WO2012127834A1 - 冷凍サイクル装置 - Google Patents

冷凍サイクル装置 Download PDF

Info

Publication number
WO2012127834A1
WO2012127834A1 PCT/JP2012/001850 JP2012001850W WO2012127834A1 WO 2012127834 A1 WO2012127834 A1 WO 2012127834A1 JP 2012001850 W JP2012001850 W JP 2012001850W WO 2012127834 A1 WO2012127834 A1 WO 2012127834A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
heating
heat exchanger
indoor
refrigeration cycle
Prior art date
Application number
PCT/JP2012/001850
Other languages
English (en)
French (fr)
Inventor
拓也 奥村
岡市 敦雄
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2012127834A1 publication Critical patent/WO2012127834A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/008Refrigerant heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators

Definitions

  • the present invention relates to a refrigeration cycle apparatus.
  • Patent Document 1 discloses a refrigeration cycle apparatus 100 as shown in FIG.
  • the refrigeration cycle apparatus 100 is an air conditioner that performs indoor cooling and heating.
  • the refrigeration cycle apparatus 100 includes a main refrigerant circuit 110 including a compressor 101, a four-way valve 102, an indoor heat exchanger 103, first to fourth capillary tubes 104 to 107, an outdoor heat exchanger 108, and an accumulator 109. It has.
  • the main refrigerant circuit 110 is connected to bypass passages with check valves 111 to 114 that bypass the first to fourth capillary tubes 104 to 107, respectively.
  • Two bypass passages in the center of the bypass passages have a common flow path 120, and a gas-liquid separator 130 is provided in the flow path 120.
  • the gas-liquid separator 130 is connected to the compressor 101 by an injection path 140.
  • the refrigerant compressed by the compressor 101 is guided to the outdoor heat exchanger 108 by the four-way valve 102, and the check valve 114, the third capillary tube 106, the gas-liquid After passing through the separator 130, the check valve 112, the first capillary tube 104, and the indoor heat exchanger 103 in this order, the flow returns to the compressor 101.
  • the refrigerant compressed by the compressor 101 is guided to the indoor heat exchanger 103 by the four-way valve 102, and the check valve 111, the second capillary tube 105, the gas-liquid separator 130, and the check valve 113.
  • the flow After passing through the fourth capillary tube 107 and the outdoor heat exchanger 108 in this order, the flow returns to the compressor 101.
  • the refrigerant is separated into a liquid phase refrigerant and a gas phase refrigerant, and the separated gas phase refrigerant is injected into the compressor 101 through the injection path 140.
  • This invention is made
  • the present invention provides a compressor for compressing a refrigerant, an indoor heat exchanger for exchanging heat between indoor air and the refrigerant, an indoor decompressor and an outdoor decompressor for decompressing the refrigerant.
  • a gas-liquid separator that separates the refrigerant into a liquid-phase refrigerant and a gas-phase refrigerant between the indoor-side decompressor and the outdoor-side decompressor, and outdoor heat that exchanges heat between the outdoor air and the refrigerant.
  • a main refrigerant circuit including an exchanger, and a flow direction of the refrigerant flowing in the main refrigerant circuit is switched to a first direction in which the refrigerant discharged from the compressor is guided to the outdoor heat exchanger during cooling operation.
  • switching means for switching in a second direction in which the refrigerant discharged from the compressor is led to the indoor heat exchanger, an injection path for injecting the gas-phase refrigerant separated by the gas-liquid separator into the compressor During heating operation or special During the heating operation under the conditions, including a heating means for heating the refrigerant is guided to the indoor side pressure reducer from the indoor heat exchanger, to provide a refrigeration cycle device.
  • the enthalpy of the refrigerant guided to the indoor decompressor by the heating means can be increased, whereby the intermediate pressure can be set higher.
  • the performance of the gas injection cycle can be improved.
  • the block diagram of the refrigerating-cycle apparatus which concerns on 1st Embodiment of this invention. Schematic configuration diagram of heat storage unit Mollier diagram during heating operation of the refrigeration cycle apparatus shown in FIG.
  • the block diagram of the refrigerating-cycle apparatus which concerns on 2nd Embodiment of this invention.
  • Configuration diagram of refrigeration cycle apparatus of first alternative form Configuration diagram of refrigeration cycle apparatus of second alternative form Configuration diagram of refrigeration cycle apparatus of third alternative form Configuration diagram of refrigeration cycle apparatus of application example of the present invention Configuration diagram showing a conventional refrigeration cycle apparatus
  • FIG. 1 is a configuration diagram of a refrigeration cycle apparatus 1A according to the first embodiment of the present invention.
  • This refrigeration cycle apparatus 1A is an air conditioner that cools and heats a room, and includes a main refrigerant circuit 10 that circulates a refrigerant and an injection path 17 that is connected to the main refrigerant circuit 10.
  • the main refrigerant circuit 10 includes a compressor 11, a four-way valve 18, an indoor heat exchanger 12, an indoor decompressor 13, a gas-liquid separator 14, an outdoor decompressor 15, and an outdoor heat exchanger 16.
  • the discharge port and the suction port of the compressor 11 are connected to the two ports of the four-way valve 18 through a flow path, and the remaining two ports of the four-way valve 18 are connected to the indoor heat exchanger 12 and the outdoor heat exchange through the flow path.
  • the indoor heat exchanger 12, the indoor side decompressor 13, the gas-liquid separator 14, the outdoor decompressor 15 and the outdoor heat exchanger 16 are connected in this order by flow paths.
  • An accumulator 19 is provided in the flow path connecting the four-way valve 18 and the suction port of the compressor 11.
  • the compressor 11 compresses the refrigerant sucked from the suction port and discharges it from the discharge port. Further, the compressor 11 is provided with an injection port, and the compressor 11 sucks in the intermediate pressure refrigerant from the injection port while compressing the refrigerant.
  • the four-way valve 18 is an example of the switching means of the present invention, and the flow direction of the refrigerant flowing through the main refrigerant circuit 10 is switched to the first direction indicated by the broken line arrow during the cooling operation, and the second direction indicated by the solid line arrow during the heating operation. Switch to.
  • the first direction is a direction in which the refrigerant discharged from the compressor 11 is guided to the outdoor heat exchanger 16
  • the second direction is a direction in which the refrigerant discharged from the compressor 11 is guided to the indoor heat exchanger 12. is there.
  • the switching means of the present invention is not limited to the four-way valve 18 and may be a combination of a pair of three-way valves or a bridge circuit.
  • the indoor heat exchanger 12 exchanges heat between the indoor air and the refrigerant
  • the outdoor heat exchanger 16 exchanges heat between the outdoor air and the refrigerant.
  • the outdoor heat exchanger 16 functions as a condenser
  • the indoor heat exchanger 12 functions as an evaporator.
  • the indoor heat exchanger 12 functions as a condenser
  • the outdoor heat exchanger 16 functions as an evaporator.
  • the indoor decompressor 13 and the outdoor decompressor 15 decompress the refrigerant in two stages.
  • One or both of the indoor decompressor 13 and the outdoor decompressor 15 may be an expansion valve or an expander that recovers power from the expanding refrigerant.
  • the gas-liquid separator 14 separates the gas-liquid two-phase refrigerant decompressed by one of the indoor-side decompressor 13 and the outdoor-side decompressor 15 into a liquid-phase refrigerant and a gas-phase refrigerant.
  • the injection path 17 described above connects the gas-liquid separator 14 and the injection port of the compressor 11, and injects the gas-phase refrigerant separated by the gas-liquid separator 14 into the compressor 11.
  • the liquid phase refrigerant separated by the gas-liquid separator 14 is further depressurized by the other of the indoor side decompressor 13 and the outdoor decompressor 15.
  • the heating unit 20 is disposed between the indoor heat exchanger 12 and the indoor decompressor 13 of the main refrigerant circuit 10, and a cooling path 30 that bypasses the heating unit 20 is provided. It has been.
  • the heating means 20 heats the refrigerant introduced from the indoor heat exchanger 12 to the indoor decompressor 13 during the heating operation, that is, the refrigerant after condensation and before decompression.
  • the heating means 20 is not particularly limited, and for example, an electric heater may be used.
  • the heating means 20 it is preferable to use a heat storage unit 200 that accumulates heat discharged from the compressor 11 as shown in FIG. 2 and heats the refrigerant using the accumulated heat.
  • the heat storage unit 200 includes a heat storage material 210 disposed so as to wrap the compressor 11, and a heat exchange unit 220 for circulating the refrigerant passing through the inside of the heat storage material 210 while meandering. ing.
  • the cooling path 30 is a path for directly leading the refrigerant that has passed through the indoor decompressor 13 during the cooling operation to the indoor heat exchanger 12 so as not to be heated by the heating means 20.
  • one end of the cooling path 30 is connected to a first branch point P1 located between the indoor heat exchanger 12 and the heating means 20 in the main refrigerant circuit 10, and the other end of the cooling path 30 is
  • the main refrigerant circuit 10 is connected to the second branch point P2 located between the heating means 20 and the indoor decompressor 13.
  • a first check valve 41 is provided in a portion between the first branch point P1 and the second branch point P2 in the main refrigerant circuit 10, while a second check valve 42 is provided in the cooling path 30. Is provided.
  • the first check valve 41 allows the refrigerant to pass only in the direction from the first branch point P1 to the second branch point P2. In other words, the first check valve 41 prohibits the refrigerant from flowing into the portion of the main refrigerant circuit 10 between the second branch point P2 and the first branch point P1 during the cooling operation, while the main check valve 41 during the heating operation.
  • the refrigerant is allowed to flow through a portion of the refrigerant circuit 10 between the first branch point P1 and the second branch point P2.
  • the second check valve 42 allows the refrigerant to pass only in the direction from the second branch point P2 toward the first branch point P1.
  • the second check valve 42 permits the refrigerant to flow through the cooling path 30 during the cooling operation, while prohibiting the refrigerant from flowing through the cooling path 30 during the heating operation. That is, the first check valve 41 and the second check valve 42 constitute the flow path changing means of the present invention.
  • the high-temperature and high-pressure refrigerant (state A) discharged from the compressor 11 is condensed in the indoor heat exchanger 12, thereby reducing enthalpy (state B). Thereafter, the refrigerant is heated by the heating means 20, so that the enthalpy increases (state C).
  • the refrigerant (state D) that has passed through the indoor decompressor 13 and has reached an intermediate pressure is separated into a gas-phase refrigerant (state H) and a liquid-phase refrigerant (state E) in the gas-liquid separator 14.
  • the gas phase refrigerant flows into the injection path 17 and is sucked into the compressor 11 through the injection port.
  • the liquid-phase refrigerant is depressurized in the outdoor decompressor 15 (state F), and the enthalpy is increased by being warmed by the outside air in the outdoor heat exchanger 16 (state G).
  • the refrigerant that has passed through the outdoor heat exchanger 16 is sucked into the compressor 11.
  • the refrigerant bypasses the heating means 20 through the cooling path 30, so that a general gas injection cycle is performed.
  • the dryness of the refrigerant at the inlet of the gas-liquid separator 14 becomes important. Since the effect of the gas injection cycle increases when the intermediate pressure is increased, it is ideal that the intermediate pressure can be set as high as possible. However, when the intermediate pressure is increased, the dryness is reduced, and when the dryness is reduced to some extent, the liquid phase refrigerant is mixed into the injection path 17 and the reliability of the compressor 11 is lowered.
  • the enthalpy is raised by heating the refrigerant cooled by the indoor heat exchanger 12 and having reduced enthalpy by the heating means 20 (B ⁇ C).
  • the enthalpy of the refrigerant guided to the indoor decompressor 13 can be increased (D ′ ⁇ D), and when the same intermediate pressure is set, the dryness of the refrigerant at the inlet of the gas-liquid separator 14 can be increased. (For example, 0.05 ⁇ 0.07). For this reason, there is room for lowering the dryness, and the intermediate pressure can be set higher than when the heating means 20 is not used. As a result, the performance of the gas injection cycle can be improved.
  • the flow path changing means is constituted by the pair of check valves 41, 42.
  • the flow path changing means of the present invention is provided at the first branch point P1 or the second branch point P2. It is also possible to use a three-way valve.
  • the cooling path 30 is not necessarily provided, and when the heating unit 20 is configured to be able to switch heating on / off, the heating by the heating unit 20 is turned off during the cooling operation, You may turn on the heating by the heating means 20 at the time of heating operation.
  • FIG. 4 is a configuration diagram of a refrigeration cycle apparatus 1B according to the second embodiment of the present invention.
  • the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof may be omitted.
  • the refrigeration cycle apparatus 1B of the present embodiment has a configuration in which a first bypass path 21 and a second bypass path 22 are added to the refrigeration cycle apparatus 1A of the first embodiment. Further, the heating means 20 is configured to heat the refrigerant flowing through the first bypass passage 21.
  • the first bypass passage 21 branches from the main refrigerant circuit 10 between the indoor heat exchanger 12 and the heating means 20 (first branch point P1 in the present embodiment), and the four-way valve 18 and the accumulator 19 are branched.
  • An alternative decompressor 23 is provided in the first bypass path 21, and the refrigerant that has passed through the alternative decompressor 23 is heated by the heating means 20.
  • the alternative pressure reducer 23 is, for example, an expansion valve.
  • the second bypass path 22 branches from the main refrigerant circuit 10 between the discharge port of the compressor 11 and the four-way valve 18, and joins the main refrigerant circuit 10 between the outdoor decompressor 15 and the outdoor heat exchanger 16. ing.
  • the second bypass path 22 is provided with an on-off valve 24 and a capillary tube 25.
  • the refrigerant flowing through the main refrigerant circuit 10 is heated by the heating means 20 only during the heating operation under a specific condition, and the gas injection cycle is stopped during other heating operations.
  • the specific condition is a case where the magnitude of the heating load is a predetermined value or less.
  • the heating operation under a specific condition is referred to as a low load heating operation, and the other heating operation is referred to as a high load heating operation.
  • the differential pressure detection means 5 for detecting the pressure difference before and after the alternative pressure reducer 23 in the first bypass path 21 is used as the heating load detection means for detecting the size of the heating load. That is, the case where the pressure difference detected by the differential pressure detection means 5 is equal to or less than the predetermined value is a low load heating operation, and the case where the pressure difference detected by the differential pressure detection means 5 is greater than the predetermined value is a high load. It is during heating operation.
  • the differential pressure detection means 5 may be a differential pressure sensor, or may be composed of a pair of pressure sensors and a calculation unit that calculates a difference between these detected values.
  • the alternative pressure reducer 23 and the on-off valve 24 are closed.
  • the operation at this time and the effect of using the heating means 20 are the same as in the first embodiment.
  • the indoor decompressor 13 and the outdoor decompressor 15 are closed, while the on-off valve 24 is opened and the alternative decompressor 23 is controlled to a predetermined opening.
  • the refrigerant discharged from the compressor 11 is distributed into a part guided to the indoor heat exchanger 12 and a part flowing into the second bypass path 22.
  • the refrigerant guided to the indoor heat exchanger 12 flows into the first bypass 22 after passing through the indoor heat exchanger 12, and is decompressed by the alternative decompressor 23.
  • the decompressed refrigerant is heated by the heating means 20 to raise enthalpy.
  • the refrigerant flowing into the second bypass path 22 is decompressed by the capillary tube 25 and then passes through the outdoor heat exchanger 16.
  • the refrigerant that has passed through the outdoor heat exchanger 16 merges with the refrigerant heated by the heating means 20 and then is sucked into the compressor 11.
  • the heating means 20 is used only to heat the refrigerant that has passed through the alternative pressure reducer 23, and there is no effect as in the first embodiment.
  • the indoor heat exchanger 12 and the outdoor heat exchanger 16 were each arrange
  • the refrigeration cycle apparatus of the present invention may be an air conditioner for collective housing or for business use.
  • a plurality of indoor heat exchangers 12 may be arranged in parallel in the main refrigerant circuit 10 as in the refrigeration cycle apparatus 1C shown in FIG.
  • an opening / closing valve 26 is provided in each route passing through the indoor heat exchanger 12.
  • a flow rate adjusting valve may be used.
  • the main refrigerant circuit 10 may include a plurality of sets of the indoor heat exchanger 12, the heating means 20, and the indoor decompressor 13 arranged in parallel.
  • a plurality of outdoor heat exchangers 16 may be arranged in parallel in the main refrigerant circuit 10 as in the refrigeration cycle apparatus 1E shown in FIG.
  • the configuration shown in FIG. 7 and the configuration shown in FIG. 5 or the configuration shown in FIG. 6 can be combined.
  • the refrigeration cycle apparatus shown in FIGS. 5 to 7 may include the first bypass passage 21 and the second bypass passage 22 shown in FIG.
  • the configuration using the heating means 20 can also be applied to a refrigeration cycle apparatus such as a hot water heater or a hot water heater.
  • a refrigeration cycle apparatus such as a hot water heater or a hot water heater.
  • the four-way valve 18 is deleted from the main refrigerant circuit 10 and a first heat exchanger 51 for heat radiation is installed in place of the indoor heat exchanger 16, and the outdoor heat Instead of the exchanger 16, a second heat exchanger 52 for heat absorption is installed.
  • the refrigeration cycle apparatus 1 ⁇ / b> F is provided with a heat utilization circuit 60 that circulates a heat medium between the first heat exchanger 51 and the heat utilization unit 61.
  • the heat utilization unit 61 is, for example, a radiator, and may be a hot water storage tank in the case of a water heater. Even with such a configuration, the intermediate pressure can be set higher than when the heating means 20 is not provided, and the performance of the gas injection cycle can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

 冷凍サイクル装置(1A)は、圧縮機(11)、切換手段(18)、室内熱交換器(12)、室内側減圧器(13)、気液分離器(14)、室外側減圧器(15)および室外熱交換器(16)を含む主冷媒回路(10)と、気液分離器(14)で分離された気相冷媒を圧縮機(11)にインジェクションするインジェクション経路(17)とを備える。切換手段(18)は、主冷媒回路(10)に流れる冷媒の流れ方向を冷房運転時と暖房運転時とで切り換える。暖房運転時または特定条件下での暖房運転時には、室内熱交換器(12)から室内側減圧器(13)に導かれる冷媒が加熱手段(20)により加熱される。

Description

冷凍サイクル装置
 本発明は、冷凍サイクル装置に関する。
 冷凍サイクル装置の高効率化を図る手段として、気相冷媒を圧縮機にインジェクションする技術が知られている。例えば、特許文献1には、図9に示すような冷凍サイクル装置100が開示されている。この冷凍サイクル装置100は、室内の冷房および暖房を行う空気調和装置である。
 具体的に、冷凍サイクル装置100は、圧縮機101、四方弁102、室内熱交換器103、第1~第4キャピラリーチューブ104~107、室外熱交換器108、およびアキュムレータ109を含む主冷媒回路110を備えている。また、主冷媒回路110には、第1~第4キャピラリーチューブ104~107のそれぞれをバイパスする、逆止弁111~114付のバイパス路が接続されている。バイパス路のうちの中央の2つのバイパス路は共通の流路120を有しており、この流路120には、気液分離器130が設けられている。気液分離器130は、インジェクション経路140により圧縮機101と接続されている。
 図9に示す冷凍サイクル装置100では、冷房運転時は、圧縮機101で圧縮された冷媒が四方弁102により室外熱交換器108に導かれ、逆止弁114、第3キャピラリーチューブ106、気液分離器130、逆止弁112、第1キャピラリーチューブ104、室内熱交換器103をこの順に通った後に圧縮機101に戻る。一方、暖房運転時は、圧縮機101で圧縮された冷媒が四方弁102により室内熱交換器103に導かれ、逆止弁111、第2キャピラリーチューブ105、気液分離器130、逆止弁113、第4キャピラリーチューブ107、室外熱交換器108をこの順に通った後に圧縮機101に戻る。気液分離器130では冷媒が液相冷媒と気相冷媒とに分離され、分離された気相冷媒がインジェクション経路140を通じて圧縮機101にインジェクションされる。
特開昭59-229140号公報
 しかしながら、図9に示す冷凍サイクル装置100では、暖房運転時には室外の空気(外気)が低温のため、室内熱交換器103と第2キャピラリーチューブ105との間の接続配管で熱ロスが発生する。このため、減圧前の冷媒のエンタルピが小さくなり、例えば気液分離器130において同じ乾き度を達成しようとする場合には、熱ロスが無い場合に比べて中間圧力が低下する。その結果、ガスインジェクションサイクルの性能が低下する。
 本発明は、このような従来の課題に鑑みてなされたものであり、暖房運転時におけるガスインジェクションサイクルの性能を向上させることができる冷凍サイクル装置を提供することを目的とする。
 前記課題を解決するために、本発明は、冷媒を圧縮する圧縮機、室内の空気と冷媒との間で熱交換を行う室内熱交換器、冷媒を減圧する室内側減圧器および室外側減圧器、前記室内側減圧器と前記室外側減圧器との間で冷媒を液相冷媒と気相冷媒とに分離する気液分離器、ならびに室外の空気と冷媒との間で熱交換を行う室外熱交換器、を含む主冷媒回路と、前記主冷媒回路に流れる冷媒の流れ方向を、冷房運転時には前記圧縮機から吐出された冷媒が前記室外熱交換器に導かれる第1方向に切り換え、暖房運転時には前記圧縮機から吐出された冷媒が前記室内熱交換器に導かれる第2方向に切り換える切換手段と、前記気液分離器で分離された気相冷媒を前記圧縮機にインジェクションするインジェクション経路と、暖房運転時または特定条件下での暖房運転時に、前記室内熱交換器から前記室内側減圧器に導かれる冷媒を加熱する加熱手段と、を備えた、冷凍サイクル装置を提供する。
 本発明の冷凍サイクル装置によれば、暖房運転時において、加熱手段により室内側減圧器に導かれる冷媒のエンタルピを増加させることができ、これにより中間圧力をより高く設定することができる。その結果、ガスインジェクションサイクルの性能を向上させることができる。
本発明の第1実施形態に係る冷凍サイクル装置の構成図 蓄熱ユニットの概略構成図 図1に示す冷凍サイクル装置の暖房運転時のモリエル線図 本発明の第2実施形態に係る冷凍サイクル装置の構成図 第1代替形態の冷凍サイクル装置の構成図 第2代替形態の冷凍サイクル装置の構成図 第3代替形態の冷凍サイクル装置の構成図 本発明の応用例の冷凍サイクル装置の構成図 従来の冷凍サイクル装置を示す構成図
 以下、本発明の実施例について、図面を参照しながら詳細に説明する。
 (第1実施形態)
 図1は、本発明の第1実施形態に係る冷凍サイクル装置1Aの構成図である。この冷凍サイクル装置1Aは、室内の冷房および暖房を行う空気調和装置であり、冷媒を循環させる主冷媒回路10と、主冷媒回路10に接続されたインジェクション経路17とを備えている。
 主冷媒回路10は、圧縮機11、四方弁18、室内熱交換器12、室内側減圧器13、気液分離器14、室外側減圧器15、および室外熱交換器16を含む。圧縮機11の吐出口および吸入口は、流路により四方弁18の2つのポートに接続されており、四方弁18の残りの2つのポートは、流路により室内熱交換器12および室外熱交換器16に接続されている。室内熱交換器12、室内側減圧器13、気液分離器14、室外側減圧器15および室外熱交換器16は、流路によりこの順に接続されている。なお、四方弁18と圧縮機11の吸入口とを接続する流路には、アキュムレータ19が設けられている。
 圧縮機11は、吸入口から吸入した冷媒を圧縮して吐出口から吐出する。また、圧縮機11にはインジェクションポートが設けられており、圧縮機11は、冷媒を圧縮する途中でインジェクションポートから中間圧力の冷媒を吸入する。
 四方弁18は、本発明の切換手段の一例であり、主冷媒回路10に流れる冷媒の流れ方向を、冷房運転時には破線矢印で示す第1方向に切り換え、暖房運転時には実線矢印で示す第2方向に切り換える。第1方向は、圧縮機11から吐出された冷媒が室外熱交換器16に導かれる方向であり、第2方向は、圧縮機11から吐出された冷媒が室内熱交換器12に導かれる方向である。なお、本発明の切換手段は、四方弁18に限定されるものではなく、一対の三方弁の組み合わせ、またはブリッジ回路であってもよい。
 室内熱交換器12は、室内の空気と冷媒との間で熱交換を行い、室外熱交換器16は、外気と冷媒との間で熱交換を行う。冷房運転時は、室外熱交換器16が凝縮器として機能し、室内熱交換器12が蒸発器として機能する。暖房運転時は、室内熱交換器12が凝縮器として機能し、室外熱交換器16が蒸発器として機能する。
 室内側減圧器13および室外側減圧器15は、冷媒を二段階で減圧する。室内側減圧器13および室外側減圧器15の一方または双方は、膨張弁であってもよいし、膨張する冷媒から動力を回収する膨張機であってもよい。
 気液分離器14は、室内側減圧器13および室外側減圧器15の一方で減圧された気液二相冷媒を液相冷媒と気相冷媒とに分離する。上述したインジェクション経路17は、気液分離器14と圧縮機11のインジェクションポートとを接続しており、気液分離器14で分離された気相冷媒を圧縮機11にインジェクションする。気液分離器14で分離された液相冷媒は、室内側減圧器13および室外側減圧器15の他方でさらに減圧される。
 さらに、本実施形態では、主冷媒回路10の室内熱交換器12と室内側減圧器13との間に加熱手段20が配設されているとともに、加熱手段20をバイパスする冷房用経路30が設けられている。
 加熱手段20は、暖房運転時に室内熱交換器12から室内側減圧器13に導かれる冷媒、すなわち凝縮後かつ減圧前の冷媒を加熱する。加熱手段20は特に限定されるものではなく、例えば電気ヒーターを用いてもよい。ただし、加熱手段20としては、図2に示すような圧縮機11から排出される熱を蓄積し、この蓄積された熱を利用して冷媒を加熱する蓄熱ユニット200を用いることが好ましい。具体的に、蓄熱ユニット200は、圧縮機11を包み込むように配設された蓄熱材210と、蓄熱材210の内部を蛇行しながら通過する、冷媒を流通させるための熱交換部220を有している。
 冷房用経路30は、冷房運転時に室内側減圧器13を通過した冷媒が加熱手段20で加熱されないように室内熱交換器12に直接導くための経路である。具体的に、冷房用経路30の一端は、主冷媒回路10における室内熱交換器12と加熱手段20の間に位置する第1分岐点P1に接続されており、冷房用経路30の他端は、主冷媒回路10における加熱手段20と室内側減圧器13の間に位置する第2分岐点P2に接続されている。
 また、主冷媒回路10における第1分岐点P1と第2分岐点P2の間の部分には第1逆止弁41が設けられている一方、冷房用経路30には第2逆止弁42が設けられている。第1逆止弁41は、第1分岐点P1から第2分岐点P2に向かう方向のみに冷媒を通過させる。換言すれば、第1逆止弁41は、冷房運転時に主冷媒回路10における第2分岐点P2と第1分岐点P1との間の部分に冷媒が流れることを禁止する一方、暖房運転時に主冷媒回路10における第1分岐点P1と第2分岐点P2との間の部分に冷媒が流れることを許可する。第2逆止弁42は、第2分岐点P2から第1分岐点P1に向かう方向のみに冷媒を通過させる。換言すれば、第2逆止弁42は、冷房運転時に冷房用経路30に冷媒が流れることを許可する一方、暖房運転時に冷房用経路30に冷媒が流れることを禁止する。すなわち、第1逆止弁41および第2逆止弁42は、本発明の流路変更手段を構成する。
 次に、暖房運転時の主冷媒回路10およびインジェクション経路17を流れる冷媒の状態について図3を用いて説明する。なお、図3のモリエル線図におけるA~Hの点は、図1のA~Hの位置を流れる冷媒の状態に対応している。
 圧縮機11から吐出された高温高圧の冷媒(状態A)は、室内熱交換器12で凝縮され、これによりエンタルピが低下する(状態B)。その後、加熱手段20により冷媒が加熱されることにより、エンタルピが上昇する(状態C)。室内側減圧器13を通過し、中間圧力になった冷媒(状態D)は、気液分離器14において気相冷媒(状態H)と、液相冷媒(状態E)とに分離される。気相冷媒は、インジェクション経路17に流入し、圧縮機11にインジェクションポートを通じて吸入される。他方、液相冷媒は、室外側減圧器15において減圧され(状態F)、室外熱交換器16において外気によって温められることによりエンタルピが上昇する(状態G)。室外熱交換器16を通過した冷媒は、圧縮機11に吸入される。
 なお、冷房運転時は冷房用経路30により冷媒が加熱手段20をバイパスするため、一般的なガスインジェクションサイクルとなる。
 次に、暖房運転時に加熱手段20を用いることの効果について説明する。
 気液分離器14で二相冷媒を液相冷媒と気相冷媒とに分離する際、気液分離器14の入口での冷媒の乾き度が重要となってくる。中間圧力を上げるとガスインジェクションサイクルの効果が大きくなるため、中間圧力はなるべく高く設定できることが理想である。しかし、中間圧力を上げると乾き度は小さくなり、ある程度乾き度が小さくなってしまうと、インジェクション経路17に液相冷媒が混入して圧縮機11の信頼性が低下する。
 そこで、暖房運転時、室内熱交換器12で冷却されてエンタルピが低下した冷媒を加熱手段20で加熱することにより、エンタルピを上昇させる(B→C)。これにより室内側減圧器13に導かれる冷媒のエンタルピを上げることができ(D’→D)、同じ中間圧力を設定した場合、気液分離器14の入口での冷媒の乾き度を上げることができる(例えば、0.05→0.07)。このため、乾き度を下げる余裕ができ、加熱手段20を用いない場合に比べ、中間圧力を高く設定することができる。その結果、ガスインジェクションサイクルの性能を向上させることができる。
 <変形例>
 前記実施形態では、一対の逆止弁41,42で流路変更手段が構成されていたが、本発明の流路変更手段としては、第1分岐点P1または第2分岐点P2に設けられた三方弁を用いることも可能である。
 また、冷房用経路30は、必ずしも設けられている必要はなく、加熱手段20が加熱のオン・オフを切り替え可能に構成されている場合は、冷房運転時は加熱手段20による加熱をオフにし、暖房運転時に加熱手段20による加熱をオンにしてもよい。
 (第2実施形態)
 本発明の第2実施形態について、図4を参照しながら詳細に説明する。図4は、本発明の第2実施形態に係る冷凍サイクル装置1Bの構成図である。なお、本実施形態では、第1実施形態と同一の構成要素には同一の符号を付し、その説明を省略することがある。
 本実施形態の冷凍サイクル装置1Bは、第1実施形態の冷凍サイクル装置1Aに第1バイパス路21および第2バイパス路22を加えたような構成を有している。また、加熱手段20は、第1バイパス路21を流れる冷媒をも加熱できるように構成されている。
 具体的に、第1バイパス路21は、室内熱交換器12と加熱手段20(本実施形態では、第1分岐点P1)との間で主冷媒回路10から分岐し、四方弁18とアキュムレータ19との間で主冷媒回路10に合流している。第1バイパス路21には代替減圧器23が設けられており、この代替減圧器23を通過した冷媒が加熱手段20で加熱される。代替減圧器23は、例えば膨張弁である。
 第2バイパス路22は、圧縮機11の吐出口と四方弁18との間で主冷媒回路10から分岐し、室外側減圧器15と室外熱交換器16の間で主冷媒回路10に合流している。第2バイパス路22には、開閉弁24およびキャピラリーチューブ25が設けられている。
 本実施形態では、特定条件下での暖房運転時のみに主冷媒回路10を流れる冷媒が加熱手段20で加熱され、それ以外の暖房運転時にはガスインジェクションサイクルが停止される。ここで、特定条件とは、暖房負荷の大きさが所定値以下の場合である。以下では、特定条件下での暖房運転を低負荷暖房運転といい、それ以外の暖房運転を高負荷暖房運転という。
 本実施形態では、暖房負荷の大きさを検知する暖房負荷検知手段として、第1バイパス路21における代替減圧器23の前後の圧力差を検知する差圧検知手段5が用いられている。すなわち、差圧検知手段5により検知された圧力差が前記所定値以下の場合が低負荷暖房運転時であり、差圧検知手段5により検知された圧力差が前記所定値より大きい場合が高負荷暖房運転時である。差圧検知手段5は、差圧センサであってもよいし、一対の圧力センサとこれらの検出値の差を算出する演算部とで構成されていてもよい。
 次に、冷凍サイクル装置1Bの動作を説明する。
 冷房運転時および低負荷暖房運転時には、代替減圧器23および開閉弁24が閉じられる。このときの動作および加熱手段20を用いることによる効果については第1実施形態と同じである。
 高負荷暖房運転時には、室内側減圧器13および室外側減圧器15が閉じられる一方で、開閉弁24が開かれ代替減圧器23が所定の開度に制御される。圧縮機11から吐出された冷媒は、室内熱交換器12に導かれる分と第2バイパス路22に流入する分とに分配される。室内熱交換器12に導かれた冷媒は、室内熱交換器12を通過した後に第1バイパス路22に流入し、代替減圧器23で減圧される。減圧された冷媒は、加熱手段20により加熱されてエンタルピを上昇させる。一方、第2バイパス路22に流入した冷媒は、キャピラリーチューブ25で減圧された後に、室外熱交換器16を通過する。室外熱交換器16を通過した冷媒は、加熱手段20により加熱された冷媒と合流した後に圧縮機11に吸入される。なお、高負荷暖房運転では、加熱手段20が代替減圧器23を通過した冷媒を加熱するためだけに用いられ、第1実施形態のような効果はない。
 (その他の実施形態)
 前記第1実施形態および前記第2実施形態では、例えば家庭用の空気調和装置を想定して、主冷媒回路10中に室内熱交換器12および室外熱交換器16が1つずつ配置されていた。しかしながら、本発明の冷凍サイクル装置は、集合住宅用や業務用の空気調和装置であってもよい。
 例えば、図5に示す冷凍サイクル装置1Cのように、主冷媒回路10には室内熱交換器12が複数並列に配置されていてもよい。この場合、室内熱交換器12を経由する各ルートには開閉弁26が設けられる。なお、開閉弁26の代わりに、流量調整弁を用いてもよい。
 あるいは、図6に示す冷凍サイクル装置1Dのように、主冷媒回路10には室内熱交換器12、加熱手段20および室内側減圧器13のセットが複数並列に配置されていてもよい。
 さらに、図7に示す冷凍サイクル装置1Eのように、主冷媒回路10には室外熱交換器16が複数並列に配置されていてもよい。なお、図7に示す構成と、図5に示す構成または図6に示す構成は組み合わせ可能である。また、図5~図7に示す冷凍サイクル装置は、図4に示す第1バイパス路21および第2バイパス路22を備えていてもよい。
 ところで、加熱手段20を用いた構成は、温水暖房機や給湯機などの冷凍サイクル装置に適用することもできる。例えば、図8に示す冷凍サイクル装置1Fのように、主冷媒回路10から四方弁18を削除するとともに、室内熱交換器16に代えて放熱用の第1熱交換器51を設置し、室外熱交換器16に代えて吸熱用の第2熱交換器52を設置する。さらに、冷凍サイクル装置1Fには、第1熱交換器51と熱利用ユニット61との間で熱媒体を循環させる熱利用回路60を設ける。熱利用ユニット61は、例えばラジエータであり、給湯機の場合には貯湯タンクであってもよい。このような構成でも、加熱手段20を備えない場合に比べて中間圧力を高く設定することができ、ガスインジェクションサイクルの性能を向上させることができる。

Claims (10)

  1.  冷媒を圧縮する圧縮機、室内の空気と冷媒との間で熱交換を行う室内熱交換器、冷媒を減圧する室内側減圧器および室外側減圧器、前記室内側減圧器と前記室外側減圧器との間で冷媒を液相冷媒と気相冷媒とに分離する気液分離器、ならびに室外の空気と冷媒との間で熱交換を行う室外熱交換器、を含む主冷媒回路と、
     前記主冷媒回路に流れる冷媒の流れ方向を、冷房運転時には前記圧縮機から吐出された冷媒が前記室外熱交換器に導かれる第1方向に切り換え、暖房運転時には前記圧縮機から吐出された冷媒が前記室内熱交換器に導かれる第2方向に切り換える切換手段と、
     前記気液分離器で分離された気相冷媒を前記圧縮機にインジェクションするインジェクション経路と、
     暖房運転時または特定条件下での暖房運転時に、前記室内熱交換器から前記室内側減圧器に導かれる冷媒を加熱する加熱手段と、
    を備えた、冷凍サイクル装置。
  2.  前記主冷媒回路における前記室内熱交換器と前記加熱手段の間に位置する第1分岐点、および前記主冷媒回路における前記加熱手段と前記室内側減圧器の間に位置する第2分岐点に接続された、前記加熱手段をバイパスする冷房用経路と、
     冷房運転時には前記主冷媒回路における前記第2分岐点と前記第1分岐点との間の部分に冷媒が流れることを禁止するとともに前記冷房用経路に冷媒が流れることを許可し、暖房運転時には前記冷房用経路に冷媒が流れることを禁止するとともに前記主冷媒回路における前記第1分岐点と前記第2分岐点との間の部分に冷媒が流れることを許可する流路変更手段と、
    をさらに備えた、請求項1に記載の冷凍サイクル装置。
  3.  前記流路変更手段は、前記冷房用経路に設けられた逆止弁と、前記主冷媒回路における前記第1分岐点と前記第2分岐点との間の部分に設けられた逆止弁とで構成されている、請求項2に記載の冷凍サイクル装置。
  4.  前記室内熱交換器と前記加熱手段との間で前記主冷媒回路から分岐して、前記切換手段と前記圧縮機の吸入口との間で前記主冷媒回路に合流する、代替減圧器が設けられた第1バイパス路と、
     前記圧縮機の吐出口と前記切換手段との間で前記主冷媒回路から分岐して、前記室外側減圧器と前記室外熱交換器の間で前記主冷媒回路に合流する、開閉弁およびキャピラリーチューブが設けられた第2バイパス路と、をさらに備え、
     前記加熱手段は、前記第1バイパス路において前記代替減圧器を通過した冷媒をも加熱できるように構成されている、請求項1~3のいずれか一項に記載の冷凍サイクル装置。
  5.  暖房負荷の大きさを検知する暖房負荷検知手段をさらに備え、
     前記特定条件は、前記暖房負荷検知手段により検知された暖房負荷の大きさが所定値以下の場合であり、前記加熱手段は、前記特定条件下での暖房運転時に前記主冷媒回路を流れる冷媒を加熱し、前記特定条件以外の暖房運転時に前記第1バイパス路を流れる冷媒を加熱する、請求項4に記載の冷凍サイクル装置。
  6.  前記暖房負荷検知手段により検知された暖房負荷の大きさが前記所定値以下の場合は、前記代替減圧器および前記開閉弁が閉じられ、前記暖房負荷検知手段により検知された暖房負荷の大きさが前記所定値より大きい場合は、前記室内側減圧器および前記室外側減圧器が閉じられる一方で前記開閉弁が開かれ前記代替減圧器が所定の開度に制御される、請求項5に記載の冷凍サイクル装置。
  7.  前記暖房負荷検知手段は、前記暖房負荷の大きさとして前記第1バイパス路における前記代替減圧器の前後の圧力差を検知する差圧検知手段である、請求項6に記載の冷凍サイクル装置。
  8.  前記加熱手段は、前記圧縮機から排出される熱を蓄積し、この蓄積された熱を利用して冷媒を加熱する蓄熱ユニットである、請求項1~7のいずれか一項に記載の冷凍サイクル装置。
  9.  前記主冷媒回路には、前記室内熱交換器、または前記室内熱交換器、前記加熱手段および前記室内側減圧器のセットが複数並列に配置されている、請求項1~8のいずれか一項に記載の冷凍サイクル装置。
  10.  前記主冷媒回路には、前記室外熱交換器が複数並列に配置されている、請求項1~9のいずれか一項に記載の冷凍サイクル装置。
PCT/JP2012/001850 2011-03-18 2012-03-16 冷凍サイクル装置 WO2012127834A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-060823 2011-03-18
JP2011060823 2011-03-18

Publications (1)

Publication Number Publication Date
WO2012127834A1 true WO2012127834A1 (ja) 2012-09-27

Family

ID=46879014

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/001850 WO2012127834A1 (ja) 2011-03-18 2012-03-16 冷凍サイクル装置

Country Status (1)

Country Link
WO (1) WO2012127834A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015094520A (ja) * 2013-11-12 2015-05-18 三菱電機株式会社 冷凍サイクル装置
WO2016113899A1 (ja) * 2015-01-16 2016-07-21 三菱電機株式会社 冷凍サイクル装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60175976A (ja) * 1984-02-21 1985-09-10 松下電器産業株式会社 空気調和機の除霜装置
JPS62210361A (ja) * 1986-03-12 1987-09-16 松下電器産業株式会社 空気調和機の冷凍サイクル
JPH0387569A (ja) * 1989-08-30 1991-04-12 Mitsubishi Heavy Ind Ltd ヒートポンプ式空気調和機の運転制御方法
JPH1114177A (ja) * 1997-06-26 1999-01-22 Mitsubishi Heavy Ind Ltd 空気調和装置
JP2001263882A (ja) * 2000-03-17 2001-09-26 Daikin Ind Ltd ヒートポンプ装置
JP2007051840A (ja) * 2005-08-19 2007-03-01 Matsushita Electric Ind Co Ltd 空気調和装置
JP2007051795A (ja) * 2005-08-16 2007-03-01 Matsushita Electric Ind Co Ltd 空気調和装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60175976A (ja) * 1984-02-21 1985-09-10 松下電器産業株式会社 空気調和機の除霜装置
JPS62210361A (ja) * 1986-03-12 1987-09-16 松下電器産業株式会社 空気調和機の冷凍サイクル
JPH0387569A (ja) * 1989-08-30 1991-04-12 Mitsubishi Heavy Ind Ltd ヒートポンプ式空気調和機の運転制御方法
JPH1114177A (ja) * 1997-06-26 1999-01-22 Mitsubishi Heavy Ind Ltd 空気調和装置
JP2001263882A (ja) * 2000-03-17 2001-09-26 Daikin Ind Ltd ヒートポンプ装置
JP2007051795A (ja) * 2005-08-16 2007-03-01 Matsushita Electric Ind Co Ltd 空気調和装置
JP2007051840A (ja) * 2005-08-19 2007-03-01 Matsushita Electric Ind Co Ltd 空気調和装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015094520A (ja) * 2013-11-12 2015-05-18 三菱電機株式会社 冷凍サイクル装置
WO2016113899A1 (ja) * 2015-01-16 2016-07-21 三菱電機株式会社 冷凍サイクル装置

Similar Documents

Publication Publication Date Title
JP5611353B2 (ja) ヒートポンプ
US9316421B2 (en) Air-conditioning apparatus including unit for increasing heating capacity
US10352593B2 (en) Gas heat-pump system
JP5430667B2 (ja) ヒートポンプ装置
JP4752765B2 (ja) 空気調和装置
WO2014020651A1 (ja) 空気調和装置
US20100154451A1 (en) Refrigerating Apparatus
WO2008032645A1 (fr) dispositif de réfrigération
JP4375171B2 (ja) 冷凍装置
JP5774216B2 (ja) 多室型空気調和装置
JP2010139205A (ja) 空気調和装置
JP2001056159A (ja) 空気調和装置
WO2012121326A1 (ja) 2元冷凍サイクル装置
JP5277854B2 (ja) 空気調和装置
WO2013146415A1 (ja) ヒートポンプ式加熱装置
JP2015068564A (ja) ヒートポンプシステム、及び、ヒートポンプ式給湯器
JP5334554B2 (ja) 空気調和装置
JP4751851B2 (ja) 冷凍サイクル
JP2006023073A (ja) 空気調和装置
WO2012127834A1 (ja) 冷凍サイクル装置
JP2007232280A (ja) 冷凍装置
JP2006170541A (ja) 空気調和装置
KR102198332B1 (ko) 공기 조화기 및 기액분리 유닛
WO2018097124A1 (ja) 空気調和装置
JP2004324947A (ja) 空気調和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12760193

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12760193

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP