WO2012122872A1 - Mems麦克风与压力集成传感器及其制作方法 - Google Patents

Mems麦克风与压力集成传感器及其制作方法 Download PDF

Info

Publication number
WO2012122872A1
WO2012122872A1 PCT/CN2012/071444 CN2012071444W WO2012122872A1 WO 2012122872 A1 WO2012122872 A1 WO 2012122872A1 CN 2012071444 W CN2012071444 W CN 2012071444W WO 2012122872 A1 WO2012122872 A1 WO 2012122872A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
layer
adhesive layer
opening
pressure
Prior art date
Application number
PCT/CN2012/071444
Other languages
English (en)
French (fr)
Inventor
柳连俊
Original Assignee
迈尔森电子(天津)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 迈尔森电子(天津)有限公司 filed Critical 迈尔森电子(天津)有限公司
Publication of WO2012122872A1 publication Critical patent/WO2012122872A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R19/00Electrostatic transducers
    • H04R19/005Electrostatic transducers using semiconductor materials
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R19/00Electrostatic transducers
    • H04R19/04Microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R31/00Apparatus or processes specially adapted for the manufacture of transducers or diaphragms therefor
    • H04R31/006Interconnection of transducer parts

Definitions

  • the present invention relates to a microelectromechanical system process, and more particularly to a MEMS microphone and pressure integrated sensor and a method of fabricating the same.
  • MEMS Micro-Electro-Mechanical Systems
  • MEMS microphones are miniature microphones that are fabricated by etching a pressure sensing diaphragm on a semiconductor through a microelectromechanical system process, commonly used in cell phones, earphones, notebook computers, video cameras, and automobiles.
  • CMOS Complementary Metal Oxide Semiconductor
  • the packaging structure of MEMS microphones has become a hot topic of research, Infineon, ⁇ , Omron, etc.
  • the company invested a lot of money and technology to study the MEMS microphone package structure.
  • the above companies are respectively making CMOS circuits and MEMS microphones, then placing CMOS circuits and MEMS microphones on the substrate, and using CMOS circuits by Wire-bonding technology. Connected to a MEMS microphone.
  • the MEMS pressure sensor is smaller in size and higher in control accuracy than the conventional mechanical sensor.
  • the manufacturing process can be compatible with the silicon integrated circuit technology, so the cost performance is greatly improved.
  • Current MEMS pressure sensors are capacitive pressure sensors and capacitive pressure sensors, both of which are MEMS sensors fabricated on silicon wafers.
  • the capacitive pressure sensor has a thin film plate capacitor structure with air as an isolation medium. When a thin film electrode of the flat capacitor is deformed by external pressure, the capacitance value changes accordingly, and the signal processing circuit converts the capacitance value into a voltage signal and then amplifies it. Output, with high measurement accuracy and low power consumption.
  • the capacitive pressure sensor has a thin film plate capacitor structure with air as an isolation medium. When a thin film electrode of the plate capacitor is deformed by external pressure, the capacitance value changes accordingly, and the capacitance value is converted into a voltage signal by the signal processing circuit. Amplified output with high measurement accuracy and low power consumption.
  • the problem lies in the above-mentioned conventional capacitive pressure sensor and microphone sensor manufacturing method, whether it is a pressure sensor chip or a microphone sensor chip, they are separated from the conductor wiring chip or the signal processing circuit chip, and each chip is separately manufactured and passed.
  • Packaging process integration whether it is a plastic package with a cavity cap, or a metal case package, the packaging process is more complicated, inconvenient and compatible with mature integrated circuit manufacturing technology, and the device size is large, and the cost is also increased. high.
  • the problem solved by the present invention is to provide a MEMS microphone and pressure integrated sensor and a manufacturing method thereof, which are relatively simple in fabrication and packaging process, are compatible with mature integrated circuit manufacturing technology, and have a small device size.
  • the present invention provides a MEMS microphone and a pressure integrated sensor, including: a first substrate, an inductive film having a capacitive pressure sensing unit, a sensitive film of the microphone unit, and a surface of the first substrate An adhesive layer;
  • a second substrate having an inter-conductor dielectric layer, a conductor wiring layer in the inter-conductor dielectric layer, and/or a second adhesive layer on the second substrate surface;
  • the second substrate is disposed opposite to the first substrate, and is fixedly connected by the first adhesive layer and the second adhesive layer, wherein the first adhesive layer corresponds to the pattern of the second adhesive layer and both Conductive material.
  • the sensing film of the pressure sensing unit is located in the same film layer as the sensitive film of the microphone unit, or the sensing film of the pressure sensing unit is located in the same film layer as the back electrode of the microphone unit.
  • the microphone unit includes a sensitive film, a cavity and a back plate electrode, the cavity is formed between the first substrate and the second substrate, and the back plate electrode is located in the cavity, corresponding to the position of the sensitive film;
  • the back surface of the first substrate has a first opening corresponding to the position of the sensitive film or back plate electrode.
  • the capacitive pressure sensing unit includes an inductive film, a reference pressure chamber, and a fixed electrode, the reference pressure chamber being located between the first substrate and the second substrate, the fixed electrode being located in the reference pressure chamber, and the sensing film Corresponding to the location;
  • the back surface of the first substrate has a second opening that exposes the sensing film.
  • the positions of the sensitive film and the back plate electrode of the microphone unit are interchangeable.
  • the material of the sensitive film includes low stress polysilicon.
  • the second adhesive layer is located above the conductor wiring layer, or the second adhesive layer is the uppermost conductive layer of the conductor wiring layer.
  • the first adhesive layer and/or the second adhesive layer is a Ge layer, a Si layer, an Au layer, an A1 layer, an Au/Sn laminate, or an Al/Ge stack.
  • the first substrate includes: a silicon substrate, a first dielectric layer on the silicon substrate, a second dielectric layer on the first dielectric layer, and a first conductor embedded in the second dielectric layer a layer, and a second conductor layer on the second dielectric layer;
  • the first adhesive layer is located on the second conductor layer
  • the capacitive pressure sensing unit further includes a movable electrode located in the reference pressure chamber, and the movable electrode is connected to the sensing film central position through the support arm;
  • the sensing film and the sensitive film are formed in the first conductor layer, and the movable electrode and the back plate electrode are formed in the second conductor layer.
  • the second substrate includes an SOI substrate or a single crystal silicon substrate, and the signal processing circuit is further included in the substrate under the dielectric layer between the conductors.
  • the back side of the second substrate has a third opening that is exposed to the position of the sensitive film of the microphone unit.
  • the MEMS microphone and pressure integrated sensor further includes:
  • a package substrate carrying a MEMS microphone and a pressure integrated sensor and corresponding to a back surface of the second substrate
  • the material of the package comprises plastic; a package cover, located at the top of the package, having a package cavity with the first substrate; wherein the package substrate has a sound and pressure opening in communication with the third opening.
  • the MEMS microphone and the pressure integrated sensor further include:
  • a package substrate carrying a MEMS microphone and a pressure integrated sensor and corresponding to a back surface of the second substrate
  • the material of the package comprising plastic.
  • the package body and the fixed connection between the first substrate and the second substrate further comprise a stress buffer layer.
  • the second substrate further comprises a plurality of bonding pads located on the periphery of the conductor wiring layer, and the first substrate corresponding to the plurality of bonding pads is removed.
  • Step S1 providing a first substrate, forming an inductive film of the capacitive pressure sensing unit, a sensitive film of the microphone unit, and a first adhesive layer on the first substrate surface on the first substrate;
  • Step S2 providing a second substrate on which an inter conductor dielectric layer and a conductor wiring layer and a fixed electrode in the inter-conductor dielectric layer are formed, and/or the surface of the second substrate a second adhesive layer;
  • Step S3 the first adhesive layer and the second adhesive layer are oppositely disposed and bonded in a pattern corresponding manner to connect the first substrate and the second substrate;
  • Step S4 forming a first opening and a second opening on the back surface of the first substrate, the first opening exposing a sensitive film or a back plate electrode, and the second opening exposes the sensing film.
  • the manufacturing method further includes: removing the first substrate corresponding to the bonding pad region and the first dielectric layer on the surface thereof by using an etching process to expose the first opening and the second opening A plurality of pressure pad pads in the pad area.
  • the manufacturing method further includes: forming a third opening on a back surface of the second substrate, where the position of the third opening corresponds to a sensitive film or a back plate electrode of the microphone unit.
  • the first adhesive layer and the second adhesive layer are disposed opposite each other and bonded in a pattern corresponding manner, comprising the following steps: Positioning the first adhesive layer of the first substrate opposite to the second adhesive layer of the second substrate such that the patterns are in contact with each other;
  • the present invention has the following advantages:
  • the MEMS microphone and the pressure sensor provided by the invention and the manufacturing method thereof, the capacitive pressure sensing unit and the microphone unit are integrated through two substrates, and are suitable for large-scale
  • the chip structure that is produced and integrated with various MEMS sensors is compatible with the integrated circuit process, improves the standardization and unification of the manufacturing process and the packaging process, and has small device size, excellent signal-to-noise ratio performance, and high anti-interference ability. .
  • FIG. 1 is a schematic structural view of a MEMS microphone and a pressure integrated sensor in the first embodiment
  • FIG. 2 is a schematic diagram of a package structure of the MEMS microphone and the pressure integrated sensor in FIG. 1
  • FIG. 3 is a schematic structural view of the MEMS microphone and the pressure integrated sensor in the second embodiment
  • Figure 4 is a schematic diagram of the package structure of the MEMS microphone and the pressure integrated sensor of Figure 3
  • Figure 4a is a schematic diagram of another package structure of the MEMS microphone and the pressure integrated sensor of Figure 3
  • Figure 5 is a MEMSMEMS microphone and pressure integrated sensor of the third embodiment Schematic diagram of the production method
  • FIG. 6 to 13 are schematic views of the process of the manufacturing method provided in Fig. 5.
  • the inventors of the present invention have proposed a MEMS microphone and pressure integrated sensor and a manufacturing method, which utilize the respective characteristics of the microphone and the pressure sensor to realize a unique device structure, a simple manufacturing process, and a low packaging cost.
  • the microphone and pressure integrated sensors made with this technology offer significant volume and cost advantages.
  • FIG. 1 is a schematic structural diagram of a MEMS microphone and a pressure sensor according to the embodiment.
  • the MEMS microphone and the pressure integrated sensor include:
  • the second substrate 200 has an inter-conductor dielectric layer 203, a conductor wiring layer 201 located in the inter-conductor dielectric layer 203, and a second adhesive layer 202 on the surface of the second substrate 200, and a capacitive pressure
  • the fixed electrode 201a of the sensing unit 101 has an inter-conductor dielectric layer 203, a conductor wiring layer 201 located in the inter-conductor dielectric layer 203, and a second adhesive layer 202 on the surface of the second substrate 200, and a capacitive pressure
  • the fixed electrode 201a of the sensing unit 101 has an inter-conductor dielectric layer 203, a conductor wiring layer 201 located in the inter-conductor dielectric layer 203, and a second adhesive layer 202 on the surface of the second substrate 200, and a capacitive pressure
  • the fixed electrode 201a of the sensing unit 101 has an inter-conductor dielectric layer 203, a conductor wiring layer 201 located in the inter-conductor dielectric
  • the second substrate 200 is disposed opposite to the first substrate 100, and is fixedly connected by the first adhesive layer 102 and the second adhesive layer 202, the first adhesive layer 102 and the second adhesive layer 202.
  • the patterns correspond to and are all conductive materials.
  • the "pattern correspondence" refers to the pattern matching of the corresponding positions of the first adhesive layer 102 and the second adhesive layer 202, and the size and shape may be different, and the position may be misaligned, and only the second substrate 200 and the first substrate are required.
  • the patterns can have overlapping portions that can contact each other. It is to be noted that the "upper” and “lower” hereinafter showing the positional relationship are limited to the case where the first substrate 100 shown in the drawing is placed upside down the second substrate 200.
  • a closed reference pressure chamber 101b of the capacitive pressure sensing unit 101 and a closed cavity 108d of the microphone unit 108 are formed therebetween, due to the
  • the back plate electrode 108b has a plurality of through holes 108e, and the cavity 108d further includes a space between the back plate electrode 108b and the sensitive film 108a. Further, the cavity may further include a groove extending into the second substrate 200. 208.
  • the back surface of the first substrate 100 (ie, facing away from the second substrate 200) has a second opening 101c and a first opening 108c, wherein the second opening 101c exposes the sensing film 101a of the capacitive pressure sensing unit 101, first The opening 108c exposes the sensitive film 108a of the microphone unit 108.
  • the first adhesive layer 102 and/or the second adhesive layer 202 are a Si layer, a Ge layer, an Au layer, an A1 layer, an Au/Sn layer, or an Al/Ge layer, and may also be other metal or alloy materials. .
  • the first adhesive layer 102 and the second adhesive layer 202 which are both conductive materials, are in contact with each other, so that electrical connection between the first substrate 100 and the second substrate 200 can be achieved, thereby accommodating the microphone unit in the first substrate 100.
  • the capacitive pressure sensing unit 101 is electrically connected to the conductor wiring layer 201 in the second substrate 200, thereby realizing integration of the sensing unit and the conductor connection.
  • the capacitive pressure sensing unit 101 includes an inductive film 101a, a movable electrode 101d, a reference pressure chamber 101b, and a fixed electrode 201a, and the movable electrode 101d is connected to a center position of the sensing film 101a via a support arm 106a.
  • the fixed electrode 201a is located in the reference pressure chamber 101b, and corresponds to the position of the sensing film 101a, and the first opening 108c exposes the sensing film 101a.
  • the microphone unit 108 includes a sensitive film 108a, a cavity 108d and a back plate electrode 108b.
  • the back plate electrode 108b is located in the cavity 108d, corresponding to the position of the sensitive film 108a, and the first opening 108c corresponds to the position of the sensitive film 108a. .
  • the first substrate includes: a silicon substrate 100, a first dielectric layer 105 on the silicon substrate 100, and a second dielectric layer 106 on the first dielectric layer 105, which are embedded in the The first conductor layer 104 in the second dielectric layer 106, and the second conductor layer 107 on the second dielectric layer 106.
  • the sensitive film 108a and the sensing film 101a are both formed in the first conductor layer 104, and the back plate electrode 108b and the movable electrode 101d are both formed in the second conductor layer 107.
  • the first adhesive layer 102 The pattern is formed on the surface of the second conductor layer 107.
  • the support arm 106a may be formed of a material of the first conductor layer 104 and the second conductor layer 107, or may be formed of a material 106 of the second dielectric layer.
  • the second substrate 200 includes an SOI substrate or a single crystal silicon substrate.
  • the second substrate 200 further includes a signal processing circuit (not shown) located between the inter-conductor dielectric layer 203 and the conductor wiring.
  • the signal processing circuit is, for example, a CMOS circuit for receiving, converting and detecting an external pressure signal sensed by the capacitive pressure sensing unit 101, and/or an external sound signal sensed by the microphone unit 108, a conductor
  • the wiring layer 201 is used to connect different devices and connect the second adhesive layer 202 and the signal processing circuit in the second substrate 200.
  • the second adhesive layer 202 is located above the conductor wiring layer 201, or the second adhesive layer 202 is the uppermost conductor wiring layer of the conductor wiring layer 201.
  • the sensing film 101a has a degree of freedom of deformation in a direction perpendicular to the first substrate 100 and the second substrate 200.
  • the reference pressure chamber 101b and the opening 101c are respectively located on both sides of the sensing film 101a, and the reference pressure chamber 101b is sealed with respect to the outside, thereby providing a fixed reference pressure value for the pressure change at the open end of the other side.
  • the capacitive pressure sensing unit 101 and the microphone unit 108 may further have a protective dielectric layer (not shown) for preventing damage to the sensing film during the subsequent formation of the first adhesive layer, and also It can be used as an etch stop layer for subsequent processes.
  • the second substrate 200 includes an SOI substrate or a single crystal silicon substrate, and a conductor inter-substrate on the substrate The layer 203 and the conductor wiring layer 201.
  • the second substrate 200 has a signal processing circuit (not shown) located under the inter-conductor dielectric layer 203 and the conductor wiring layer 201, and the signal processing circuit is, for example, a CMOS circuit for receiving, Transforming and detecting an external pressure signal sensed by the capacitive pressure sensing unit 101, and/or an external sound signal sensed by the microphone unit 108, the conductor wiring layer 201 is used to connect different devices and connect the second adhesive layer 202 and A signal processing circuit within the second substrate 200.
  • CMOS circuit for receiving, Transforming and detecting an external pressure signal sensed by the capacitive pressure sensing unit 101, and/or an external sound signal sensed by the microphone unit 108
  • the fixed electrode 201a is formed in the uppermost conductor wiring layer 201, and is disposed opposite to the movable electrode 101d.
  • the second adhesive layer 202 is located above the conductor wiring layer 201, or the second adhesive layer 202 is the uppermost conductor layer of the conductor wiring layer 201.
  • the sensing film 101a of the capacitive pressure unit 101 deforms in a direction perpendicular to the first substrate 100 and the second substrate 200, and the movable electrode 101d also moves with the distance from the fixed electrode 201a. A change occurs so that the capacitance value of the capacitive pressure sensing unit 101 is changed and output via the signal processing circuit. Since the support arm 106a is connected to the center position of the sensing film 101a, the movement of the movable electrode 101d can reflect the maximum deformation of the sensing film 101a, thereby achieving better sensitivity and linearity.
  • the position of the back plate electrode 108b of the microphone is fixed, and the sensitive film 108a forms two plates of the capacitor.
  • the first opening 108c serves as an entrance for applying a sound signal to the sensitive film of the microphone, and the sound signal can be transmitted to the sensitive film of the microphone through the first opening 108c.
  • the material of the sensitive film comprises low-stress polysilicon
  • the sensitive film 108a made of low-stress polysilicon can reduce deformation of the sensitive film 108a, improve sensitivity and yield
  • the shape of the sensitive film 108a is square, circular or Other shapes, those skilled in the art can select an adapted shape according to the MEMS microphone to be formed, and it is specifically stated herein that the protection range of the present invention should not be unduly limited; it should also be noted that the sensitive film 108a is formed by selecting low stress polysilicon.
  • the MEMS microphone using the sensitive film 108 of low stress polysilicon can be further reduced in size, thereby reducing production costs.
  • the second substrate 200 further has a plurality of bonding pads 204, and the bonding pads 204 are located outside the conductor wiring layer 201 (or signal processing circuit) of the second substrate 200.
  • the first The same film layer of the second adhesive layer 202.
  • the first substrate 100 corresponding to the bonding pad 204 is removed, so that the bonding pad 204 is exposed and soldered to the leads.
  • the MEMS integrated sensor in another embodiment of the present invention may further comprise a reference unit having the same structure as the capacitive pressure sensing unit, the capacitive pressure sensing unit and the reference unit together forming a differential sensor, two The first substrate and the second substrate are oppositely connected, and the structure is the same, but there is no opening in the first substrate above the sensing film of the reference unit. Simultaneously measure the capacitance of the capacitive pressure sensing unit and the capacitance of the reference unit, and take the difference as a differential output to reduce the influence of external environmental factors (temperature, stress, etc.) on the sensor output.
  • a reference unit having the same structure as the capacitive pressure sensing unit, the capacitive pressure sensing unit and the reference unit together forming a differential sensor, two The first substrate and the second substrate are oppositely connected, and the structure is the same, but there is no opening in the first substrate above the sensing film of the reference unit. Simultaneously measure the capacitance of the capacitive pressure sensing unit and the
  • the positions of the sensitive film and the back plate electrode of the microphone unit may be interchanged.
  • the sensitive film 108a and the back plate electrode 108b shown in FIG. 1 are exchanged.
  • the sound signal incoming from the first opening 108c can enter the cavity 108d from the through hole 108e of the back plate electrode 108b, thereby causing the sensitive film 108a to be directed to convert the sound signal into an electrical signal.
  • An advantage of this configuration is that the backing plate electrode 108b directly protects the sensitive film toward the first opening 108c.
  • the first substrate 100 may include an array of a plurality of the MEMS capacitive pressure sensing unit and the microphone unit, and the second substrate 200 includes a plurality of the MEMS pressure sensing units.
  • Corresponding conductor wiring or signal processing circuit array (not shown), the two are integrated and then split to obtain the MEMS sensor chip, and the MEMS microphone and the pressure integrated sensor are formed through the chip packaging process.
  • the microphone and pressure integrated sensor in this embodiment further includes:
  • a package substrate 300 located on the back surface of the second substrate 200 (facing away from the first substrate 100), having a plurality of bonding pins 301;
  • the material of the package 302 comprises plastic
  • Adhesive 303 connecting the second substrate 200 and the package substrate 300;
  • Lead wires 304 are located in the package body 301, and both ends of the leads are soldered to the bonding pads 204 and the bonding pins 301, respectively.
  • the package body 302 and the first substrate 100 and the second substrate 200 that are fixedly connected further include a stress buffer layer (not shown) for buffering the stress of the package body 301, thereby Avoid interference with the sensitivity of the sensing film.
  • a portion of the back surface of the first substrate 100 is exposed to the outside of the package.
  • the first opening 108c and the second opening 101c serve as entrances for sound and pressure, respectively, and introduce sound waves and pressure changes into the sensitive film and the sensing film.
  • different sound and pressure inlet designs can also be used, as explained in the following examples.
  • FIG. 3 is a schematic structural view of a MEMS microphone and a pressure integrated sensor according to the embodiment
  • FIG. 4 is a schematic diagram of a package structure of the integrated sensor of FIG.
  • the MEMS microphone and the pressure integrated sensor are different from the above embodiment in that the back surface of the second substrate 200 (facing away from the first substrate 100) has a third opening 109, and The sensitive film 108c of the microphone unit is positioned to expose the cavity 108d, and the sensitive film 108a and the back plate electrode 108b have through holes therein, and thus, the first opening 108c, the cavity 108d, and The third opening 209 forms a through passage in the first substrate 100 and the second substrate 200, and can simultaneously serve as a propagation path for sound and pressure.
  • the first substrate 100 and the second substrate 200 are connected to realize integration of the MEMS microphone with the pressure sensing unit and the conductor wiring or signal processing circuit, and then the substrate is divided to obtain a chip of the MEMS integrated sensor.
  • the chip packaging process forms a MEMS microphone and pressure integrated sensor, and also includes:
  • a package substrate 300 located on the back side of the second substrate 200, having a plurality of bonding pins 30, the package substrate 300 having a sound and pressure opening 300c communicating with the third opening 209; a package 302' located on the package substrate 300, over the first substrate 100, and the second substrate 200, and exposing a portion of the back surface of the first substrate 100 (including the An opening 108c, and a second opening I01c, the material of the package 302 comprises plastic;
  • Adhesive adhesive 303 connecting the second substrate 200, and the package substrate 300, and the first The substrate 100' is connected to the package cover 306;
  • Lead wires 304 are located in the package 302, and are welded at both ends to the bonding pads 204 and the bonding pads 301, respectively.
  • the first opening 108c and the second opening 101c are sealed by the package cover 306 and the package cavity 307. Inside, it is not in contact with the outside world, and the sound and pressure enters through the opening 300c of the back surface of the package substrate, through the third opening 209, the cavity 108d, and the first opening 108c, into the package cavity 307, to the microphone unit
  • the sensitive film 108a functions as an inductive film 101a of the capacitive pressure sensing unit. This structure is effective in preventing the sensitive film and the sensing film from being exposed to the outside and being easily damaged.
  • the MEMS microphone and the pressure integrated sensor may also adopt the package structure in FIG. 4a.
  • the package 302 has no package cover thereon, and the package substrate 300 has no openings therein.
  • the third opening 209 is blocked, and the package 302 forms a flared opening 308 on the back surface of the first substrate 100.
  • sound and pressure enter the first opening 108c and the second opening 101c through the flared opening 308, respectively.
  • the flared opening 308 facilitates the collection of sound signals.
  • the third opening 209 is blocked by the package substrate as an extended cavity of the microphone unit, and further, a larger package cavity can be formed by another substrate disposed between the second substrate and the package substrate. This substrate is also bonded to the package substrate by an adhesive.
  • the MEMS microphone and the pressure integrated sensor in the first embodiment can also adopt the package structure in FIG. 4a, that is, the package body is higher than the back surface of the first substrate, and the first opening and the second opening are exposed while forming a flared opening. The entrance to sound and pressure.
  • FIG. 5 is a flow chart of a method for fabricating the MEMS microphone and the pressure sensor according to the embodiment of the present invention
  • FIG. 6 to FIG. 13 are schematic diagrams showing a method for fabricating the MEMS pressure sensor. As shown, the manufacturing method includes:
  • Step S1 providing a first substrate, forming a capacitive pressure sensing unit on the first substrate An inductive film, a sensitive film of the microphone unit, and a first adhesive layer on the surface of the first substrate.
  • the first substrate 100 includes a silicon substrate, and a first dielectric layer 105 is formed on the silicon substrate.
  • the first dielectric layer 105 is silicon oxide.
  • the first conductor layer 104 is polysilicon.
  • the sensitive film 108a of the microphone unit and the sensing film 101a and the electrical wiring layer 103 of the capacitive pressure sensing unit are fabricated in the first conductor layer 104 by photolithography and etching processes.
  • the sensitive film 108a is used to form a capacitance with the subsequent formation of the back plate electrode, and the sensitive film 108a can vibrate under the action of an acoustic signal to convert the acoustic signal into an electrical signal; the sensitive film 108a and the material of the sensing film 101a
  • the low stress polysilicon can reduce the sensitivity of the external stress applied to the sensitive film 108a and the sensing film 101a, and is less affected by external stress.
  • a second dielectric layer 106 is deposited on the surface of the first substrate of the sensing film 101a having the sensitive film 108a and the capacitive pressure sensing unit.
  • the second dielectric layer 106 is oxidized.
  • the silicon film layer is photolithographically etched and etched into the silicon oxide film layer to form via holes (not labeled in the figure) in the second dielectric layer 106.
  • a second conductor layer 107 is deposited on the second dielectric layer 106 while also filling via holes (for forming support arms and other connection structures), preferably, the second conductor layer 107 is polysilicon.
  • the back electrode 108b of the microphone unit and the movable electrode 101d of the capacitive pressure sensing unit are fabricated in the second conductor layer 107 by photolithography and etching processes, and then the first bonding is deposited.
  • the first adhesive material layer is formed on the second conductor layer 107, but not on the back plate electrode 108b and the movable electrode 101d, to avoid affecting the sensitivity of the device; a mask is subjected to a photolithography process, and then the first adhesive material layer is etched to form a first adhesive layer 102.
  • the via holes in the back electrode are simultaneously formed.
  • the etching process in this step may be performed. A conventional wet etching or plasma etching process is employed.
  • the MEMS structure is released to remove the exposed material of the second dielectric layer 106, thereby completing the fabrication process of the first substrate 100.
  • Step S2 providing a second substrate on which an inter conductor dielectric layer and a conductor wiring layer and a fixed electrode in the inter-conductor dielectric layer are formed, and/or a surface of the second substrate Second adhesive layer.
  • the second substrate 200 includes an SOI substrate or a single crystal silicon substrate, preferably A signal processing circuit is first formed in the second substrate 200 according to a conventional process, and the signal processing circuit includes, for example, a CMOS circuit; and then an inter-conductor dielectric layer 203 on the signal processing circuit is formed (the conductor wiring layer can also be directly formed).
  • the conductor wiring layer 201 in the inter-conductor dielectric layer 203, wherein the conductor wiring layer includes the fixed electrode 201a, and the step may be a copper interconnection process or an aluminum interconnection process.
  • a second adhesive material layer (not shown) is deposited on the inter-conductor dielectric layer 203, a photolithography process is performed using a second mask, and then the second adhesive material layer is etched to form
  • the second adhesive layer 202 can be electrically connected to the conductor wiring layer 201 underneath by the through hole and the connection plug in the dielectric layer between the conductors.
  • the fixed electrode 201a is for forming a capacitance with the previously formed sensing film 101a, and converting the pressure signal sensed by the capacitance into an electrical signal.
  • the first adhesive layer 102 and the second adhesive layer 202 are both conductive materials.
  • the first adhesive layer 102 and/or the second adhesive layer 202 are an Au layer, an A1 layer, and Au/ Sn laminate or Al/Ge stack.
  • the pattern is formed by an electroplating process, and the Al/Ge stack may be patterned by photolithography or etching.
  • the second adhesive layer 202 is made of the same material as the conductor wiring layer 201, for example, A1, and the second adhesive layer 202 is the uppermost conductor layer in the conductor wiring layer, in other words, in the manufacture of the conductor connection.
  • the pattern of the second adhesive layer 202 is simultaneously formed, which saves a lithography process and is advantageous in reducing cost.
  • the first adhesive layer 102 corresponds to the pattern of the second adhesive layer 202, where "corresponding" means when the first substrate 100 and the second substrate 200 are oppositely disposed.
  • the first adhesive layer 102 faces the second adhesive layer 202, and the positions and shapes of the two patterns cooperate with each other to be connected.
  • the process of fabricating the second substrate 200 may further include: forming a trench 208 corresponding to the position of the sensitive film of the first substrate 100 in the second substrate 200 to extend the cavity 108d ( See Figure 12, 13) for the space.
  • a plurality of pad pads 204 of the pad region are formed on the conductor wiring layer 201 and the second substrate 200 other than the conductor layer 202.
  • Each of the bonding pads 204 is formed in the same process as the second bonding layer 202.
  • the signal processing circuit and the conductor wiring layer 201 are located in a device region of the second substrate 200, and the device region is a pressure pad region, and the pressure pad region includes a plurality of pressure pads.
  • the pad 204 is connected to the bonding wire, and further has a chip dividing area in addition to the device region.
  • Step S3 The first adhesive layer 102 and the second adhesive layer 202 are oppositely disposed and bonded in a pattern corresponding manner to connect the first substrate 100 and the second substrate 200.
  • the first adhesive layer 102 of the first substrate 100 is opposite to the second adhesive layer 202 of the second substrate 200, and the patterns are brought into contact with each other, and then Pressure is applied to the back surface of the substrate while heating is performed to fuse the contact faces of the first adhesive layer 102 and the second adhesive layer 202, for example, the first adhesive layer 102 and the second adhesive layer 202 are A1 layers.
  • a 40k-90k Newtonian pressure is applied to the substrate through the chuck on the back side of the substrate, and the substrate is heated to 400 °C, and the A1 layer in contact with each other undergoes solid-state diffusion, and the fixed connection is achieved after cooling.
  • the process parameters of the above bonding process differ depending on the materials of the first adhesive layer 102 and the second adhesive layer 202.
  • the first adhesive layer 102 and the second adhesive layer 202 are both electrically conductive materials, such as metals or alloys, and can be connected to the capacitive pressure sensing unit 101 and the electrical wiring layer 103 of the first substrate 100 while being fixedly connected.
  • the conductor wiring layer 201 (or signal processing circuit) of the second substrate 200 is electrically connected to realize integration of the microphone unit, the capacitive pressure sensing unit, and the conductor wiring layer (or signal processing circuit).
  • Step S4 forming a first opening and a second opening in the first substrate, the first opening exposing a sensitive film or a back plate electrode, and the second opening exposing the sensing film.
  • a photoresist layer (not shown) having a first opening and a second opening pattern is formed on the back surface of the first substrate, and the back surface of the first substrate 100 is used as an etch starting surface.
  • the silicon substrate material not protected by the photoresist and the material of the first dielectric layer 105 are removed until the sensitive film 108c and the sensing film ioi c are exposed. If the sensitive film 108c and the sensing film 101c are not in the same layer, they are etched into two lithography processes.
  • the method further includes: forming the first opening 108c and the second opening 101c, and removing the bonding pad region by an etching process Corresponding first substrate 100 and first dielectric layer 105 are exposed to expose a plurality of bonding pads 204 in the pad region.
  • it is necessary to remove the through-hole while etching the through hole of the second dielectric layer 106 in the process of fabricating the first substrate step S1.
  • the second dielectric layer 106 material corresponding to the pad region.
  • the above steps may also be performed on the first substrate 100 separately before the patterns of the first adhesive layer 102 of the first substrate 100 and the second adhesive layer 202 of the second substrate 200 are in contact with each other, so as to avoid engraving.
  • the etching process contaminates the second substrate 200.
  • Removing the first substrate 100 corresponding to the sensing film 101a of the capacitive pressure sensing unit 101 may sequentially remove the first substrate 100 and the first dielectric layer 105, leaving only the sensing film 101a and the sensitive film 108a; On the surface of the first dielectric layer 105, only the first substrate 100 is removed, so that the first dielectric layer 105 can function to protect the sensing film.
  • This solution requires the pressure welding to be removed in advance in the step S1 of fabricating the first substrate.
  • the order of the above steps S1 and S2 may be interchanged or may be performed simultaneously, regardless of the order, and the first substrate and the second substrate fabrication process may be different in actual production.
  • the machine is completed, which is conducive to increasing production capacity.
  • the manufacturing method of the MEMS microphone and the pressure sensor in the second embodiment is different from the embodiment in that the third opening 209 (see FIG. 4) is formed, and the third opening 209 can be connected to the first substrate and the second substrate. Formed before, it may also be formed after the first substrate and the second substrate are connected.
  • a photoresist layer (not shown) having a third opening pattern is formed on the back surface of the second substrate 200, With the back surface of the second substrate 200 as the etch starting surface, the material of the silicon substrate material and the inter-conductor dielectric layer 203 which are not protected by the photoresist are sequentially removed until the cavity 108d is exposed.
  • the photoresist layer having the third opening pattern is covered on the front surface of the second substrate, and the third layer is formed by an etching process. Opening.
  • the MEMS microphone and the pressure sensor provided by the invention are small in size and high in performance, and the first substrate and the second substrate constitute a closed structure.
  • the MEMS microphone and the pressure sensor of the invention and the manufacturing method thereof are not only simple in manufacturing process and packaging process, but also have simple manufacturing process and packaging process.
  • the utility model has the advantages of small volume, excellent signal-to-noise ratio performance and high anti-interference ability.
  • the second substrate comprises at least one layer of the conductor wiring layer and the second bonding layer. In fact, only one layer of the conductor wiring layer may be provided.
  • the wire layer doubles as the second adhesive layer.
  • the "conductor" in the conductor wiring layer, the inter-conductor dielectric layer or the first conductor layer and the second conductor layer according to the embodiment of the invention includes, but is not limited to, a metal, an alloy or a semiconductor.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Pressure Sensors (AREA)
  • Micromachines (AREA)

Abstract

一种MEMS麦克风与压力集成传感器,包括:第一衬底,具有电容式压力传感单元的感应薄膜、麦克风单元的敏感薄膜和所述第一衬底表面的第一粘合层;第二衬底,具有导体间介质层、位于导体间介质层中的导体连线层和/或第二衬底表面的第二粘合层;第二衬底与第一衬底相对设置,通过第一粘合层和第二粘合层固定连接,第一粘合层与第二粘合层的图案对应并且均为导电材料。相应地,一种MEMS麦克风及压力传感器及其制作方法,通过两个衬底将电容式压力传感单元及麦克风单元集成,适用于大规模生产的、集成各种MEMS传感器的芯片结构,有利于和集成电路工艺兼容,提高制作工艺和封装工艺的标准化,器件体积小信噪比性能优良,抗干扰能力高。

Description

MEMS麦克风与压力集成传感器及其制作方法
本申请要求于 2011 年 3 月 15 日提交中国专利局、 申请号为 201110061170.7、 发明名称为" MEMS 麦克风与压力集成传感器及其制作方 法"的中国专利申请的优先权, 其全部内容通过引用结合在本申请中。
技术领域
本发明涉及微电子机械系统工艺, 特别涉及一种 MEMS麦克风与压力集 成传感器及其制作方法。
背景技术
近年来, 各种 MEMS ( Micro-Electro-Mechanical Systems, 微机电系统) 传感器在手机及其他便携式电子产品中应用的越来越多, 例如 MEMS麦克风、 压力传感器和陀螺仪等, 以其小型化和轻薄化的特点取代传统的传感器。特别 是智能手机的快速发展带动了市场对各种 MEMS传感器的需求,智能手机应用 软件日益庞大的生态系统很大程度上要归功于 MEMS传感器。
MEMS麦克风是通过微电子机械系统工艺在半导体上蚀刻压力感测膜片 而制成的微型麦克风,普遍应用在手机、耳机、笔记本电脑、摄像机和汽车上。 在 MEMS麦克风与 CMOS ( Complementary Metal Oxide Semiconductor, 互补金 属氧化物半导体) 兼容的需求和 MEMS麦克风尺寸的进一步减小的驱动下, MEMS麦克风的封装结构成为现在研究的热点, Infineon, 娄式、 Omron等公 司投入大量的资金和技术力量进行 MEMS麦克风封装结构的研究, 但是, 上述 公司都是分别制作 CMOS电路和 MEMS麦克风, 然后将 CMOS电路和 MEMS麦 克风放置于基底上,采用 Wire-bonding技术将 CMOS电路和 MEMS麦克风相连。
MEMS压力传感器相对于传统的机械量传感器来说尺寸更小,控制精度更 高, 制作工艺可以与硅集成电路技术兼容, 因而其性价比大幅度提高。 目前的 MEMS压力传感器有电容式压力传感器和电容式压力传感器,两者都是在硅片 上制作的 MEMS传感器。电容式压力传感器具有以空气为隔离介质的薄膜平板 电容结构, 当平板电容的一个薄膜电极受到外界压力而产生形变时, 电容值随 之变化, 经信号处理电路将电容值转换成电压信号后放大输出, 具有较高的测 量精度和较低的功耗。 电容式压力传感器具有以空气为隔离介质的的薄膜平板电容结构,当平板 电容的一个薄膜电极受到外界压力而产生形变时, 电容值随之变化, 经信号处 理电路将电容值转换成电压信号后放大输出 ,具有较高的测量精度和较低的功 耗。
然而问题在于,上述传统的电容式压力传感器和麦克风传感器的制作方法 中, 不管是压力传感器芯片还是麦克风传感器芯片, 它们与导体连线芯片或者 信号处理电路芯片是分立的,各个芯片分别制作后通过封装工艺集成, 无论是 带空腔加盖的塑封, 或金属壳封装的方法, 其封装过程都较复杂, 不便于和成 熟的集成电路制造技术兼容, 并且器件尺寸较大, 成本也由此升高。
另外, 由于各种传感器的制作与封装方法之间的明显差异,迄今为止仍未 有集成化产品进入市场。 而随着各种 MEMS传感器在手机中的应用, 市场对各 种 MEMS传感器实现集成的需求已变得越来越明显, 因此, 研发适用于大规模 生产的、 集成各种 MEMS传感器的芯片结构和制作方法已成为将来的大趋势。 发明内容
本发明解决的问题是提供一种 MEMS麦克风与压力集成传感器及其制作 方法, 制作和封装过程都相对简单, 便于和成熟的集成电路制造技术兼容, 并 且器件尺寸较小。
为解决上述问题,本发明提供一种 MEMS麦克风与压力集成传感器,包括: 第一衬底,具有电容式压力传感单元的感应薄膜、 麦克风单元的敏感薄膜 和所述第一衬底表面的第一粘合层;
第二衬底,具有导体间介质层、位于所述导体间介质层中的导体连线层和 /或所述第二衬底表面的第二粘合层;
其中, 所述第二衬底与第一衬底相对设置,通过第一粘合层和第二粘合层 固定连接, 所述第一粘合层与第二粘合层的图案对应并且均为导电材料。
所述压力传感单元的感应薄膜与麦克风单元的敏感薄膜位于同一膜层中, 或者, 所述压力传感单元的感应薄膜与麦克风单元的背板电极位于同一膜层 中。
所述麦克风单元包括敏感薄膜、 空腔和背板电极, 所述空腔形成于第一衬 底和第二衬底之间, 所述背板电极位于空腔内, 与敏感薄膜的位置对应; 所述第一衬底的背面具有第一开口,该第一开口与所述敏感薄膜或背板电 极的位置对应。
所述电容式压力传感单元包括感应薄膜、参考压力腔和固定电极, 所述参 考压力腔位于第一衬底与第二衬底之间, 所述固定电极位于参考压力腔中, 与 感应薄膜的位置对应;
所述第一衬底的背面具有第二开口, 该第二开口将所述感应薄膜暴露。 所述麦克风单元的敏感薄膜和背板电极的位置可以互换。
所述敏感薄膜的材料包括低应力多晶硅。
所述第二粘合层位于导体连线层上方, 或者, 所述第二粘合层为导体连线 层中的最上层导体层。
所述第一粘合层和 /或第二粘合层为 Ge层、 Si层、 Au层、 A1层、 Au/Sn叠层 或 Al/Ge叠层。
所述第一衬底包括: 硅衬底、 所述硅衬底上的第一介质层、 所述第一介质 层上的第二介质层、镶嵌于所述第二介质层中的第一导体层, 以及所述第二介 质层上的第二导体层;
所述第一粘合层位于第二导体层上;
所述电容式压力传感单元还包括位于所述参考压力腔内的可动电极,所述 可动电极通过支撑臂与所述感应薄膜中心位置连接;
所述感应薄膜和敏感薄膜形成于第一导体层中,所述可动电极和背板电极 形成于第二导体层中。
所述第二衬底包括 SOI衬底或者单晶硅衬底, 所述导体间介质层下的衬底 内还包括信号处理电路。
所述第二衬底的背面具有第三开口,与所述麦克风单元的敏感薄膜的位置 对应, 将所述空腔暴露。
所述的 MEMS麦克风与压力集成传感器, 还包括:
封装衬底,承载 MEMS麦克风与压力集成传感器并对应于所述第二衬底的 背面;
封装体,位于所述封装衬底上方及所述第一衬底和第二衬底周围, 并暴露 出所述第一开口和第二开口, 该封装体的材料包括塑料; 封装盖, 位于所述封装体顶部, 与所述第一衬底之间具有封装空腔; 其中, 所述封装衬底中具有与所述第三开口连通的声音及压力开口。
可选的, 所述的 MEMS麦克风与压力集成传感器还包括:
封装衬底,承载 MEMS麦克风与压力集成传感器并对应于所述第二衬底的 背面;
封装体,位于所述封装衬底上方及所述第一衬底和第二衬底周围, 并暴露 出所述第一开口和第二开口, 该封装体的材料包括塑料。
优选的, 所述封装体和固定连接的第一衬底、第二衬底之间还包括应力緩 冲层。
优选的, 所述第二衬底还包括位于导体连线层外围的多个压焊焊垫, 所述 多个压焊焊垫所对应的第一衬底被去除。
相应的、 还提供一种所述的 MEMS麦克风与压力集成传感器的制作方法, 包括以下步骤:
步骤 S1 : 提供第一衬底,在所述第一衬底上形成电容式压力传感单元的感 应薄膜、 麦克风单元的敏感薄膜和所述第一衬底表面的第一粘合层;
步骤 S2: 提供第二衬底,在所述第二衬底上形成导体间介质层和所述导体 间介质层中的导体连线层和固定电极, 和 /或所述第二衬底表面的第二粘合层; 步骤 S3:将所述第一粘合层和第二粘合层相对设置并按照图案对应的方式 粘接, 以连接第一衬底和第二衬底;
步骤 S4: 在所述第一衬底的背面形成第一开口和第二开口,所述第一开口 暴露出敏感薄膜或背板电极, 所述第二开口暴露出感应薄膜。
所述的制作方法还包括: 形成第一开口和第二开口的同时, 采用刻蚀工艺 去除所述压焊焊垫区对应的第一衬底和其表面的第一介质层,以暴露出压焊焊 垫区内的多个压焊焊垫。
优选的, 所述的制作方法还包括: 在所述第二衬底的背面形成第三开口, 所述第三开口的位置对应于所述麦克风单元的敏感薄膜或背板电极。
将所述第一粘合层和第二粘合层相对设置并按照图案对应的方式粘接包 括以下步骤: 将第一衬底的第一粘合层与第二衬底的第二粘合层的位置相对,使其图案 相互接触;
从两个衬底的背面施加压力,同时进行加热使第一粘合层和第二粘合层的 接触面相互融合。 与现有技术相比, 本发明具有以下优点: 本发明提供的 MEMS麦克风及压 力传感器及其制作方法,通过两个衬底将电容式压力传感单元及麦克风单元集 成在一起, 适用于大规模生产的、 集成各种 MEMS传感器的芯片结构, 有利于 和集成电路工艺兼容,提高制作工艺和封装工艺的标准化和统一化, 而且器件 体积小, 信噪比性能优良, 抗干扰能力高。 。
附图说明
图 1为实施例一中 MEMS麦克风与压力集成传感器的结构示意图; 图 2为图 1中 MEMS麦克风与压力集成传感器的封装结构示意图; 图 3为实施例二中 MEMS麦克风与压力集成传感器的结构示意图; 图 4为图 3中 MEMS麦克风与压力集成传感器的封装结构示意图; 图 4a为图 3中 MEMS麦克风与压力集成传感器的另一封装结构示意图; 图 5为实施例三中 MEMSMEMS麦克风与压力集成传感器的制作方法流 程示意图;
图 6至图 13为图 5中提供的制作方法的过程示意图。
具体实施方式
目前, 市场对各种 MEMS传感器实现集成的需求已变得越来越明显, 但 是发明人发现, 各种传感器不仅制作与封装方法具有明显差异, 而且 MEMS 传感器芯片和导体连线或 CMOS 电路的芯片也要先分开制造, 然后在进行封 装, 导致制造工艺和封装工艺复杂, 且体积庞大, 成本高。
为此, 本发明的发明人提出一种 MEMS麦克风与压力集成传感器和制作 方法, 利用麦克风和压力传感器各自的特点, 实现独特的器件结构, 制作工艺 简单, 封装成本低。 与分立麦克风和压力传感器相比, 利用该技术制作的麦克 风与压力集成传感器具有明显的体积和成本优势。
以下结合附图详细说明所述麦克风与压力集成传感器的实施例。 图 1为本实施例中 MEMS麦克风与压力传感器的结构示意图,如图所示, 该 MEMS麦克风与压力集成传感器包括:
第一衬底 100, 具有电容式压力传感单元 101的感应薄膜 101a和可动电 极 101d、 麦克风单元 108的敏感薄膜 108a和背板电极 108b、 以及所述第一衬 底 100表面的第一粘合层 102;
第二衬底 200, 具有导体间介质层 203、 位于所述导体间介质层 203中的 导体连线层 201和所述第二衬底 200表面的第二粘合层 202, 以及, 电容式压 力传感单元 101的固定电极 201a。
其中, 所述第二衬底 200与第一衬底 100相对设置, 通过第一粘合层 102 和第二粘合层 202固定连接,所述第一粘合层 102与第二粘合层 202的图案对 应并且均为导电材料。 所述 "图案对应" 是指第一粘合层 102 与第二粘合层 202相应位置的图案匹配, 尺寸、 形状均可以不同, 位置可以也可错位, 只需 要第二衬底 200与第一衬底 100相对设置后,图案能够具有交叠的部分可以相 互接触。 需要说明的是, 下文中表示位置关系的 "上"、 "下"仅限于图中所示 的第一衬底 100倒置于第二衬底 200上方的情况。
第二衬底 200与第一衬底 100相对粘接后,它们之间即形成电容式压力传 感单元 101 的封闭的参考压力腔 101b, 以及麦克风单元 108 的封闭的空腔 108d, 由于所述背板电极 108b具有多个通孔 108e, 则空腔 108d还包括背板 电极 108b和敏感薄膜 108a之间的空间, 此外, 所述空腔还可以包括延伸至第 二衬底 200内的沟槽 208。
第一衬底 100背面 (即背向第二衬底 200 )具有第二开口 101c和第一开 口 108c,其中第二开口 101c将所述电容式压力传感单元 101的感应薄膜 101a 暴露, 第一开口 108c将所述麦克风单元 108的敏感薄膜 108a暴露。
所述第一粘合层 102和 /或第二粘合层 202为 Si层、 Ge层、 Au层、 A1层、 Au/Sn叠层或 Al/Ge叠层, 也可以为其他金属或合金材料。 同为导电材料的第 一粘合层 102和第二粘合层 202相互接触,则可以实现第一衬底 100和第二衬 底 200的电连接, 从而将第一衬底 100内的麦克风单元 108、 电容式压力传感 单元 101与第二衬底 200内的导体连线层 201电性连接,从而实现传感单元和 导体连线的集成。 电容式压力传感单元 101包括感应薄膜 101a、 可动电极 101d、 参考压力 腔 101b和固定电极 201a,可动电极 101d通过支撑臂 106a与所述感应薄膜 101a 的中心位置连接。 所述固定电极 201a位于参考压力腔 101b 中, 与感应薄膜 101a的位置对应, 第一开口 108c将所述感应薄膜 101a暴露。
麦克风单元 108包括敏感薄膜 108a, 空腔 108d和背板电极 108b, 所述背 板电极 108b位于空腔 108d内, 与敏感薄膜 108a的位置对应, 第一开口 108c 与所述敏感薄膜 108a的位置对应。
本实施例中, 第一衬底依次包括: 硅衬底 100、 所述硅衬底 100上的第一 介质层 105、 所述第一介质层 105上的第二介质层 106、 镶嵌于所述第二介质 层 106中的第一导体层 104, 以及所述第二介质层 106上的第二导体层 107。
其中, 敏感薄膜 108a和感应薄膜 101a均形成于所述第一导体层 104中, 背板电极 108b和可动电极 101d均形成于所述第二导体层 107中,所述第一粘 合层 102的图案形成于第二导体层 107表面上。 支撑臂 106a可以由第一导体 层 104和第二导体层 107的材料形成, 也可以有第二介质层的材料 106形成。
所述第二衬底 200包括 SOI衬底或者单晶硅衬底, 优选的, 第二衬底 200 内还包括信号处理电路(图中未示出), 位于导体间介质层 203和导体连线层 201的下方, 所述信号处理电路例如为 CMOS电路, 用于接收、 转化和检测电 容式压力传感单元 101感应到的外界压力信号,和 /或麦克风单元 108感应到的 外界声音信号, 导体连线层 201 用于连接不同的器件并连接第二粘合层 202 和第二衬底 200内的信号处理电路。 所述第二粘合层 202位于导体连线层 201 上方, 或者, 所述第二粘合层 202为导体连线层 201中的最上层导体连线层。
正是由于所述开口 101c和参考压力腔 101b的存在, 感应薄膜 101a才具 有沿垂直于第一衬底 100和第二衬底 200方向形变的自由度。所述参考压力腔 101b和开口 101c分别位于感应薄膜 101a的两侧, 并且参考压力腔 101b相对 于外界密封, 从而为另一侧开口端的压力变化提供固定的参考压力值。
此外,所述电容式压力传感单元 101及麦克风单元 108上还可以具有保护 介质层(图中未示出), 用于防止在后续形成第一粘合层的过程中损伤感应薄 膜, 同时也可以作为后续工艺的刻蚀停止层。
所述第二衬底 200包括 SOI衬底或者单晶硅衬底,以及衬底上的导体间介 质层 203 , 以及导体连线层 201。
优选的, 第二衬底 200内具有信号处理电路(图中未示出), 位于导体间 介质层 203和导体连线层 201的下方, 所述信号处理电路例如为 CMOS电路, 用于接收、 转化和检测电容式压力传感单元 101感应到的外界压力信号,和 /或 麦克风单元 108感应到的外界声音信号,导体连线层 201用于连接不同的器件 并连接第二粘合层 202和第二衬底 200内的信号处理电路。
所述固定电极 201a形成于最上层的导体连线层 201 中, 与所述可动电极 101d相对设置。 所述第二粘合层 202位于导体连线层 201上方, 或者, 所述 第二粘合层 202为导体连线层 201中的最上层导体层。
当外界压力变化时, 电容式压力单元 101的感应薄膜 101a沿垂直于第一 衬底 100和第二衬底 200的方向形变, 可动电极 101d也随之移动, 与固定电 极 201a之间的距离发生变化, 从而使得电容式压力传感单元 101的电容值改 变, 经由信号处理电路输出。 由于支撑臂 106a与感应薄膜 101a的中心位置连 接, 这样, 可动电极 101d的移动能够反映感应薄膜 101a的最大形变, 从而实 现更好的灵敏度及线性度。
所述麦克风的背板电极 108b的位置固定,它与敏感薄膜 108a构成电容器 的两个极板, 麦克风的敏感薄膜变形时, 所述电容器的两个极板之间的距离改 变, 将声音信号转为电信号。 第一开口 108c作为将声音信号施加至麦克风的 敏感薄膜的入口, 声音信号通过第一开口 108c可以传递至所述麦克风的敏感 薄膜上。
优选的, 所述敏感薄膜的材料包括低应力多晶硅, 由低应力多晶硅的制作 的敏感薄膜 108a能够降低敏感薄膜 108a形变, 提高灵敏度和成品率; 所述 敏感薄膜 108a的形状为方形、 圆形或者其他形状, 本领域的技术人员可以根 据待形成 MEMS麦克风选择适应的形状, 在此特意说明, 不应过分限制本发 明的保护范围;还需要说明的是,由于选择低应力多晶硅来形成敏感薄膜 108a, 使得采用低应力多晶硅的敏感薄膜 108的 MEMS麦克风能够进一步减小尺寸, 从而降低生产成本。
此外, 所述第二衬底 200上还具有多个压焊焊垫 204, 所述压焊焊垫 204 位于第二衬底 200的导体连线层 201 (或信号处理电路)之外层, 位于所述第 二粘合层 202的同一膜层。压焊焊垫 204对应的第一衬底 100被去除,使得压 焊焊垫 204暴露, 与引线焊接。
优选的, 本发明的另一实施例中的 MEMS集成传感器还可以包括与所述 电容式压力传感单元的结构相同的参考单元,电容式压力传感单元和参考单元 共同组成差分式传感器, 两者均由第一衬底和第二衬底相对连接而成, 而且结 构相同,但参考单元的感应薄膜上方的第一衬底中并没有开口。 同时测量电容 式压力传感单元电容和参考单元电容,取其差值做差分输出, 可以减小外界环 境因素 (温度, 应力等)对传感器输出的影响。
另夕卜, 本发明的其他实施例中, 所述麦克风单元的敏感薄膜和背板电极的 位置可以互换, 换言之, 将图 1所示的敏感薄膜 108a和背板电极 108b交换位 置, 此时, 从第一开口 108c传入的声音信号能够由所述背板电极 108b的通孔 108e中进入空腔 108d, 进而引起敏感薄膜 108a针对, 将声音信号转换为电信 号。此种结构的优势在于背板电极 108b直接朝向第一开口 108c能够保护敏感 薄膜。
不限于图中所示, 第一衬底 100上可以包括多个所述 MEMS电容式压力 传感单元和麦克风单元组成的阵列, 第二衬底 200上包括与多个所述 MEMS 压力传感单元对应的导体连线或信号处理电路阵列 (图中未示出), 两者集成 后再进行分割得到 MEMS传感器的芯片 ,经过芯片封装工艺形成 MEMS麦克风与 压力集成传感器。
进行封装工艺之后, 如图 2所示, 本实施例中所述麦克风与压力集成传感 器还包括:
封装衬底 300, 位于所述第二衬底 200的背面(背向第一衬底 100 ), 具有 多个压焊管脚 301 ;
封装体 302, 位于所述封装衬底 300上方及所述第一衬底 100和第二衬底 周围 200, 并暴露所述第一衬底 100背面的一部分, 使得第一开口 108c和第 二开口 101c露出, 该封装体 302的材料包括塑料;
粘合胶 303 , 将所述第二衬底 200和封装衬底 300连接;
引线 304, 位于所述封装体 301内, 引线的两端分别与压焊焊垫 204和压 焊管脚 301焊接。 优选的, 所述封装体 302和固定连接的第一衬底 100、 第二衬底 200之间 还包括应力緩冲层(图中未示出), 用于緩冲封装体 301的应力, 从而避免对 感应薄膜敏感度的干扰。 实施例一中, 第一衬底 100的背面一部分暴露于封装体外, 换言之, 第一 开口 108c和第二开口 101c作为分别声音和压力的入口,将声波和压力变化引 入敏感薄膜和感应薄膜, 实际上, 也可以采用不同的声音和压力入口设计, 以 下实施例评细说明。
实施例二
图 3为本实施例中所述的 MEMS麦克风与压力集成传感器的结构示意图, 图 4为图 3中集成传感器的封装结构示意图。
如图所示, 所述 MEMS麦克风与压力集成传感器, 与上述实施例不同之 处在于, 所述第二衬底 200,的背面 (背向第一衬底 100,)具有第三开口 109, 与麦克风单元的敏感薄膜 108c,的位置对应,将空腔 108d,暴露, 而所述敏感薄 膜 108a,和背板电极 108b,中均具有通孔, 于是, 第一开口 108c,、 空腔 108d, 和第三开口 209在第一衬底 100,和第二衬底 200,中形成一个贯穿的通道, 能 够同时作为声音及压力的传播通道。
第一衬底 100,和第二衬底 200,连接后实现了 MEMS麦克风与压力传感单 元和导体连线或信号处理电路的集成, 然后再将衬底进行分割得到 MEMS集 成传感器的芯片, 经过芯片封装工艺形成 MEMS麦克风与压力集成传感器, 还包括:
封装衬底 300,, 位于所述第二衬底 200,的背面, 具有多个压焊管脚 30Γ , 所述封装衬底 300,中具有与所述第三开口 209连通的声音及压力开口 300c; 封装体 302' , 位于所述封装衬底 300,上方及所述第一衬底 100,和第二衬 底 200,周围,并暴露出所述第一衬底 100,的背面的一部分(包括第一开口 108c, 和第二开口 I01c,), 该封装体 302,的材料包括塑料;
封装盖 306, 位于所述封装体 302,顶部, 与所述第一衬底 100,之间具有封 装空腔 307;
粘合胶 303,, 将所述第二衬底 200,和封装衬底 300,连接, 并将所述第一 衬底 100'和封装盖 306连接;
引线 304,, 位于所述封装体 302,内, 两端分别与压焊焊垫 204,和压焊管 脚 301,焊接。
与实施例一不同,本实施例中虽然第一衬底 100,的背面暴露于封装体 302' 夕卜, 但第一开口 108c,和第二开口 101c,被封装盖 306密封与封装空腔 307内, 并不与外界接触, 而声音及压力由封装衬底背面的开口 300c,进入, 经由第三 开口 209,、 空腔 108d,和第一开口 108c,进入封装空腔 307, 对麦克风单元的敏 感薄膜 108a,和电容式压力传感单元的感应薄膜 101a,作用。这种结构能够有效 防止敏感薄膜和感应薄膜暴露于外界而容易损坏。
本实施例中,所述 MEMS麦克风与压力集成传感器还可以采用图 4a中的 封装结构, 如图所示, 封装体 302,的上方没有封装盖, 封装衬底 300,中也没 有任何开口而是将第三开口 209封堵, 封装体 302,在第一衬底 100,的背面形 成喇叭形开口 308, 这样, 声音及压力通过喇叭形开口 308分别进入第一开口 108c,和第二开口 101c,,而喇叭形开口 308有利于收集声音信号。第三开口 209 被封装衬底封堵后作为麦克风单元的延伸空腔, 此外,还可以通过设置于第二 衬底和封装衬底之间的另一衬底来形成更大的封装空腔,这一衬底也通过粘合 胶与封装衬底连接。
类似的, 实施例一中的 MEMS麦克风与压力集成传感器也可以采用图 4a 中的封装结构, 即封装体高出第一衬底的背面,暴露第一开口和第二开口的同 时形成喇叭形开口作为声音和压力的入口。
所述 MEMS麦克风与压力集成传感器的其他结构与实施例一类似在此不 再 赘述。 实施例三
下面结合附图详细说明实施例一中 MEMS麦克风及压力传感器的制作方 法。 图 5为本发明实施例中所述 MEMS麦克风及压力传感器的制作方法的流 程图,图 6至图 13为所述 MEMS压力传感器的制作方法的示意图。如图所示, 所述制作方法包括:
步骤 S1 : 提供第一衬底, 在所述第一衬底上形成电容式压力传感单元的 感应薄膜、 麦克风单元的敏感薄膜和所述第一衬底表面的第一粘合层。
具体的, 如图 6所示, 首先, 所述第一衬底 100包括硅衬底, 在所述硅衬 底上形成第一介质层 105 , 优选的, 所述第一介质层 105为氧化硅膜层, 然后 在所述第一介质层 105上沉积第一导体层 104, 优选的, 所述第一导体层 104 为多晶硅。 接着, 通过光刻、 刻蚀工艺在所述第一导体层 104中制作麦克风单 元的敏感薄膜 108a和电容式压力传感单元的感应薄膜 101a及电连线层 103。
所述敏感薄膜 108a用于和后续形成背板电极形成电容, 且所述敏感薄膜 108a可以在声信号的作用下振动,将声信号转换为电信号;所述敏感薄膜 108a 和感应薄膜 101a的材料为低应力多晶硅, 低应力多晶硅能够降低外界给予所 述敏感薄膜 108a和感应薄膜 101a的应力的敏感度, 受外界的应力影响较小。
然后, 如图 7所示, 在具有敏感薄膜 108a和电容式压力传感单元的感应 薄膜 101a的第一衬底表面淀积第二介质层 106, 优选的, 所述第二介质层 106 为氧化硅膜层, 进行光刻、刻蚀所述氧化硅膜层在第二介质层 106中制作通孔 (图中未标号)。
接着, 如图 8所示, 在所述第二介质层 106上沉积第二导体层 107, 同时 也填充通孔(用于形成支撑臂和其他连接结构),优选的, 所述第二导体层 107 为多晶硅, 接着, 通过光刻、 刻蚀工艺在所述第二导体层 107中制作麦克风单 元的背板电极 108b和电容式压力传感单元的可动电极 101d, 然后淀积第一粘 合材料层 (图中未示出), 所述第一粘合材料层形成于第二导体层 107上面, 但 并不位于背板电极 108b和可动电极 101d上,避免影响器件的灵敏度; 采用第 一掩模板进行光刻工艺,然后对第一粘合材料层进行刻蚀从而形成第一粘合层 102, 优选的, 还可以同时形成背板电极中的通孔, 该步骤的刻蚀工艺可以采 用传统的湿法刻蚀或等离子刻蚀工艺。
最后, 如图 9所示, 进行 MEMS结构释放,去除暴露出的第二介质层 106 的材料, 从而完成第一衬底 100的制作过程。
步骤 S2: 提供第二衬底, 在所述第二衬底上形成导体间介质层和所述导 体间介质层中的导体连线层和固定电极, 和 /或所述第二衬底表面的第二粘合 层。
参照图 10所示, 所述第二衬底 200包括 SOI衬底或者单晶硅衬底, 优选 的,按照传统工艺在该第二衬底 200内先形成信号处理电路, 所述信号处理电 路例如包括 CMOS电路; 然后形成信号处理电路上的导体间介质层 203 (也可 以直接形成导体连线层)、 位于所述导体间介质层 203 中的导体连线层 201 , 其中导体连线层中包括固定电极 201a, 该步骤可以采用铜互连工艺或者铝互 连工艺。
接着, 在所述导体间介质层 203上淀积第二粘合材料层(图中未示出), 采用第二掩模板进行光刻工艺,然后对第二粘合材料层进行刻蚀从而形成第二 粘合层 202, 该第二粘合层 202可以由导体间介质层中的通孔和连接插塞与其 下方的导体连线层 201电性连接。
所述固定电极 201a用于与之前形成的感应薄膜 101a形成电容,并将电容 感应到的压力信号转换成电信号。
其中, 所述第一粘合层 102与第二粘合层 202均为导电材料, 例如, 所述 第一粘合层 102和 /或第二粘合层 202为 Au层、 A1层、 Au/Sn叠层或 Al/Ge 叠层。 当所述第一粘合 102层和 /或第二粘合层 202为 Au/Sn叠层时, 采用电 镀工艺形成其图形, Al/Ge叠层可以采用光刻、 刻蚀工艺形成其图形。
优选的, 第二粘合层 202采用与导体连线层 201相同的材料, 例如 A1, 则所述第二粘合层 202为导体连线层中的最上层导体层,换言之,在制造导体 连线层中的最上层导体层的过程中, 同时制作第二粘合层 202的图案, 这样可 以节省一道光刻工艺, 有利于降低成本。
经过光刻、刻蚀工艺后, 所述第一粘合层 102与第二粘合层 202的图案对 应, 这里 "对应" 的含义是当第一衬底 100和第二衬底 200相对设置时, 第一 粘合层 102朝向第二粘合层 202, 两者图案的位置和形状相互配合, 能够对应 连接。
可选的, 如图 11所示, 制作第二衬底 200过程还可以包括: 在第二衬底 200内形成对应与第一衬底 100敏感薄膜位置的沟槽 208,以延伸空腔 108d (参 见图 12、 13 ) 的空间。
形成第二粘合层 202的同时,在所述导体连线层 201以及之外的第二衬底 200上形成压焊焊垫区的多个压焊焊垫 204。 各个压焊焊垫 204与第二粘合层 202同一工艺中形成。 具体的,所述信号处理电路和所述导体连线层 201位于第二衬底 200的器 件区内, 所述器件区之外为压焊焊垫区, 压焊焊垫区包括多个压焊焊垫 204, 用于与压焊引线连接, 此外, 所述器件区之外还具有芯片分割区。
步骤 S3: 将所述第一粘合层 102和第二粘合层 202相对设置并按照图案 对应的方式粘接, 以连接第一衬底 100和第二衬底 200。
具体的, 参照图 12所示, 先将第一衬底 100的第一粘合层 102与第二衬 底 200的第二粘合层 202的位置相对,使其图案相互接触, 然后从两个衬底的 背面施加压力,同时进行加热使第一粘合层 102和第二粘合层 202的接触面相 互融合, 例如所述第一粘合层 102和第二粘合层 202为 A1层, 通过衬底背面 的吸盘对衬底施加 40k-90k牛顿压力,加热衬底至 400 °C ,相互接触的 A1层发 生固态扩散, 降温后实现固定连接。 上述连接工艺的工艺参数因第一粘合层 102和第二粘合层 202材料不同而不同。
第一粘合层 102和第二粘合层 202均为导电材料, 例如金属或者合金, 固 定连接的同时还能够将第一衬底 100的电容式压力传感单元 101及电连线层 103与第二衬底 200的导体连线层 201 (或信号处理电路) 电连接, 实现麦克 风单元、 电容式压力传感单元与导体连线层(或信号处理电路) 的集成。
步骤 S4: 在所述第一衬底中形成第一开口和第二开口, 所述第一开口暴 露出敏感薄膜或背板电极, 所述第二开口暴露出感应薄膜。
如图 13所示, 在第一衬底背面形成具有第一开口和第二开口图案的光刻 胶层(图中未示出), 以第一衬底 100的背面作为刻蚀起始面, 去除未被光刻 胶保护的硅衬底材料和第一介质层 105的材料, 直到暴露出敏感薄膜 108c和 感应薄膜 ioic。如果敏感薄膜 108c和感应薄膜 101c不在同一层,则分为两道 光刻程序刻蚀。
优选的, 如图 13所示, 连接第一衬底 100和第二衬底 200之后还包括: 形成第一开口 108c和第二开口 101c的同时,采用刻蚀工艺去除所述压焊焊垫 区对应的第一衬底 100和第一介质层 105 , 以暴露出压焊焊垫区内的多个压焊 焊垫 204。 为保证与第一开口 108c和第二开口 101c刻蚀过程的一致性, 需要 在制作第一衬底的过程中 (步骤 S1 ) , 刻蚀第二介质层 106的通孔的同时去除 压焊焊垫区对应的第二介质层 106材料。 另外, 上述步骤也可以在第一衬底 100的第一粘合层 102与第二衬底 200 的第二粘合层 202的图案相互接触之前单独对第一衬底 100进行,这样可以避 免刻蚀工艺对第二衬底 200的污染。
去除电容式压力传感单元 101的感应薄膜 101a对应的第一衬底 100可以 依次去除第一衬底 100和第一介质层 105 , 仅剩余感应薄膜 101a和敏感薄膜 108a; 也可以使刻蚀停止在第一介质层 105表面而仅去除第一衬底 100, 这样 第一介质层 105可以起到保护感应薄膜的作用,这种方案需要在制作第一衬底 的步骤 S1中提前去除压焊焊垫区对应的第一衬底上的第一介质层 105。
本发明的另一实施例中, 以上步骤 S1和步骤 S2的顺序可以相互调换,也 可以同时进行, 不分先后顺序, 实际生产中第一衬底和第二衬底制作工艺可以 能够在不同的机台完成, 有利于提高产能。 实施例二中 MEMS麦克风及压力传感器的制作方法与本实施例不同之处 在于还包括形成第三开口 209 (参见图 4 ), 该第三开口 209可以在第一衬底和 第二衬底连接之前形成, 也可以在第一衬底和第二衬底连接之后形成。 例如, 在第一衬底 100,和第二衬底 200,粘合工艺完成后, 需要在第二衬底 200,背面 形成具有第三开口图案的光刻胶层(图中未示出), 以第二衬底 200,的背面作 为刻蚀起始面, 依次去除未被光刻胶保护的硅衬底材料和导体间介质层 203, 的材料, 直到暴露出所述空腔 108d,。 本发明其他实施例中, 优选的, 在第二 衬底的第二粘合层形成之后,在第二衬底的正面覆盖具有第三开口图案的光刻 胶层, 通过刻蚀工艺形成第三开口。
采用本发明提供的 MEMS麦克风及压力传感器体积小, 性能高, 且所述 第一基底和第二基底构成封闭结构, 本发明的 MEMS麦克风及压力传感器及 其制作方法不但制造工艺和封装工艺简单, 且体积小, 信噪比性能优良, 抗干 扰能力高。
以上实施例所述 MEMS麦克风及压力集成传感器, 其第二衬底均包括至 少一层导体连线层和第二粘合层, 事实上, 也可以仅具有一层导体连线层, 该 导体连线层兼作第二粘合层。 本发明实施例所述的导体连线层、导体间介质层或第一导体层、第二导体 层中的 "导体" 包括但不限于金属、 合金或半导体等材料。
本发明虽然已以较佳实施例公开如上,但其并不是用来限定本发明,任何 本领域技术人员在不脱离本发明的精神和范围内,都可以利用上述揭示的方法 和技术内容对本发明技术方案做出可能的变动和修改, 因此, 凡是未脱离本发 改、 等同变化及修饰, 均属于本发明技术方案的保护范围。

Claims

权 利 要 求
1、 一种 MEMS麦克风与压力集成传感器, 其特征在于, 包括: 第一衬底, 具有电容式压力传感单元的感应薄膜、 麦克风单元的敏感薄膜 和所述第一衬底表面的第一粘合层;
第二衬底, 具有导体间介质层、位于所述导体间介质层中的导体连线层和
/或所述第二衬底表面的第二粘合层;
其中, 所述第二衬底与第一衬底相对设置,通过第一粘合层和第二粘合层 固定连接, 所述第一粘合层与第二粘合层的图案对应并且均为导电材料。
2、根据权利要求 1所述的 MEMS麦克风与压力集成传感器,其特征在于, 所述压力传感单元的感应薄膜与麦克风单元的敏感薄膜位于同一膜层中, 或 者, 所述压力传感单元的感应薄膜与麦克风单元的背板电极位于同一膜层中。
3、根据权利要求 1所述的 MEMS麦克风与压力集成传感器,其特征在于, 所述麦克风单元包括敏感薄膜、 空腔和背板电极, 所述空腔形成于第一衬底和 第二衬底之间, 所述背板电极位于空腔内, 与敏感薄膜的位置对应;
所述第一衬底的背面具有第一开口,该第一开口与所述敏感薄膜或背板电 极的位置对应。
4、根据权利要求 3所述的 MEMS麦克风与压力集成传感器,其特征在于, 所述电容式压力传感单元包括感应薄膜、参考压力腔和固定电极, 所述参考压 力腔位于第一衬底与第二衬底之间, 所述固定电极位于参考压力腔中, 与感应 薄膜的位置对应;
所述第一衬底的背面具有第二开口, 该第二开口将所述感应薄膜暴露。
5、根据权利要求 1所述的 MEMS麦克风与压力集成传感器,其特征在于, 所述麦克风单元的敏感薄膜和背板电极的位置可以互换。
6、 根据权利要求 1-4任一项所述的 MEMS麦克风与压力集成传感器, 其 特征在于, 所述敏感薄膜的材料包括低应力多晶硅。
7、 根据权利要求 1-4任一项所述的 MEMS麦克风与压力集成传感器, 其 特征在于, 所述第二粘合层位于导体连线层上方, 或者, 所述第二粘合层为导 体连线层中的最上层导体层。
8、 根据权利要求 1-4任一项所述的 MEMS麦克风与压力集成传感器, 其 特征在于, 所述第一粘合层和 /或第二粘合层为 Ge层、 Si层、 Au层、 A1层、 Au/Sn叠层或 Al/Ge叠层。
9、根据权利要求 1所述的 MEMS麦克风与压力集成传感器,其特征在于, 所述第一衬底包括: 硅衬底、 所述硅衬底上的第一介质层、 所述第一介质层上 的第二介质层、镶嵌于所述第二介质层中的第一导体层, 以及所述第二介质层 上的第二导体层;
所述第一粘合层位于第二导体层上;
所述电容式压力传感单元还包括位于所述参考压力腔内的可动电极,所述 可动电极通过支撑臂与所述感应薄膜中心位置连接;
所述感应薄膜和敏感薄膜形成于第一导体层中,所述可动电极和背板电极 形成于第二导体层中。
10、 根据权利要求 1所述的 MEMS麦克风与压力集成传感器, 其特征在 于,所述第二衬底包括 SOI衬底或者单晶硅衬底,所述导体间介质层下的衬底 内还包括信号处理电路。
11、 根据权利要求 3或 4所述的 MEMS麦克风与压力集成传感器, 其特 征在于, 所述第二衬底的背面具有第三开口, 与所述麦克风单元的敏感薄膜的 位置对应, 将所述空腔暴露。
12、根据权利要求 11所述的 MEMS麦克风与压力集成传感器, 其特征在 于, 还包括:
封装衬底, 承载 MEMS麦克风与压力集成传感器并对应于所述第二衬底 的背面;
封装体,位于所述封装衬底上方及所述第一衬底和第二衬底周围, 并暴露 出所述第一开口和第二开口, 该封装体的材料包括塑料;
封装盖, 位于所述封装体顶部, 与所述第一衬底之间具有封装空腔; 其中, 所述封装衬底中具有与所述第三开口连通的声音及压力开口。
13、 根据权利要求 4所述的 MEMS麦克风与压力集成传感器, 其特征在 于, 还包括:
封装衬底, 承载 MEMS麦克风与压力集成传感器并对应于所述第二衬底 的背面;
封装体,位于所述封装衬底上方及所述第一衬底和第二衬底周围, 并暴露 出所述第一开口和第二开口, 该封装体的材料包括塑料。
14、 根据权利要求 11或 12所述的 MEMS麦克风与压力集成传感器, 其 特征在于,
所述封装体和固定连接的第一衬底、 第二衬底之间还包括应力緩冲层。
15、 根据权利要求 1所述的 MEMS麦克风与压力集成传感器, 其特征在 于, 所述第二衬底还包括位于导体连线层外围的多个压焊焊垫, 所述多个压焊 焊垫所对应的第一衬底被去除。
16、 一种如权利要求 1所述的 MEMS麦克风与压力集成传感器的制作方 法, 其特征在于, 包括以下步骤:
步骤 S1 : 提供第一衬底, 在所述第一衬底上形成电容式压力传感单元的 感应薄膜、 麦克风单元的敏感薄膜和所述第一衬底表面的第一粘合层;
步骤 S2: 提供第二衬底, 在所述第二衬底上形成导体间介质层和所述导 体间介质层中的导体连线层和固定电极, 和 /或所述第二衬底表面的第二粘合 层;
步骤 S3: 将所述第一粘合层和第二粘合层相对设置并按照图案对应的方 式粘接, 以连接第一衬底和第二衬底;
步骤 S4: 在所述第一衬底的背面形成第一开口和第二开口, 所述第一开 口暴露出敏感薄膜或背板电极, 所述第二开口暴露出感应薄膜。
17、 根据权利要求 16所述的制作方法, 其特征在于, 所述第二衬底上形 成有多个压焊焊垫, 步骤 S4还包括: 形成第一开口和第二开口的同时, 采用 刻蚀工艺去除所述压焊焊垫区对应的第一衬底和其表面的第一介质层,以暴露 出压焊焊垫区内的多个压焊焊垫。
18、 根据权利要求 16所述的制作方法, 其特征在于, 还包括: 在所述第 二衬底的背面形成第三开口,所述第三开口的位置对应于所述麦克风单元的敏 感薄膜或背板电极。
19、 根据权利要求 16所述的制作方法, 其特征在于, 将所述第一粘合层 和第二粘合层相对设置并按照图案对应的方式粘接包括以下步骤: 将第一衬底的第一粘合层与第二衬底的第二粘合层的位置相对,使其图案 相互接触;
从两个衬底的背面施加压力,同时进行加热使第一粘合层和第二粘合层的 接触面相互融合。
PCT/CN2012/071444 2011-03-15 2012-02-22 Mems麦克风与压力集成传感器及其制作方法 WO2012122872A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110061170.7A CN102158787B (zh) 2011-03-15 2011-03-15 Mems麦克风与压力集成传感器及其制作方法
CN201110061170.7 2011-03-15

Publications (1)

Publication Number Publication Date
WO2012122872A1 true WO2012122872A1 (zh) 2012-09-20

Family

ID=44439915

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/071444 WO2012122872A1 (zh) 2011-03-15 2012-02-22 Mems麦克风与压力集成传感器及其制作方法

Country Status (2)

Country Link
CN (1) CN102158787B (zh)
WO (1) WO2012122872A1 (zh)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140264662A1 (en) * 2013-03-14 2014-09-18 Taiwan Semiconductor Manufacturing Company, Ltd. MEMS Integrated Pressure Sensor and Microphone Devices and Methods of Forming Same
US20140264653A1 (en) * 2013-03-14 2014-09-18 Taiwan Semiconductor Manufacturing Company, Ltd. MEMS Pressure Sensor and Microphone Devices Having Through-Vias and Methods of Forming Same
US9085455B2 (en) 2013-03-14 2015-07-21 Taiwan Semiconductor Manufacturing Company, Ltd. MEMS devices and methods for forming same
DE102014211197A1 (de) * 2014-06-12 2015-12-17 Robert Bosch Gmbh Mikromechanische Kombi-Sensoranordnung und ein entsprechendes Herstellungsverfahren
US9260296B2 (en) 2013-03-14 2016-02-16 Taiwan Semiconductor Manufacturing Company, Ltd. MEMS integrated pressure sensor devices and methods of forming same
US9260295B2 (en) 2013-03-14 2016-02-16 Taiwan Semiconductor Manufacturing Company, Ltd. MEMS integrated pressure sensor devices having isotropic cavities and methods of forming same
DE102015206863B3 (de) * 2015-04-16 2016-05-25 Robert Bosch Gmbh Verfahren zur Herstellung einer Mikrofonstruktur und einer Drucksensorstruktur im Schichtaufbau eines MEMS-Bauelements
WO2017136744A1 (en) * 2016-02-04 2017-08-10 Knowles Electronics, Llc Microphone and pressure sensor
US10351419B2 (en) 2016-05-20 2019-07-16 Invensense, Inc. Integrated package containing MEMS acoustic sensor and pressure sensor
CN110683507A (zh) * 2019-08-27 2020-01-14 华东光电集成器件研究所 一种抗干扰mems器件
CN112924056A (zh) * 2020-02-26 2021-06-08 上海安翰医疗技术有限公司 一种薄膜压力传感器
CN113582127A (zh) * 2020-04-30 2021-11-02 苏州敏芯微电子技术股份有限公司 压力传感器封装结构
TWI756976B (zh) * 2020-12-10 2022-03-01 美律實業股份有限公司 麥克風模組
US11399236B2 (en) 2018-01-04 2022-07-26 Knowles Electronics, Llc Sensor device and microphone assembly

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102158789B (zh) 2011-03-15 2014-03-12 迈尔森电子(天津)有限公司 Mems麦克风结构及其形成方法
CN102180435B (zh) * 2011-03-15 2012-10-10 迈尔森电子(天津)有限公司 集成mems器件及其形成方法
CN102158787B (zh) * 2011-03-15 2015-01-28 迈尔森电子(天津)有限公司 Mems麦克风与压力集成传感器及其制作方法
CN102158788B (zh) * 2011-03-15 2015-03-18 迈尔森电子(天津)有限公司 Mems麦克风及其形成方法
CN102638753B (zh) * 2012-03-16 2014-05-21 中北大学 基于石墨烯的mems声学传感器
CN102625224B (zh) * 2012-03-31 2015-07-01 歌尔声学股份有限公司 一种电容式硅微麦克风与集成电路单片集成的方法及芯片
WO2013156539A1 (en) * 2012-04-17 2013-10-24 Stmicroelectronics S.R.L. Assembly of a semiconductor integrated device including a mems acoustic transducer
DE102012209235B4 (de) * 2012-05-31 2023-08-10 Robert Bosch Gmbh Sensormodul mit zwei mikromechanischen Sensorelementen
US9607971B2 (en) * 2012-06-04 2017-03-28 Sony Corporation Semiconductor device and sensing system
US9319799B2 (en) * 2013-03-14 2016-04-19 Robert Bosch Gmbh Microphone package with integrated substrate
CN104045052B (zh) * 2013-03-14 2016-11-16 台湾积体电路制造股份有限公司 Mems集成压力传感器和麦克风器件及其形成方法
US10812900B2 (en) 2014-06-02 2020-10-20 Invensense, Inc. Smart sensor for always-on operation
DE102014212314A1 (de) * 2014-06-26 2015-12-31 Robert Bosch Gmbh Mikromechanische Sensoreinrichtung
CN105282670B (zh) * 2014-07-01 2019-02-12 日月光半导体制造股份有限公司 包含微机电系统装置的电子装置及其制造方法
CN104655334B (zh) * 2015-02-16 2017-05-03 迈尔森电子(天津)有限公司 Mems压力传感器及其形成方法
CN104796832B (zh) 2015-02-16 2018-10-16 迈尔森电子(天津)有限公司 Mems麦克风及其形成方法
CN104634487B (zh) * 2015-02-16 2017-05-31 迈尔森电子(天津)有限公司 Mems压力传感器及其形成方法
CN104883652B (zh) * 2015-05-29 2019-04-12 歌尔股份有限公司 Mems麦克风、压力传感器集成结构及其制造方法
CN104902415A (zh) * 2015-05-29 2015-09-09 歌尔声学股份有限公司 一种差分电容式mems麦克风
CN105016291A (zh) * 2015-06-07 2015-11-04 上海华虹宏力半导体制造有限公司 可减少mems键合过程中铝锗键合桥连的结构
CN105355613B (zh) * 2015-10-27 2018-08-10 上海华虹宏力半导体制造有限公司 铝锗共晶键合的方法
US10281485B2 (en) 2016-07-29 2019-05-07 Invensense, Inc. Multi-path signal processing for microelectromechanical systems (MEMS) sensors
CN107690115B (zh) * 2016-08-04 2023-03-17 山东共达电声股份有限公司 微机电麦克风及其制造方法
CN108540910B (zh) * 2017-03-06 2020-09-29 中芯国际集成电路制造(上海)有限公司 麦克风及其制作方法
US10623867B2 (en) * 2017-05-01 2020-04-14 Apple Inc. Combined ambient pressure and acoustic MEMS sensor
CN107548001B (zh) * 2017-09-18 2020-04-24 联想(北京)有限公司 传感器组及电子设备
CN111225329B (zh) * 2018-11-26 2021-07-09 中芯国际集成电路制造(上海)有限公司 麦克风及其制备方法和电子设备
CN110891217B (zh) * 2019-11-12 2021-05-25 维沃移动通信有限公司 一种耳机、耳机控制方法及电子设备
CN111107473B (zh) * 2019-12-13 2022-02-25 潍坊歌尔微电子有限公司 Mic和压力传感器的集成结构与方法
CN111556394B (zh) * 2020-04-24 2022-07-15 维沃移动通信有限公司 耳机
CN112284608B (zh) * 2020-09-15 2022-08-02 南京高华科技股份有限公司 电容式微机械气压传感器及其制备方法
CN112857628B (zh) * 2021-04-02 2022-05-17 厦门市敬微精密科技有限公司 一种mems电容式压力传感器芯片及其制造工艺

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101018429A (zh) * 2007-03-05 2007-08-15 胡维 电容式微型硅麦克风及制备方法
CN101022685A (zh) * 2007-03-23 2007-08-22 胡维 电容式微型硅麦克风及其制备方法
US20080187154A1 (en) * 2007-02-06 2008-08-07 Analog Devices, Inc. MEMS Device with Surface Having a Low Roughness Exponent
JP2010109416A (ja) * 2008-10-28 2010-05-13 Yamaha Corp 圧力トランスデューサおよび圧力トランスデューサの製造方法
CN101941669A (zh) * 2009-07-07 2011-01-12 罗姆股份有限公司 Mems传感器、硅麦克风以及压力传感器
CN102158787A (zh) * 2011-03-15 2011-08-17 迈尔森电子(天津)有限公司 Mems麦克风与压力集成传感器及其制作方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7303645B2 (en) * 2003-10-24 2007-12-04 Miradia Inc. Method and system for hermetically sealing packages for optics
JP5174673B2 (ja) * 2005-10-14 2013-04-03 エスティーマイクロエレクトロニクス エス.アール.エル. 基板レベル・アセンブリを具えた電子装置及びその製造処理方法
CN101835080B (zh) * 2010-05-10 2014-04-30 瑞声声学科技(深圳)有限公司 硅基麦克风

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080187154A1 (en) * 2007-02-06 2008-08-07 Analog Devices, Inc. MEMS Device with Surface Having a Low Roughness Exponent
CN101018429A (zh) * 2007-03-05 2007-08-15 胡维 电容式微型硅麦克风及制备方法
CN101022685A (zh) * 2007-03-23 2007-08-22 胡维 电容式微型硅麦克风及其制备方法
JP2010109416A (ja) * 2008-10-28 2010-05-13 Yamaha Corp 圧力トランスデューサおよび圧力トランスデューサの製造方法
CN101941669A (zh) * 2009-07-07 2011-01-12 罗姆股份有限公司 Mems传感器、硅麦克风以及压力传感器
CN102158787A (zh) * 2011-03-15 2011-08-17 迈尔森电子(天津)有限公司 Mems麦克风与压力集成传感器及其制作方法

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10519032B2 (en) 2013-03-14 2019-12-31 Taiwan Semiconductor Manufacturing Company, Ltd. MEMS pressure sensor and microphone devices having through-vias and methods of forming same
US20160060104A1 (en) * 2013-03-14 2016-03-03 Taiwan Semiconductor Manufacturing Company, Ltd. MEMS Integrated Pressure Sensor and Microphone Devices and Methods of Forming Same
US9085455B2 (en) 2013-03-14 2015-07-21 Taiwan Semiconductor Manufacturing Company, Ltd. MEMS devices and methods for forming same
US9850125B2 (en) 2013-03-14 2017-12-26 Taiwan Semiconductor Manufacturing Company, Ltd. MEMS integrated pressure sensor devices having isotropic cavitites and methods of forming same
US20140264662A1 (en) * 2013-03-14 2014-09-18 Taiwan Semiconductor Manufacturing Company, Ltd. MEMS Integrated Pressure Sensor and Microphone Devices and Methods of Forming Same
US9260296B2 (en) 2013-03-14 2016-02-16 Taiwan Semiconductor Manufacturing Company, Ltd. MEMS integrated pressure sensor devices and methods of forming same
US9260295B2 (en) 2013-03-14 2016-02-16 Taiwan Semiconductor Manufacturing Company, Ltd. MEMS integrated pressure sensor devices having isotropic cavities and methods of forming same
US9981841B2 (en) 2013-03-14 2018-05-29 Taiwan Semiconductor Manufacturing Company, Ltd. MEMS integrated pressure sensor and microphone devices and methods of forming same
US10508029B2 (en) 2013-03-14 2019-12-17 Taiwan Semiconductor Manufacturing Company, Ltd. MEMS integrated pressure sensor devices and methods of forming same
US9469527B2 (en) 2013-03-14 2016-10-18 Taiwan Semiconductor Manufacturing Company, Ltd. MEMS pressure sensor and microphone devices having through-vias and methods of forming same
US10017382B2 (en) 2013-03-14 2018-07-10 Taiwan Semiconductor Manufacturing Company, Ltd. MEMS integrated pressure sensor devices and methods of forming same
US9604843B2 (en) 2013-03-14 2017-03-28 Taiwan Semiconductor Manufacturing Company, Ltd. MEMS devices and methods for forming same
US9650239B2 (en) 2013-03-14 2017-05-16 Taiwan Semiconductor Manufacturing Company, Ltd. MEMS integrated pressure sensor and microphone devices and methods of forming same
US10017378B2 (en) 2013-03-14 2018-07-10 Taiwan Semiconductor Manufacturing Company, Ltd. MEMS pressure sensor and microphone devices having through-vias and methods of forming same
US20170247251A1 (en) * 2013-03-14 2017-08-31 Taiwan Semiconductor Manufacturing Company, Ltd. MEMS Integrated Pressure Sensor and Microphone Devices and Methods of Forming Same
US20140264653A1 (en) * 2013-03-14 2014-09-18 Taiwan Semiconductor Manufacturing Company, Ltd. MEMS Pressure Sensor and Microphone Devices Having Through-Vias and Methods of Forming Same
US9187317B2 (en) * 2013-03-14 2015-11-17 Taiwan Semiconductor Manufacturing Company, Ltd. MEMS integrated pressure sensor and microphone devices and methods of forming same
DE102014211197A1 (de) * 2014-06-12 2015-12-17 Robert Bosch Gmbh Mikromechanische Kombi-Sensoranordnung und ein entsprechendes Herstellungsverfahren
US9516424B2 (en) 2014-06-12 2016-12-06 Robert Bosch Gmbh Micromechanical sensor system combination and a corresponding manufacturing method
DE102014211197B4 (de) 2014-06-12 2019-09-12 Robert Bosch Gmbh Mikromechanische Kombi-Sensoranordnung
DE102015206863B3 (de) * 2015-04-16 2016-05-25 Robert Bosch Gmbh Verfahren zur Herstellung einer Mikrofonstruktur und einer Drucksensorstruktur im Schichtaufbau eines MEMS-Bauelements
US9758369B2 (en) 2015-04-16 2017-09-12 Robert Bosch Gmbh Method for manufacturing a microphone structure and a pressure sensor structure in the layer structure of a MEMS element
WO2017136744A1 (en) * 2016-02-04 2017-08-10 Knowles Electronics, Llc Microphone and pressure sensor
US10349184B2 (en) 2016-02-04 2019-07-09 Knowles Electronics, Llc Microphone and pressure sensor
US10351419B2 (en) 2016-05-20 2019-07-16 Invensense, Inc. Integrated package containing MEMS acoustic sensor and pressure sensor
US11399236B2 (en) 2018-01-04 2022-07-26 Knowles Electronics, Llc Sensor device and microphone assembly
CN110683507A (zh) * 2019-08-27 2020-01-14 华东光电集成器件研究所 一种抗干扰mems器件
CN110683507B (zh) * 2019-08-27 2023-05-26 华东光电集成器件研究所 一种抗干扰mems器件
CN112924056A (zh) * 2020-02-26 2021-06-08 上海安翰医疗技术有限公司 一种薄膜压力传感器
CN112924056B (zh) * 2020-02-26 2023-03-17 钛深科技(深圳)有限公司 一种薄膜压力传感器
CN113582127A (zh) * 2020-04-30 2021-11-02 苏州敏芯微电子技术股份有限公司 压力传感器封装结构
CN113582127B (zh) * 2020-04-30 2024-05-10 苏州敏芯微电子技术股份有限公司 压力传感器封装结构
TWI756976B (zh) * 2020-12-10 2022-03-01 美律實業股份有限公司 麥克風模組

Also Published As

Publication number Publication date
CN102158787A (zh) 2011-08-17
CN102158787B (zh) 2015-01-28

Similar Documents

Publication Publication Date Title
WO2012122872A1 (zh) Mems麦克风与压力集成传感器及其制作方法
WO2012122877A1 (zh) Mems压力传感器及其制作方法
WO2012122875A1 (zh) Mems压力传感器及其制作方法
JP4303742B2 (ja) シリコンコンデンサーマイクロフォン
EP3094112B1 (en) Silicon mems microphone and manufacturing method therefor
TWI336770B (en) Sensor
US9674619B2 (en) MEMS microphone and forming method therefor
CN101346014B (zh) 微机电系统麦克风及其制备方法
JP5869183B2 (ja) 空気圧力センサを有する半導体パッケージ
TWI592030B (zh) MEMS microphone and its formation method
TWI444052B (zh) 電容式傳感器及其製造方法
TW200811031A (en) Package structure and packaging method of MEMS microphone
CN107226453B (zh) 一种mems器件及其制备方法、电子装置
WO2021189963A1 (zh) 组合传感器及其制作方法、以及电子设备
CN102238463A (zh) 一种将硅麦克风器件与集成电路单片集成的方法及芯片
TW200950505A (en) Image sensor structure and integrated lens module thereof
WO2012122868A1 (zh) 微机电系统麦克风封装结构及其形成方法
JP2010506532A (ja) 極低圧力センサーおよびその製造方法
US20230234837A1 (en) Mems microphone with an anchor
US20230239641A1 (en) Method of making mems microphone with an anchor
TWM622683U (zh) 分隔式微機電系統麥克風結構
CN113697758A (zh) 一种微机电系统麦克风晶圆级封装结构及方法
TWI804009B (zh) 分隔式微機電系統麥克風結構及其製造方法
TWI795953B (zh) 微機電系統麥克風結構及其製造方法
KR101472297B1 (ko) 1칩형 mems 마이크로폰 및 그 제작 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12757619

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12757619

Country of ref document: EP

Kind code of ref document: A1