WO2012121326A1 - 2元冷凍サイクル装置 - Google Patents

2元冷凍サイクル装置 Download PDF

Info

Publication number
WO2012121326A1
WO2012121326A1 PCT/JP2012/055951 JP2012055951W WO2012121326A1 WO 2012121326 A1 WO2012121326 A1 WO 2012121326A1 JP 2012055951 W JP2012055951 W JP 2012055951W WO 2012121326 A1 WO2012121326 A1 WO 2012121326A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
heat exchanger
refrigeration cycle
fluid
refrigerant
Prior art date
Application number
PCT/JP2012/055951
Other languages
English (en)
French (fr)
Inventor
司 高山
Original Assignee
東芝キヤリア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝キヤリア株式会社 filed Critical 東芝キヤリア株式会社
Priority to JP2013503597A priority Critical patent/JP5681787B2/ja
Priority to EP12754509.3A priority patent/EP2672204B1/en
Priority to CN201280012473.2A priority patent/CN103415749B/zh
Priority to KR1020137023441A priority patent/KR101510978B1/ko
Publication of WO2012121326A1 publication Critical patent/WO2012121326A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B7/00Compression machines, plants or systems, with cascade operation, i.e. with two or more circuits, the heat from the condenser of one circuit being absorbed by the evaporator of the next circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1009Arrangement or mounting of control or safety devices for water heating systems for central heating
    • F24D19/1015Arrangement or mounting of control or safety devices for water heating systems for central heating using a valve or valves
    • F24D19/1021Arrangement or mounting of control or safety devices for water heating systems for central heating using a valve or valves a by pass valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1051Arrangement or mounting of control or safety devices for water heating systems for domestic hot water
    • F24D19/1054Arrangement or mounting of control or safety devices for water heating systems for domestic hot water the system uses a heat pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/227Temperature of the refrigerant in heat pump cycles
    • F24H15/232Temperature of the refrigerant in heat pump cycles at the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/258Outdoor temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/375Control of heat pumps
    • F24H15/385Control of expansion valves of heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H4/00Fluid heaters characterised by the use of heat pumps
    • F24H4/02Water heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/20Arrangement or mounting of control or safety devices
    • F24H9/2007Arrangement or mounting of control or safety devices for water heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/027Condenser control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/12Heat pump
    • F24D2200/123Compression type heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/375Control of heat pumps
    • F24H15/38Control of compressors of heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/40Control of fluid heaters characterised by the type of controllers
    • F24H15/414Control of fluid heaters characterised by the type of controllers using electronic processing, e.g. computer-based
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2501Bypass valves

Definitions

  • the embodiment of the present invention relates to a binary refrigeration cycle apparatus.
  • a binary refrigeration cycle apparatus having a low temperature side refrigeration cycle and a high temperature side refrigeration cycle may be used to supply high temperature heat to heat utilization equipment.
  • the low temperature side refrigeration cycle and the high temperature side refrigeration cycle of the binary refrigeration cycle apparatus each have a compressor and an expansion device, and are connected to each other by an intermediate heat exchanger so that heat can be exchanged. And the heat pumped up by the heat source side heat exchanger, which is the low temperature side evaporator provided in the low temperature side refrigeration cycle, through the utilization side heat exchanger, which is the high temperature side condenser provided in the high temperature side refrigeration cycle, Supply high-temperature heat to heat utilization equipment.
  • the present invention has been made in view of the above-described problems, and according to the embodiment, a binary refrigeration cycle apparatus that solves the problem of deterioration in reliability of the compressor and, in turn, reliability of the refrigeration cycle apparatus is provided. To do.
  • a binary refrigeration cycle apparatus includes a low temperature side refrigeration cycle that absorbs heat from an external heat source, a high temperature side refrigeration cycle that supplies heat to a user side, a low temperature side refrigeration cycle, and the high temperature side refrigeration cycle.
  • An intermediate heat exchanger for exchanging heat of the refrigerant is provided.
  • the utilization side heat exchanger is provided with utilization side piping that exchanges heat between the utilization side fluid and the refrigerant of the high temperature side refrigeration cycle and supplies the heat to the utilization side.
  • the housing casing which mounts the utilization side heat exchanger at least is provided.
  • This housing has a bypass passage connected to the use side pipe in parallel with the use side heat exchanger, and allowing the use side fluid on the use side heat exchanger outlet side of the use side pipe to flow to the use side heat exchanger inlet side. It is installed.
  • fluid control means for controlling the flow of the use side fluid flowing in the bypass passage is provided.
  • FIG. 1 is a schematic diagram of a binary refrigeration cycle apparatus according to an embodiment of the present invention.
  • the binary refrigeration cycle apparatus 100 of the present embodiment is configured such that the low temperature side refrigeration cycle 6 a and the high temperature side refrigeration cycle 6 b can exchange heat with an intermediate heat exchanger 5.
  • the binary refrigeration cycle apparatus 100 includes a first housing 8a and a second housing 8b.
  • a low-temperature side compressor 1a In the first housing 8a, a low-temperature side compressor 1a, a low-temperature side four-way valve 2a connected to the low-temperature side compressor 1a via a refrigerant pipe, and heat source side heat exchange for exchanging heat with outside air (external heat source).
  • the vessel 3 and the low temperature side expansion device 4a are sequentially connected by a refrigerant pipe.
  • the low-temperature side four-way valve 2a and the low-temperature side expansion device 4a are connected to the transition pipes 9a and 9b, respectively.
  • the transition pipes 9a and 9b are connected to the intermediate heat exchanger 5 provided in the second casing 8b. It is connected to the.
  • the heat source side heat exchanger 3 is provided with a blower 11 to promote heat exchange with the outside air.
  • the heat source side heat exchanger 3 is provided with an outside air temperature sensor 16 which is an external heat source temperature detecting means, and detects the temperature of the outside air supplied to the heat source side heat exchanger 3 by the blower 11. It has become.
  • a high temperature side compressor 1b In the second housing 8b, a high temperature side compressor 1b, a high temperature side four-way valve 2b connected to the high temperature side compressor 1b, an intermediate heat exchanger 5, a high temperature side expansion device 4a, and a use side heat exchange are provided.
  • the vessel 7 is sequentially connected by refrigerant piping, and the high temperature side refrigeration cycle 6b is configured.
  • High temperature side refrigerant temperature sensors 17a and 17b which are refrigerant temperature detecting means, are provided on the inlet side and the outlet side of the refrigerant pipe of the usage side heat exchanger 7, and the refrigerant temperature flowing into the usage side heat exchanger 7 is The refrigerant temperature flowing out is detected.
  • the intermediate heat exchanger 5 is connected to packed valves 21a and 21b that can be connected to the transition pipes 9a and 9b.
  • the side refrigeration cycle 6 a is configured, and the low temperature side refrigeration cycle 6 a and the high temperature side refrigeration cycle 6 b can exchange heat via the intermediate heat exchanger 5.
  • Refrigerant having different characteristics are sealed in the low temperature side refrigeration cycle 6a and the high temperature side refrigeration cycle 6b.
  • the type of refrigerant to be sealed varies depending on the use of the binary refrigeration cycle apparatus 100.
  • the low-temperature side refrigerant used in the low-temperature side refrigeration cycle 6a is preferably a working refrigerant having good performance even at a low outside temperature (about ⁇ 15 ° C.) such as R410A, and the high-temperature side refrigerant used in the high-temperature side refrigeration cycle 6b.
  • a working refrigerant having good performance at a high temperature (about 95 ° C.) such as R134a is preferable.
  • the utilization side heat exchanger 7 is connected to a utilization side fluid pipe 18 for supplying heat utilization equipment that uses the heat pumped up by the two-way refrigeration cycle apparatus 100.
  • the use side pipe 18 includes connection ports 23a and 23b to be connected to a heat utilization device, and a feed pump 10 that sends the use side fluid in the use side fluid pipe 18.
  • 23a, the inlet side branch part 12a, the feed pump 10, the use side heat exchanger 7, the outlet side branch part 12b, and the connection port body 23b are sequentially connected by the use side pipe 18.
  • the inlet side branching portion 12 a and the outlet side branching portion 12 b are directly connected by a bypass passage 13, and the bypass passage 13 is connected to the usage side pipe 18 in parallel with the usage side heat exchanger 7.
  • a flow control valve 14 is provided in the middle of the bypass passage 13.
  • the fluid control means in the present embodiment controls the flow rate of the use-side fluid flowing through the bypass passage 13 by controlling the opening degree of the flow rate control valve 14.
  • the inlet-side branch part 12a When the feed-side pump 10 provided between the inlet-side branch part 12a and the use-side heat exchanger 7 is operated during the flow of the use-side fluid, the inlet-side branch part 12a, the use-side heat is connected from the connection port 23a.
  • the use side fluid is sent to the connection port body 23b through the exchanger 7 and the outlet side branching portion 12b sequentially.
  • the flow direction of the use side fluid is indicated by a broken line arrow in FIG.
  • the flow direction of the use side fluid in the bypass passage 13 when the flow control valve 14 is opened Is the direction from the outlet branch 12b to the inlet branch 12a.
  • the inlet side branch part 12a, the outlet side branch part 12b, the feed pump 10, and the bypass passage 13 are mounted in the second housing 8b.
  • a water temperature sensor 15 as a use side fluid temperature detecting means is provided in a section between the feed pump 10 and the use side heat exchanger 7 of the use side fluid pipe 18, and the use flowing into the use side heat exchanger 7. The temperature of the side fluid is detected.
  • hot water, brine, or the like for supplying heat to the heat-utilizing device is enclosed and circulated.
  • the outside air temperature sensor 16, the high temperature side refrigerant temperature sensors 17a and 17b, and the water temperature sensor 15 are connected to the controller 23, and the outside air temperature, the refrigerant temperature of the high temperature side refrigeration cycle, the hot water flowing into the use side heat exchanger 7, The temperature of the use side fluid such as brine is detected.
  • the second casing 8b is provided with an electrical component box 22 for controlling the operation of the binary refrigeration cycle apparatus 100.
  • the electrical component box 22 includes an inverter circuit (not shown) that drives the low temperature side compressor 1a and the high temperature side compressor 1b, the opening of the low temperature side expansion device 4 and the high temperature side expansion device 10, the low temperature side four-way valve, and the high temperature side.
  • a controller 23 that controls switching of the four-way valve 9 is provided. By these inverter circuit and controller 23, the low temperature side refrigeration cycle 7 and the high temperature side refrigeration cycle 13 are controlled so as to be operated under optimum operating conditions.
  • the low temperature side refrigerant passes through the low temperature side four-way valve 2, the low temperature side flow path of the intermediate heat exchanger 5, the low temperature side expansion device 4a, and the heat source side heat exchanger 3 from the low temperature side compressor 1a. It passes sequentially and returns from the low temperature side four-way valve 2 to the low temperature side compressor 1a.
  • the high temperature side refrigerant is compressed by the high temperature side compressor 1b, the high temperature side refrigerant is the high temperature side four-way valve 2b, the use side heat exchanger 7, the high temperature side expansion device 4b, and the intermediate heat exchange. It passes through the high temperature side flow path of the vessel 5 in sequence and returns from the high temperature side four-way valve 2b to the high temperature side compressor 1b.
  • the low temperature side refrigerant evaporates in the heat source side heat exchanger 3 and condenses on the low temperature side of the intermediate heat exchanger 5. Further, the high temperature side refrigerant is condensed in the use side heat exchanger 7 to supply warm heat to the hot water or brine in the use side piping 18 on the use side, and the high temperature side expansion of the intermediate heat exchanger 5 is performed on the high temperature side.
  • the liquid refrigerant decompressed by the apparatus 4b evaporates and absorbs the condensation heat of the low-temperature side refrigerant as the evaporation heat.
  • the temperature of the utilization side fluid flowing into the utilization side heat exchanger 7 is extremely low, the temperature of the high temperature side refrigerant in the utilization side heat exchanger 7 becomes lower than the predetermined temperature Tb1, and the high temperature side compressor 1b The compression ratio decreases. If the compressor is operated in a state where the compression ratio is lowered, the reliability of the compressor is lowered.
  • the controller 23 provided in the electric component box 22 of the two-way refrigeration cycle apparatus 100 includes a water temperature sensor 15, an outside air temperature sensor 16, a high temperature side refrigerant temperature sensor 17a, 17b and the flow control valve 14 are connected.
  • the flow control valve 14 of the bypass passage 13 is opened, and the utilization side fluid flowing out from the utilization side heat exchanger 7 is removed. Utilization of intermediate temperature by feeding from the outlet side branch part 12b to the inlet side branch part 12a via the bypass passage 13 and newly mixing with the usage side fluid flowing into the usage side heat exchanger 7 from the connection port body 23a It is made to flow into the utilization side heat exchanger 7 as a side fluid.
  • the controller 23 detects the outside air temperature T 0 detected by the outdoor temperature sensor 16 and the use side fluid temperature sensor 15 provided on the inlet side of the use side heat exchanger 7. It is determined whether or not the difference (Tw ⁇ T0) from the temperature Tw of the use-side fluid detected in step S is equal to or lower than a predetermined temperature Ta (step S201).
  • step S201 when the difference between the detected outside air temperature T0 and the temperature Tw of the use side fluid is larger than the predetermined temperature Ta (No in step S201), the flow control valve 14 of the bypass circuit 13 is closed (step S205) and used. All the use-side fluid flowing out from the side heat exchanger 7 is sent to the heat-using device.
  • step S201 when the difference between the outside air temperature T0 and the temperature Tw of the use-side fluid is equal to or lower than the predetermined temperature Ta (Yes in step S201), the flow control valve 14 of the bypass circuit 13 is opened by a predetermined opening (step S202). ), A part of the utilization side fluid flowing out from the utilization side heat exchanger 7 is sent to the utilization side fluid inlet of the utilization side heat exchanger 7 via the bypass circuit 13. As a result, the high-temperature use-side fluid that has flowed out of the use-side heat exchanger 7 is mixed with the low-temperature use-side fluid supplied from the heat-using device, becomes an intermediate temperature, and flows into the use-side heat exchanger 7.
  • the average temperature of the high-temperature side refrigerant temperatures Ts1 and Ts2 on the inflow side and the outflow side is calculated to the use-side heat exchanger 7 detected by the two high-temperature side refrigerant temperature sensors 17a and 17b, and this average temperature is calculated on the high temperature side.
  • This is an approximate value of the refrigerant condensation temperature Ts.
  • it is determined whether or not the condensation temperature Ts is within a predetermined temperature range Tb1 to Tb2 (where Tb1 ⁇ Tb2) (steps S203 and S204).
  • step S203 it is determined whether or not the condensing temperature Ts of the high-temperature side refrigerant is equal to or higher than Tb1 (step S203). If the condensing temperature Ts of the high-temperature side refrigerant is lower than Tb1 (No in step S203), the flow control valve 14 is increased (step S206), and then the process returns to step S203.
  • step S203 when the condensation temperature Ts of the high temperature side refrigerant is equal to or higher than Tb1 (Yes in step S203), it is determined whether or not the condensation temperature Ts of the high temperature side refrigerant is equal to or lower than Tb2 (step S204).
  • the opening degree of the flow control valve 14 is decreased (step S207), and the process returns to step S203.
  • Step S203 the condensation temperature Ts of the high-temperature side refrigerant in the use side heat exchanger 7 is within the range of the predetermined temperatures Tb1 to Tb2 (Yes in Step S203 and Yes in Step S204), the opening degree of the flow control valve 14 is maintained. However, the process returns to step S201.
  • the flow control valve 14 is opened, the utilization side fluid after heating is mixed with the utilization side fluid supplied to the utilization side heat exchanger 7, and the temperature of the utilization side fluid flowing into the utilization side heat exchanger is increased. It is possible to avoid the temperature condition that causes the compression ratio operation.
  • the temperature of the utilization side fluid supplied to the utilization side heat exchanger 7 can be raised to the optimal temperature which does not become a low compression ratio operation.
  • the two-way refrigeration cycle apparatus 100 by configuring the two-way refrigeration cycle apparatus 100 by dividing the first housing and the second housing, it is possible to flexibly cope with the state of the installation place. For example, when a sufficient outdoor installation space cannot be secured, the first housing having the heat source side heat exchanger 3 is arranged outdoors, and the second housing having the use side heat exchanger is arranged indoors. Can do.
  • the low-temperature side casing 8a and the high-temperature side casing 8b are separately configured.
  • the present invention is not limited to this, and a configuration in which a high-temperature side refrigeration cycle and a low-temperature side refrigeration cycle are provided in one casing is also possible. good.
  • the fluid control means for controlling the flow rate of the use-side fluid flowing through the bypass passage 13 is the control of the opening degree of the flow control valve 14, but other control means may be used.
  • at least one of the inlet side branch portion 12a and the outlet side branch portion 12b may be a three-way valve, and the opening degree of the three-way valve may be controlled as a flow control valve.
  • the present invention is not limited to the above embodiment. Furthermore, various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the embodiments of the present invention. For example, you may delete some components from all the components shown by embodiment of this invention. Furthermore, you may combine the component covering different embodiment suitably.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

 二元冷凍サイクル装置は、外部熱源から熱を吸収する熱源側熱交換器と低温側圧縮機を備える低温側冷凍サイクルと、利用側へ熱を供給する利用側熱交換器と高温側圧縮機を備える高温側冷凍サイクルと、前記低温側冷凍サイクルと前記高温側冷凍サイクルの冷媒を熱交換させるための中間熱交換器と、少なくとも前記利用側熱交換器を搭載する筐体と、前記筐体に搭載され、前記利用側熱交換器に接続され、流通する利用側流体と高温側冷凍サイクルの冷媒とを熱交換させて利用側へ供給する利用側配管と、前記利用側配管に利用側熱交換器と並列に接続され、利用側配管の利用側熱交換器出口側の利用側流体を利用側熱交換器入口側に送流させるバイパス通路と、前記バイパス通路内を流通する利用側流体の流れを制御する流体制御手段とを、有する。

Description

2元冷凍サイクル装置
 本発明の実施の形態は、2元冷凍サイクル装置に関する。
 空気調和機やヒートポンプ給湯機などの冷凍サイクル装置には、熱利用機器へ高温の熱を供給するために低温側冷凍サイクルと高温側冷凍サイクルを備えた2元冷凍サイクル装置が用いられることがある。
 2元冷凍サイクル装置の低温側冷凍サイクルと高温側冷凍サイクルは、それぞれ圧縮機や膨張装置を有しており、中間熱交換器によって熱交換可能に接続されている。そして、低温側冷凍サイクルに設けられた低温側蒸発器である熱源側熱交換器で汲み上げた熱を、高温側冷凍サイクルに設けられた高温側凝縮器である利用側熱交換器を介して、高温の熱を熱利用機器へ供給する。
特開平08-189714号公報
 しかし、熱利用機器から利用側熱交換器へ流入する(利用側)流体の温度が低い場合、高温側冷凍サイクルでの圧縮比が低下して、圧縮機の信頼性が低下し、これに伴い冷凍サイクル装置自体の信頼性が低下することが知られている。
 本発明は上述の問題を鑑みてなされたものであり、その実施形態によれば、圧縮機の信頼性、ひいては、冷凍サイクル装置の信頼性の低下の問題を解決した2元冷凍サイクル装置を提供するものである。
 本発明の実施形態に係る2元冷凍サイクル装置は、外部熱源から熱を吸収する低温側冷凍サイクルと、利用側へ熱を供給する高温側冷凍サイクルと、低温側冷凍サイクルと前記高温側冷凍サイクルの冷媒を熱交換させるための中間熱交換器を備えている。
 利用側熱交換器には、利用側流体と高温側冷凍サイクルの冷媒とを熱交換させて利用側へ供給する利用側配管が設けられている。また、少なくとも利用側熱交換器を搭載する筐体が設けられている。この筐体には、利用側配管に利用側熱交換器と並列に接続され、利用側配管の利用側熱交換器出口側の利用側流体を利用側熱交換器入口側に流通させるバイパス通路が搭載されている。さらに、バイパス通路内を流通する利用側流体の流れを制御する流体制御手段が設けられている。
本発明の実施形態に係る2元冷凍サイクル装置の概略図。 本発明の実施形態に係る制御器及びその周辺機器のブロック図。 本発明の実施形態に係る制御のフローチャート図。
 図面を用いて本発明の実施形態について説明を行う。
 (第1の実施形態)
 第1の実施形態について図1を用いて説明する。
 図1に示すように、本実施形態の2元冷凍サイクル装置100は、低温側冷凍サイクル6aと、高温側冷凍サイクル6bとが中間熱交換器5によって熱交換可能に構成されている。
 2元冷凍サイクル装置100は、第1筐体8aと第2筐体8bを有している。
 第1筐体8a内には、低温側圧縮機1aと、低温側圧縮機1aに冷媒配管を介して接続された低温側四方弁2aと、外気(外部熱源)と熱交換する熱源側熱交換器3と、低温側膨張装置4aとが順次冷媒配管で接続して設けられている。また、低温側四方弁2aと低温側膨張装置4aには、それぞれ渡り配管9a、9bが接続されており、この渡り配管9a、9bは第2の筐体8bに設けられた中間熱交換器5に接続されている。
 熱源側熱交換器3には送風機11が設けられており、外気との熱交換を促進させるようになっている。また、熱源側熱交換器3には、外部熱源温度検知手段である、外気温度センサ16が設けられており、送風機11によって熱源側熱交換器3へ供給される外気の温度を検知するようになっている。
 第2筐体8b内には、高温側圧縮機1bと、高温側圧縮機1bに接続された高温側四方弁2bと、中間熱交換器5と、高温側膨張装置4aと、利用側熱交換器7とが、順次冷媒配管で接続されており、高温側冷凍サイクル6bが構成されている。
 利用側熱交換器7の冷媒配管の入口側と出口側には、冷媒温度検知手段である高温側冷媒温度センサ17a、17bが設けられており、利用側熱交換器7へ流入する冷媒温度と流出する冷媒温度を検知するようになっている。
 ここで、中間熱交換器5には渡り配管9a、9bに接続可能なパックドバルブ21a、21bが接続されており、このパックドバルブ21a、21bに渡り配管9a、9bが接続されることで、低温側冷凍サイクル6aが構成され、中間熱交換器5を介して低温側冷凍サイクル6aと高温側冷凍サイクル6bとが熱交換可能となる。
 低温側冷凍サイクル6aと高温側冷凍サイクル6bには、それぞれ特性の異なる冷媒が封入されている。
 封入される冷媒の種類は2元冷凍サイクル装置100の用途によって異なるが、例えば、利用側熱交換器7を水熱交換器とし90℃近い湯を生成するための高温ヒートポンプ給湯機である場合、低温側冷凍サイクル6aに使用される低温側冷媒に、R410Aのような低外気温(―15℃程度)においても良好な性能を有する作動冷媒が好ましく、高温側冷凍サイクル6bに用いられる高温側冷媒にはR134aのような高温(95℃程度)において良好な性能を有する作動冷媒が好ましい。
 利用側熱交換器7には、2元冷凍サイクル装置100によって汲み上げられた熱を利用する熱利用機器へ供給するための利用側流体配管18が接続されている。
 利用側配管18は、熱利用機器に接続されるための接続口体23a、23bと、利用側流体配管18内の利用側流体を送流する送流ポンプ10を有しており、接続口体23aと、入口側分岐部12aと、送流ポンプ10と、利用側熱交換器7と、出口側分岐部12bと接続口体23bは、順次利用側配管18によって接続されている。 
 さらに、入口側分岐部12aと出口側分岐部12bは、バイパス通路13によって直接接続されており、バイパス通路13は利用側配管18に対して利用側熱交換器7と並列に接続されている。バイパス通路13の中途部には流量制御バルブ14が設けられている。
 本実施形態における流体制御手段は、流量制御バルブ14の開度を制御することにより、バイパス通路13内を流通する利用側流体の流量を制御するものである。
 利用側流体の送流に際し、入口側分岐部12aと利用側熱交換器7の間に設けられた送流ポンプ10が運転を行うと、接続口体23aから入口側分岐部12a、利用側熱交換器7、出口側分岐部12bを順次介して接続口体23bへ、利用側流体を送流するようになっている。利用側流体の流れ方向を図1の破線矢印で示す。
 入口側分岐部12aと利用側熱交換器7との間の区間に送流ポンプ10が設けられているため、流量制御バルブ14が開放された場合のバイパス通路13内の利用側流体の流れ方向は、出口側分岐部12bから入口側分岐部12aの方向となる。なお、入口側分岐部12a、出口側分岐部12bと送流ポンプ10とバイパス通路13は第2筐体8bに搭載されている。
 利用側流体配管18の送流ポンプ10と利用側熱交換器7の間の区間には利用側流体温度検知手段である水温センサ15が設けられており、利用側熱交換器7へ流入する利用側流体の温度を検知するようになっている。
 利用側流体配管18内には熱利用機器へ熱を供給するための温水やブラインなどが封入され、流通するようになっている。
 外気温度センサ16と高温側冷媒温度センサ17a、17bと水温センサ15は、制御器23に接続されており、外気温度と高温側冷凍サイクルの冷媒温度と利用側熱交換器7へ流入する温水やブラインなどの利用側流体の温度を検知するようになっている。
 第2の筐体8bには2元冷凍サイクル装置100の運転を制御するための電気部品箱22が備えられている。
 電気部品箱22には、低温側圧縮機1a及び高温側圧縮機1bを駆動する図示しないインバータ回路と、低温側膨張装置4及び高温側膨張装置10の開度や、低温側四方弁及び高温側四方弁9の切替えを制御する制御器23が備えられている。これらインバータ回路及び制御器23によって、低温側冷凍サイクル7と高温側冷凍サイクル13は最適な運転条件で運転されるように制御される。
 2元冷凍サイクル装置100の加熱運転時の冷媒の流れを図1に実線矢印で示す。
 まず、低温側冷凍サイクル7では、低温側冷媒が、低温側圧縮機1aから低温側四方弁2、中間熱交換器5の低温側流路、低温側膨張装置4a及び熱源側熱交換器3を順次通過し、低温側四方弁2から低温側圧縮機1aへと戻る。同様に高温側冷凍サイクル6bでは、高温側冷媒が、高温側圧縮機1bで圧縮された高温側冷媒が、高温側四方弁2b、利用側熱交換器7、高温側膨張装置4b及び中間熱交換器5の高温側流路を順次通過し、高温側四方弁2bから高温側圧縮機1bへと戻る。
 このとき、低温側冷媒は熱源側熱交換器3で蒸発し、中間熱交換器5の低温側で凝縮する。また、高温側冷媒は利用側熱交換器7において凝縮し、利用側である利用側配管18内の温水又はブラインに温熱を供給して、中間熱交換器5の高温側流路では高温側膨張装置4bによって減圧された液状の冷媒が蒸発し、蒸発熱として低温側冷媒の凝縮熱を吸収する。
 利用側配管18内には送流ポンプ10によって送流されている利用側流体が流動している。
 ここで、利用側熱交換器7に流入する利用側流体の温度が著しく低い場合、利用側熱交換器7の高温側冷媒の温度が所定温度Tb1よりも低くなり、高温側圧縮機1bでの圧縮比が低下する。圧縮比が低下した状態で圧縮機の運転を行うと圧縮機の信頼性が低下する。
 2元冷凍サイクル装置100の電気部品箱22内に設けられた制御器23には、図2のブロック図に示すように、水温センサ15と、外気温度センサ16と、高温側冷媒温度センサ17a、17bと、流量制御バルブ14が接続されている。
 熱利用機器から利用側熱交換器7へ供給される利用側流体の温度が低い場合には、バイパス通路13の流量制御バルブ14を開放し、利用側熱交換器7から流出した利用側流体を出口側分岐部12bからバイパス通路13を介して入口側分岐部12aへ送流し、新たに接続口体23aから利用側熱交換器7へ流入する利用側流体と混合することで、中間温度の利用側流体として利用側熱交換器7へ流入させる。
 次いで、制御器23に流量制御バルブ14の制御を図3のフローチャートを参照して説明する。
 まず、2元冷凍サイクル装置100の運転中において、制御器23は、室外温度センサ16によって検知された外気温度T0と、利用側熱交換器7の入口側に設けられた利用側流体温度センサ15により検知された利用側流体の温度Twとの差(Tw-T0)が、所定温度Ta以下であるか否かの判断を行う(ステップS201)。
 ここで、検知された外気温度T0と利用側流体の温度Twとの差が所定温度Taより大きい場合(ステップS201のNo)、バイパス回路13の流量制御バルブ14が閉鎖され(ステップS205)、利用側熱交換器7から流出した利用側流体は全て熱利用機器へと送流される。
 一方、外気温度T0と利用側流体の温度Twとの差が所定温度Ta以下となった場合(ステップS201のYes)、バイパス回路13の流量制御バルブ14を所定の開度だけ開放し(ステップS202)、利用側熱交換器7から流出した利用側流体の一部を、バイパス回路13を介して、利用側熱交換器7の利用側流体入口へ送流させる。これにより、利用側熱交換器7から流出した高温の利用側流体が、熱利用機器から供給される低温の利用側流体と混合され、中間温度となり利用側熱交換器7へ流入される。
 次に、二つの高温側冷媒温度センサ17a、17bで検知された利用側熱交換器7へ流入側及び流出側の高温側冷媒温度Ts1、Ts2の平均温度を算定し、この平均温度を高温側冷媒の凝縮温度Tsの概算とする。そして、凝縮温度Tsが所定の温度Tb1~Tb2(ただし、Tb1<Tb2)の範囲内であるか否かの判断が行われる(ステップS203、S204)。
 即ち、高温側冷媒の凝縮温度TsがTb1以上であるか否かの判断が行われ(ステップS203)、高温側冷媒の凝縮温度TsがTb1よりも低い場合(ステップS203のNo)、流量制御バルブ14の開度を増加させ(ステップS206)、その後、ステップS203へ戻る。
 一方、高温側冷媒の凝縮温度TsがTb1以上である場合(ステップS203のYes)、高温側冷媒の凝縮温度TsがTb2以下であるか否かの判断が行われる(ステップS204)。高温側冷媒の凝縮温度TsがTb2よりも高い場合(ステップS204のNo)、流量制御バルブ14の開度を減少させ(ステップS207)、ステップS203へ戻る。
 その後、利用側熱交換器7の高温側冷媒の凝縮温度Tsが所定温度Tb1~Tb2の範囲内にある場合(ステップS203のYes及びステップS204のYes)、流量制御バルブ14の開度を維持しつつ、ステップS201へ戻る。
 上記のように、外部熱源である室外空気温度と、利用側熱交換器へ流入する利用側流体温度との温度差から、低圧縮比運転となる温度条件となった場合には、流量制御バルブ14を開放し、利用側熱交換器7に供給される利用側流体へ加温後の利用側流体を混合し、利用側熱交換器へ流入する利用側流体の温度を高くすることで、低圧縮比運転となる温度条件を回避することができる。
 さらに、利用側熱交換器7内の高温側冷媒の温度を検知することで、低圧縮比運転となっているかを判断し、バイパス通路13に設けられた流量制御バルブ14の開度を制御することにより、利用側熱交換器7へ供給される利用側流体の温度を、低圧縮比運転とならない最適な温度まで上昇させることができる。
 上記のような構成と制御を行うことにより、利用側熱交換器7の凝縮温度の低下を抑えることができ、圧縮比の低下を抑えることができる。これにより、低圧縮比状態で起こる圧縮機の信頼性の低下を防止することができ、ひいては、2元冷凍サイクル装置100の信頼性低下を防止することができる。
 上記実施形態のように、第1筐体と第2筐体を分けて2元冷凍サイクル装置100を構成することにより、据付場所の状態に柔軟に対応することができる。例えば、屋外の設置スペースが充分に確保できない場合には、熱源側熱交換器3を有する第1筐体を屋外に配し、利用側熱交換器を有する第2筐体を屋内へ配することができる。
 尚、上記実施形態では、低温側筐体8aと高温側筐体8bとを別々に構成したが、これに限らず1つの筐体内に高温側冷凍サイクルと低温側冷凍サイクルを備えた構成としても良い。
 また、上記実施形態において、バイパス通路13を流通する利用側流体の流量を制御する流体制御手段を、流量制御バルブ14の開度の制御としたが、その他の制御手段を用いても良い。例えば、入口側分岐部12a及び出口側分岐部12bの内、少なくとも一方を三方バルブとして、流量制御バルブとして三方バルブの開度を制御しても良い。
 本発明は、上記実施形態に限定されない。さらに、本発明の実施の形態に開示されている複数の構成要素を適宜組み合わせることにより種々の発明を形成できる。例えば、本発明の実施の形態に示される全構成要素から幾つかの構成要素を削除してもよい。更に、異なる実施の形態に亘る構成要素を適宜組み合わせてもよい。
1a…低温側圧縮機、1b…高温側圧縮機、2a…低温側四方弁、2b…高温側四方弁、3…熱源側熱交換器、4a…低温側膨張装置、4b…高温側膨張装置、5…中間熱交換器、6a…低温側冷凍サイクル、6b…高温側冷凍サイクル、7…利用側熱交換器、8a…低温側筐体、8b…高温側筐体、9a、9b…渡り配管、10…送流ポンプ、12a…入口側分岐部、12b…出口側分岐部、13…バイパス通路、22…電気部品箱、15…利用側温度検知手段、16…室外空気温度センサ、17a、17b…高温側冷媒温度センサ、18…利用側配管、100…2元冷凍サイクル装置

Claims (4)

  1.  外部熱源から熱を吸収する熱源側熱交換器と低温側圧縮機を備える低温側冷凍サイクルと、
     利用側へ熱を供給する利用側熱交換器と高温側圧縮機を備える高温側冷凍サイクルと、
     前記低温側冷凍サイクルと前記高温側冷凍サイクルの冷媒を熱交換させるための中間熱交換器と、
     少なくとも前記利用側熱交換器を搭載する筐体と、
     前記筐体に搭載され、前記利用側熱交換器に接続され、流通する利用側流体と高温側冷凍サイクルの冷媒とを熱交換させて利用側へ供給する利用側配管と、前記利用側配管に利用側熱交換器と並列に接続され、利用側配管の利用側熱交換器出口側の利用側流体を利用側熱交換器入口側に送流させるバイパス通路と、
     前記バイパス通路内を流通する利用側流体の流れを制御する流体制御手段を、有することを特徴とする二元冷凍サイクル装置。
  2.  前記流体制御手段は、前記高温側冷凍サイクルの冷媒の凝縮温度が低下し、高温側圧縮機が低圧縮比運転とならないように、前記バイパス通路内を流通する利用側流体の流れを制御することを特徴とする請求項1に記載の二元冷凍サイクル装置。
  3.  前記流体制御手段は、前記利用側熱交換器へ流入する利用側流体温度を検知する利用側流体温度検知手段と、前記熱源側熱交換器に設けられ、外部熱源の温度を検知する外部熱源温度検知手段と、前記バイパス通路内の流量を変化させる流量制御バルブを備え、前記利用側流体温度検知手段で検知された利用側流体温度と、前記外部熱源温度検知手段で検知された外部熱源の温度との差が所定の値以下となったとき、前記流量制御バルブを開放させるように制御することを特徴とする請求項1に記載の二元冷凍サイクル装置。
  4.  前記流体制御手段は、前記利用側熱交換器へ流入する高温側冷凍サイクルの冷媒温度を検知する冷媒温度検知手段と、前記バイパス通路内の流量を変化させる流量制御バルブを備え、前記冷媒温度検知手段により検知された高温側冷凍サイクルの冷媒の凝縮温度が所定温度よりも低い場合に、前記流量制御バルブの開度を増加させるように制御することを特徴とする請求項1に記載の二元冷凍サイクル装置。
PCT/JP2012/055951 2011-03-09 2012-03-08 2元冷凍サイクル装置 WO2012121326A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2013503597A JP5681787B2 (ja) 2011-03-09 2012-03-08 2元冷凍サイクル装置
EP12754509.3A EP2672204B1 (en) 2011-03-09 2012-03-08 Binary refrigeration cycle device
CN201280012473.2A CN103415749B (zh) 2011-03-09 2012-03-08 二元制冷循环装置
KR1020137023441A KR101510978B1 (ko) 2011-03-09 2012-03-08 이원 냉동 사이클 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011051306 2011-03-09
JP2011-051306 2011-03-09

Publications (1)

Publication Number Publication Date
WO2012121326A1 true WO2012121326A1 (ja) 2012-09-13

Family

ID=46798281

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/055951 WO2012121326A1 (ja) 2011-03-09 2012-03-08 2元冷凍サイクル装置

Country Status (5)

Country Link
EP (1) EP2672204B1 (ja)
JP (1) JP5681787B2 (ja)
KR (1) KR101510978B1 (ja)
CN (1) CN103415749B (ja)
WO (1) WO2012121326A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103528188A (zh) * 2013-11-04 2014-01-22 Tcl空调器(中山)有限公司 空气源热水机系统及其控制方法
JP2018124046A (ja) * 2017-02-03 2018-08-09 三星電子株式会社Samsung Electronics Co.,Ltd. 空気調和装置
JP7235998B1 (ja) 2021-09-30 2023-03-09 ダイキン工業株式会社 カスケードユニットおよび冷凍サイクル装置
WO2023054188A1 (ja) * 2021-09-30 2023-04-06 ダイキン工業株式会社 カスケードユニットおよび冷凍サイクル装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3082606B1 (fr) * 2018-06-13 2020-07-03 Lacaze Energies Module de transfert thermique pour la production d'eau chaude
CN111595000B (zh) * 2020-05-18 2022-03-29 广东美的暖通设备有限公司 空调系统及其水力模块的控制方法、装置和存储介质
CN116568972A (zh) * 2020-12-01 2023-08-08 大金工业株式会社 冷冻循环系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08189714A (ja) 1995-01-13 1996-07-23 Daikin Ind Ltd 二元冷凍装置
JP2000018712A (ja) * 1998-06-30 2000-01-18 Kyocera Corp 給湯装置
JP2002235953A (ja) * 2001-02-09 2002-08-23 Toshiba Kyaria Kk ヒートポンプ給湯器
JP2010276230A (ja) * 2009-05-27 2010-12-09 Sanyo Electric Co Ltd 冷凍装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2552555B2 (ja) * 1989-11-02 1996-11-13 大阪府 ヒートポンプの作動方法
JP2002048398A (ja) * 2000-07-31 2002-02-15 Daikin Ind Ltd ヒートポンプ式給湯装置
JP2009085476A (ja) * 2007-09-28 2009-04-23 Panasonic Corp ヒートポンプ給湯装置
KR20110125234A (ko) * 2009-03-27 2011-11-18 히타치 어플라이언스 가부시키가이샤 히트 펌프식 급탕기
KR101175516B1 (ko) * 2010-05-28 2012-08-23 엘지전자 주식회사 히트펌프 연동 급탕장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08189714A (ja) 1995-01-13 1996-07-23 Daikin Ind Ltd 二元冷凍装置
JP2000018712A (ja) * 1998-06-30 2000-01-18 Kyocera Corp 給湯装置
JP2002235953A (ja) * 2001-02-09 2002-08-23 Toshiba Kyaria Kk ヒートポンプ給湯器
JP2010276230A (ja) * 2009-05-27 2010-12-09 Sanyo Electric Co Ltd 冷凍装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2672204A4

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103528188A (zh) * 2013-11-04 2014-01-22 Tcl空调器(中山)有限公司 空气源热水机系统及其控制方法
CN103528188B (zh) * 2013-11-04 2016-09-21 Tcl空调器(中山)有限公司 空气源热水机系统及其控制方法
JP2018124046A (ja) * 2017-02-03 2018-08-09 三星電子株式会社Samsung Electronics Co.,Ltd. 空気調和装置
US11629891B2 (en) 2017-02-03 2023-04-18 Samsung Electronics Co., Ltd. Heat pump system
JP7235998B1 (ja) 2021-09-30 2023-03-09 ダイキン工業株式会社 カスケードユニットおよび冷凍サイクル装置
WO2023054273A1 (ja) * 2021-09-30 2023-04-06 ダイキン工業株式会社 カスケードユニットおよび冷凍サイクル装置
WO2023054188A1 (ja) * 2021-09-30 2023-04-06 ダイキン工業株式会社 カスケードユニットおよび冷凍サイクル装置
JP2023051376A (ja) * 2021-09-30 2023-04-11 ダイキン工業株式会社 カスケードユニットおよび冷凍サイクル装置
JP2023051377A (ja) * 2021-09-30 2023-04-11 ダイキン工業株式会社 カスケードユニットおよび冷凍サイクル装置
JP7265193B2 (ja) 2021-09-30 2023-04-26 ダイキン工業株式会社 カスケードユニットおよび冷凍サイクル装置

Also Published As

Publication number Publication date
KR20130116360A (ko) 2013-10-23
EP2672204B1 (en) 2017-07-05
CN103415749B (zh) 2015-09-09
CN103415749A (zh) 2013-11-27
EP2672204A1 (en) 2013-12-11
JP5681787B2 (ja) 2015-03-11
JPWO2012121326A1 (ja) 2014-07-17
EP2672204A4 (en) 2015-06-17
KR101510978B1 (ko) 2015-04-10

Similar Documents

Publication Publication Date Title
JP6257801B2 (ja) 冷凍サイクル装置及び冷凍サイクル装置の異常検知システム
US9593872B2 (en) Heat pump
JP5681787B2 (ja) 2元冷凍サイクル装置
WO2010070828A1 (ja) ヒートポンプ給湯装置およびその運転方法
JP5847366B1 (ja) 空気調和装置
US10401038B2 (en) Heat pump system
EP3457050B1 (en) Heat pump system
JP5300806B2 (ja) ヒートポンプ装置
JP2013119954A (ja) ヒートポンプ式温水暖房機
GB2547144A (en) Air-conditioning device
JP2013127332A (ja) 温水暖房装置
JP2005226950A (ja) 冷凍空調装置
WO2020174618A1 (ja) 空気調和装置
JP7034251B2 (ja) 熱源装置および冷凍サイクル装置
CN102109246B (zh) 制冷循环设备、热泵式热水供应空调及其室外单元
JP5150300B2 (ja) ヒートポンプ式給湯装置
JP2017166773A (ja) ヒートポンプ式冷温水供給システム
KR100849613B1 (ko) 온수 급탕 및 바닥 난방이 가능한 고효율 히트 펌프식냉난방 장치
JP5333557B2 (ja) 給湯空調システム
WO2012127834A1 (ja) 冷凍サイクル装置
EP2977691B1 (en) Cooling system and heating system
JP2012215353A (ja) 二元冷凍サイクル装置
JP5884422B2 (ja) 冷凍装置
JP5264973B2 (ja) ヒートポンプ給湯装置およびその運転方法
JPWO2019026276A1 (ja) 冷凍サイクル装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12754509

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137023441

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2013503597

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2012754509

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012754509

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE