WO2012123213A1 - Gleitlagerschale mit einer sammelnut - Google Patents

Gleitlagerschale mit einer sammelnut Download PDF

Info

Publication number
WO2012123213A1
WO2012123213A1 PCT/EP2012/052664 EP2012052664W WO2012123213A1 WO 2012123213 A1 WO2012123213 A1 WO 2012123213A1 EP 2012052664 W EP2012052664 W EP 2012052664W WO 2012123213 A1 WO2012123213 A1 WO 2012123213A1
Authority
WO
WIPO (PCT)
Prior art keywords
bearing shell
groove
plain bearing
oil
circumferential direction
Prior art date
Application number
PCT/EP2012/052664
Other languages
English (en)
French (fr)
Other versions
WO2012123213A9 (de
Inventor
Thierry Garnier
Original Assignee
Federal-Mogul Wiesbaden Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Federal-Mogul Wiesbaden Gmbh filed Critical Federal-Mogul Wiesbaden Gmbh
Priority to US14/004,505 priority Critical patent/US8783954B2/en
Priority to EP12703842.0A priority patent/EP2683956B1/de
Priority to BR112013022603A priority patent/BR112013022603A2/pt
Priority to CN201280012726.6A priority patent/CN103415714B/zh
Priority to JP2013557031A priority patent/JP5971869B2/ja
Priority to KR1020137026770A priority patent/KR101899620B1/ko
Publication of WO2012123213A1 publication Critical patent/WO2012123213A1/de
Publication of WO2012123213A9 publication Critical patent/WO2012123213A9/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/046Brasses; Bushes; Linings divided or split, e.g. half-bearings or rolled sleeves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/1025Construction relative to lubrication with liquid, e.g. oil, as lubricant
    • F16C33/106Details of distribution or circulation inside the bearings, e.g. details of the bearing surfaces to affect flow or pressure of the liquid
    • F16C33/1065Grooves on a bearing surface for distributing or collecting the liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C9/00Bearings for crankshafts or connecting-rods; Attachment of connecting-rods
    • F16C9/02Crankshaft bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/02Sliding-contact bearings for exclusively rotary movement for radial load only
    • F16C17/022Sliding-contact bearings for exclusively rotary movement for radial load only with a pair of essentially semicircular bearing sleeves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/40Linear dimensions, e.g. length, radius, thickness, gap
    • F16C2240/42Groove sizes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/22Internal combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C9/00Bearings for crankshafts or connecting-rods; Attachment of connecting-rods

Definitions

  • the present invention relates to a plain bearing with an oil bore radially passing through the plain bearing shell for introducing oil into the plain bearing shell.
  • Typical applications of the generic plain bearing shell are the crankshaft main bearing, the connecting rod bearings or bushings in internal combustion engines.
  • Plain bearing shells of the generic type are known for example from DE 10 2005 037 502 A1 or DE 101 63 292 A1.
  • two such plain bearing shells form a sliding bearing, wherein the shaft mounted therein slides on an oil film which forms between the shaft itself and the bearing surfaces on the inside of the plain bearing shells.
  • oil is introduced through the oil hole in the slide bearing shell, in particular injected. The oil spreads inside the bearing shell and wets the wings on which it is entrained by the rotating shaft, forming the oil film on which the shaft slides.
  • the oil is used to cool the plain bearing by dissipating the heat generated during operation from the plain bearing.
  • the operating temperatures range from 90 ° C in normal applications to 210 ° C in extreme applications such as racing cars.
  • the oil is injected by means of an oil pump in the plain bearing shell.
  • the oil pump is driven by a motor that drives the vehicle.
  • a part The power output by the engine is needed to drive the oil pump.
  • the amount of power needed to drive the oil pump can be reduced by lowering the volume flow of oil through the oil well. Reducing the amount of power needed to drive the oil pump also reduces fuel consumption and thus CO2 emissions from the engine.
  • Some plain bearing shells have oil grooves, with which the oil is distributed within the plain bearing shell.
  • the volume flow is proportional to the surface of the oil groove, which is why it is endeavored for the reasons mentioned above to make the oil groove as small as possible.
  • the plain bearing shell usually encloses an angle of 180 ° in the circumferential direction, so that two plain bearing shells completely cover the shaft to be supported.
  • the oil groove can pass through the entire sliding bearing shell, so that it also extends at an angle of 180 ° in the circumferential direction. In order to reduce the surface of the oil groove and thus the volume flow of the oil through the oil groove, the angle can be lowered.
  • the oil groove having an angle of 150 ° includes, even angles of 120 ° are being tested. It should be noted, however, that the volume flow through the oil groove is not reduced too much, so that sufficient cooling can be ensured.
  • the required amount of oil must be introduced into the sleeve bearing via a smaller surface area and the oil spread over a larger area to ensure proper bearing.
  • an increasing proportion of the oil leaks laterally out of the plain bearing and is lost unused.
  • a significantly larger amount of oil is introduced into the plain bearing than actually necessary to ensure proper storage of the shaft and to prevent failure.
  • the engine In order to apply the required volume flow, the engine must give a higher power to the oil pump, which is why the consumption of the engine increases.
  • the object of the present invention is therefore to at least reduce the above-discussed disadvantages of the generic slide bearing and to provide a slide bearing shell with which the oil in the slide bearing shell can be better utilized so that the portion of the power of the motor required for the oil pump and at the same time the lateral exit from the sliding bearing can be reduced.
  • the problem is solved by a collection groove extending in the circumferential direction on the inside of the sliding bearing shell for collecting the oil present in the sliding bearing shell, which is closed and surrounded by an airfoil all around. Under closed collecting groove is to be understood a groove into which no oil hole opens.
  • the closed collecting groove causes a cross-sectional widening within the oil film, so that the oil in the region of the collecting groove, a larger closed volume is available, so that in the collecting groove, a negative pressure is generated. Consequently, in the region of the collecting groove, where the negative pressure is applied, forms a suction effect, so that oil is sucked into this region of the collecting groove and forms a Sammelnut towards directed flow in the oil film.
  • the amount of oil exiting laterally from the sliding bearing is thus reduced and the oil used again, so that also can be reduced by the oil pump to be promoted Voiumenstrom of oil in the plain bearing shell.
  • the collecting groove is arranged in the direction of rotation of the shaft to be supported in front of the oil hole, so that the collected oil can be mixed directly with the fresh, passing through the oil groove oil and used together to build up the oil film.
  • the sliding bearing shell according to the invention is preferably used in the crankshaft main bearing.
  • the oil hole can be a circular have a shaped cross-section and are made with a drill or even be an elliptical cross-section or a slot and be milled.
  • the sliding bearing according to the invention comprises a distribution groove extending on an inner side of the sliding bearing shell substantially in the circumferential direction of the sliding bearing shell for distributing the introduced oil within the sliding bearing shell, the oil bore opening into the distributor groove.
  • the distribution of the oil within the plain bearing shell is improved, so that a uniform oil film for supporting the shaft can be formed everywhere in the plain bearing shell.
  • the distribution groove terminates in the circumferential direction at a first distance in front of a first circumferential end of the sliding bearing shell.
  • the wing and thus the bearing capacity of the plain bearing shell are thus increased, whereby larger loads can be absorbed.
  • the collecting groove ends in the circumferential direction with a second distance in front of a second circumferential end of the sliding bearing shell. This also allows the wing and the load capacity can be further increased, so that larger loads can be absorbed.
  • the distributor groove extend with a first angle between 50 ° and 100 ° and the collecting groove with a second angle between 40 ° and 80 ° in the circumferential direction.
  • the angle must be chosen so that always a certain distance between the distributor groove and the collecting groove remains. It has been found that in this region of the first and second angular extent of the volume flow of the introduced into the plain bearing oil and thus the fuel consumption of the engine can be particularly reduced.
  • the first and collecting grooves are substantially the same length. This simplifies the production, since the first and the collecting groove can be manufactured with an identical step. Only the position of the sliding bearing shell must be changed, whereby the plain bearing shell is particularly low to produce.
  • the first and the collecting groove each have a length-to-width ratio of 10: 1 to 40: 1. It has been found that, in this region of the length-to-width ratio, the volume flow of the oil introduced into the slide bearing and thus also the fuel consumption of the engine can be reduced to a particularly great extent.
  • At least the collecting groove in the circumferential direction with a first radius in the support surface or a groove bottom is formed in the collecting groove, thereby creating a suction effect in the collecting groove.
  • the collecting groove merges with a first radius in the bearing surface, no or at least less turbulence, which could disturb the suction effect and the flow in the collecting groove. If both the first and the collecting groove are manufactured in accordance with a circular segment-shaped cross section, the production is further simplified. Also, the transition into the groove bottom by means of the first radius reduces the turbulence within the oil film, so that the suction effect can develop better.
  • At least the collecting groove in the circumferential direction has a substantially circular segment-shaped profile course in the groove base with a second radius.
  • the transition from the support surface into the collecting groove along the longitudinal axis is designed very gently in this embodiment, so that no or at least less turbulence in the oil film are generated, which could disturb the suction effect and the flow into the collecting groove.
  • the production of the collecting groove in this embodiment is very simple, since the corresponding cutting tool only has to be rotated and not moved laterally.
  • the grooves can be made, for example, by means of a rotating milling head, which removes the material with its peripheral surface. If both the distributor groove and the collecting groove are manufactured in accordance with a circular segment-shaped cross-section, the production is further simplified.
  • At least the collection groove transitions perpendicular to the circumferential direction with a third radius in the support surface.
  • the turbulences are at least reduced, so that the suction effect and the flow of the oil are not or less disturbed in the collecting groove.
  • the distributor groove and the collecting groove have the same profile profiles in the circumferential direction and / or perpendicular to the circumferential direction. This will simplifies the production of the plain bearing shell, since the same tool can be used to produce the first and the second groove.
  • the conversion of the tool holder or the provision of a second tool holder can be omitted.
  • a development of the sliding bearing shell according to the invention is characterized in that the distributor groove and collecting groove are connected by means of a channel.
  • This channel preferably has a significantly smaller cross-section than the distributor groove and the collecting groove, so that the suction effect is only insignificantly impaired.
  • In the channel can collect oil, which is available when needed.
  • the rotational movement of the shaft entrains the oil collected in the channel and forms an oil wedge, which can increase the bearing capacity of the plain bearing.
  • FIG. 1 shows a first embodiment of a Gleitla- gerschale in the developed state
  • FIG. 3 shows a second exemplary embodiment of the sliding bearing shell according to the invention with reference to a plan view in the unwound state
  • FIG. 4 is a sectional view of the exemplary embodiment shown in FIG. 3 along the sectional plane AA defined in FIG. 5 shows a third embodiment of the slide bearing shell according to the invention on the basis of a sectional view analogous to the representation used in FIG. 4 in the unwound state, FIG.
  • FIG. 6 is a sectional view of the second embodiment along the section plane B-B defined in FIG. 3, FIG.
  • Figure 7 shows the third embodiment shown in Figure 5 in rolled
  • Figure 8 shows a fourth embodiment of the sliding bearing shell according to the invention with reference to a plan view in the developed state
  • Figure 9 shows a fifth embodiment of the sliding bearing shell according to the invention with reference to a plan view in the unwound state.
  • FIG. 1 first embodiment of a sliding bearing shell 10i according to the invention is shown in the unwound, planar state by means of a Thomasdars notorious.
  • a bending step takes place, with which the plane sliding bearing shell 10i is bent, so that it forms a half shell, which covers an angle of approximately 180 ° (see FIG.
  • Two sliding bearing shells 10i form a complete bearing, wherein the two plain bearing shells do not necessarily have to be identically constructed.
  • the first embodiment of the sliding bearing shell 10i is shown with reference to a perspective view. It is already bent and thus can already be used with a second plain bearing shell for supporting a shaft, not shown.
  • the sliding bearing shell 10i comprises a distributor groove 12 which extends on an inner side 14 of the sliding bearing shell 10 1 in the circumferential direction of the sliding bearing shell 10-i. To define the circumferential direction, this is marked in FIG. 3 by the line X.
  • the largest extension of the distributor groove 12 should run in the circumferential direction.
  • an oil hole 1 6 is provided, which passes through the plain bearing shell 10i radially and through which oil can be conveyed or injected by means of an oil pump, not shown in the distributor groove 12.
  • the sliding bearing shell 10i has a collecting groove 18, which also extends on the inner side 14 and in the circumferential direction of the sliding bearing shell 0i.
  • the relevant comments on the extension of the distributor groove 12 apply to the collecting groove 18 accordingly.
  • the collecting groove 18 is closed all around and surrounded by a support surface 20.
  • the direction of rotation of the shaft is shown by the arrow V. It can thus be seen that the collecting groove 18 is arranged in the direction of rotation of the shaft in front of the distributor groove 12.
  • FIG. 3 shows a second exemplary embodiment 10 2 of the sliding bearing shell according to the invention with reference to a plan view, which essentially corresponds to the dimensions of the first exemplary embodiment. different.
  • the plain bearing shell 10 2 has a total width b tot and an overall height h ges (see FIG.
  • the distributor groove 2 has a first distance Ai from a first circumferential end 22 and the collecting groove 18 a second distance A2 from a second circumferential end 24 of the sliding bearing shell 10 ⁇ ).
  • the distributor groove 12 and the collecting groove 18 have a third distance A 3 between their respective mutually facing ends and are thus arranged one behind the other in the circumferential direction.
  • the support surface is 20 shown hatched, which surrounds the Vermaschinemut 12 and collecting groove 18 around.
  • the oil hole 16 1 designed as a slot.
  • the distribution groove 12 has a first length l 1 , a first width b 1 and a first depth t 1 and the collecting groove 18 has a second length l 2 . a second width b 2 and a second depth.
  • the depths are intended to indicate the maximum distance between the support surface 20 surrounding the distribution groove 12 and the collection groove 18 and a groove bottom 28.
  • the Vermaschinemut 12 and the collecting groove 18 have identical dimensions, so that the lengths I 1 and I 2 , the widths b 1 and b 2 and the depths t 1 , t 2 are the same.
  • the distribution groove 12 and the collecting groove 18 extend in the circumferential direction with a first radius n 'from the support surface 20 into a section 26 which is inclined relative to the support surface 20.
  • the inclined portion 26 also merges with the first radius r 1 "into the groove bottom 28 of the counter groove 12 and the collecting groove 18.
  • the first radii r r ', r 1 " may be identical or different. Werterhin the Vermaschinemut 12 and / or the collecting groove 18 may be made without the first radius r 1 .
  • the sliding bearing shell 10 2 is shown according to the second embodiment along the section plane BB defined in Figure 3.
  • the collecting groove 18 merges perpendicular to the circumferential direction with a third radius r 3 into the bearing surface 20.
  • the collecting groove 18 abuts perpendicular to the groove bottom 28, wherein here is a transition with the third radius r 3 or another radius is conceivable.
  • other transitions for example as a chamfer, can be provided.
  • 5 shows a second embodiment of the Gleitla- gerschale 10 3 according to the invention is shown analogously to the representation shown in Figure 1.
  • the structure of the third embodiment differs from the first essentially in that the distributor groove 12 and the collecting groove 18 in the circumferential direction have a circular segment-shaped profile profile with a second radius r 2 .
  • the profile profiles of the distributor groove 12 and the collecting groove 18 are identical, so that the lengths I 1 and L 2 are the same.
  • the sliding bearing shell 10 3 is shown according to the third embodiment in the rolled and thus installable state in which it sweeps an angle of about 180 ° between the first circumferential end 22 and the second circumferential end 24. It can further be seen that, in the rolled state, the distributor groove 12 extends at a first angular extent ⁇ and the collecting groove 18 at a second angular dimension ⁇ in the circumferential direction, so that the angular dimensions refer exclusively to the rolled state of the sliding bearing shell 10 3 shown here.
  • the Winkeinies corresponds to the angle which is enclosed by two normal N, emanating from the respective ends of the distributor groove 12 and the collecting groove 18 and lie in the same sectional plane, in Figure 7, these are the normals N 11 to N 22 , wherein the angle of the Distributor groove 12 of the normals N 11 and N 12 and that of the collecting groove 18 of the normals N 21 and N 22 is described.
  • the distribution groove 12 and the collecting groove 18 terminate at the point where they pass into the support surface 20. Since the lengths I 1 , l 2 of the collecting groove 12 and the distributor groove 18 are the same (see FIG. 5), the first and second angular dimensions ⁇ , ⁇ are equal as well, although other dimensions can also be provided here.
  • FIG. 8 shows a fourth exemplary embodiment of the sliding bearing shell 10 4 according to the invention on the basis of a plan view in the unwound, flat state. provides.
  • the plain bearing shell 10 4 no distribution groove. Instead, the oil hole 16 goes directly into the wing 20.
  • the plain bearing shell 10 5 comprises a plurality of collecting grooves, in this case three collecting grooves 18i to 18 3 , each having different lengths l 2 i to i 2 3 and different widths b 2 i to b 2 3.
  • the collecting grooves 18 are arranged in front of the oil hole 16 or the distributor groove 12 with respect to the direction of rotation of the shaft, which is indicated by the arrows V.
  • This has the effect that the oil collected in the collecting groove 8 due to the rotation and the drag associated therewith is supplied to the shaft of the oil hole 16 or the distributor groove 12.
  • the already located in the plain bearing shell 10 oil with fresh oil, which is introduced through the oil hole in the plain bearing shell 10, brought together and can be reused.
  • the volume of the fresh oil can be reduced by the volume of oil collected in the collecting groove 8, so that the total amount of oil needed can be reduced.
  • the oil pump must deliver a smaller volume flow, so that it requires less power, resulting in a fuel economy of the driving motor.
  • the CO 2 balance is improved accordingly. LIST OF REFERENCE NUMBERS

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Sliding-Contact Bearings (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)

Abstract

Die vorliegende Erfindung betrifft eine Gleitlagerschale mit einer die Gleitlagerschafe radial durchsetzenden Ölbohrung (16) zum Einbringen von Öl in die Gleitiagerschale, wobei eine oder mehrere sich auf der Innenseite (14) der Gleitlagerschale (10) in Umfangsrichtung erstreckende Sammelnuten (18) zum Sammeln des in der Gleitlagerschale befindlichen Öls, welche geschlossen und ringsum von einer Tragfläche (20) umgeben sind.

Description

Gleitlagerschale mit einer Sammelnut
Beschreibung Die vorliegende Erfindung betrifft eine Gleitlagerschaie mit einer die Gleitlager- schale radial durchsetzenden Ölbohrung zum Einbringen von Öl in die Gleitlagerschale. Typische Anwendungen der gattungsgemäßen Gleitlagerschale sind das Kurbelwellenhauptlager, das Pleuellager oder Buchsen in Verbrennungsmotoren. Gleitlagerschalen der gattungsgemäßen Art sind beispielsweise aus der DE 10 2005 037 502 A1 oder der DE 101 63 292 A1 bekannt.
Üblicherweise bilden zwei derartige Gleitlagerschalen ein Gleitlager, wobei die darin gelagerte Welle auf einem Ölfilm gleitet, der sich zwischen der Welle selbst und Tragflächen auf der Innenseite der Gleitlagerschalen ausbildet. Um die Ausbildung dieses Ölfilms zwischen der Tragfläche der Gleitlagerschaie und der darin gelagerten Welle zu gewährleisten, wird Öl durch die Ölbohrung in die in die Gleitlagerschale eingebracht, insbesondere eingespritzt. Das Öl verteilt sich innerhalb der Gleitlagerschale und benetzt die Tragflächen, auf denen es von der drehenden Welle mitgerissen wird, wodurch sich der Ölfilm bildet, auf dem die Welle gleitet.
Neben der Funktion der Ausbildung des Ölfilms dient das Öl der Kühlung des Gleitlagers, indem es die beim Betrieb entstehende Wärme aus dem Gleitlager ableitet. Die im Betrieb herrschenden Temperaturen liegen zwischen 90°C bei normalen Anwendungen bis 210°C bei extremen Anwendungen wie etwa bei Rennwagen. Etwa % der Ölmenge, die in die Gleitlagerschale eingespritzt wird, dient zur Kühlung.
Das Öl wird mittels einer Ölpumpe in die Gleitlagerschale eingespritzt. Die Öl- pumpe wird von einem Motor angetrieben, der das Fahrzeug antreibt. Ein Teil der Leistung, die der Motor abgibt, wird zum Antreiben der Ölpumpe benötigt. Der Anteil der Leistung, die zum Antreiben der Ölpumpe benötigt wird, kann dadurch reduziert werden, dass der Volumenstrom des Öls durch die Ölbohrung gesenkt wird. Mit einer Reduzierung des Anteils der Leistung, die zum Antreiben der Ölpumpe benötigt wird, reduzieren sich auch der Kraftstoffverbrauch und damit auch die CO2-Emission des Motors.
Einige Gleitlagerschalen weisen Ölnuten auf, mit denen das Öl innerhalb der Gleitlagerschale verteilt wird. Der Volumenstrom ist proportional zur Oberfläche der Ölnut, weshalb man aus den zuvor genannten Gründen bestrebt ist, die Ölnut so gering wie möglich zu gestalten. Die Gleitlagerschale umschließt üblicherweise einen Winkel von 180° in Umfangsrichtung, so dass zwei Gleitlagerschalen die zu lagernde Welle vollständig umfassen. Die Ölnut kann dabei die gesamte Gleitlagerschale durchlaufen, so dass sie sich ebenfalls einen Winkel von 180° in Umfangsrichtung erstreckt. Um die Oberfläche der Ölnut und damit den Volumenstrom des Öls durch die Ölnut zu reduzieren, kann der Winkel gesenkt werden. Es sind Gleitlager bekannt, deren Ölnut einen Winkel von 150° einschließt aufweisen, sogar Winkel von 120° werden erprobt. Dabei muss allerdings beachtet werden, dass der Volumenstrom durch die Ölnut nicht zu stark reduziert wird, so dass eine ausreichende Kühlung gewährleistet werden kann.
Mit sich verringerndem Winkel der Ölnut muss die benötigte Menge an Öl über eine geringere Oberfläche in das Gleitlager eingebracht und das Öl über eine größere Fläche verteilt werden, um eine einwandfreie Lagerung zu gewährleisten. Dies führt dazu, dass ein steigender Anteil des Öls seitlich aus dem Gleitlager austritt und ungenutzt verloren geht. Üblicherweise wird eine deutlich größere Menge an Öl in das Gleitlager eingebracht als tatsächlich notwendig, um die einwandfreie Lagerung der Welle zu gewährleisten und einen Ausfall zu vermei- den. Um den hierzu notwendigen Volumenstrom aufzubringen, muss der Motor eine höhere Leistung an die Ölpumpe abgeben, weshalb der Verbrauch des Motors steigt.
Aufgabe der vorliegenden Erfindung ist es daher, die oben diskutierten Nachteile der gattungsgemäßen Gleitlager zumindest zu reduzieren und eine Gleitla- gerschale anzugeben, mit welcher das in der Gleitlagerschale befindliche Öl besser genutzt werden kann, so dass der für die Ölpumpe benötigte Anteil der Leistung des Motors und gleichzeitig der seitliche Austritt aus dem Gleitlager reduziert werden kann. Gelöst wird die Aufgabe durch eine sich auf der Innenseite der Gleitlagerschale in Umfangsrichtung erstreckende Sammelnut zum Sammeln des in der Gleitlagerschale befindlichen Öls, welche geschlossen und ringsum von einer Tragfläche umgeben ist. Unter geschlossener Sammelnut soll eine Nut verstanden werden, in die keine Ölbohrung mündet. Die geschlossene Sammelnut bewirkt innerhalb des Ölfilms eine Querschnittserweiterung, weshalb dem Öl im Bereich der Sammelnut ein größeres geschlossenes Volumen zur Verfügung steht, so dass in der Sammelnut ein Unterdruck erzeugt wird. Folglich bildet sich im Bereich der Sammelnut, wo der Unterdruck anliegt, eine Saugwirkung aus, so dass Öl in diesen Bereich der Sammelnut gesaugt wird und sich eine zur Sammelnut hin gerichtete Strömung im Ölfilm ausbildet. Die Menge an Öl, die seitlich aus dem Gleitlager austritt, wird somit verringert und das Öl erneut genutzt, so dass auch der von der Ölpumpe zu fördernde Voiumenstrom an Öl in die Gleitlagerschale reduziert werden kann. Vorzugsweise ist die Sammelnut in Drehrichtung der zu lagernden Welle vor der Ölbohrung angeordnet, so dass das gesammelte Öl direkt mit dem frischen, durch die Ölnut hindurchtretenden Öl gemischt und zusammen zum Aufbau des Ölfilms verwendet werden kann. Als Konsequenz reduziert sich der Anteil der Leistung, die der Motor zum Antreiben der Ölpumpe aufbringen muss, wodurch der Verbrauch des Motors und damit seine CO2- Emission gesenkt werden. Vorzugsweise wird die erfindungsgemäße Gleitlager- schale im Kurbelwellenhauptlager eingesetzt. Die Ölbohrung kann einen kreis- förmigen Querschnitt haben und mit einem Bohrer gefertigt werden oder aber auch einen elliptischen Querschnitt oder ein Langloch sein und gefräst werden. In einer Weiterentwicklung umfasst das erfindungsgemäße Gleitlager eine sich auf einer Innenseite der Gleitlagerschale im Wesentlichen in Umfangsrichtung der Gleitlagerschale erstreckende Verteilernut zum Verteilen des eingebrachten Öls innerhalb der Gleitlagerschale, wobei die Ölbohrung in die Verteilernut mündet. Die Verteilung des Öls innerhalb der Gleitlagerschale wird verbessert, so dass sich überall in der Gleitlagerschale ein gleichmäßiger Ölfilm zum Tragen der Welle ausbilden kann.
Vorzugsweise endet die Verteilernut in Umfangsrichtung mit einem ersten Abstand vor einem ersten umfänglichen Ende der Gleitlagerschale. Die Tragfläche und damit die Tragfähigkeit der Gleitlagerschale werden somit vergrößert, wodurch größere Lasten aufgenommen werden können.
In einer bevorzugten Ausgestaltung der erfindungsgemäßen Gleitlagerschale endet die Sammelnut in Umfangsrichtung mit einem zweiten Abstand vor einem zweiten umfänglichen Ende der Gleitlagerschale. Auch hierdurch können die Tragfläche und die Tragfähigkeit weiter vergrößert werden, so dass größere Lasten aufgenommen werden können.
In einer favorisierten Weiterbildung erstrecken sich die Verteilernut mit einem ersten Winkelmaß zwischen 50° und 100° und die Sammelnut mit einem zweiten Winkelmaß zwischen 40° und 80° in Umfangsrichtung. Dabei muss das Winkelmaß jedoch so gewählt werden, dass immer ein bestimmter Abstand zwischen der Verteilernut und der Sammelnut verbleibt. Es hat sich herausgestellt, dass in diesem Bereich des ersten und zweiten Winkelmaßes der Volumenstrom des in das Gleitlager eingebrachten Öls und damit auch der Kraftstoffverbrauch des Motors besonders stark reduziert werden kann. Vorzugsweise sind die erste und die Sammelnut im Wesentlichen gleich lang. Dies vereinfacht die Fertigung, da die erste und die Sammelnut mit einem identischen Arbeitsschritt gefertigt werden können. Allein die Position der Gleitlagerschale muss verändert werden, wodurch die Gleitlagerschale besonders günstig herstellbar ist.
In einer vorteilhaften Ausbildung der erfindungsgemäßen Gleitlagerschale weisen die erste und die Sammelnut jeweils ein Längen-zu-Breiten-Verhältnis von 10:1 bis 40:1 auf. Es hat sich herausgestellt, dass in diesem Bereich des Län- gen-zu-Breiten-Verhältnisses der Volumenstrom des in das Gleitlager eingebrachten Öls und damit auch der Kraftstoffverbrauch des Motors besonders stark reduziert werden kann.
Es hat sich ebenfalls als besonders vorteilhaft für die Reduzierung des Volumenstroms des in das Gleitlager eingebrachten Öls und des Kraftstoffverbrauchs des Motors herausgestellt, wenn die erste und die Sammelnut jeweils ein Breiten-zu-Tiefen-Verhältnis von 10:1 bis 40:1 aufweisen.
Vorzugsweise geht zumindest die Sammelnut in Umfangsrichtung mit einem ersten Radius in die Tragfläche oder einem Nutgrund über. Wie oben dargelegt, bildet sich in der Sammelnut ein geringerer Druck im Ölfilm aus, wodurch es zu ein Saugeffekt in der Sammelnut erzeugt wird. Da in dieser Ausbildung die Sammelnut mit einem ersten Radius an in die Tragfläche übergeht, entstehen keine oder zumindest weniger Verwirbelungen, welche den Saugeffekt und die Strömung in die Sammelnut stören könnten. Werden sowohl die erste als auch die Sammelnut entsprechend mit einem kreissegmentförmigen Querschnitt gefertigt, wird die Fertigung weiter vereinfacht. Auch der Übergang in den Nutgrund mittels des ersten Radius reduziert die Verwirbelung innerhalb des Ölfilms, so dass sich der Saugeffekt besser entfalten kann. Vortei!hafterweise weist zumindest die Sammelnut in Umfangsrichtung im Wesentlichen kreissegmentförmigen Profilverlauf im Nutgrund mit einem zweiten Radius auf. Der Übergang von der Tragfläche in die Sammelnut entlang der Längsachse ist in dieser Ausbildung sehr sanft ausgestaltet, so dass keine oder zumindest weniger Verwirbelungen im Ölfilm generiert werden, welche den Saugeffekt und die Strömung in die Sammelnut stören könnten. Weiterhin ist die Fertigung der Sammelnut in dieser Ausbildung sehr einfach, da das entsprechende spanabhebende Werkzeug nur gedreht und nicht lateral verschoben werden muss. Die Nuten können beispielsweise mittels eines drehenden Fräs- kopfes gefertigt werden, der mit seiner Umfangsfläche das Material abträgt. Werden sowohl die Verteilernut als auch die Sammelnut entsprechend mit einem kreissegmentförmigen Querschnitt gefertigt, wird die Fertigung weiter vereinfacht. Die Verwendung„im Wesentlichen kreisförmig" wird deshalb verwendet, dass zum einen ein streng kreisförmiger Profilverlauf aufgrund der üblichen Fertigungsungenauigkeiten nicht herstellbar ist. Zum anderen ist es denkbar, die Ölnuten vor dem Biegen, also im ebenen Zustand der Gleitlagerschale zu fertigen. Ein im ebenen Zustand kreissegmentförmiger Profilverlauf im Nutgrund würde durch das Rollen geometrisch verändert werden und nicht mehr streng kreissegm entförmig verlaufen. Insofern sollen alle Formen, die ausschließlich durch Drehen des spanabhebenden Werkzeugs um eine relativ zur Gleitlagerschale in ihrer Position unveränderliche Achse mit dem Merkmal„in Umfangsrichtung im Wesentlichen kreissegmentförmiger Profil verlauf" umfasst sein.
Bevorzugt geht zumindest die Sammelnut senkrecht zur Umfangsrichtung mit einem dritten Radius in die Tragfläche über. Auch hierdurch werden die Verwirbelungen zumindest reduziert, so dass der Saugeffekt und die Strömung des Öls in die Sammelnut nicht oder weniger stark gestört werden.
Bevorzugt weisen die Verteilernut und die Sammelnut gleiche Profilverläufe in Umfangsrichtung und/oder senkrecht zur Umfangsrichtung auf. Hierdurch wird die Fertigung der Gleitlagerschale vereinfacht, da zur Herstellung der ersten und der zweiten Nut dasselbe Werkzeug verwendet werden kann. Das Umrüsten des Werkzeughalters oder das Vorsehen eines zweiten Werkzeughalters können entfallen.
Eine Weiterbildung der erfindungsgemäßen Gleitlagerschale zeichnet sich dadurch aus, dass die Verteilernut und Sammelnut mittels eines Kanals verbunden sind. Dieser Kanal weist vorzugsweise einen deutlich kleineren Querschnitt als die Verteilernut und die Sammelnut auf, so dass der Saugeffekt nur unwesent- lieh beeinträchtigt wird. Im Kanal kann sich Öl sammeln, welches bei Bedarf zur Verfügung steht. Durch die Drehbewegung der Welle wird das im Kanal gesammelte Öl mitgeschleppt und bildet einen Ölkeil, mit dem die Tragfähigkeit des Gleitlagers erhöht werden kann. Die Erfindung wird im Folgenden unter Bezugnahme auf die anhängenden Zeichnungen anhand von bevorzugten Ausführungsbeispielen im Detail erläutert. Es zeigen
Figur 1 ein erstes Ausführungsbeispiel einer erfindungsgemäßen Gleitla- gerschale im abgewickelten Zustand,
Figur 2 das in Figur 1 gezeigte Ausführungsbeispiel in einer perspektivi- sehen Darstellung,
Figur 3 ein zweites Ausführungsbeispiel der erfindungsgemäßen Gleitlagerschale anhand einer Draufsicht im abgewickelten Zustand,
Figur 4 eine Schnittdarstellung des in Figur 3 dargestellten Ausführungsbeispiels entlang der in Figur 3 definierten Schnittebene A-A, Figur 5 ein drittes Ausführungsbeispiel der erfindungsgemäßen Gleitlagerschale anhand einer Schnittdarstellung analog zu in Figur 4 verwendeten Darstellung im abgewickelten Zustand,
Figur 6 eine Schnittdarstellung des zweiten Ausführungsbeispiels entlang der in Figur 3 definierten Schnittebene B-B,
Figur 7 das in Figur 5 gezeigte dritte Ausführungsbeispiel im gerollten
Zustand,
Figur 8 ein viertes Ausführungsbeispiel der erfindungsgemäßen Gleitlagerschale anhand einer Draufsicht im abgewickelten Zustand, und
Figur 9 ein fünftes Ausführungsbeispiel der erfindungsgemäßen Gleitlagerschale anhand einer Draufsicht im abgewickelten Zustand.
Das in Figur 1 dargestellte erste Ausführungsbeispiel einer erfindungsgemäßen Gleitlagerschale 10i ist im abgewickelten, ebenen Zustand anhand einer Schnittdarsteilung gezeigt. Bei der Herstellung eines Gleitlagers erfolgt ein Biegeschritt, mit dem die ebene Gleitlagerschale 10i gebogen wird, so dass sie eine Halbschale bildet, die einen Winkel von etwa 180° überstreicht (vgl. Figur 7). Zwei Gleitlagerschalen 10i bilden ein komplettes Lager, wobei die beiden Gleitlagerschalen nicht notwendigerweise identisch aufgebaut sein müssen.
In Figur 2 ist das erste Ausführungsbeispiel der Gleitlagerschale 10i anhand einer perspektivischen Darstellung gezeigt. Sie ist bereits gebogen und kann somit bereits mit einer zweiten Gleitlagerschale zum Lagern einer nicht dargestellten Welle eingesetzt werden. Die Gleitlagerschale 10i umfasst eine Verteilernut 12, die sich auf einer Innenseite 14 der Gleitlagerschale 101 in Umfangsrichtung der Gleitlagerschale 10-i erstreckt. Zur Definition der Umfangsrichtung ist diese in Figur 3 mit der Linie X gekennzeichnet. Die größte Erstreckung der Verteilernut 12 soll in Umfangsrich- tung verlaufen. In der Verteilernut 12 ist eine Ölbohrung 1 6 vorgesehen, welche die Gleitlagerschale 10i radial durchsetzt und durch welche Öl mittels einer nicht dargestellten Ölpumpe in die Verteilernut 12 gefördert oder eingespritzt werden kann. Weiterhin weist die Gleitlagerschale 10i eine Sammelnut 18 auf, welche sich ebenfalls auf der Innenseite 14 und in Umfangsrichtung der Gleitlagerschale 0i erstreckt. Die diesbezüglichen Ausführungen zur Erstreckung der Verteilernut 12 gelten für die Sammelnut 18 entsprechend. Die Sammelnut 18 ist ringsum geschlossen und von einer Tragfläche 20 umgeben. Als Tragfläche 20 dient jede Fläche der Innenseite 14 der Gleitlagerschaie 10i, auf der sich ein Ölfilm zum Lagern und Gleiten einer nicht dargestellten Welle ausbilden kann. Die Drehrichtung der Welle ist mit dem Pfeil V dargestellt. Es ist somit ersichtlich, dass die Sammelnut 18 in Drehrichtung der Welle gesehen vor der Verteilernut 12 angeordnet ist.
In Figur 3 ist ein zweites Ausführungsbeispiel 102 der erfindungsgemäßen Gleitlagerschale anhand einer Draufsicht dargestellt, die sich im Wesentlichen von den Dimensionen vom ersten Ausführungsbeispie! unterscheidet. Die Gleitlagerschale 102 weist eine Gesamtbreite bges und eine Gesamthöhe hges (vgl. Figur 4) auf. Die Verteilernut 2 weist einen ersten Abstand Ai von einem ersten umfänglichen Ende 22 und die Sammelnut 18 einen zweiten Abstand A2 von einem zweiten umfänglichen Ende 24 der Gleitlagerschale 10·) auf. Die Verteilernut 12 und die Sammelnut 18 weisen einen dritten Abstand A3 zwischen ihren jeweiligen zueinander weisenden Enden auf und sind somit in Umfangsrichtung hintereinander angeordnet. Der Übersichtlichkeit halber ist die Tragfläche 20 schraffiert dargestellt, welche die Verteilemut 12 und Sammelnut 18 ringsum umschließt. Im Gegensatz zum in Figur 1 dargestellten Ausführungsbeispiel Ist die Ölbohrung 161 als Langloch ausgestaltet. Die Verteilemut 12 weist eine erste Länge I1, eine erste Breite b1 sowie eine erste Tiefe t1 und die Sammelnut 18 weist eine zweite Länge I2. eine zweite Breite b2 sowie eine zweite Tiefe auf. Die Tiefen sollen dabei den maximalen Abstand zwischen der die Verteilemut 12 und die Sammelnut 18 umgebenden Tragfläche 20 und einem Nutgrund 28 angeben. Gemäß dem zweiten Ausfüh- rungsbeispiel besitzen die Verteilemut 12 und die Sammelnut 18 identische Abmessungen, so dass die Längen I1 und I2, die Breiten b1 und b2 sowie die Tiefen t1, t2 jeweils gleich sind.
Wie aus Figur 4 hervorgeht, gehen die Verteilemut 12 und die Sammelnut 18 in Umfangsrichtung mit einem ersten Radius n' von der Tragfläche 20 in einen gegenüber der Tragfläche 20 geneigten Abschnitt 26 über. Der geneigte Abschnitt 26 geht ebenfalls mit dem ersten Radius r1" In den Nutgrund 28 der Vertellemut 12 und der Sammelnut 18 über. Die ersten Radien rr', r1" können Identisch oder unterschiedlich sein. Werterhin können die Verteilemut 12 und/oder die Sammelnut 18 ohne den ersten Radius r1 gefertigt sein.
In Figur 6 ist die Gleitlagerschale 102 gemäß dem zweiten Ausführungsbeispiel entlang der in Figur 3 definierten Schnittebene B-B dargestellt. Die Sammelnut 18 geht senkrecht zur Umfangsrichtung mit einem dritten Radius r3 In die Trag- fläche 20 über. Im dargestellten Beispiel stößt die Sammelnut 18 senkrecht auf den Nutgrund 28, wobei auch hier ein Übergang mit dem dritten Radius r3 oder einem anderen Radius denkbar ist. Selbstverständlich können auch andere Übergänge, beispielsweise als Fase, vorgesehen werden. In Figur 5 ist ein zweites Ausführungsbeispiel der erfindungsgemäßen Gleitla- gerschale 103 analog zur in Figur 1 gewählten Darstellungsweise gezeigt. Der Aufbau des dritten Ausführungsbeispiels unterscheidet sich vom ersten im Wesentlichen dadurch, dass die Verteilernut 12 und die Sammelnut 18 in Umfangs- richtung einen kreissegmentförmigen Profilverlauf mit einem zweiten Radius r2 aufweisen. Die Profilverläufe der Verteilernut 12 und der Sammelnut 18 sind identisch, so dass auch die Längen I1 und l2 gleich sind.
In Figur 7 ist die Gleitlagerschale 103 gemäß dem dritten Ausführungsbeispiel im gerollten und damit einbaufähigen Zustand dargestellt, in welchem sie einen Winkel von ca. 180° zwischen dem ersten umfänglichen Ende 22 und dem zweiten umfänglichen Ende 24 überstreicht. Man erkennt weiterhin, dass sich im gerollten Zustand die Verteilernut 12 mit einem ersten Winkelmaß α und die Sammelnut 18 mit einem zweiten Winkelmaß ß in Umfangsrichtung erstrecken, so dass sich die Winkelmaße ausschließlich auf den hier gezeigten gerollten Zustand der Gleitlagerschale 103 beziehen.
Das Winkeimaß entspricht dem Winkel, der von zwei Normalen N eingeschlossen wird, die von den jeweiligen Enden der Verteilernut 12 und der Sammelnut 18 ausgehen und in derselben Schnittebene liegen, in Figur 7 sind dies die Normalen N11 bis N22, wobei das Winkelmaß der Verteilernut 12 von den Normalen N11 und N12 und das der Sammelnut 18 von den Normalen N21 und N22 beschrieben wird. Die Verteilernut 12 und die Sammelnut 18 enden an der Stelle, an der sie in die Tragfläche 20 übergehen. Da die Längen I1, l2 der Sam- melnut 12 und der Verteilernut 18 gleich sind (vgl. Figur 5), sind auch das erste und zweite Winkelmaß α, ß gleich, wobei hier auch andere Abmessungen vorgesehen werden können.
In Figur 8 ist ein viertes Ausführungsbeispiel der erfindungsgemäßen Gleitlager- schale 104 anhand einer Draufsicht im abgewickelten, ebenen Zustand darge- stellt. In diesem Ausführungsbeispiel weist die Gleitlagerschale 104 keine Verteilernut auf. Stattdessen geht die Ölbohrung 16 direkt in die Tragfläche 20 über.
In Figur 9 ist ein fünftes Ausführungsbeispiel der erfindungsgemäßen Gleitla- gerschale 105 anhand einer Draufsicht im abgewickelten, ebenen Zustand dargestellt. In diesem Ausführungsbeispiel umfasst die Gleitlagerschale 105 mehrere Sammelnuten, in diesem Fall drei Sammelnuten 18i bis 183, die jeweils unterschiedliche Längen l2i bis i23 sowie unterschiedliche Breiten b2i bis b23 aufweisen.
In allen Ausführungsbeispielen sind die Sammelnuten 18 bezogen auf die Drehrichtung der Welle, die mit den Pfeilen V gekennzeichnet ist, vor der Ölbohrung 16 bzw. der Verteilernut 12 angeordnet. Dies hat den Effekt, dass das in der Sammelnut 8 gesammelte Öl infolge der Drehung und der damit verbundenen Schleppwirkung der Welle der Ölbohrung 16 oder der Verteilernut 12 zugeführt wird. Insofern wird das bereits in der Gleitlagerschale 10 befindliche Öl mit frischem Öl, welches durch die Ölbohrung in die Gleitlagerschale 10 eingebracht wird, zusammengebracht und kann wiederverwendet werden. Das Volumen des frischen Öls kann um das Volumen des in der Sammelnut 8 gesammelten Öls verringert werden, so dass das insgesamt benötigte Ölvoiumen verringert werden kann. Infolgedessen muss die Ölpumpe einen geringeren Volumenstrom fördern, so dass sie weniger Leistung benötigt, was zu einer Kraftstoffersparnis des antreibenden Motors führt. Die CO2-Bilanz wird entsprechend verbessert. Bezugszeichenliste
101 - 1 05 Gleitlagerschale
12 Verteilernut
14 Innenseite
16, 161 Ölbohrung
18 Sammelnut
20 Tragfläche
22 erstes umfängliches Ende
24 zweites umfängliches Ende
26 geneigter Abschnitt
28 Nutgrund A1 - A3 Abstand
b1 Breite Verteiiernut
b2 Breite Sammelnut
bges Breite Gleitlagerschale
hges Höhe Gleitlagerschale
I1 Länge Verteilernut
I2 Länge Sammelnut
N11 - N22 Normalen
r1 - r3 Radien
t1 Tiefe Verteilernut
t2 Tiefe Sammelnut
X Linie, welche die Umfangsrichtung definiert α erstes Winkelmaß
ß zweites Winkelmaß

Claims

Ansprüche
1. Gleitlagerschale mit
einer die Gleitlagerschale radial durchsetzenden Ölbohrung (16) zum Einbringen von Öl in die Gleitlagerschale,
gekennzeichnet durch eine oder mehrere sich auf der Innenseite (14) der Gleitlagerschale (10) in Umfangsrichtung erstreckende Sammelnuten (18) zum Sammeln des in der Gleitlagerschale befindlichen Öls, welche geschlossen und ringsum von einer Tragfläche (20) umgeben sind .
2. Gleitlagerschale nach Anspruch 1 ,
gekennzeichnet durch eine sich auf einer Innenseite (14) der Gleitlagerschale (10) im Wesentlichen in Umfangsrichtung der Gleitlagerschale (10) erstreckende Verteilernut (12) zum Verteilen des eingebrachten Öls innerhalb der Gleitlagerschale, wobei die Ölbohrung (16) in die Verteilernut (12) mündet.
3. Gleitlagerschale nach Anspruch 2, dadurch gekennzeichnet,
dass die Verteilernut (12) in Umfangsrichtung mit einem ersten Abstand
(Ai) vor einem ersten umfänglichen Ende (22) der Gleitlagerschale (10) endet.
4. Gleitlagerschale nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Sammelnut (18) in Umfangsrichtung mit einem zweiten Abstand (A2) vor einem zweiten umfänglichen Ende (24) der Gleitlagerschale (10) endet.
5. Gleitlagerschale nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass sich die Verteilernut (12) mit einem ersten Winkelmaß (a) zwischen 50° und 100° und die Sammelnut (18) mit einem zweiten Winkelmaß (ß) zwischen 40° und 80° in Umfangsrichtung erstrecken.
6. Gleitlagerschale nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, dass die Verteilernut (12) und die Sammelnut (18) im Wesentlichen gleich lang sind.
7. Gleitlagerschale nach einem der Ansprüche 2 bis 6, dadurch gekennzeichnet, dass die Verteilernut (12) und die Sammelnut (18) jeweils ein Längen-zu-Breiten-Verhä!tnis von 10:1 bis 40:1 aufweisen.
8. Gleitlagerschale nach einem der Ansprüche 2 bis 7, dadurch gekennzeichnet, dass die Verteilemut (12) und die Sammelnut (18) jeweils ein Breiten-zu-Tiefen-Verhältnis von 10:1 bis 40:1 aufweisen.
9. Gleitlagerschale nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass zumindest die Sammelnut (18) in Umfangsrichtung mit einem ersten Radius (r-ι) in die Tragfläche (20) und oder in einen Nutgrund (28) übergeht.
10. Gleitlagerschale nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass zumindest die Sammelnut (18) in Umfangsrichtung einen im Wesentlichen kreissegmentförmigen Profilverlauf am Nutgrund (28) mit einem zweiten Radius (r2) aufweist.
11 . Gleitlagerschale nach einem der vorherigen, dadurch gekennzeichnet, dass zumindest die Sammelnut (18) senkrecht zur Umfangsrichtung mit einem dritten Radius (r3) in die Tragfläche (20) übergeht.
12. Gleitlagerschale nach einem der Ansprüche 2 bis 11 , dadurch gekennzeichnet, dass die Verteilernut (12) und die Sammelnut (18) gleiche Pro- filverläufe in Umfangsrichtung und/oder senkrecht zur Umfangsrichtung aufweisen.
PCT/EP2012/052664 2011-03-11 2012-02-16 Gleitlagerschale mit einer sammelnut WO2012123213A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US14/004,505 US8783954B2 (en) 2011-03-11 2012-02-16 Sliding bearing shell comprising a collecting groove
EP12703842.0A EP2683956B1 (de) 2011-03-11 2012-02-16 Gleitlagerschale mit einer sammelnut
BR112013022603A BR112013022603A2 (pt) 2011-03-11 2012-02-16 concha para mancal deslizante com ranhura coletora
CN201280012726.6A CN103415714B (zh) 2011-03-11 2012-02-16 具有收集槽的滑动轴承套
JP2013557031A JP5971869B2 (ja) 2011-03-11 2012-02-16 収集溝を備えたすべり軸受シェル
KR1020137026770A KR101899620B1 (ko) 2011-03-11 2012-02-16 포집 홈을 포함하는 미끄럼 베어링 쉘

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011005467.7 2011-03-11
DE102011005467.7A DE102011005467B4 (de) 2011-03-11 2011-03-11 Gleitlagerschale mit einer Sammelnut

Publications (2)

Publication Number Publication Date
WO2012123213A1 true WO2012123213A1 (de) 2012-09-20
WO2012123213A9 WO2012123213A9 (de) 2014-03-06

Family

ID=45592411

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/052664 WO2012123213A1 (de) 2011-03-11 2012-02-16 Gleitlagerschale mit einer sammelnut

Country Status (8)

Country Link
US (1) US8783954B2 (de)
EP (1) EP2683956B1 (de)
JP (1) JP5971869B2 (de)
KR (1) KR101899620B1 (de)
CN (1) CN103415714B (de)
BR (1) BR112013022603A2 (de)
DE (1) DE102011005467B4 (de)
WO (1) WO2012123213A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2813717A1 (de) 2013-06-14 2014-12-17 Daido Metal Company Ltd. Lagervorrichtung
EP2813718A1 (de) 2013-06-14 2014-12-17 Daido Metal Company Ltd. Lagervorrichtung
CN105518320A (zh) * 2013-09-09 2016-04-20 马勒国际有限公司 轴承壳

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3002587B1 (fr) * 2013-02-25 2015-04-10 Renault Sa Coussinets jumeaux de vilebrequin
JP5837896B2 (ja) * 2013-03-21 2015-12-24 大豊工業株式会社 すべり軸受
DE102014200594A1 (de) 2014-01-15 2015-07-16 Voith Patent Gmbh Hydrodynamisches Gleitlager
US10533602B2 (en) 2014-01-15 2020-01-14 Voith Patent Gmbh Hydrodynamic plain bearing
JP6314103B2 (ja) 2015-02-27 2018-04-18 大豊工業株式会社 すべり軸受
JP2017110764A (ja) * 2015-12-17 2017-06-22 大豊工業株式会社 すべり軸受
JP2017110765A (ja) * 2015-12-17 2017-06-22 大豊工業株式会社 すべり軸受
JP6923465B2 (ja) * 2018-02-09 2021-08-18 大同メタル工業株式会社 内燃機関のクランク軸用主軸受
AT521246B1 (de) * 2018-07-10 2019-12-15 Miba Gleitlager Austria Gmbh Gleitlagerelement
DE102018119504A1 (de) * 2018-08-10 2020-02-13 Schuler Pressen Gmbh Verfahren zum Fertigen eines Gleitlagers und Gleitlager
JP7201720B2 (ja) * 2021-02-12 2023-01-10 大同メタル工業株式会社 半割軸受およびすべり軸受
JP7201719B2 (ja) * 2021-02-12 2023-01-10 大同メタル工業株式会社 半割軸受およびすべり軸受
CN113446307A (zh) * 2021-06-18 2021-09-28 东方电气集团东方汽轮机有限公司 下瓦开部分周向槽的径向滑动轴承
JP2023030707A (ja) * 2021-08-24 2023-03-08 大同メタル工業株式会社 半割軸受およびすべり軸受

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3881788A (en) * 1973-02-07 1975-05-06 Daimler Benz Ag Arrangement for lubricating a bearing
DE10163292A1 (de) 2000-12-25 2002-07-25 Daido Metal Co Ltd Lagerhälfte mit Nuten zur Verhinderung des Austritts von Schmieröl
EP1557544A1 (de) * 2002-10-24 2005-07-27 Taiho Kogyo Co., Ltd. Ölzufuhrvorrichtung für motorkurbelwelle
US20050196084A1 (en) * 2004-03-03 2005-09-08 Daido Metal Company Ltd. Plain bearing
DE102005037502A1 (de) 2005-08-09 2007-03-15 Federal-Mogul Wiesbaden Gmbh Lagerschale und Verfahren zu deren Herstellung
DE102006010698A1 (de) * 2006-03-08 2007-09-20 Federal-Mogul Wiesbaden Gmbh Lagerschale und Lager

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1948340A (en) * 1931-04-17 1934-02-20 Gen Motors Corp Groove for main bearings
US1940301A (en) * 1931-10-23 1933-12-19 Gen Electric Shaft bearing
US2004254A (en) * 1933-08-12 1935-06-11 Gen Motors Corp Crankshaft bearing
US2697017A (en) * 1951-07-28 1954-12-14 Gen Electric Journal bearing
US2901297A (en) * 1956-07-16 1959-08-25 Gen Electric Bearings
JPS52113445A (en) * 1976-03-19 1977-09-22 Daido Metal Co Ltd Bearing metal
DE2847246A1 (de) * 1978-10-31 1980-05-08 May Michael G Hubkolbenbrennkraftmaschine
JPS5676117U (de) * 1979-11-16 1981-06-22
JPS58149622U (ja) * 1982-03-31 1983-10-07 いすゞ自動車株式会社 軸受装置
DE3621577A1 (de) * 1985-07-26 1987-02-05 Glyco Metall Werke Gleitlager
DD271629A3 (de) * 1987-11-23 1989-09-13 Schwermasch Liebknecht Veb K Radialgleitlager
US5009522A (en) * 1990-04-02 1991-04-23 General Motors Corporation Reduced flow bearing
JP3554429B2 (ja) * 1996-02-06 2004-08-18 本田技研工業株式会社 回転軸の潤滑構造
JP2000346045A (ja) * 1999-06-01 2000-12-12 Daido Metal Co Ltd エンジン用主軸受
JP3643272B2 (ja) * 1999-10-12 2005-04-27 大同メタル工業株式会社 すべり軸受
DE10105542A1 (de) * 2001-02-07 2002-08-29 Porsche Ag Schmierölversorgung für die Pleuellager einer Kurbelwelle einer mehrzylindrigen Brennkraftmaschine
JP2005256917A (ja) * 2004-03-11 2005-09-22 Daido Metal Co Ltd すべり軸受
FR2878590B1 (fr) * 2004-11-29 2007-01-05 Renault Sas Reduction de frottement d'un palier hydrodynamique
FR2910087B1 (fr) * 2006-12-19 2009-01-23 Renault Sas Pied de bielle de moteur a combustion interne
DE102008008584A1 (de) * 2008-02-12 2009-08-13 Bayerische Motoren Werke Aktiengesellschaft Gleitlagerschale
JP4994294B2 (ja) * 2008-04-14 2012-08-08 大同メタル工業株式会社 内燃機関用すべり軸受
DE102009002772B9 (de) * 2009-04-30 2013-03-14 Federal-Mogul Wiesbaden Gmbh Gleitlagerschale mit reduzierter seitlicher Ölleckage

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3881788A (en) * 1973-02-07 1975-05-06 Daimler Benz Ag Arrangement for lubricating a bearing
DE10163292A1 (de) 2000-12-25 2002-07-25 Daido Metal Co Ltd Lagerhälfte mit Nuten zur Verhinderung des Austritts von Schmieröl
EP1557544A1 (de) * 2002-10-24 2005-07-27 Taiho Kogyo Co., Ltd. Ölzufuhrvorrichtung für motorkurbelwelle
US20050196084A1 (en) * 2004-03-03 2005-09-08 Daido Metal Company Ltd. Plain bearing
DE102005037502A1 (de) 2005-08-09 2007-03-15 Federal-Mogul Wiesbaden Gmbh Lagerschale und Verfahren zu deren Herstellung
DE102006010698A1 (de) * 2006-03-08 2007-09-20 Federal-Mogul Wiesbaden Gmbh Lagerschale und Lager

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2813717A1 (de) 2013-06-14 2014-12-17 Daido Metal Company Ltd. Lagervorrichtung
EP2813718A1 (de) 2013-06-14 2014-12-17 Daido Metal Company Ltd. Lagervorrichtung
CN104235168A (zh) * 2013-06-14 2014-12-24 大同金属工业株式会社 轴承装置
CN104235169A (zh) * 2013-06-14 2014-12-24 大同金属工业株式会社 轴承装置
US8936398B2 (en) 2013-06-14 2015-01-20 Daido Metal Company Ltd. Bearing device
US9062714B2 (en) 2013-06-14 2015-06-23 Daido Metal Company Ltd. Bearing device
CN104235168B (zh) * 2013-06-14 2017-04-12 大同金属工业株式会社 轴承装置
CN105518320A (zh) * 2013-09-09 2016-04-20 马勒国际有限公司 轴承壳
US10408265B2 (en) 2013-09-09 2019-09-10 Mahle International Gmbh Bearing shell

Also Published As

Publication number Publication date
DE102011005467A1 (de) 2012-09-13
US20130343682A1 (en) 2013-12-26
US8783954B2 (en) 2014-07-22
CN103415714B (zh) 2016-10-19
CN103415714A (zh) 2013-11-27
JP5971869B2 (ja) 2016-08-17
EP2683956A1 (de) 2014-01-15
EP2683956B1 (de) 2017-11-22
KR101899620B1 (ko) 2018-09-17
KR20140010976A (ko) 2014-01-27
WO2012123213A9 (de) 2014-03-06
BR112013022603A2 (pt) 2016-12-06
JP2014508258A (ja) 2014-04-03
DE102011005467B4 (de) 2016-04-28

Similar Documents

Publication Publication Date Title
EP2683956B1 (de) Gleitlagerschale mit einer sammelnut
EP2140114B1 (de) Axiallager insbesondere für einen turbolader
EP2951451B1 (de) Gleitlagerpaket
EP2683955B9 (de) Gleitlagerschale
EP2210005B1 (de) Axiallager, insbesondere für einen turbolader
DE102007011669A1 (de) Pumpvorrichtung und Servolenkung
DE112008002621T5 (de) Rollvorrichtung
DE2512651A1 (de) Geraeuscharmes zahnradgetriebe
AT521882B1 (de) Gleitlager, insbesondere für ein Getriebe einer Windkraftanlage
EP2683941A1 (de) Planetengetriebe einer windkraftanlage
DE102017127874A1 (de) Planetengetriebe und Planetenrad für ein Planetengetriebe
EP2642073A2 (de) Pendelschieberpumpe
EP1167696B1 (de) Labyrinthdichtung für eine rotierende Welle
EP1398097A2 (de) Verfahren zum Herstellen eines schrägverzahnten Stirnrad-Verbunds
DE102018129826A1 (de) Zahnradpumpe, die luft aus dem gepumpten öl entfernt
DE102013224416B4 (de) Axiallager bestehend aus zwei Axiallagerscheiben zur Lagerung einer Läuferwelle eines Abgasturboladers
EP2805085B1 (de) Kolben
DE102019133673A1 (de) Hydrodynamisches Gleitlager
DE102018120409A1 (de) Turbolader-axiallader
EP2305951B1 (de) Dichtungsanordnung und Drehkolbenmaschine
AT524440B1 (de) Vorrichtung zur Herstellung eines Zahnradgrünlings
EP4073352B1 (de) Rotor für eine strömungsmaschine und strömungsmaschine
DE112017004319T5 (de) Anlaufscheibe
DE102017113908A1 (de) Klauenkupplungsvorrichtung
DE102004012142A1 (de) Hebel für die Ventilsteuerung einer Kolbenmaschine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12703842

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2012703842

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2013557031

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14004505

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20137026770

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013022603

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013022603

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130904