreover, when abnormality has arisen in the storage battery unit 40 which comprises the storage battery assembly 104, the sub controller 24 includes the information for specifying the storage battery unit 40 which is abnormal in unit state data S3, and transmits.
- SOC State Of Charge
- the sub-controller 24 receives a switch state signal indicating the open / closed state of the switch from the selection switch SW1, the switch SW2, and the unit switch SW3 included in the storage battery unit 40, and includes such information in the unit state data S3 to include in the master controller 22 Output to.
- the power converter management unit 26 receives the assembly charge / discharge control command S5 from the master controller 22 and controls each power converter 28 to be controlled.
- power supply system 100 as shown in FIG. 2, there are eight power converters 28 to be controlled by power converter management unit 26.
- the present invention is not limited to this, and the number of power converters 28 may be changed as appropriate.
- the management process of the power converter 28 in the power converter management unit 26 will be described later.
- the power converter 28 performs power conversion between the AC power of the system power supply 108 and the DC power of the storage battery assembly 104, power conversion between the DC power of the storage battery assembly 104 and the AC power of the load 110, and the like.
- the power converter 28 includes a bidirectional cross flow conversion circuit as necessary.
- the power converter management unit 26 charges the storage battery assembly 104 from the solar cell system 106 or the system power supply 108 or discharges the storage battery assembly 104 to the load 110 in accordance with the assembly charge / discharge control command S5.
- the power conversion and voltage conversion in each power converter 28 are controlled.
- any of the power converters 28 under the control of the power converter management unit 26 is defective, or when a charge / discharge prohibition command or a standby command is output from the master controller 22, The operation of the defective power converter 28 is set in a standby state, and information indicating the problem of the power converter 28 is transmitted to the master controller 22 as power converter management data S4.
- the assembly charge / discharge control command S5 is “the first power converter 28 is discharged at 40 kW, the second power converter 28 is If the content is “discharge at 40 kW..., The eighth power converter 28 is discharged at 40 kW”, the power converter management unit 26 supplies power from each power converter 28 to the load 110 at 40 kW. The voltage conversion and power conversion in each power converter 28 are controlled.
- the assembly charge / discharge control command S5 is “the first power converter 28 is charged at 40 kW, the second power converter 28 is charged at 40 kW, and the eighth power converter 28 is charged at 40 kW”.
- the power converter management unit 26 performs voltage conversion and power conversion in each power converter 28 such that charging is performed at 40 kW from the solar cell system 106 and the system power supply 108 via each power converter 28. To control.
- FIG. 5 shows a configuration example of a control system for the storage battery pack 44.
- FIG. 6 shows a configuration example of the control system of the sub controller 24.
- FIG. 7 shows a connection configuration between the sub-controller 24 and the storage battery assembly 104.
- the storage battery pack 44 includes a digital processing unit 44a, an optical conversion module 44b, an analog / digital converter (ADC) 44c, and an abnormal signal output interface 44d.
- ADC analog / digital converter
- the storage battery pack 44 When the storage battery pack 44 receives a request signal from the outside, the storage battery pack 44 performs processing for outputting data measured by various sensors provided therein in response to the request signal as a status signal.
- the request signal is received as an optical signal at the input terminal IN1 of the optical conversion module 44b.
- the optical conversion module 44b converts the request signal, which is an optical signal, into an electrical signal and outputs the electrical signal to the digital processing unit 44a.
- the digital processing unit 44a measures various values measured by the storage battery current sensor 52, the storage battery voltage sensor 54, the temperature sensor 56, and the ground fault detection sensor 58 provided in the storage battery pack 44 through the ADC 44c. Get the data.
- the ADC 44c converts various data measured by the storage battery current sensor 52, the storage battery voltage sensor 54, the temperature sensor 56, and the ground fault detection sensor 58 from an analog signal to a digital signal and inputs the digital signal to the digital processing unit 44a.
- the digital processing unit 44a converts various input data into a status signal in a data format that can be communicated using an optical communication network such as an optical fiber, and outputs the status signal to the optical conversion module 44b.
- the optical conversion module 44b converts the input information from an electrical signal to an optical signal and outputs the converted information to an optical fiber connected to the output terminal OUT1.
- the storage battery pack 44 also has a function of transferring information (including a request signal) output from another storage battery pack 44.
- the optical conversion module 44b converts the received information, which is an optical signal, into an electrical signal. And output to the digital processing unit 44a.
- the digital processing unit 44a determines that the input information is information from another storage battery pack 44
- the digital processing unit 44a outputs the information to the light conversion module 44b again.
- the optical conversion module 44b converts the input information from an electrical signal to an optical signal and outputs the converted information from the output terminal OUT1 to the optical fiber.
- the information to be transferred may be transferred by the light conversion module 44b without being transferred once to the digital processing unit 44a.
- the digital processing unit 44a, the light conversion module 44b, and the analog / digital converter (ADC) 44c may be configured to operate by receiving power from the built-in storage battery pack 44 itself.
- the storage battery pack 44 outputs information requesting a highly urgent process such as a ground fault as an abnormal signal.
- the abnormal signal is output via the abnormal signal output interface 44d.
- a ground fault is detected by the ground fault sensor, or when an abnormal signal indicating abnormality is input from the other storage battery pack 44 to the input terminal IN2, an abnormal signal indicating abnormality is generated. It is output from the output terminal OUT2 of the abnormal signal output interface 44d.
- the abnormal signal can be, for example, a signal that is at a low level when it is normal and is at a high level when an abnormality occurs. In this case, the abnormal signal is output as a high level from the output terminal OUT2 in an abnormal state, and otherwise, the abnormal signal is output as a low level.
- the abnormal signal may be a signal obtained by converting an analog signal itself output from a ground fault detection sensor or the like from an electrical signal to an optical signal by the optical conversion module 44b.
- the abnormal signal in this Embodiment was only a ground fault detection signal, it is not limited to this.
- an overcurrent sensor or an overvoltage sensor may be provided for each storage battery pack 44 and output as an abnormal signal when a predetermined overcurrent reference value or overvoltage reference value is exceeded.
- a temperature sensor 56 may be provided for each storage battery pack 44 and output as an abnormal signal when a predetermined abnormal heat generation reference value is exceeded.
- FIG. 6 shows a configuration example of the sub-controller 24 in the present embodiment.
- the sub-controller 24 includes a digital processing unit 24a, a light conversion module 24b, and an abnormal signal processing circuit 24c.
- the digital processing unit 24a of the sub-controller 24 transmits a request signal for requesting transmission of a status signal (unit state data S3 and the like) to the connected battery pack 44.
- the digital processing unit 24a outputs a request signal to the optical conversion module 24b at a predetermined cycle timing or irregular timing.
- the request signal received from the digital processing unit 24a is converted from an electrical signal to an optical signal and output from the output terminal OUT3.
- the digital processing unit 24a of the sub-controller 24 receives data measured by various sensors from the connected storage battery pack 44 as a status signal.
- the status signal output from each storage battery pack 44 in response to the request signal is input to the input terminal IN3 of the light conversion module 24b.
- the optical conversion module 24b converts the status signal input to the input terminal IN3 from an optical signal to an electrical signal and outputs the converted signal to the digital processing unit 24a.
- the digital processing part 24a can receive the data measured by various sensors from the storage battery pack 44 as a status signal.
- each storage battery pack 44 and the sub-controller 24 include a first communication line 70 connected in a daisy chain.
- the request signal output from the sub-controller 24 by the request signal output process described above is sequentially transferred from the first-stage storage battery pack 44-1 to the subsequent-stage storage battery pack 44.
- a status signal including data measured by various sensors output from each storage battery pack 44 is sequentially transferred to the subsequent storage battery pack 44 and input to the input terminal IN3 of the light conversion module 24b of the sub-controller 24. It is received by the digital processing unit 24a.
- the sub-controller 24 transmits various data received from the storage battery pack 44 to the master controller 22 as unit status data S3.
- the digital processing unit 24a collects the status signals received as described above, and outputs the status signals as unit state data S3 to the light conversion module 24b at a predetermined cycle timing or irregular timing.
- the unit state data S3 received from the digital processing unit 24a is converted from an electrical signal to an optical signal and output from the output terminal OUT3.
- the sub-controller 24 receives the switch control signal S10 from the master controller 22, and performs opening / closing control of the switches included in the switch circuit 30 according to the received switch control signal S10.
- the switch control signal S10 is input to the input terminal IN3 of the light conversion module 24b.
- the optical conversion module 24b converts the data input to the input terminal IN3 from an optical signal to an electrical signal and outputs it to the digital processing unit 24a. Accordingly, the digital processing unit 24a can receive the switch control signal S10.
- the master controller 22 selects the storage battery control unit 42 whose output voltage is included in the predetermined voltage range ⁇ V as described above, and outputs the switch control signal S10 that connects the storage battery control unit 42 to the power input / output line L1. To do.
- the sub-controller 24 closes the selection switch SW1 connected to the storage battery control unit 42 selected according to the switch control signal S10 and connects it to the power input / output line L1.
- the sub-controller 24 determines the state of the storage battery unit 40 based on various data included in the status signal received from the storage battery pack 44, and if there is a problem or abnormality in the state of the storage battery unit 40, the master controller Alternatively, the switch circuit 30 may be controlled independently from the control circuit 22. For example, when a malfunction occurs in the storage battery unit 40, the unit switch SW3 is opened, and the connection between the storage battery unit 40 and the power converter 28 is cut off.
- the sub-controller 24 determines the state of the storage battery pack 44 and the storage battery control unit 42 based on various data included in the status signal received from the storage battery pack 44, and corresponds to the storage battery control unit 42 according to the determination result. Open / close control of the selection switch SW1 (SW1 (1) to SW1 (4)) may be performed.
- the sub-controller 24 uses a current value detected by the storage battery current sensor 52, a voltage value detected by the storage battery voltage sensor 54, a temperature detected by the temperature sensor 56, a ground fault state detected by the ground fault detection sensor, and the like. On the basis of the information, it is determined whether or not a problem has occurred in the state of the storage battery pack 44 or the storage battery control unit 42. When it is determined that a malfunction has occurred, the sub-controller 24 performs a process of disconnecting the storage battery control unit 42 including the malfunctioning storage battery pack 44 from the power input / output line L1. Specifically, the selection switches SW1 (SW1 (1) to SW1 (4)) corresponding to the storage battery control unit 42 including the storage battery pack 44 in which a problem has occurred are opened. In addition, the sub-controller 24 transmits information indicating the malfunction of the storage battery pack 44 and the storage battery control unit 42 to the master controller 22 as unit state data S3.
- the sub-controller 24 transmits information indicating the malfunction of the storage battery pack 44 and the storage battery control unit
- the cell voltage detected by the storage battery voltage sensor 54 falls outside the predetermined threshold range.
- the pack temperature detected by the temperature sensor 56 is out of a predetermined threshold range, it can be compared with a predetermined condition.
- the sub-controller 24 receives an abnormality signal from the connected storage battery pack 44 and performs an abnormality handling process according to the abnormality signal.
- the output terminal OUT2 of the abnormality signal output interface 44d of the storage battery pack 44 is connected to the input terminal IN2 of the abnormality signal output interface 44d of the storage battery pack 44 at the next stage.
- the output terminal OUT2 of the abnormal signal output interface 44d of the storage battery pack 44 at the final stage is connected to the input terminal IN4 of the abnormal signal processing circuit 24c of the sub controller 24. That is, each storage battery pack 44 and the sub-controller 24 include a second communication line 72 connected in a daisy chain. With such a connection configuration, the abnormality signal output from each storage battery pack 44 is input to the abnormality signal processing circuit 24 c of the sub-controller 24.
- the abnormal signal processing circuit 24c is a hardware circuit configured by a combination of logic circuits and the like, and realizes processing that is more reliable and faster than the digital processing unit 24a when an abnormality is indicated by the abnormal signal.
- the abnormal signal processing circuit 24c selects the switch SW1 corresponding to the storage battery control unit 42 including the storage battery pack 44 in which the abnormality is detected.
- a signal for opening (SW1 (1) to SW1 (4)) is output to the switch circuit 30.
- the abnormal signal processing circuit 24c may be configured to output a signal indicating that the abnormal signal has been received to the digital processing unit 24a.
- the digital processing unit 24a can perform processing such as transmitting information indicating that an abnormal signal has been output to the master controller 22 as unit state data S3.
- the processing according to the abnormal signal can be performed without going through the abnormal signal processing circuit 24c.
- the emergency shut-off that opens the selection switch SW1 (SW1 (1) to SW1 (4)) corresponding to the storage battery control unit 42 including the storage battery pack 44 that is the target of the abnormal signal.
- a circuit may be provided in the switch circuit 30.
- the communication between the sub-controller 24 and the storage battery pack 44 is configured as an optical communication system using an optical fiber.
- Optical communication systems are more resistant to noise and electrical insulation than conventional metal-wired communication systems, and even when the output voltage becomes high due to an increase in the number of series connected storage batteries, noise is superimposed. And the occurrence of insulation abnormality can be suppressed.
- a communication line for normal communication data such as current, voltage, temperature, etc.
- a communication line for an abnormal signal notifying abnormality of the storage battery pack 44 as separate systems, it is possible to respond to abnormal signal transmission and abnormal signal. It is possible to reliably and promptly perform the abnormality handling process.
- one of the light conversion module 44b and the analog / digital converter (ADC) 44c of the storage battery pack 44 receives power from the storage battery pack 44, the supply of power is accompanied by an abnormality in the storage battery pack 44. If stopped, communication via these may become impossible. Therefore, by performing the communication of the abnormal signal through an independent communication line, even when the functions of the optical conversion module 44b and the analog / digital converter (ADC) 44c are stopped, the communication of the abnormal signal is established. can do.
- the communication between the sub-controller 24 and the storage battery pack 44 is configured as an optical communication system using an optical fiber, but is not limited to this.
- the light conversion module 24b of the sub-controller 24 and the light conversion module 44b of the storage battery pack 44 are not provided, and communication can be established by providing an interface unit necessary for electrical signal communication using metal wiring as necessary. it can.
- FIG. 8 shows a configuration example of a control system for the storage battery pack 44.
- FIG. 9 shows a configuration example of a control system of the sub controller 24.
- FIG. 10 shows a configuration example of the control system of the switch circuit 30.
- FIG. 11 shows a mutual connection configuration of the sub-controller 24, the switch circuit 30, and the storage battery assembly 104.
- the storage battery pack 44 includes a digital processing unit 44a, an optical conversion module 44b, and an analog / digital converter (ADC) 44c. Only the functions different from those of the first communication system will be described below.
- ADC analog / digital converter
- the storage battery pack 44 outputs information requesting a highly urgent process such as a ground fault as an abnormal signal.
- a ground fault is detected by the ground fault sensor
- the digital processing unit 44a outputs an abnormal signal indicating an abnormality to the light conversion module 44b.
- the optical conversion module 44b converts the input abnormal signal from an electric signal to an optical signal and outputs the converted signal to an optical fiber connected to the output terminal OUT2.
- FIG. 9 shows a configuration example of the sub-controller 24 in this embodiment.
- the sub-controller 24 includes a digital processing unit 24a and a light conversion module 24b. Only the functions different from those of the first communication system will be described below.
- the digital processing unit 24a of the sub-controller 24 receives a status signal and an abnormal signal from the connected storage battery pack 44.
- the status signal and the abnormality signal are input to the input terminal IN3 of the optical conversion module 24b.
- the optical conversion module 24b converts the information input to the input terminal IN3 from an optical signal to an electrical signal and outputs it to the digital processing unit 24a.
- the digital processing unit 24a can receive a status signal and an abnormal signal.
- the input terminal IN3 is provided more than the number of storage battery packs 44 to be controlled by the sub-controller 24.
- the digital processing unit 24 a of the sub-controller 24 transmits a control signal to the switch circuit 30.
- the digital processing unit 24a outputs a control signal corresponding to the switch control signal S10 received from the master controller 22 to the light conversion module 24b at a predetermined cycle timing or irregular timing.
- the control signal received from the digital processing unit 24a is converted from an electric signal to an optical signal and output from the output terminal OUT4.
- the digital processing unit 24a of the sub-controller 24 receives the status signal from the switch circuit 30.
- the status signal is input to the input terminal IN4 of the light conversion module 24b.
- the optical conversion module 24b converts the status signal input to the input terminal IN4 from an optical signal to an electrical signal and outputs the electrical signal to the digital processing unit 24a.
- the digital processing unit 24 a can receive the status signal from the switch circuit 30.
- FIG. 10 shows a configuration example of the switch circuit 30 in the present embodiment.
- the switch circuit 30 includes a digital processing unit 30a, an optical conversion module 30b, a photocoupler 30c, and an analog / digital converter (ADC) 30d.
- ADC analog / digital converter
- the digital processing unit 30 a of the switch circuit 30 receives a control signal from the sub-controller 24.
- the control signal is input to the input terminal IN5 of the light conversion module 30b.
- the optical conversion module 30b converts the received control signal from an optical signal to an electrical signal and outputs the converted signal to the digital processing unit 30a.
- the digital processing unit 30 a can receive the control signal from the sub-controller 24.
- the digital processing unit 30 a of the switch circuit 30 outputs a status signal indicating the state of the switch circuit 30 to the sub-controller 24.
- the digital processing unit 30a acquires various data measured by a voltage sensor, a current sensor, and a temperature sensor provided in the switch circuit 30 via the ADC 30d.
- a voltage sensor (not shown) is provided between the breaker BR and the selection switch SW1 (SW1 (1) to SW1 (4)), and the voltage at that position is measured as the battery voltage.
- a voltage sensor (not shown) is provided between the selection switch SW1 (SW1 (1) to SW1 (4)) and the unit switch SW3, and the output of the selection switch SW1 (SW1 (1) to SW1 (4)).
- the edge voltage is measured as the semiconductor switch voltage.
- a current sensor (not shown) is provided at the output terminal of the storage battery control unit 42, and the output current of the storage battery control unit 42 is measured as the battery current.
- a temperature sensor (not shown) is provided in the casing of the switch circuit 30 or in the vicinity of the selection switch SW1, and the temperature in the casing and the semiconductor switch temperature are measured.
- the ADC 30d converts these various measured data from an analog signal to a digital signal and inputs the digital signal to the digital processing unit 30a.
- the digital processing unit 30a converts various input data into a status signal in a data format that can be communicated using an optical communication network such as an optical fiber, and outputs the status signal to the optical conversion module 30b.
- the optical conversion module 30b converts the input information from an electrical signal to an optical signal and outputs the converted information to an optical fiber connected to the output terminal OUT5.
- the sub-controller 24, the switch circuit 30, and the storage battery pack 44 having the above configuration are connected to each other as shown in FIG.
- the input terminal IN4 of the light conversion module 24b of the sub-controller 24 and the output terminal OUT5 of the light conversion module 30b of the switch circuit 30 are connected by an optical fiber, and the output of the light conversion module 24b of the sub-controller 24
- the end OUT4 and the input end IN5 of the optical conversion module 30b of the switch circuit 30 are connected by an optical fiber. That is, as a result, communication between the sub-controller 24 and the switch circuit 30 is realized via the optical fiber communication network.
- each storage battery pack 44 and the sub-controller 24 include a first communication line 70 connected in a daisy chain.
- the request signal output from the sub-controller 24 by the request signal output process described above is sequentially transferred from the first-stage storage battery pack 44-1 to the subsequent-stage storage battery pack 44. .
- each storage battery pack 44 and the sub-controller 24 include a second communication line 72 connected in parallel. With such a connection configuration, the status signal and the abnormality signal output from each storage battery pack 44 are input to the digital processing unit 24 a of the sub-controller 24.
- the sub-controller 24 transmits various data received from the storage battery pack 44 to the master controller 22 as unit status data S3.
- the digital processing unit 24a collects the status signals received as described above, and outputs the status signals as unit state data S3 to the light conversion module 24b at a predetermined cycle timing or irregular timing.
- the unit state data S3 received from the digital processing unit 24a is converted from an electric signal to an optical signal and transmitted to the master controller 22.
- the control of the power supply system 100 is performed by such a configuration of the communication system.
- the digital processing unit 24a of the sub-controller 24 receives the switch control signal S10 that connects the storage battery control unit 42 selected by the master controller 22 to the power input / output line L1, it is selected according to the switch control signal S10.
- a control signal for closing the selection switch SW1 connected to the storage battery control unit 42 is output to the switch circuit 30.
- the switch circuit 30 receives the control signal, outputs it to the photocoupler 30c so as to close the selection switch SW1 designated by the control signal, and closes the selection switch SW1.
- the digital processing unit 24a of the sub-controller 24 determines the state of the storage battery unit 40 and the switch circuit 30 based on various data included in the status signal received from the storage battery pack 44 and the switch circuit 30, and controls the switch circuit 30. May be performed independently from the master controller 22. For example, when a problem or abnormality has occurred in the state of the storage battery unit 40, the unit switch SW3 may be opened to disconnect the connection between the storage battery unit 40 and the power converter 28.
- the digital processing unit 24a of the sub-controller 24 determines the state of the storage battery pack 44 or the storage battery control unit 42 based on various data included in the status signal received from the storage battery pack 44, and controls the storage battery according to the determination result.
- the open / close control of the selection switch SW1 (SW1 (1) to SW1 (4)) corresponding to the unit 42 may be performed.
- the digital processing unit 24a of the sub-controller 24 is configured such that the current value detected by the storage battery current sensor 52, the voltage value detected by the storage battery voltage sensor 54, the temperature detected by the temperature sensor 56, and the ground fault. It is determined whether or not a problem has occurred in the state of the storage battery pack 44 or the storage battery control unit 42 based on information such as a ground fault state detected by the detection sensor. When it is determined that a malfunction has occurred, the sub-controller 24 performs a process of disconnecting the storage battery control unit 42 including the malfunctioning storage battery pack 44 from the power input / output line L1. In other words, the selection switch SW1 (SW1 (1) to SW1 (4)) corresponding to the storage battery control unit 42 including the storage battery pack 44 in which a problem has occurred is opened.
- the cell voltage detected by the storage battery voltage sensor 54 falls outside the predetermined threshold range.
- the pack temperature detected by the temperature sensor 56 is out of a predetermined threshold range, it can be compared with a predetermined condition.
- the digital processing unit 24a of the sub-controller 24 may receive an abnormality signal from the connected storage battery pack 44 and perform an abnormality handling process according to the abnormality signal. For example, when the abnormal signal changes from the low level to the high level, the selection switches SW1 (SW1 (1) to SW1 (4)) corresponding to the storage battery control unit 42 including the storage battery pack 44 in which the abnormality is detected are opened. The signal is output to the switch circuit 30.
- the processing according to the abnormal signal can be performed without using the digital processing unit 24a.
- the emergency shut-off that opens the selection switch SW1 (SW1 (1) to SW1 (4)) corresponding to the storage battery control unit 42 including the storage battery pack 44 that is the target of the abnormal signal.
- a circuit may be provided in the switch circuit 30.
- the unit switch SW3 is opened and the connection between the storage battery unit 40 and the power converter 28 is cut off. You may make it do. Further, the output voltage of the storage battery control unit 42 and the state of the selection switch SW1 (SW1 (1) to SW1 (4)) are determined according to the status signal received from the switch circuit 30, and the selection switch is determined according to the determination result. The opening / closing control of SW1 (SW1 (1) to SW1 (4)) may be performed.
- the potential difference between the battery voltage and the semiconductor switch voltage is predetermined.
- the selection switches SW1 SW1 (1) to SW1 (4)
- the switch circuit 30 can be controlled in accordance with a predetermined condition, for example, in the open state.
- switch circuit 30 in the switch circuit 30, as shown in FIG. 10, you may make it perform control by ground fault detection, control of a built-in fan, etc. independently from the sub controller 24 in the digital processing part 30a.
- FIG. 12 shows a configuration example of a control system for the storage battery pack 44.
- FIG. 13 shows a configuration example of a control system of the sub controller 24.
- FIG. 14 shows the mutual connection configuration of the sub-controller 24, the switch circuit 30, and the storage battery assembly 104.
- the storage battery pack 44 includes a digital processing unit 44a, an optical conversion module 44b, and an analog / digital converter (ADC) 44c, as in the second communication system.
- ADC analog / digital converter
- the output terminal OUT1 of the light conversion module 44b uses the data measured by various sensors provided in response to the request signal as status information. Process to output from.
- the storage battery pack 44 outputs information requesting highly urgent processing such as a ground fault from the output terminal OUT2 of the light conversion module 44b as an abnormal signal. Since the output of the abnormal signal is the same as that of the second communication system, description thereof is omitted.
- FIG. 13 shows a configuration example of the sub-controller 24 in the present embodiment. Similar to the second communication system, the sub-controller 24 includes a digital processing unit 24a and an optical conversion module 24b. The light conversion module 24 b is directly connected to the plurality of storage battery packs 44.
- the digital processing unit 24a of the sub-controller 24 transmits a request signal requesting transmission of a status signal to each connected storage battery pack 44.
- the request signal received from the digital processing unit 24a is converted from an electric signal to an optical signal, and is output from the output terminal OUT3 provided for each storage battery pack 44 to be controlled.
- the digital processing unit 24a of the sub-controller 24 receives a status signal and an abnormal signal from each connected storage battery pack 44.
- the status signal is input to the input terminal IN3a of the optical conversion module 24b.
- the optical conversion module 24b converts information input to the input terminal IN3a from an optical signal to an electrical signal and outputs the signal to the digital processing unit 24a. Thereby, the digital processing unit 24a can receive the status signal.
- the input terminals IN3a are provided more than the number of storage battery packs 44 to be controlled by the sub-controller 24.
- the abnormal signal is input to the input terminal IN3b of the optical conversion module 24b.
- the optical conversion module 24b converts information input to the input terminal IN3b from an optical signal to an electrical signal and outputs the electrical signal to the digital processing unit 24a. Thereby, the digital processing unit 24a can receive the abnormal signal.
- the input terminals IN3b are provided more than the number of storage battery packs 44 to be controlled by the sub-controller 24.
- the process of transmitting the control signal to the switch circuit 30 and receiving the status signal from the switch circuit 30 in the sub-controller 24 is the same as that in the second communication system, and thus the description thereof is omitted.
- the sub-controller 24, the switch circuit 30, and the storage battery pack 44 are connected to each other as shown in FIG. Note that the connection configuration and control method between the sub-controller 24 and the switch circuit 30 are the same as those in the second communication system, and thus the description thereof is omitted.
- each of the output terminals OUT3 of the light conversion module 24b of the sub-controller 24 is connected to the input terminal IN1 of the light conversion module 44b of each storage battery pack 44.
- the output terminal OUT1 of the light conversion module 44b of each storage battery pack 44 is connected to the input terminal IN3a of the light conversion module 24b of the sub-controller 24. That is, each storage battery pack 44 and the sub-controller 24 include a third communication line 74 connected in parallel.
- each storage battery pack 44 and the sub-controller 24 include a second communication line 76 connected in parallel.
- FIG. 15 shows a configuration example of a control system for the storage battery pack 44.
- FIG. 16 shows a configuration example of a control system of the sub controller 24.
- FIG. 17 shows a mutual connection configuration of the sub-controller 24, the switch circuit 30, and the storage battery assembly 104.
- the storage battery pack 44 includes a digital processing unit 44a, an optical conversion module 44b, and an analog / digital converter (ADC) 44c, as in the second communication system. However, it differs in that the input terminal IN2 is provided in the light conversion module 44b.
- ADC analog / digital converter
- the storage battery pack 44 of the fourth communication system receives a request signal from the outside at the input terminal IN1 of the light conversion module 44b, the data measured by various sensors provided in response to the request signal is received as status information. As a result, a process of outputting from the output terminal OUT1 of the light conversion module 44b is performed.
- the digital processing unit 44a Since the reception of the request signal from the sub-controller 24 is the same as that of the second communication system, description thereof is omitted. Further, along with the reception of the request signal, the digital processing unit 44a transmits a status signal. Since the transmission of the status signal is the same as that of the second communication system, description thereof is omitted.
- the storage battery pack 44 outputs information requesting a highly urgent process such as a ground fault as an abnormal signal. Since the output of the abnormal signal is the same as that of the second communication system, description thereof is omitted.
- the storage battery pack 44 also has a function of transferring an abnormality signal output from another storage battery pack 44.
- the optical conversion module 44b converts the abnormal signal, which is an optical signal, into an electrical signal and outputs the electrical signal to the digital processing unit 44a.
- the digital processing unit 44a Upon receiving the abnormal signal, the digital processing unit 44a outputs it again to the light conversion module 44b.
- the optical conversion module 44b converts the abnormal signal from an electric signal to an optical signal and outputs the abnormal signal from the output terminal OUT2 to the optical fiber. Note that the transfer process may be performed by the optical conversion module 44b without once transferring the request signal to the digital processing unit 44a.
- FIG. 16 shows a configuration example of the sub-controller 24 in the present embodiment.
- the sub-controller 24 includes a digital processing unit 24a and a light conversion module 24b.
- the digital processing unit 24a of the sub-controller 24 transmits a request signal for requesting transmission of a status signal to the connected storage battery pack 44.
- the digital processing unit 24a outputs a request signal to the optical conversion module 24b at a predetermined cycle timing or irregular timing.
- the request signal received from the digital processing unit 24a is converted from an electric signal to an optical signal, and is output from the output terminal OUT3 provided for each storage battery pack 44 to be controlled.
- the digital processing unit 24a of the sub-controller 24 receives a status signal and an abnormal signal from the connected storage battery pack 44.
- the status signal is input to the input terminal IN3a of the optical conversion module 24b.
- the optical conversion module 24b converts information input to the input terminal IN3a from an optical signal to an electrical signal and outputs the signal to the digital processing unit 24a. Thereby, the digital processing unit 24a can receive the status signal.
- the abnormal signal is input to the input terminal IN3b of the optical conversion module 24b.
- the optical conversion module 24b converts information input to the input terminal IN3b from an optical signal to an electrical signal and outputs the electrical signal to the digital processing unit 24a. Thereby, the digital processing unit 24a can receive the abnormal signal.
- the process of transmitting the control signal to the switch circuit 30 and receiving the status signal from the switch circuit 30 in the sub-controller 24 is the same as that in the second communication system, and thus the description thereof is omitted.
- the sub-controller 24, the switch circuit 30, and the storage battery pack 44 are connected to each other as shown in FIG. Note that the connection configuration and control method between the sub-controller 24 and the switch circuit 30 are the same as those in the second communication system, and thus the description thereof is omitted.
- the output terminal OUT3 of the light conversion module 24b of the sub-controller 24 is connected to the input terminal IN1 of the light conversion module 44b of the first-stage storage battery pack 44-1. Further, the output terminal OUT1 of the light conversion module 44b of the storage battery pack 44 in the first and subsequent stages is connected to the input terminal IN1 of the light conversion module 44b of the storage battery pack 44 in the next stage. Further, the output terminal OUT1 of the light conversion module 44b of the storage battery pack 44-n at the final stage is connected to the input terminal IN3a of the light conversion module 24b of the sub-controller 24. That is, each storage battery pack 44 and sub-controller 24 include a fifth communication line 78 connected in a daisy chain.
- the request signal output from the sub-controller 24 by the request signal output process described above is sequentially transferred from the first-stage storage battery pack 44-1 to the subsequent-stage storage battery pack 44.
- the status signal output from each storage battery pack 44 is transferred to the sub-controller 24 by the storage battery pack 44 at the subsequent stage.
- each storage battery pack 44 and sub-controller 24 include a sixth communication line 80 connected in a daisy chain. With such a connection configuration, the abnormality signal output from each storage battery pack 44 is transferred to the sub-controller 24 by the storage battery pack 44 in the subsequent stage.
- the communication with the sub-controller 24, the switch circuit 30, and the storage battery pack 44 is configured as an optical communication system using an optical fiber. That is, the power supply system 100 has improved noise resistance and electrical insulation as compared with a conventional power supply system using metal wiring.
- the power supply system 100 has improved noise resistance and electrical insulation as compared with a conventional power supply system using metal wiring.
- noise superimposition and insulation in the communication system of the sub-controller 24, the switch circuit 30, and the storage battery pack 44 that are easily affected by the wiring of the power system. The occurrence of abnormalities can be suppressed.
- the request signal is communicated between the sub-controller 24 and the storage battery pack 44 via the first communication line 70 connected in a daisy chain, and the status signal and the abnormality signal are connected in parallel in the second communication line 70. Communication is performed by a communication line 72.
- the status signal and the abnormality signal are directly transmitted to the sub-controller 24 without passing through the transfer path by the plurality of storage battery packs 44. Accordingly, the status signal and the abnormality signal can be quickly transmitted / received from the storage battery pack 44 to the sub-controller 24.
- the number of terminals of the sub controller 24 and the number of optical fiber cables can be reduced as compared with the case where all the connections between the sub controller 24 and the storage battery pack 44 are connected in parallel. Thereby, reduction of a connection process and reduction of manufacturing cost are realizable.
- the burden of photoelectric conversion processing performed by the sub-controller 24 in the first communication line 70 is reduced, and the power consumption of optical communication of the sub-controller 24 can be suppressed.
- each storage battery pack 44 does not need to perform a status signal and abnormal signal transfer process, and the power consumption in each storage battery pack 44 can be made uniform.
- the request signal, the status signal, and the abnormality signal are all communicated between the sub-controller 24 and the storage battery pack 44 through the third communication line 74 and the fourth communication line 76 that are connected in parallel. .
- the request signal, the status signal, and the abnormality signal are directly transmitted to the sub-controller 24 without passing through the transfer path by the plurality of storage battery packs 44. Therefore, the request signal, the status signal, and the abnormality signal can be promptly transmitted / received from the storage battery pack 44 to the sub-controller 24.
- each storage battery pack 44 does not need to perform transfer processing of a request signal, a status signal, and an abnormality signal, and power consumption in each storage battery pack 44 can be made uniform.
- the request signal is communicated between the sub-controller 24 and the storage battery pack 44 via the fifth communication line 78 connected in a daisy chain, and the status signal and the abnormality signal are transmitted in a sixth daisy chain connected.
- Communication line 80 is
- the number of terminals of the sub-controller 24 and the number of optical fiber cables can be reduced as compared with the case where the connection between the sub-controller 24 and the storage battery pack 44 is connected in parallel. Thereby, reduction of a connection process and reduction of manufacturing cost are realizable. Further, the burden of photoelectric conversion processing performed by the sub-controller 24 is reduced, and the power consumption of optical communication of the sub-controller 24 can be suppressed.
- FIG. 18 shows the configuration of the power supply system in the second embodiment.
- only one storage battery control unit 42 is provided in one storage battery unit 40, and one storage battery unit 40 is connected to one power converter 28.
- the configuration of the storage battery control unit 42 is the same as that of the first embodiment.
- connection form and control of the plurality of storage battery packs 44 in the storage battery unit 40 can be adopted as in the first embodiment.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Medical Informatics (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Secondary Cells (AREA)
Abstract
ステータス信号及び異常信号の少なくとも1つを出力する蓄電池パック44と、電力入出力ラインに蓄電池制御単位を接続するスイッチ回路30と、蓄電池パック44からステータス信号及び異常信号の少なくとも1つを受信すると共に、スイッチ回路30へ制御信号を出力してスイッチ回路30の制御を行うサブコントローラ24とを備え、サブコントローラ24と蓄電池パック44との通信の少なくとも一部、及び、サブコントローラ24とスイッチ回路30との通信の少なくとも一部を光ファイバを用いて行う。
Description
本発明は、蓄電池を含む電源システムに関する。
電力の有効的な利用を図るために商用電源と蓄電池とを組み合わせた電源システムが利用され始めている。すなわち、負荷の時間的な変動に合わせて、負荷が大きいときには商用電源からの電力に加えて蓄電池からの放電電力を負荷へ供給し、負荷が小さいときには商用電源から蓄電池へ充電を行い、商用電源からの電力供給を時間的に平均化するものである。また、近年開発が進んでいる太陽光発電システムや燃料電池システムも電源システムに組み合わせられている。
このような電源システムでは、充放電を行うための配線に蓄電池を接続するためのスイッチ回路と、スイッチ回路に含まれるスイッチを開閉制御するためのコントローラと、が設けられる。コントローラは、各蓄電池から出力電圧、出力電流、温度及び異常を知らせるアラーム信号を受けて、これらの情報に応じてスイッチ回路に対する制御を行う。
従来の電源システムでは、各蓄電池、スイッチ回路及びコントローラの間を接続する通信ラインが金属配線である。金属配線を用いた場合、蓄電池の直列接続段数が増加して出力電圧が高圧になると、蓄電池の配線への接続・切断のスイッチング等に伴うノイズの重畳や絶縁の低下等の問題が生ずるおそれが高くなる。
また、蓄電池の地絡や異常発熱といった緊急の状態が発生した場合には、蓄電池の切離し処理等を確実かつ迅速に行う必要がある。
本発明は、少なくとも一つの蓄電池セルを含み、蓄電池セルの状態を示すステータス信号及び異常を示す異常信号を出力する蓄電池パックと、蓄電池パックからステータス信号及び異常信号を受信すると共に、蓄電池パックの充放電制御を行うコントローラと、を備え、蓄電池パックに対しステータス情報の送信を要求するリクエスト信号及びステータス信号をコントローラから蓄電池パックへ送信するための第1通信ラインと、第1通信ラインとは別に設けられ、異常信号を蓄電池パックからコントローラへ送信するための第2通信ラインと、を備える、電源システムである。
本発明は、蓄電池を用いた電源システムの信頼性を高めることができる。
<第1の実施の形態>
本発明の実施の形態における電源システム100は、図1に示すように、電源管理システム102、蓄電池集合体104、太陽電池システム106及び系統電源108を含んで構成される。電源システム100は、負荷110に電力を供給するために用いられる。なお、図1において、太い実線は電力の流れを示し、細い実線は信号の流れを示す。
本発明の実施の形態における電源システム100は、図1に示すように、電源管理システム102、蓄電池集合体104、太陽電池システム106及び系統電源108を含んで構成される。電源システム100は、負荷110に電力を供給するために用いられる。なお、図1において、太い実線は電力の流れを示し、細い実線は信号の流れを示す。
本実施の形態では、太陽電池システム106及び系統電源108を電力源としている。系統電源108は、単相又は3相等の電源であり、水力発電、原子力発電、火力発電等の様々な発電方式で発電された電力を組み合わせて外部の電力会社から供給されるものとすることができる。また、太陽電池システム106は、例えば1MWの大規模な太陽光発電システムとすることができる。ただし、これらに限定されるものではなく、燃料電池や風力発電システム等の他の再生可能エネルギーを利用した電力源を含めてもよい。
電源管理システム102は、図1に示すように、システムコントローラ20、マスタコントローラ22、サブコントローラ24、電力変換器管理部26及び電力変換器28を含んで構成される。電源管理システム102は、階層的な制御システムとして構成されており、システムコントローラ20、マスタコントローラ22、サブコントローラ24、電力変換器管理部26へと上位から下位に向かって制御が階層化されている。
システムコントローラ20は、電源システム100の電力管理を統合的に行う機能を有する。マスタコントローラ22は、システムコントローラ20からの全体充放電制御指令S1を受けて、蓄電池集合体104の全体を1つとして充放電制御するための制御装置である。電力変換器管理部26は、電力変換器28の各々における電力変換及び電圧変換等の処理を制御する。サブコントローラ24は、蓄電池集合体104に含まれる蓄電池ユニット40毎に設けられ、それぞれの蓄電池ユニット40での充放電を制御する。
蓄電池集合体104は、負荷110の必要電力に応じた電力を供給するために設けられる。蓄電池集合体104は、図2及び図3に例示するように、蓄電池セル46を複数組み合わせた蓄電池パック44、蓄電池パック44を複数組み合わせた蓄電池制御単位42、及び蓄電池制御単位42を複数組み合わせた蓄電池ユニット40のように階層的に構成される。
図2に示すように、蓄電池集合体104は、複数の蓄電池ユニット40が並列に接続された集合体が複数組み合わされて構成されている。各集合体には、それぞれ電力変換器28が接続されており、電力変換器28により各蓄電池ユニット40の電力管理を行う。なお、図2では、電力線を実線で、信号線を破線で示している。マスタコントローラ22と電力変換器管理部26との間の信号線およびマスタコントローラ22とサブコントローラ24との間の信号線は、HUB50を介して接続されている。マスタコントローラ22とサブコントローラ24との間の信号線は、一般的に金属配線が用いられる。
図3は、図2における1つの蓄電池ユニット40を抜き出し、その構成を詳細に示している。1つの蓄電池ユニット40は、蓄電池パック44を必要に応じて直列接続した蓄電池制御単位(蓄電池パック列)42を、必要に応じて並列に接続して構成される。図3の例では、14個の蓄電池パック44を直列接続して1つの蓄電池制御単位42を形成し、その蓄電池制御単位42を2列並列接続して、1つの蓄電池ユニット40が構成されている。本実施の形態では、1つの蓄電池ユニット40は、24個の蓄電池パック44から構成される。
さらに、図3には、1つの蓄電池パック44の内部構成の例が拡大されて示されている。本実施の形態では、1つの蓄電池パック44は、蓄電池の単位である蓄電池セル46を24個並列に接続したものを、直列に13組接続して構成される。つまり、各蓄電池パック44は、24×13=312個の蓄電池セル46から構成される。
なお、蓄電池セル46、蓄電池パック44、蓄電池制御単位42及び蓄電池ユニット40の組み合わせの数は電源システム100の仕様に応じ適宜変更してもよい。また、蓄電池としてリチウムイオン電池を用いることができるが、これ以外の2次電池を適用してもよい。例えば、ニッケル水素電池、ニッケルカドミウム電池、マンガン電池等を適用してもよい。
1つの蓄電池ユニット40には、それぞれ1つのサブコントローラ24と、1つのスイッチ回路30とが接続される。スイッチ回路30には、図4に示すように、蓄電池制御単位42毎に1つの選択スイッチSW1が設けられている。蓄電池制御単位42は、選択スイッチSW1を介して電力入出力ラインL1に接続される。選択スイッチSW1は、サブコントローラ24からの開閉制御信号に応じて開閉制御される。すなわち、蓄電池制御単位42は、蓄電池を電力入出力ラインL1に接続する際の制御の最小単位となる。
また、図4に示すように、1つの蓄電池ユニット40に含まれる蓄電池制御単位42(42(1)~42(4))は、抵抗R(R(1)~R(4))を介して充放電ラインL2に接続される。これにより、蓄電池制御単位42(42(1)~42(4))間には抵抗R(R(1)~R(4))を介して相互に充放電電流が流れ、蓄電池制御単位42(42(1)~42(4))の充電状態が均等化される。さらに、電力入出力ラインL1と充放電ラインL2との間にスイッチSW2を設けることにより、電力入出力ラインL1及び充放電ラインL2を介して蓄電池制御単位42(42(1)~42(4))間で充放電を行うことができる。なお、蓄電池制御単位42(42(1)~42(4))は、それぞれブレーカBR(BR(1)~BR(4))を介して電力入出力ラインL1及び充放電ラインL2に接続される。
蓄電池ユニット40には、蓄電池電流センサ52、蓄電池電圧センサ54、温度センサ56及び地絡検知センサ58が設けられる。蓄電池電流センサ52は、蓄電池制御単位42毎や蓄電池パック44毎に設けられ、それぞれの電流を検出する。蓄電池電圧センサ54は、蓄電池制御単位42毎、蓄電池パック44毎又は蓄電池パック44内において直列に接続される蓄電池セル46の並列集合体(24個の並列接続された蓄電池セル46の集合体)の各々に設けられる。これにより、蓄電池制御単位42毎の電圧、蓄電池パック44毎の電圧や蓄電池セル46の並列集合体の端子間電圧が検出される。なお、図3では、図を簡略に示すために蓄電池電流センサ52及び蓄電池電圧センサ54を一つのみ図示している。また、蓄電池パック44の温度はパック温度として温度センサ56によって検出される。なお、蓄電池パック44毎に複数の温度センサ56を設けてもよい。さらに、蓄電池ユニット40には、地絡検知センサ58を設けてもよい。地絡検知センサ58は、蓄電池パック44毎に設けることが好適である。地絡検知センサ58は、蓄電池パック44に含まれる蓄電池セル46に地絡が生じたことを検知するセンサである。
また、蓄電池ユニット40には、除熱用の空冷ファンを設け、空冷ファンの回転数を検出する回転センサ(図示しない)を設けてもよい。空冷ファンは一般的に蓄電池ユニット40毎に設けられるので、回転センサも蓄電池ユニット40毎に設けることが好適である。
このように構成された蓄電池集合体104の充放電を行う電源システム100は、工場施設の一般照明、一般空調、厨房器具、展示ケース、空調設備等を含む負荷110へ電力を供給する。
負荷110には、電力管理装置110aが設けられる。電力管理装置110aは、負荷電力管理装置10、蓄電池電力管理装置12及び総合電力監視装置14を含む。
負荷電力管理装置10は、負荷110の必要電力を示す負荷側情報データS9を負荷110から取得する。負荷側情報データS9は、後述するシステムコントローラ20が全体充放電制御指令S1を設定できるために必要な負荷110の全体の必要電力要求量を含む。図1に示すように、負荷110が4系統に区分されるときは、負荷電力管理装置10は、内部的に4系統の負荷電力管理装置の集合体とされる。
蓄電池電力管理装置12は、蓄電池集合体104に含まれる蓄電池ユニット40の各々の状態を示すユニット状態データS6及び電源管理システム102に含まれる電力変換器28の各々の状態を示す電力変換器管理データS7を受信する。蓄電池電力管理装置12は、これらの情報を総合電力監視装置14へ転送する。ユニット状態データS6は、全体充放電制御指令S1の生成に利用される情報を含む。さらに、ユニット状態データS6には、蓄電池集合体104を構成する蓄電池の電圧、温度、電流、SOC等のデータ及び蓄電池集合体104を構成する蓄電池ユニット40のいずれかに異常がある場合にはこれらの異常を示す情報が含まれる。また、電力変換器管理データS7には、全体充放電制御指令S1の設定に関係する電力変換器28の異常に関する情報が含まれる。例えば、蓄電池集合体104に含まれる電力変換器28のいずれかに故障等の不具合がある場合、不具合が生じている電力変換器28を特定するための情報が含まれる。
総合電力監視装置14は、負荷電力管理装置10から負荷側情報データS9並びに蓄電池電力管理装置12からユニット状態データS6及び電力変換器管理データS7を受けて、これらの情報から充放電制御に必要なデータを抽出する。総合電力監視装置14は、抽出された情報をシステム管理信号S8としてシステムコントローラ20へ出力する。
以下、電源管理システム102の各構成要素における制御について説明する。システムコントローラ20は、電力管理装置110aから負荷側情報データS9及び蓄電池情報信号ユニット状態データS6を含むシステム管理信号S8を受け、これらの情報に基づいて電源システム100の全体に対する充放電制御指令である全体充放電制御指令S1を生成して出力する。
具体的には、システムコントローラ20は、蓄電池ユニット40及び電力変換器28の状態を考慮して、蓄電池集合体104の充放電容量から負荷110の全体の必要電力要求量を満たす充放電の状態を求めて、これを全体充放電制御指令S1としてマスタコントローラ22に送信する。また、好ましくは、システムコントローラ20は、不具合が生じている電力変換器28に接続されている蓄電池ユニット40の充放電状態、および不具合が生じている蓄電池ユニット40の充放電状態に関する情報も考慮して、蓄電池集合体104の充放電容量から負荷110の全体の必要電力要求量を満たす充放電の状態を求めて、これを全体充放電制御指令S1としてマスタコントローラ22に送信する。
全体充放電制御指令S1は、例えば「XXkWでYY秒間充電すること」等のように、充放電条件が電力量と時間とで示される。この他に、充電上限電圧を指定して「電圧がZZVになるまでXXkWで充電すること」としてもよく、放電下限電圧を指定して「ZZVまで放電すること」としてもよく、SOCを指定して充放電を指令するものとしてもよい。ここで、SOCとは、電力を実用上の範囲で、最大に貯蔵した状態におけるSOC(充電度)を100とし、最小に貯蔵した状態におけるSOC(充電度)を0としたものであって、それを基準にして電力の各貯蔵状態でのSOC(充電度)を百分率で表したものである。
また、蓄電池集合体104による放電が放電下限界に到達した場合や充電が充電上限界に到達した場合には、全体充放電制御指令S1は「充放電を待機状態にすること(あるいは、0kWで充放電すること)」等の内容とされる。
マスタコントローラ22は、システムコントローラ20から全体充放電制御指令S1を受け、それぞれの電力変換器28に対する集合体充放電制御指令S5を電力変換器管理部26に送信する機能を有する制御装置である。
マスタコントローラ22は、電力変換器管理部26から電力変換器28の状態データである電力変換器管理データS4と、蓄電池集合体104に含まれる各蓄電池ユニット40に設けられたサブコントローラ24から各々の蓄電池ユニット40の状態を示すユニット状態データS3とを受信する。マスタコントローラ22は、受信したユニット状態データS3に基づいて、各電力変換器28の起動を指示する起動指示命令、各電力変換器28の待機を指示する待機指示命令及び各電力変換器28の停止を指示する停止指示命令のいずれかを含む集合体充放電制御指令S5を電力変換器管理部26へ送信する。また、集合体充放電制御指令S5には、各電力変換器28による充放電の制御のための目標充放電電力を必要に応じて含む。また、マスタコントローラ22は、電力変換器管理データS4とユニット状態データS3とに基づいてシステムコントローラ20から送信された全体充放電制御指令S1を実行できるか否か判断し、判断の結果に基づいて、集合体充放電制御指令S5を電力変換器管理部26に送信する。この判断は、例えば、ユニット状態データS3等を予め定めた条件式に当てはめて行うものとすることができる。電力変換器の能力の制約や安全上の制約等により、全体充放電制御指令S1が実行できない場合には、マスタコントローラ22は、充放電量を実行可能なものに抑制して集合体充放電制御指令S5を電力変換器管理部26に送信する。あるいは、マスタコントローラ22が、集合体充放電制御指令S5を送信しない制御としてもよい。また、全体充放電制御指令S1が指令どおり実行できなかった場合、マスタコントローラ22によってその結果を蓄電池電力管理装置12に送信するものとしてもよい。
全体充放電制御指令S1は、マスタコントローラ22に対して送信される蓄電池集合体104の全体の充放電量を示す指令値である。集合体充放電制御指令S5は、全体充放電制御指令S1での指令値を電力変換器28毎に分解した指令値となる。図2に例示するように、電力変換器管理部26に対して8個の電力変換器28が設けられている場合、全体充放電制御指令S1が「320kWで1800秒間放電」という内容であったとすると、集合体充放電制御指令S5は、「第1の電力変換器28は40kWで放電、第2の電力変換器28は40kWで放電・・・第8の電力変換器28は40kWで放電」という内容になる。なお、この具体例では、集合体充放電制御指令S5の個別の指令値は、全体充放電制御指令S1の指令値を電力変換器28の個数で均等に割ったときの値となっているが、これ以外の個別の指令値とされることもある。例えば、電力変換器管理データS4によって、電力変換器管理部26が制御する電力変換器28のいずれかに不具合があることが送信されているとき、選択スイッチSW1の開閉状態や不具合等によって各電力変換器28に接続されていない蓄電池制御単位42が存在するとき等では、全体充放電制御指令S1の一部の充放電が制限された内容の集合体充放電制御指令S5が電力変換器管理部26に送信される。具体的には、マスタコントローラ22は、不具合が生じた電力変換器28を除いた他の電力変換器28について、それに接続された蓄電池制御単位42の数に応じて、全体充放電制御指令S1で要求される充放電状態が満たされるように、各電力変換器28を制御する集合体充放電制御指令S5を生成して、電力変換器管理部26へ出力する。
また、マスタコントローラ22は、サブコントローラ24へスイッチ制御信号S10を出力し、充放電を行う電力入出力ラインL1への蓄電池制御単位42の接続を制御する。
例えば、マスタコントローラ22は、各蓄電池ユニット40のサブコントローラ24からユニット状態データS3を受信し、出力電圧が所定の電圧範囲ΔVに含まれる蓄電池制御単位42の数を電力変換器28毎にカウントし、一定の電圧範囲ΔVに出力電圧が含まれる蓄電池制御単位42の数が最多となるように電圧範囲ΔVの基準となる接続候補電圧を順次変更し、蓄電池制御単位42を群として選択する。次に、マスタコントローラ22は、選択された蓄電池制御単位42を含む蓄電池ユニット40のサブコントローラ24に対して、選択された蓄電池制御単位42に対応する選択スイッチSW1を閉状態とするスイッチ制御信号S10を出力する。各サブコントローラ24は、スイッチ制御信号S10を受信して、スイッチ制御信号S10によって閉状態とするように指示された選択スイッチSW1を閉状態となるように制御する。さらに、マスタコントローラ22は、充放電の経過によって各蓄電池制御単位42の状態が変化したときには、ユニット状態データS3に応じてサブコントローラ24に対する選択スイッチSW1の開閉制御信号を更新してもよい。
ただし、マスタコントローラ22によるサブコントローラ24の制御方法はこれに限定されるものではなく、全体充放電制御指令S1、電力変換器管理データS4及びユニット状態データS3に基づいて、電源システム100として適切な充放電処理が行われるものであればよい。
また、マスタコントローラ22は、電力変換器管理部26から受け取った電力変換器管理データS4と同じ内容のデータを電力変換器管理データS7として蓄電池電力管理装置12に送信する。なお、電力変換器管理データS7は、電力変換器管理部26からマスタコントローラ22を介して蓄電池電力管理装置12を含む電力管理装置110aに間接的に送信するのではなく、電力変換器管理部26から蓄電池電力管理装置12を含む電力管理装置110aに直接的に送信してもよい。
さらに、マスタコントローラ22は、サブコントローラ24から受け取った各々の蓄電池ユニット40の状態を示すユニット状態データS3と同じ内容のデータをユニット状態データS6として蓄電池電力管理装置14へ送信する。
サブコントローラ24は、蓄電池ユニット40毎に設けられ、マスタコントローラ22からのスイッチ制御信号S10及び各蓄電池ユニット40の状態に応じて各蓄電池ユニット40に設けられたスイッチ回路30に含まれるスイッチの開閉制御を行う。
サブコントローラ24は、その電源(図示しない)がオンされると、図4に示したスイッチ回路30のユニットスイッチSW3を閉状態として、蓄電池ユニット40を電力変換器28へ接続する。なお、このユニットスイッチSW3を閉状態にするタイミングは、後述の蓄電池制御単位42を電力入出力ラインL1へ接続した後でもよい。また、サブコントローラ24は、蓄電池ユニット40及び蓄電池制御単位42から得られた電流値、電圧値、温度及び異常信号等に応じて、スイッチ回路30のユニットスイッチSW3を制御する。サブコントローラ24によるスイッチ回路30の制御については後述する。
また、サブコントローラ24は、蓄電池ユニット40、蓄電池制御単位42、蓄電池パック44から出力されるデータや異常信号及びこれらのデータから算出した充放電状態(SOC:State Of Charge)をユニット状態データS3としてマスタコントローラ22へ出力する。また、蓄電池集合体104を構成する蓄電池ユニット40に異常が生じている場合には、サブコントローラ24は、異常である蓄電池ユニット40を特定するための情報をユニット状態データS3に含めて送信する。また、サブコントローラ24は、蓄電池ユニット40に含まれる選択スイッチSW1、スイッチSW2、ユニットスイッチSW3からスイッチの開閉状態を示すスイッチ状態信号を受け、それらの情報をユニット状態データS3に含めてマスタコントローラ22へ出力する。
電力変換器管理部26は、マスタコントローラ22から集合体充放電制御指令S5を受け、制御対象となる電力変換器28の各々を制御する。本実施の形態における電源システム100では、図2に示すように、電力変換器管理部26の制御対象となる電力変換器28を8個としている。ただし、これに限定されるものではなく、電力変換器28の数は適宜変更してもよい。電力変換器管理部26における電力変換器28の管理処理については後述する。
電力変換器28は、系統電源108の交流電力と蓄電池集合体104の直流電力との間の電力変換、蓄電池集合体104の直流電力と負荷110の交流電力との間の電力変換等を行う。具体的には、電力変換器28は、必要に応じて双方向直交流変換回路を含む。
電力変換器管理部26は、集合体充放電制御指令S5に従って、太陽電池システム106や系統電源108から蓄電池集合体104へ充電を行ったり、蓄電池集合体104から負荷110へ放電を行ったりする際に各電力変換器28における電力変換及び電圧変換を制御する。また、電力変換器管理部26の制御下にある電力変換器28のいずれかに不具合がある場合や、マスタコントローラ22からの充放電の禁止指令、または待機指令が出力されている場合には、その不具合の電力変換器28の動作を待機状態にさせて、電力変換器28の不具合を示す情報を電力変換器管理データS4としてマスタコントローラ22に送信する。
例えば、図2に示すように8個の電力変換器28が設けられており、集合体充放電制御指令S5が「第1の電力変換器28は40kWで放電、第2の電力変換器28は40kWで放電・・・第8の電力変換器28は40kWで放電」という内容であれば、電力変換器管理部26は、各電力変換器28から負荷110へそれぞれ40kWで電力が供給されるように各電力変換器28における電圧変換及び電力変換を制御する。また、集合体充放電制御指令S5が「第1の電力変換器28は40kWで充電、第2の電力変換器28は40kWで充電・・・第8の電力変換器28は40kWで充電」という内容であれば、電力変換器管理部26は、各電力変換器28を介して太陽電池システム106や系統電源108からそれぞれ40kWで充電が行われるように各電力変換器28における電圧変換及び電力変換を制御する。
次に、サブコントローラ24と蓄電池集合体104との通信について説明する。図5は、蓄電池パック44の制御システムの構成例を示す。図6は、サブコントローラ24の制御システムの構成例を示す。図7は、サブコントローラ24と蓄電池集合体104との接続の構成を示す。
[第1の実施の形態]
<第1の通信システム>
蓄電池パック44は、図5に示すように、デジタル処理部44a、光変換モジュール44b、アナログ/デジタル変換器(ADC)44c及び異常信号出力インターフェース44dを含む。
<第1の通信システム>
蓄電池パック44は、図5に示すように、デジタル処理部44a、光変換モジュール44b、アナログ/デジタル変換器(ADC)44c及び異常信号出力インターフェース44dを含む。
蓄電池パック44は、外部からのリクエスト信号を受信すると、リクエスト信号に応答して内部に設けられた各種センサで測定されたデータをステータス信号として出力する処理を行う。
リクエスト信号は、光変換モジュール44bの入力端IN1において光信号として受信される。光変換モジュール44bは、光信号であるリクエスト信号を電気信号に変換し、デジタル処理部44aへ出力する。デジタル処理部44aは、リクエスト信号を受けると、ADC44cを介して、蓄電池パック44の内部に設けられた蓄電池電流センサ52、蓄電池電圧センサ54、温度センサ56及び地絡検知センサ58で測定された各種データを取得する。ADC44cは、蓄電池電流センサ52、蓄電池電圧センサ54、温度センサ56及び地絡検知センサ58で測定された各種データをアナログ信号からデジタル信号に変換してデジタル処理部44aへ入力する。デジタル処理部44aは、入力されてきた各種データを光ファイバ等の光通信網を用いて通信が可能なデータ形式のステータス信号に変換して光変換モジュール44bへ出力する。光変換モジュール44bは、入力された情報を電気信号から光信号へ変換して出力端OUT1に接続された光ファイバへ出力する。
蓄電池パック44は、他の蓄電池パック44から出力された情報(リクエスト信号を含む)を転送する機能も有する。上記のように蓄電池パック44から光ファイバへ出力された情報が光変換モジュール44bの入力端IN1において光信号として受信されると、光変換モジュール44bは、光信号である受信情報を電気信号に変換し、デジタル処理部44aへ出力する。デジタル処理部44aは、入力された情報が他の蓄電池パック44からの情報であると判断すると、その情報を光変換モジュール44bへ再度出力する。光変換モジュール44bは、入力された情報を電気信号から光信号へ変換して出力端OUT1から光ファイバへ出力する。なお、転送する情報は、デジタル処理部44aへ一旦転送することなく光変換モジュール44bにて転送処理を行ってもよい。
ここで、デジタル処理部44a、光変換モジュール44b及びアナログ/デジタル変換器(ADC)44cは、内蔵される蓄電池パック44自体から電源電力を受けて動作するように構成してもよい。
一方、蓄電池パック44は、地絡等の緊急性の高い処理を要求する情報は異常信号として出力する。異常信号は、異常信号出力インターフェース44dを介して出力される。例えば、地絡センサによって地絡が検出されている状態である、又は、他の蓄電池パック44から異常を示す異常信号が入力端IN2に入力されている状態であると、異常を示す異常信号が異常信号出力インターフェース44dの出力端OUT2から出力される。
異常信号は、例えば、正常時においてはローレベルであり、異常発生時にはハイレベルである信号とすることができる。この場合、異常状態であるときに異常信号をハイレベルとして出力端OUT2から出力し、そうでない場合には異常信号をローレベルとして出力する。また、異常信号は、地絡検知センサ等から出力されるアナログ信号自体を光変換モジュール44bで電気信号から光信号へ変換した信号としてもよい。
なお、本実施の形態での異常信号は、地絡検知信号のみとしたが、これに限定されるものではない。例えば、蓄電池パック44毎に過電流センサや過電圧センサを設けて、所定の過電流基準値や過電圧基準値を超えた場合に異常信号として出力してもよい。また、例えば、蓄電池パック44毎に温度センサ56を設けて、所定の異常発熱基準値を超えた場合に異常信号として出力してもよい。
図6は、本実施の形態におけるサブコントローラ24の構成例を示す。サブコントローラ24は、デジタル処理部24a、光変換モジュール24b及び異常信号処理回路24cを含む。
サブコントローラ24のデジタル処理部24aは、接続される蓄電池パック44に対してステータス信号(ユニット状態データS3等)の送信を要求するリクエスト信号を送信する。例えば、デジタル処理部24aは、所定周期のタイミング又は不定期のタイミングにおいて、光変換モジュール24bへリクエスト信号を出力する。光変換モジュール24bでは、デジタル処理部24aから受けたリクエスト信号を電気信号から光信号へ変換し、出力端OUT3から出力する。
また、サブコントローラ24のデジタル処理部24aは、接続される蓄電池パック44から各種センサで測定されたデータをステータス信号として受信する。上記のリクエスト信号に応答して各蓄電池パック44から出力されたステータス信号は、光変換モジュール24bの入力端IN3へ入力される。光変換モジュール24bは、入力端IN3に入力されたステータス信号を光信号から電気信号へ変換してデジタル処理部24aへ出力する。これにより、デジタル処理部24aは、蓄電池パック44から各種センサで測定されたデータをステータス信号として受信することができる。
図7に示すように、サブコントローラ24の光変換モジュール24bの出力端OUT3は、1段目の蓄電池パック44-1の光変換モジュール44bの入力端IN1に接続される。また、1段目以降の蓄電池パック44の光変換モジュール44bの出力端OUT1は、次の段の蓄電池パック44の光変換モジュール44bの入力端IN1に接続される。さらに、最終段の蓄電池パック44-nの光変換モジュール44bの出力端OUT1は、サブコントローラ24の光変換モジュール24bの入力端IN3へ接続される。すなわち、各蓄電池パック44及びサブコントローラ24は、デイジーチェーン接続された第1の通信ライン70を備える。
このような接続構成とすることによって、上記のリクエスト信号の出力処理によりサブコントローラ24から出力されたリクエスト信号は、1段目の蓄電池パック44-1から後段の蓄電池パック44へと順次転送される。また、各蓄電池パック44から出力された各種センサで測定されたデータを含むステータス信号は、後段の蓄電池パック44へと順次転送され、サブコントローラ24の光変換モジュール24bの入力端IN3へ入力され、デジタル処理部24aで受信される。
また、サブコントローラ24は、蓄電池パック44から受信した各種データをユニット状態データS3としてマスタコントローラ22へ送信する。デジタル処理部24aは、上記のように受信したステータス信号を纏めて、所定周期のタイミング又は不定期のタイミングにおいて、ユニット状態データS3として光変換モジュール24bへ出力する。光変換モジュール24bでは、デジタル処理部24aから受けたユニット状態データS3を電気信号から光信号へ変換し、出力端OUT3から出力する。
また、サブコントローラ24は、マスタコントローラ22からスイッチ制御信号S10を受けて、受信したスイッチ制御信号S10に応じてスイッチ回路30に含まれるスイッチの開閉制御を行う。スイッチ制御信号S10は、光変換モジュール24bの入力端IN3へ入力される。光変換モジュール24bは、入力端IN3に入力されたデータを光信号から電気信号へ変換してデジタル処理部24aへ出力する。これにより、デジタル処理部24aは、スイッチ制御信号S10を受信することができる。
例えば、マスタコントローラ22は上記のように出力電圧が所定の電圧範囲ΔVに含まれる蓄電池制御単位42を選択し、それらの蓄電池制御単位42を電力入出力ラインL1へ接続するスイッチ制御信号S10を出力する。サブコントローラ24は、スイッチ制御信号S10を受信すると、スイッチ制御信号S10に応じて選択された蓄電池制御単位42に接続された選択スイッチSW1を閉状態として電力入出力ラインL1へ接続する。
さらに、サブコントローラ24は、蓄電池パック44から受信したステータス信号に含まれる各種データに基づいて蓄電池ユニット40の状態を判断し、蓄電池ユニット40の状態に不具合や異常が生じている場合にはマスタコントローラ22から独立してスイッチ回路30の制御を行うようにしてもよい。例えば、蓄電池ユニット40に不具合が生じている場合、ユニットスイッチSW3を開状態として、蓄電池ユニット40と電力変換器28との接続を遮断する。
また、サブコントローラ24は、蓄電池パック44から受信したステータス信号に含まれる各種データに基づいて蓄電池パック44や蓄電池制御単位42の状態を判断し、その判断結果に応じて蓄電池制御単位42に対応する選択スイッチSW1(SW1(1)~SW1(4))の開閉制御を行うようにしてもよい。
例えば、サブコントローラ24は、蓄電池電流センサ52で検出される電流値、蓄電池電圧センサ54で検出される電圧値、温度センサ56で検出される温度及び地絡検知センサで検出される地絡状態等の情報に基づいて蓄電池パック44や蓄電池制御単位42の状態に不具合が生じているかどうか判断する。サブコントローラ24は、不具合が生じていると判断される場合には、不具合が生じている蓄電池パック44を含む蓄電池制御単位42を電力入出力ラインL1から切り離す処理を行う。具体的には、不具合が生じている蓄電池パック44を含む蓄電池制御単位42に対応する選択スイッチSW1(SW1(1)~SW1(4))を開状態とする。また、サブコントローラ24は、蓄電池パック44や蓄電池制御単位42の不具合を示す情報をユニット状態データS3としてマスタコントローラ22に送信する。
不具合の判断は、蓄電池電流センサ52によって検出される電流が予め定めた条件式から算出される閾値範囲外となるとき、蓄電池電圧センサ54によって検出されるセル電圧が予め定めた閾値範囲外となるとき、温度センサ56によって検出されるパック温度が予め定めた閾値範囲外となるとき等のように、予め定めた条件と比較して行うことができる。
さらに、サブコントローラ24は、接続される蓄電池パック44から異常信号を受けて、異常信号に応じて異常対応処理を行う。図7に示すように、蓄電池パック44の異常信号出力インターフェース44dの出力端OUT2は、次段の蓄電池パック44の異常信号出力インターフェース44dの入力端IN2に接続される。さらに、最終段の蓄電池パック44の異常信号出力インターフェース44dの出力端OUT2は、サブコントローラ24の異常信号処理回路24c入力端IN4に接続される。すなわち、各蓄電池パック44及びサブコントローラ24は、デイジーチェーン接続された第2の通信ライン72を備える。このような接続構成により、各蓄電池パック44から出力された異常信号は、サブコントローラ24の異常信号処理回路24cに入力される。
異常信号処理回路24cは、論理回路の組み合わせ等で構成されたハードウェア回路であり、異常信号によって異常が示されている場合にデジタル処理部24aよりも確実かつ高速な処理を実現する。
例えば、異常信号処理回路24cは、異常信号がローレベルからハイレベルへ変化して異常を示す異常信号を受けると、異常が検出された蓄電池パック44を含む蓄電池制御単位42に対応する選択スイッチSW1(SW1(1)~SW1(4))を開状態とする信号をスイッチ回路30へ出力する。
また、異常信号処理回路24cは、異常信号を受信したこと示す信号をデジタル処理部24aへ出力する構成としてもよい。これにより、デジタル処理部24aにおいて、異常信号が出力されたことを示す情報をユニット状態データS3としてマスタコントローラ22に送信する等の処理を行うことが可能となる。
なお、異常信号に応じた処理は、異常信号処理回路24cを介さないで行うことも可能である。例えば、異常信号がハイレベルになると、その異常信号の対象となる蓄電池パック44を含む蓄電池制御単位42に対応する選択スイッチSW1(SW1(1)~SW1(4))を開状態とする緊急遮断回路をスイッチ回路30に設ければよい。
本実施の形態によれば、サブコントローラ24と蓄電池パック44との通信は、光ファイバを用いた光通信システムとして構成される。光通信システムは、従来の金属配線の通信システムよりも耐ノイズ性や電気的な絶縁性が高く、蓄電池の直列接続段数が増加して出力電圧が高圧になった場合であってもノイズの重畳や絶縁性の異常の発生を抑制することができる。
また、電流、電圧、温度等の通常の通信データの通信ラインと、蓄電池パック44の異常を知らせる異常信号の通信ラインと、を別系統として構成することによって、異常信号の伝達及び異常信号に応じた異常対応処理を確実かつ迅速に行うことを可能としている。特に、蓄電池パック44の光変換モジュール44b及びアナログ/デジタル変換器(ADC)44cのいずれかが蓄電池パック44自体から電源電力を受けている場合、蓄電池パック44の異常に伴って電源電力の供給が停止するとこれらを介した通信は不可能となるおそれがある。したがって、異常信号の通信を独立の通信ラインで行うことによって、光変換モジュール44b及びアナログ/デジタル変換器(ADC)44cの機能が停止した場合であっても異常信号の通信は確立された状態とすることができる。
なお、本実施の形態では、サブコントローラ24と蓄電池パック44との通信は、光ファイバを用いた光通信システムとして構成したが、これに限定されるものではない。例えば、メタル配線を用いた通信システムとして構成してもよい。この場合、サブコントローラ24の光変換モジュール24b及び蓄電池パック44の光変換モジュール44bは設けず、必要に応じてメタル配線による電気信号の通信に必要なインターフェース部を設けることで通信を確立することができる。
<第2の通信システム>
次に、第2の通信システムにおけるサブコントローラ24、スイッチ回路30及び蓄電池集合体104との通信について説明する。図8は、蓄電池パック44の制御システムの構成例を示す。図9は、サブコントローラ24の制御システムの構成例を示す。図10は、スイッチ回路30の制御システムの構成例を示す。図11は、サブコントローラ24、スイッチ回路30及び蓄電池集合体104の相互の接続構成を示す。
次に、第2の通信システムにおけるサブコントローラ24、スイッチ回路30及び蓄電池集合体104との通信について説明する。図8は、蓄電池パック44の制御システムの構成例を示す。図9は、サブコントローラ24の制御システムの構成例を示す。図10は、スイッチ回路30の制御システムの構成例を示す。図11は、サブコントローラ24、スイッチ回路30及び蓄電池集合体104の相互の接続構成を示す。
蓄電池パック44は、図8に示すように、デジタル処理部44a、光変換モジュール44b及びアナログ/デジタル変換器(ADC)44cを含む。以下、第1の通信システムと異なる機能のみ説明する。
また、蓄電池パック44は、地絡等の緊急性の高い処理を要求する情報は異常信号として出力する。例えば、デジタル処理部44aは、地絡センサによって地絡が検出されると、異常を示す異常信号を光変換モジュール44bへ出力する。光変換モジュール44bは、入力された異常信号を電気信号から光信号へ変換して出力端OUT2に接続された光ファイバへ出力する。
図9は、本実施の形態におけるサブコントローラ24の構成例を示す。サブコントローラ24は、デジタル処理部24a及び光変換モジュール24bを含んで構成される。以下、第1の通信システムと異なる機能のみ説明する。
また、サブコントローラ24のデジタル処理部24aは、接続される蓄電池パック44からステータス信号や異常信号を受信する。ステータス信号や異常信号は、光変換モジュール24bの入力端IN3へ入力される。光変換モジュール24bは、入力端IN3に入力された情報を光信号から電気信号へ変換してデジタル処理部24aへ出力する。これにより、デジタル処理部24aは、ステータス信号や異常信号を受信することができる。入力端IN3は、サブコントローラ24での制御対象となる蓄電池パック44の数以上設けられる。
また、サブコントローラ24のデジタル処理部24aは、スイッチ回路30に対して制御信号を送信する。例えば、デジタル処理部24aは、所定周期のタイミング又は不定期のタイミングにおいて、マスタコントローラ22から受信したスイッチ制御信号S10に応じた制御信号を光変換モジュール24bへ出力する。光変換モジュール24bでは、デジタル処理部24aから受けた制御信号を電気信号から光信号へ変換し、出力端OUT4から出力する。
さらに、サブコントローラ24のデジタル処理部24aは、スイッチ回路30からのステータス信号を受信する。ステータス信号は、光変換モジュール24bの入力端IN4へ入力される。光変換モジュール24bは、入力端IN4に入力されたステータス信号を光信号から電気信号へ変換してデジタル処理部24aへ出力する。これにより、デジタル処理部24aは、スイッチ回路30からステータス信号を受信することができる。
図10は、本実施の形態におけるスイッチ回路30の構成例を示す。スイッチ回路30は、デジタル処理部30a、光変換モジュール30b、フォトカプラ30c及びアナログ/デジタル変換器(ADC)30dを含む。なお、フォトカプラ30c及びADC30dは選択スイッチSW1や蓄電池制御単位42毎にそれぞれ設けられるが、図10では、図を簡潔に示すために1系統のみを代表的に示している。
スイッチ回路30のデジタル処理部30aは、サブコントローラ24から制御信号を受信する。制御信号は、光変換モジュール30bの入力端IN5に入力される。光変換モジュール30bは、制御信号を受信すると、受信した制御信号を光信号から電気信号へ変換してデジタル処理部30aへ出力する。これにより、デジタル処理部30aは、サブコントローラ24から制御信号を受信することができる。
また、スイッチ回路30のデジタル処理部30aは、スイッチ回路30の状態を示すステータス信号をサブコントローラ24へ出力する。デジタル処理部30aは、ADC30dを介して、スイッチ回路30の内部に設けられた電圧センサ、電流センサ、温度センサで測定された各種データを取得する。例えば、図2に示すように、ブレーカBRと選択スイッチSW1(SW1(1)~SW1(4))との間に電圧センサ(図示しない)が設けられ、その位置の電圧がバッテリ電圧として測定される。また、選択スイッチSW1(SW1(1)~SW1(4))とユニットスイッチSW3との間に電圧センサ(図示しない)が設けられ、選択スイッチSW1(SW1(1)~SW1(4))の出力端の電圧が半導体スイッチ電圧として測定される。また、蓄電池制御単位42の出力端に電流センサ(図示しない)が設けられ、蓄電池制御単位42の出力電流がバッテリ電流として測定される。また、スイッチ回路30の筐体内や選択スイッチSW1近傍に温度センサ(図示しない)が設けられ、筐体内温度や半導体スイッチ温度が測定される。ADC30dは、これらの測定された各種データをアナログ信号からデジタル信号に変換してデジタル処理部30aへ入力する。デジタル処理部30aは、入力されてきた各種データを光ファイバ等の光通信網を用いて通信が可能なデータ形式のステータス信号に変換して光変換モジュール30bへ出力する。光変換モジュール30bは、入力された情報を電気信号から光信号へ変換して出力端OUT5に接続された光ファイバへ出力する。
以上のような構成を有するサブコントローラ24、スイッチ回路30及び蓄電池パック44は、図11に示すように相互に接続される。
図11に示すように、サブコントローラ24の光変換モジュール24bの入力端IN4とスイッチ回路30の光変換モジュール30bの出力端OUT5とが光ファイバにより接続され、サブコントローラ24の光変換モジュール24bの出力端OUT4とスイッチ回路30の光変換モジュール30bの入力端IN5とが光ファイバにより接続される。すなわち、これにより、サブコントローラ24とスイッチ回路30との通信が光ファイバ通信網を介して実現される。
また、サブコントローラ24の光変換モジュール24bの出力端OUT3は、1段目の蓄電池パック44-1の光変換モジュール44bの入力端IN1に接続される。また、1段目以降の蓄電池パック44の光変換モジュール44bの出力端OUT1は、次の段の蓄電池パック44の光変換モジュール44bの入力端IN1に接続される。さらに、最終段の蓄電池パック44-nの光変換モジュール44bの出力端OUT1は、サブコントローラ24の光変換モジュール24bの入力端IN3へ接続される。すなわち、各蓄電池パック44及びサブコントローラ24は、デイジーチェーン接続された第1の通信ライン70を備える。
このような接続構成とすることによって、上記のリクエスト信号の出力処理によりサブコントローラ24から出力されたリクエスト信号は、1段目の蓄電池パック44-1から後段の蓄電池パック44へと順次転送される。
また、図11に示すように、各蓄電池パック44の光変換モジュール44bの出力端OUT2は、サブコントローラ24の光変換モジュール24bの入力端IN3に接続される。すなわち、各蓄電池パック44及びサブコントローラ24は、パラレル接続された第2の通信ライン72を備える。このような接続構成により、各蓄電池パック44から出力されたステータス信号や異常信号は、サブコントローラ24のデジタル処理部24aに入力される。
また、サブコントローラ24は、蓄電池パック44から受信した各種データをユニット状態データS3としてマスタコントローラ22へ送信する。デジタル処理部24aは、上記のように受信したステータス信号を纏めて、所定周期のタイミング又は不定期のタイミングにおいて、ユニット状態データS3として光変換モジュール24bへ出力する。光変換モジュール24bでは、デジタル処理部24aから受けたユニット状態データS3を電気信号から光信号へ変換してマスタコントローラ22へ送信する。
このような通信システムの構成によって、電源システム100の制御が行われる。例えば、サブコントローラ24のデジタル処理部24aは、マスタコントローラ22において選択された蓄電池制御単位42を電力入出力ラインL1へ接続するスイッチ制御信号S10を受信すると、スイッチ制御信号S10に応じて選択された蓄電池制御単位42に接続された選択スイッチSW1を閉状態とする制御信号をスイッチ回路30へ出力する。スイッチ回路30では、制御信号を受信し、制御信号で指定された選択スイッチSW1を閉状態とするようにフォトカプラ30cへ出力を行い、選択スイッチSW1を閉状態とする。
また、サブコントローラ24のデジタル処理部24aは、蓄電池パック44やスイッチ回路30から受信したステータス信号に含まれる各種データに基づいて蓄電池ユニット40やスイッチ回路30の状態を判断し、スイッチ回路30の制御をマスタコントローラ22から独立して行ってもよい。例えば、蓄電池ユニット40の状態に不具合や異常が生じている場合には、ユニットスイッチSW3を開状態として、蓄電池ユニット40と電力変換器28との接続を遮断するようにしてもよい。
また、サブコントローラ24のデジタル処理部24aは、蓄電池パック44から受信したステータス信号に含まれる各種データに基づいて蓄電池パック44や蓄電池制御単位42の状態を判断し、その判断結果に応じて蓄電池制御単位42に対応する選択スイッチSW1(SW1(1)~SW1(4))の開閉制御を行うようにしてもよい。
具体的には、例えば、サブコントローラ24のデジタル処理部24aは、蓄電池電流センサ52で検出される電流値、蓄電池電圧センサ54で検出される電圧値、温度センサ56で検出される温度及び地絡検知センサで検出される地絡状態等の情報に基づいて蓄電池パック44や蓄電池制御単位42の状態に不具合が生じているかどうか判断する。サブコントローラ24は、不具合が生じていると判断される場合には、不具合が生じている蓄電池パック44を含む蓄電池制御単位42を電力入出力ラインL1から切り離す処理を行う。すなわち、不具合が生じている蓄電池パック44を含む蓄電池制御単位42に対応する選択スイッチSW1(SW1(1)~SW1(4))を開状態とする。
不具合の判断は、蓄電池電流センサ52によって検出される電流が予め定めた条件式から算出される閾値範囲外となるとき、蓄電池電圧センサ54によって検出されるセル電圧が予め定めた閾値範囲外となるとき、温度センサ56によって検出されるパック温度が予め定めた閾値範囲外となるとき等のように、予め定めた条件と比較して行うことができる。
さらに、サブコントローラ24のデジタル処理部24aは、接続される蓄電池パック44から異常信号を受けて、異常信号に応じて異常対応処理を行うようにしてもよい。例えば、異常信号がローレベルからハイレベルへ変化すると、異常が検出された蓄電池パック44を含む蓄電池制御単位42に対応する選択スイッチSW1(SW1(1)~SW1(4))を開状態とする信号をスイッチ回路30へ出力する。
なお、異常信号に応じた処理は、デジタル処理部24aを介さないで行うことも可能である。例えば、異常信号がハイレベルになると、その異常信号の対象となる蓄電池パック44を含む蓄電池制御単位42に対応する選択スイッチSW1(SW1(1)~SW1(4))を開状態とする緊急遮断回路をスイッチ回路30に設ければよい。
また、スイッチ回路30から受信したステータス信号に応じて、スイッチ回路30に不具合や異常が生じている場合には、ユニットスイッチSW3を開状態として、蓄電池ユニット40と電力変換器28との接続を遮断するようにしてもよい。また、スイッチ回路30から受信したステータス信号に応じて、蓄電池制御単位42の出力電圧や選択スイッチSW1(SW1(1)~SW1(4))の状態を判断し、その判断結果に応じて選択スイッチSW1(SW1(1)~SW1(4))の開閉制御を行うようにしてもよい。
より具体的には、例えば、スイッチ回路30からのステータス信号に含まれるバッテリ電圧が予め定めた条件式から算出される閾値範囲外となるとき、バッテリ電圧と半導体スイッチ電圧との電位差が予め定めた閾値範囲外となるとき、バッテリ電流が予め定めた閾値範囲外となるとき、筐体内温度や半導体スイッチ温度が予め定めた閾値範囲外となるときに選択スイッチSW1(SW1(1)~SW1(4))を開状態にする等、予め定めた条件に応じてスイッチ回路30の制御を行うことができる。
なお、スイッチ回路30では、図10に示すように、地絡検知による制御や内蔵ファン等の制御を、デジタル処理部30aにおいてサブコントローラ24から独立して行うようにしてもよい。
<第3の通信システム>
次に、第3の通信システムにおけるサブコントローラ24、スイッチ回路30及び蓄電池集合体104との通信について説明する。本実施の形態は、サブコントローラ24と蓄電池パック44との間の接続及び情報処理方法が第2の通信システムと異なる。スイッチ回路30の制御システムの構成は、第2の通信システムと同様であるので説明を省略する。図12は、蓄電池パック44の制御システムの構成例を示す。図13は、サブコントローラ24の制御システムの構成例を示す。図14は、サブコントローラ24、スイッチ回路30及び蓄電池集合体104の相互の接続構成を示す。
次に、第3の通信システムにおけるサブコントローラ24、スイッチ回路30及び蓄電池集合体104との通信について説明する。本実施の形態は、サブコントローラ24と蓄電池パック44との間の接続及び情報処理方法が第2の通信システムと異なる。スイッチ回路30の制御システムの構成は、第2の通信システムと同様であるので説明を省略する。図12は、蓄電池パック44の制御システムの構成例を示す。図13は、サブコントローラ24の制御システムの構成例を示す。図14は、サブコントローラ24、スイッチ回路30及び蓄電池集合体104の相互の接続構成を示す。
蓄電池パック44は、図12に示すように、第2の通信システムと同様に、デジタル処理部44a、光変換モジュール44b及びアナログ/デジタル変換器(ADC)44cを含む。
第3の通信システムの蓄電池パック44は、外部からのリクエスト信号を受信すると、リクエスト信号に応答して内部に設けられた各種センサで測定されたデータをステータス情報として光変換モジュール44bの出力端OUT1から出力する処理を行う。
また、蓄電池パック44は、地絡等の緊急性の高い処理を要求する情報は異常信号として光変換モジュール44bの出力端OUT2から出力する。異常信号の出力は、第2の通信システムと同様であるので説明を省略する。
図13は、本実施の形態におけるサブコントローラ24の構成例を示す。サブコントローラ24は、第2の通信システムと同様に、デジタル処理部24a及び光変換モジュール24bを含む。光変換モジュール24bは、複数の蓄電池パック44と直接接続されている。
サブコントローラ24のデジタル処理部24aは、接続された各蓄電池パック44に対してステータス信号の送信を要求するリクエスト信号を送信する。光変換モジュール24bでは、デジタル処理部24aから受けたリクエスト信号を電気信号から光信号へ変換し、制御対象となる蓄電池パック44毎に設けられた出力端OUT3から出力する。
また、サブコントローラ24のデジタル処理部24aは、接続された各蓄電池パック44からステータス信号や異常信号を受信する。ステータス信号は、光変換モジュール24bの入力端IN3aへ入力される。光変換モジュール24bは、入力端IN3aに入力された情報を光信号から電気信号へ変換してデジタル処理部24aへ出力する。これにより、デジタル処理部24aは、ステータス信号を受信することができる。入力端IN3aは、サブコントローラ24での制御対象となる蓄電池パック44の数以上設けられる。異常信号は、光変換モジュール24bの入力端IN3bへ入力される。光変換モジュール24bは、入力端IN3bに入力された情報を光信号から電気信号へ変換してデジタル処理部24aへ出力する。これにより、デジタル処理部24aは、異常信号を受信することができる。入力端IN3bは、サブコントローラ24での制御対象となる蓄電池パック44の数以上設けられる。
サブコントローラ24におけるスイッチ回路30への制御信号の送信、及び、スイッチ回路30からのステータス信号の受信の処理は、第2の通信システムと同様であるので説明を省略する。
サブコントローラ24、スイッチ回路30及び蓄電池パック44は、図14に示すように相互に接続される。なお、サブコントローラ24とスイッチ回路30との接続構成及び制御方法は、第2の通信システムと同様であるので説明を省略する。
また、サブコントローラ24の光変換モジュール24bの出力端OUT3の各々は、各蓄電池パック44の光変換モジュール44bの入力端IN1に接続される。また、各蓄電池パック44の光変換モジュール44bの出力端OUT1は、サブコントローラ24の光変換モジュール24bの入力端IN3aに接続される。すなわち、各蓄電池パック44及びサブコントローラ24は、パラレル接続された第3の通信ライン74を備える。
また、各蓄電池パック44の光変換モジュール44bの出力端OUT2は、サブコントローラ24の光変換モジュール24bの入力端IN3bに接続される。すなわち、各蓄電池パック44及びサブコントローラ24は、パラレル接続された第2の通信ライン76を備える。
このような構成とすることによって、本通信システムにおいても、第2の通信システムと同様に、電源システム100の制御を行うことができる。
<第4の通信システム>
次に、第4の通信システムにおけるサブコントローラ24、スイッチ回路30及び蓄電池集合体104との通信について説明する。スイッチ回路30の制御システムの構成は、第2の通信システムと同様であるので説明を省略する。図15は、蓄電池パック44の制御システムの構成例を示す。図16は、サブコントローラ24の制御システムの構成例を示す。図17は、サブコントローラ24、スイッチ回路30及び蓄電池集合体104の相互の接続構成を示す。
次に、第4の通信システムにおけるサブコントローラ24、スイッチ回路30及び蓄電池集合体104との通信について説明する。スイッチ回路30の制御システムの構成は、第2の通信システムと同様であるので説明を省略する。図15は、蓄電池パック44の制御システムの構成例を示す。図16は、サブコントローラ24の制御システムの構成例を示す。図17は、サブコントローラ24、スイッチ回路30及び蓄電池集合体104の相互の接続構成を示す。
蓄電池パック44は、図15に示すように、第2の通信システムと同様に、デジタル処理部44a、光変換モジュール44b及びアナログ/デジタル変換器(ADC)44cを含む。ただし、光変換モジュール44bに入力端子IN2が設けられている点で異なる。
第4の通信システムの蓄電池パック44は、外部からのリクエスト信号を光変換モジュール44bの入力端IN1で受信すると、リクエスト信号に応答して内部に設けられた各種センサで測定されたデータをステータス情報として光変換モジュール44bの出力端OUT1から出力する処理を行う。
サブコントローラ24からのリクエスト信号の受信は、第2の通信システムと同様であるので説明を省略する。また、リクエスト信号の受信に伴って、デジタル処理部44aはステータス信号を送信する。ステータス信号の送信は、第2の通信システムと同様であるので説明を省略する。
また、蓄電池パック44は、地絡等の緊急性の高い処理を要求する情報は異常信号として出力する。異常信号の出力は、第2の通信システムと同様であるので説明を省略する。
さらに、蓄電池パック44は、他の蓄電池パック44から出力された異常信号を転送する機能も有する。異常信号が光変換モジュール44bの入力端IN2において光信号として受信されると、光変換モジュール44bは、光信号である異常信号を電気信号に変換し、デジタル処理部44aへ出力する。デジタル処理部44aは、異常信号を受けると、光変換モジュール44bへ再度出力する。光変換モジュール44bは、異常信号を電気信号から光信号へ変換して出力端OUT2から光ファイバへ出力する。なお、リクエスト信号をデジタル処理部44aへ一旦転送することなく光変換モジュール44bにて転送処理を行ってもよい。
図16は、本実施の形態におけるサブコントローラ24の構成例を示す。サブコントローラ24は、デジタル処理部24a及び光変換モジュール24bを含む。
サブコントローラ24のデジタル処理部24aは、接続される蓄電池パック44に対してステータス信号の送信を要求するリクエスト信号を送信する。例えば、デジタル処理部24aは、所定周期のタイミング又は不定期のタイミングにおいて、光変換モジュール24bへリクエスト信号を出力する。光変換モジュール24bでは、デジタル処理部24aから受けたリクエスト信号を電気信号から光信号へ変換し、制御対象となる蓄電池パック44毎に設けられた出力端OUT3から出力する。
また、サブコントローラ24のデジタル処理部24aは、接続される蓄電池パック44からステータス信号や異常信号を受信する。ステータス信号は、光変換モジュール24bの入力端IN3aへ入力される。光変換モジュール24bは、入力端IN3aに入力された情報を光信号から電気信号へ変換してデジタル処理部24aへ出力する。これにより、デジタル処理部24aは、ステータス信号を受信することができる。異常信号は、光変換モジュール24bの入力端IN3bへ入力される。光変換モジュール24bは、入力端IN3bに入力された情報を光信号から電気信号へ変換してデジタル処理部24aへ出力する。これにより、デジタル処理部24aは、異常信号を受信することができる。
サブコントローラ24におけるスイッチ回路30への制御信号の送信、及び、スイッチ回路30からのステータス信号の受信の処理は、第2の通信システムと同様であるので説明を省略する。
サブコントローラ24、スイッチ回路30及び蓄電池パック44は、図17に示すように相互に接続される。なお、サブコントローラ24とスイッチ回路30との接続構成及び制御方法は、第2の通信システムと同様であるので説明を省略する。
サブコントローラ24の光変換モジュール24bの出力端OUT3は、1段目の蓄電池パック44-1の光変換モジュール44bの入力端IN1に接続される。また、1段目以降の蓄電池パック44の光変換モジュール44bの出力端OUT1は、次の段の蓄電池パック44の光変換モジュール44bの入力端IN1に接続される。さらに、最終段の蓄電池パック44-nの光変換モジュール44bの出力端OUT1は、サブコントローラ24の光変換モジュール24bの入力端IN3aへ接続される。すなわち、各蓄電池パック44及びサブコントローラ24は、デイジーチェーン接続された第5の通信ライン78を備える。
このような接続構成とすることによって、上記のリクエスト信号の出力処理によりサブコントローラ24から出力されたリクエスト信号は、1段目の蓄電池パック44-1から後段の蓄電池パック44へと順次転送される。また、各蓄電池パック44から出力されたステータス信号は、後段の蓄電池パック44によってサブコントローラ24へ転送される。
また、蓄電池パック44の出力端OUT2は、次段の蓄電池パック44の入力端IN2に接続される。さらに、最終段の蓄電池パック44-nの出力端OUT2は、サブコントローラ24の入力端IN3bに接続される。すなわち、各蓄電池パック44及びサブコントローラ24は、デイジーチェーン接続された第6の通信ライン80を備える。このような接続構成により、各蓄電池パック44から出力された異常信号は、後段の蓄電池パック44によってサブコントローラ24へ転送される。
このような構成とすることによって、本通信システムにおいても、第2の通信システムと同様に、電源システム100の制御を行うことができる。
<作用・効果>
本実施の形態によれば、サブコントローラ24、スイッチ回路30及び蓄電池パック44との通信は、光ファイバを用いた光通信システムとして構成される。すなわち、電源システム100は、従来の金属配線を用いた電源システムよりも耐ノイズ性や電気的な絶縁性が向上する。特に、蓄電池の直列接続段数が増加して出力電圧が高圧になった場合、電力系統の配線の影響を受け易いサブコントローラ24、スイッチ回路30及び蓄電池パック44の通信システムにおいてノイズの重畳や絶縁性の異常の発生を抑制することができる。
本実施の形態によれば、サブコントローラ24、スイッチ回路30及び蓄電池パック44との通信は、光ファイバを用いた光通信システムとして構成される。すなわち、電源システム100は、従来の金属配線を用いた電源システムよりも耐ノイズ性や電気的な絶縁性が向上する。特に、蓄電池の直列接続段数が増加して出力電圧が高圧になった場合、電力系統の配線の影響を受け易いサブコントローラ24、スイッチ回路30及び蓄電池パック44の通信システムにおいてノイズの重畳や絶縁性の異常の発生を抑制することができる。
第2の通信システムでは、サブコントローラ24と蓄電池パック44との間において、リクエスト信号はデイジーチェーン接続された第1の通信ライン70により通信され、ステータス信号及び異常信号はパラレル接続された第2の通信ライン72により通信される。
このような構成では、ステータス信号及び異常信号は、複数の蓄電池パック44による転送経路を経ず、サブコントローラ24に直接送信される。したがって、蓄電池パック44からサブコントローラ24へステータス信号及び異常信号を速やかに送受信することができる。
また、サブコントローラ24と蓄電池パック44との間の接続を総てパラレル接続する場合に比べて、サブコントローラ24の端子数及び光ファイバのケーブル数を少なくすることができる。これにより、接続工程の減少や製造コストの低減を実現することができる。また、第1の通信ライン70においてサブコントローラ24で行う光電変換処理の負担が減少し、サブコントローラ24の光通信の消費電力を抑制することができる。
また、各蓄電池パック44は、ステータス信号及び異常信号の転送処理を行う必要がなく、各蓄電池パック44における消費電力を均一にすることができる。
第3の通信システムでは、サブコントローラ24と蓄電池パック44との間において、リクエスト信号、ステータス信号及び異常信号がすべてパラレル接続された第3の通信ライン74及び第4の通信ライン76により通信される。
このような構成では、リクエスト信号、ステータス信号及び異常信号は、複数の蓄電池パック44による転送経路を経ず、サブコントローラ24に直接送信される。したがって、蓄電池パック44からサブコントローラ24へリクエスト信号、ステータス信号及び異常信号を速やかに送受信することができる。
また、各蓄電池パック44は、リクエスト信号、ステータス信号及び異常信号の転送処理を行う必要がなく、各蓄電池パック44における消費電力を均一にすることができる。
第4の通信システムでは、サブコントローラ24と蓄電池パック44との間において、リクエスト信号はデイジーチェーン接続された第5の通信ライン78により通信され、ステータス信号及び異常信号はデイジーチェーン接続された第6の通信ライン80により通信される。
このような構成では、サブコントローラ24と蓄電池パック44との間の接続をパラレル接続する場合に比べて、サブコントローラ24の端子数及び光ファイバのケーブル数を少なくすることができる。これにより、接続工程の減少や製造コストの低減を実現することができる。また、サブコントローラ24で行う光電変換処理の負担が減少し、サブコントローラ24の光通信の消費電力を抑制することができる。
[第2の実施の形態]
第1の実施の形態では、1つの蓄電池ユニット40には複数の蓄電池制御単位42が並列に設けられ、さらに1つの電力変換器28には複数の蓄電池ユニット40が並列に接続された構成について説明したが、これに限定されるものではない。
第1の実施の形態では、1つの蓄電池ユニット40には複数の蓄電池制御単位42が並列に設けられ、さらに1つの電力変換器28には複数の蓄電池ユニット40が並列に接続された構成について説明したが、これに限定されるものではない。
図18は、第2の実施の形態における電源システムの構成を示す。本実施の形態では、1つの蓄電池ユニット40には1つの蓄電池制御単位42のみが設けられ、さらに1つの電力変換器28には1つの蓄電池ユニット40が接続される。蓄電池制御単位42の構成等については第1の実施の形態と同様である。
このような構成においても、第1の実施の形態と同様に蓄電池ユニット40内の複数の蓄電池パック44の接続形態及び制御を採ることができる。
10 負荷電力管理装置、12 蓄電池電力管理装置、14 総合電力監視装置、20 システムコントローラ、22 マスタコントローラ、24 サブコントローラ、24a デジタル処理部、24b 光変換モジュール、24c 異常信号処理回路、26 電力変換器管理部、28 電力変換器、30 スイッチ回路、30a デジタル処理部、30b 光変換モジュール、40 蓄電池ユニット、42 蓄電池制御単位、44 蓄電池パック、44a デジタル処理部、44b 光変換モジュール、44c アナログ/デジタル変換器(ADC)、44d 異常信号出力インターフェース、46 蓄電池セル、52 蓄電池電流センサ、54 蓄電池電圧センサ、56 温度センサ、58 地絡検知センサ、70 第1の通信ライン、72 第2の通信ライン、74 第3の通信ライン、76 第4の通信ライン、78 第5の通信ライン、80 第6の通信ライン、100 電源システム、102 電源管理システム、104 蓄電池集合体、106 太陽電池システム、108 系統電源、110 負荷、110a 電力管理装置。
Claims (7)
- 少なくとも一つの蓄電池セルを含み、前記蓄電池セルの状態を示すステータス信号及び異常を示す異常信号を出力する蓄電池パックと、
前記蓄電池パックから前記ステータス信号及び前記異常信号を受信すると共に、前記蓄電池パックの充放電制御を行うコントローラと、
を備え、
前記蓄電池パックに対し前記ステータス情報の送信を要求するリクエスト信号及び前記ステータス信号を前記コントローラから前記蓄電池パックへ送信するための第1通信ラインと、
前記第1通信ラインとは別に設けられ、前記異常信号を前記蓄電池パックから前記コントローラへ送信するための第2通信ラインと、
を備えることを特徴とする電源システム。 - 請求項1に記載の電源システムであって、
前記第1通信ラインを介した通信は、デジタル通信で行われ、
前記第2通信ラインを介した通信は、アナログ通信で行われ、
前記蓄電池パックは、前記第1通信ラインを介した通信をデジタル通信で行うためのデジタル処理部を備えることを特徴とする電源システム。 - 請求項2に記載の電源システムであって、
前記デジタル処理部は、前記蓄電池パックに含まれる前記蓄電池セルからの電力によって動作することを特徴とする電源システム。 - 請求項1に記載の電源システムであって、
前記コントローラは、複数の前記蓄電池パックを制御するものであり、
前記第1通信ラインによって、複数の前記蓄電池パックが前記コントローラに対して直列に接続されていることを特徴とする電源システム。 - 請求項1に記載の電源システムであって、
前記コントローラは、複数の前記蓄電池パックを制御するものであり、
前記第2通信ラインによって、複数の前記蓄電池パックが前記コントローラに対して直列に接続されていることを特徴とする電源システム。 - 請求項1に記載の電源システムであって、
電力入出力ラインに対して複数の前記蓄電池パックが並列に配置されており、前記電力入出力ラインと前記蓄電池パックとの接続を切り替えるスイッチ回路を含み、
前記スイッチ回路は、
前記コントローラからの制御信号を受けて、前記電力入出力ラインと前記蓄電池との接続状態を制御すると共に、
前記蓄電池から前記異常信号を直接受けて、前記電力入出力ラインと前記蓄電池との接続状態を制御することを特徴とする電源システム。 - 請求項1に記載の電源システムであって、
前記コントローラと前記蓄電池パックとの通信の少なくとも一部、及び、前記コントローラと前記スイッチ回路との通信の少なくとも一部、が光ファイバを用いて行われることを特徴とする電源システム。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP11860870.2A EP2658027A4 (en) | 2011-03-14 | 2011-12-27 | POWER SUPPLY SYSTEM |
JP2013504527A JPWO2012124238A1 (ja) | 2011-03-14 | 2011-12-27 | 電源システム |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011-055388 | 2011-03-14 | ||
JP2011055388 | 2011-03-14 | ||
JP2011-055389 | 2011-03-14 | ||
JP2011055389 | 2011-03-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012124238A1 true WO2012124238A1 (ja) | 2012-09-20 |
Family
ID=46830337
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/080249 WO2012124238A1 (ja) | 2011-03-14 | 2011-12-27 | 電源システム |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP2658027A4 (ja) |
JP (1) | JPWO2012124238A1 (ja) |
WO (1) | WO2012124238A1 (ja) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014128063A (ja) * | 2012-12-25 | 2014-07-07 | Denso Corp | 蓄電池システム |
JP2014164812A (ja) * | 2013-02-21 | 2014-09-08 | Toyota Industries Corp | 蓄電装置モジュール |
JP2014524099A (ja) * | 2011-05-31 | 2014-09-18 | エルジー・ケム・リミテッド | モジュール化されたbms連結構造を含む電力貯蔵システム及びその制御方法 |
WO2014155903A1 (ja) * | 2013-03-29 | 2014-10-02 | パナソニック株式会社 | 電池パック |
JP2015027193A (ja) * | 2013-07-26 | 2015-02-05 | 株式会社東芝 | 電源装置 |
JP2015163025A (ja) * | 2014-02-28 | 2015-09-07 | 株式会社東芝 | 蓄電池システム |
EP3048663A4 (en) * | 2013-09-20 | 2017-06-21 | Hitachi Chemical Co., Ltd. | Power storage system and method of maintaining power storage system |
JP2017212221A (ja) * | 2013-10-21 | 2017-11-30 | 三菱自動車工業株式会社 | バッテリーパック |
WO2018061507A1 (ja) * | 2016-09-30 | 2018-04-05 | 株式会社村田製作所 | 蓄電モジュール、蓄電システム、電動車両および電力システム |
JP2019535161A (ja) * | 2016-08-23 | 2019-12-05 | コーバス エナジー インコーポレイテッド | 光通信する電池管理システム |
US20220123380A1 (en) * | 2019-11-29 | 2022-04-21 | Contemporary Amperex Technology Co., Limited | Battery module, device, and failure handling method for failed battery cell |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105490350B (zh) * | 2016-01-20 | 2018-10-26 | 慈松 | 一种模块化电池网络系统和模块化电池网络系统管理方法 |
US9965016B2 (en) | 2016-03-09 | 2018-05-08 | International Power Supply AD | Power asset command and control architecture |
EP3504743A4 (en) * | 2016-08-23 | 2020-03-25 | Corvus Energy Inc. | BATTERY SYSTEM |
US10361563B2 (en) | 2016-12-20 | 2019-07-23 | International Power Supply AD | Smart power and storage transfer architecture |
DE102017204138A1 (de) * | 2017-03-13 | 2018-09-13 | Volkswagen Aktiengesellschaft | Batterieeinheit |
GB201705518D0 (en) * | 2017-04-05 | 2017-05-17 | Siemens Ag | Energy storage module |
CN115833192A (zh) * | 2021-09-16 | 2023-03-21 | 台达电子企业管理(上海)有限公司 | 储能系统 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000294298A (ja) * | 1999-04-02 | 2000-10-20 | Nec Mobile Energy Kk | 複数電池パック電源装置 |
JP2002042897A (ja) * | 2000-07-21 | 2002-02-08 | Nec Mobile Energy Kk | 電池パックシリアル通信装置 |
JP2003282159A (ja) * | 2002-03-26 | 2003-10-03 | Shin Kobe Electric Mach Co Ltd | 電池制御システム |
JP2007335337A (ja) * | 2006-06-19 | 2007-12-27 | Atsutoshi Inoue | 電池パック使用の電源供給装置 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005110439A (ja) * | 2003-09-30 | 2005-04-21 | Nippon Chemicon Corp | 電気二重層コンデンサ装置 |
SE526219C2 (sv) * | 2003-12-17 | 2005-08-02 | Volvo Lastvagnar Ab | Metod och anordning för batteriladdning |
JP4092580B2 (ja) * | 2004-04-30 | 2008-05-28 | 新神戸電機株式会社 | 多直列電池制御システム |
US7990101B2 (en) * | 2006-05-15 | 2011-08-02 | A123 Systems, Inc. | Multi-configurable, scalable, redundant battery module with multiple fault tolerance |
JP5469813B2 (ja) * | 2008-01-29 | 2014-04-16 | 株式会社日立製作所 | 車両用電池システム |
JP5486780B2 (ja) * | 2008-07-01 | 2014-05-07 | 株式会社日立製作所 | 電池システム |
JP5221468B2 (ja) * | 2009-02-27 | 2013-06-26 | 株式会社日立製作所 | 電池監視装置 |
US8089248B2 (en) * | 2009-04-09 | 2012-01-03 | Ford Global Technologies, Llc | Battery monitoring and control system and method of use including redundant secondary communication interface |
-
2011
- 2011-12-27 JP JP2013504527A patent/JPWO2012124238A1/ja active Pending
- 2011-12-27 EP EP11860870.2A patent/EP2658027A4/en not_active Withdrawn
- 2011-12-27 WO PCT/JP2011/080249 patent/WO2012124238A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000294298A (ja) * | 1999-04-02 | 2000-10-20 | Nec Mobile Energy Kk | 複数電池パック電源装置 |
JP2002042897A (ja) * | 2000-07-21 | 2002-02-08 | Nec Mobile Energy Kk | 電池パックシリアル通信装置 |
JP2003282159A (ja) * | 2002-03-26 | 2003-10-03 | Shin Kobe Electric Mach Co Ltd | 電池制御システム |
JP2007335337A (ja) * | 2006-06-19 | 2007-12-27 | Atsutoshi Inoue | 電池パック使用の電源供給装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2658027A4 * |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014524099A (ja) * | 2011-05-31 | 2014-09-18 | エルジー・ケム・リミテッド | モジュール化されたbms連結構造を含む電力貯蔵システム及びその制御方法 |
JP2014128063A (ja) * | 2012-12-25 | 2014-07-07 | Denso Corp | 蓄電池システム |
DE102013225221B4 (de) | 2012-12-25 | 2024-07-18 | Denso Corporation | Batteriesystem |
US9205756B2 (en) | 2012-12-25 | 2015-12-08 | Denso Corporation | Battery system |
JP2014164812A (ja) * | 2013-02-21 | 2014-09-08 | Toyota Industries Corp | 蓄電装置モジュール |
US10326178B2 (en) | 2013-03-29 | 2019-06-18 | Panasonic Intellectual Property Management Co., Ltd. | Battery pack |
WO2014155903A1 (ja) * | 2013-03-29 | 2014-10-02 | パナソニック株式会社 | 電池パック |
JP2015099782A (ja) * | 2013-03-29 | 2015-05-28 | パナソニックIpマネジメント株式会社 | 電池パック |
CN105191051A (zh) * | 2013-03-29 | 2015-12-23 | 松下知识产权经营株式会社 | 电池组 |
JPWO2014155903A1 (ja) * | 2013-03-29 | 2017-02-16 | パナソニックIpマネジメント株式会社 | 電池パック |
JP2015027193A (ja) * | 2013-07-26 | 2015-02-05 | 株式会社東芝 | 電源装置 |
EP3048663A4 (en) * | 2013-09-20 | 2017-06-21 | Hitachi Chemical Co., Ltd. | Power storage system and method of maintaining power storage system |
JP2017212221A (ja) * | 2013-10-21 | 2017-11-30 | 三菱自動車工業株式会社 | バッテリーパック |
JP2015163025A (ja) * | 2014-02-28 | 2015-09-07 | 株式会社東芝 | 蓄電池システム |
JP2019535161A (ja) * | 2016-08-23 | 2019-12-05 | コーバス エナジー インコーポレイテッド | 光通信する電池管理システム |
JP7291074B2 (ja) | 2016-08-23 | 2023-06-14 | コーバス エナジー インコーポレイテッド | 光通信する電池管理システム |
WO2018061507A1 (ja) * | 2016-09-30 | 2018-04-05 | 株式会社村田製作所 | 蓄電モジュール、蓄電システム、電動車両および電力システム |
US20220123380A1 (en) * | 2019-11-29 | 2022-04-21 | Contemporary Amperex Technology Co., Limited | Battery module, device, and failure handling method for failed battery cell |
US11799142B2 (en) * | 2019-11-29 | 2023-10-24 | Contemporary Amperex Technology Co., Limited | Battery module, device, and failure handling method for failed battery cell |
Also Published As
Publication number | Publication date |
---|---|
EP2658027A1 (en) | 2013-10-30 |
JPWO2012124238A1 (ja) | 2014-07-17 |
EP2658027A4 (en) | 2014-04-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2012124238A1 (ja) | 電源システム | |
JP5587421B2 (ja) | 電源システム | |
US9837811B2 (en) | Power source apparatus formed by combining a plurality of modules | |
WO2012050004A1 (ja) | 電源システム | |
WO2012049963A1 (ja) | 蓄電池を含む電源システム | |
JP5517398B2 (ja) | 蓄電システム | |
JP5971626B2 (ja) | 電池システム | |
US20130154569A1 (en) | Electric energy storage system and method of maintaining the same | |
US20130300370A1 (en) | Battery pack and electric power consuming apparatus | |
WO2011096430A1 (ja) | 電源装置 | |
JP2016046887A (ja) | 蓄電システム | |
KR101441761B1 (ko) | 배터리 에너지 저장 시스템 | |
US11322966B1 (en) | Power electronics-based battery management | |
CN113078714A (zh) | 一种储能系统及储能系统控制方法 | |
JP2012205384A (ja) | 蓄電池集合体制御システム | |
JP2011029010A (ja) | リチウムイオン二次電池システムおよび管理装置への電力供給方法 | |
JP2012090376A (ja) | 電源システム | |
US20170301963A1 (en) | Method and apparatus for performing string-level dynamic reconfiguration in an energy system | |
WO2012132769A1 (ja) | 蓄電池の保護システム | |
JP2012205401A (ja) | 蓄電池集合体制御システム | |
JP2013027269A (ja) | 蓄電池集合体の充放電制御システム | |
JP2012191820A (ja) | 電源システム | |
WO2012127983A1 (ja) | 電源システム | |
WO2012049972A1 (ja) | 蓄電池を含む電源システム | |
JP2020523972A (ja) | 航空機用電気エネルギー貯蔵システム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11860870 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2013504527 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011860870 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |