WO2012120603A1 - 車両の空調装置 - Google Patents

車両の空調装置 Download PDF

Info

Publication number
WO2012120603A1
WO2012120603A1 PCT/JP2011/055132 JP2011055132W WO2012120603A1 WO 2012120603 A1 WO2012120603 A1 WO 2012120603A1 JP 2011055132 W JP2011055132 W JP 2011055132W WO 2012120603 A1 WO2012120603 A1 WO 2012120603A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling water
heating
passenger compartment
peltier element
vehicle
Prior art date
Application number
PCT/JP2011/055132
Other languages
English (en)
French (fr)
Inventor
真樹 森田
Original Assignee
トヨタ自動車 株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車 株式会社 filed Critical トヨタ自動車 株式会社
Priority to US14/002,335 priority Critical patent/US20130333395A1/en
Priority to RU2013142681/11A priority patent/RU2555567C2/ru
Priority to PCT/JP2011/055132 priority patent/WO2012120603A1/ja
Priority to KR1020137023426A priority patent/KR20130124554A/ko
Priority to EP11860157.4A priority patent/EP2682291B1/en
Priority to CN2011800689042A priority patent/CN103402796A/zh
Priority to JP2013503253A priority patent/JP5817824B2/ja
Publication of WO2012120603A1 publication Critical patent/WO2012120603A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B21/00Machines, plants or systems, using electric or magnetic effects
    • F25B21/02Machines, plants or systems, using electric or magnetic effects using Peltier effect; using Nernst-Ettinghausen effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00357Air-conditioning arrangements specially adapted for particular vehicles
    • B60H1/00385Air-conditioning arrangements specially adapted for particular vehicles for vehicles having an electrical drive, e.g. hybrid or fuel cell
    • B60H1/004Air-conditioning arrangements specially adapted for particular vehicles for vehicles having an electrical drive, e.g. hybrid or fuel cell for vehicles having a combustion engine and electric drive means, e.g. hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00478Air-conditioning devices using the Peltier effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00899Controlling the flow of liquid in a heat pump system

Definitions

  • the present invention relates to a vehicle air conditioner.
  • the temperature in the passenger compartment is adjusted by cooling the air sent to the passenger compartment with a cooler or heating the air using the heat of the internal combustion engine. It was like that.
  • an increasing number of vehicles are difficult to use the internal combustion engine as a heat source for air conditioning (temperature adjustment) of the passenger compartment.
  • Such vehicles include, for example, an electric vehicle that is not equipped with an internal combustion engine as a prime mover but is equipped with only a motor, and a hybrid vehicle that is equipped with a motor and an internal combustion engine as prime movers and frequently stops operation of the engine. .
  • the Peltier element includes a cooling unit that absorbs heat and a heating unit that dissipates heat, and the cooling unit and the heat dissipating unit can be switched by reversing the polarity of the electrodes. And when cooling with an air conditioner in order to reduce the temperature of a vehicle interior, the air sent to the vehicle interior is cooled by the cooling part of a Peltier device. On the other hand, when heating by the air conditioner to raise the temperature of the passenger compartment, the polarity of the electrode in the Peltier element is reversed from the case of the above cooling, so that the air sent to the passenger compartment is heated by the heating part of the Peltier element. Heated.
  • the passenger compartment air conditioning Heating
  • the structure of the apparatus is different from that of a conventional air conditioner in which the air sent to the passenger compartment is cooled by a cooler or heated using the heat of the internal combustion engine. A big change is inevitable. If the structure of the air conditioner changes drastically in this way, conventional equipment or the like cannot be used in manufacturing the apparatus, and equipment or the like for manufacturing the apparatus must be renewed. As a result, there is a problem that the cost for manufacturing the air conditioner is increased because the equipment for manufacturing must be renewed.
  • an internal combustion engine is used as a heat source for air-conditioning the passenger compartment while using a conventional air-conditioner that cools the air sent to the passenger compartment with a cooler or heats the internal combustion engine. It is desired to be able to perform air conditioning (heating) of a passenger compartment in a vehicle in which it is difficult to use an engine.
  • the present invention has been made in view of such a situation, and the object thereof is to change the structure of a vehicle in which it is difficult to use an internal combustion engine as a heat source for air conditioning a passenger compartment.
  • An object of the present invention is to provide a vehicle air conditioner capable of air conditioning a passenger compartment.
  • the vehicle air conditioner when the air sent to the vehicle compartment is cooled or heated to adjust the temperature of the vehicle compartment, the air is cooled by the cooler.
  • the air is heated by a Peltier element.
  • a Peltier element since the thing provided in the conventional air conditioner can be utilized as said cooler, it can avoid that the structure of an air conditioner changes significantly.
  • air sent to the passenger compartment can be heated by a Peltier element. ) Can be performed. Therefore, in a vehicle in which it is difficult to use an internal combustion engine as a heat source for air conditioning the passenger compartment, the passenger compartment can be air-conditioned without significantly changing the structure.
  • the circulation circuit which circulates the cooling water heat-exchanged with the internal combustion engine mounted in a vehicle was provided, and the air sent to a vehicle interior by the cooling water was performed. Therefore, in a vehicle equipped with an internal combustion engine, as a method of heating the air sent to the passenger compartment by the Peltier element, the cooling water of the circulation circuit is heated by the heating part of the Peltier element, and the air is supplied through the cooling water. It is possible to adopt a method of heating. In this case, heating by the Peltier element of the air sent to the passenger compartment can be realized using the above-described circulation circuit provided in the conventional air conditioner. For this reason, it can avoid that the structure of an air conditioner changes significantly from the past. Further, when the internal combustion engine is operated to generate heat, the heat can be recovered by cooling water circulating in the circulation circuit and used for air conditioning (heating) of the passenger compartment.
  • the circulation circuit includes a first path that realizes passage of the cooling water circulating through the internal combustion engine and a second path that bypasses the cooling water internal combustion engine.
  • One of the first path and the second path is used as a path for circulating the cooling water.
  • the second path is selected when the internal combustion engine generates a small amount of heat, while the first path is selected when the internal combustion engine generates a large amount of heat. Is possible.
  • the second path is selected as described above as the path for circulating the cooling water in the circulation circuit, the heat of the cooling water heated by the Peltier element heating unit is caused by the internal combustion engine.
  • the cooling water can be effectively heated by the heating part of the Peltier element. Further, when the internal combustion engine generates a lot of heat, if the first path is selected as described above as the path for circulating the cooling water in the circulation circuit, the cooling water can be heated by the internal combustion engine. The heating of the cooling water by the heating part can be stopped, or the amount of heat during the heating can be reduced.
  • the circulation circuit is a radiator that causes the cooling water to flow and exchange heat between the cooling water and outside air when the temperature of the cooling water circulating therethrough is equal to or higher than a predetermined determination value.
  • the Peltier element includes a cooling unit that exchanges heat with the cooling water circulating in the cooling water circuit.
  • a cooling water circuit guides the cooling water which circulates there to the radiator of the above-mentioned circulation circuit, and performs heat exchange with the cooling water and outside air with the radiator.
  • the temperature of the cooling water in the cooling water circuit becomes excessively low due to such heat exchange, and as a result, the temperature of the cooling part of the Peltier element that exchanges heat with the cooling water is also suppressed from excessively decreasing.
  • the Peltier element when the Peltier element is heated by the heating unit, heat is transferred from the cooling unit to the heating unit.
  • the smaller the temperature difference between the cooling unit and the heating unit the more efficiently the heat transfer from the cooling unit to the heating unit, in other words, the heating by the heating unit.
  • the temperature difference between the heating part and the cooling part of the Peltier element can be suppressed, and the heating by the heating part of the Peltier element is efficiently performed. be able to.
  • the Peltier element includes a cooling unit that exchanges heat with cooling water that circulates in the cooling water circuit and cools the electrical equipment mounted on the vehicle.
  • the Peltier element when the Peltier element is heated by the heating unit, heat is transferred from the cooling unit to the heating unit of the element, and thus the temperature is lowered in the cooling unit.
  • the cooling water whose temperature has been lowered by heat exchange between the cooling part of the Peltier element and the cooling water of the cooling water circuit for cooling the electric device, the cooling can be effectively performed.
  • the cooling water of a cooling water circuit receives the heat from the said electric equipment and it is suppressed that a temperature falls too much, it is suppressed that the cooling part of a Peltier device also falls too much.
  • the cooling water circuit includes a heat exchanger that allows the cooling water circulating therethrough to exchange heat between the cooling water and the outside air.
  • the path for circulating the coolant in the circulation circuit is switched to the second path and the Peltier element is heated.
  • the control part which heats a part is provided. This controller switches the path for circulating the coolant in the circulation circuit to the first path and heats the Peltier element when heating the passenger compartment while the vehicle is running with the internal combustion engine in operation. Stop heating the part.
  • the second path is selected as the path for circulating the cooling water in the circulation circuit as described above, thereby heating the Peltier element. The heat of the cooling water heated by the section is not taken away by the internal combustion engine.
  • the effective cooling water heating by the heating part of a Peltier device can be performed.
  • the cooling water is selected by selecting the first path as described above as the path for circulating the cooling water in the circulation circuit. Can be heated by the internal combustion engine without being heated by the heating part of the Peltier element. For this reason, the heating of the heating part of the Peltier element can be stopped, and thereby unnecessary driving of the Peltier element can be avoided.
  • This hybrid vehicle is equipped with a motor generator and an internal combustion engine as a prime mover, and switches the prime mover to be used according to the running state and the running demand. Specifically, only the motor generator is used as a prime mover, only the internal combustion engine is used as a prime mover, or both the internal combustion engine and the motor generator are used as prime movers.
  • Such a hybrid vehicle air conditioner is provided with a cooler 2 for cooling the air sent to the passenger compartment 1 as shown in FIG.
  • the cooler 2 is a vapor compression heat pump.
  • the cooler 2 includes a compressor 3 that compresses the refrigerant, a condenser 4 that cools the refrigerant that has been compressed by the compressor 3 and that has been heated by outside air, an expansion valve 5 that expands the refrigerant cooled by the condenser 4,
  • An evaporator 6 is provided that exchanges heat between the refrigerant expanded by the expansion valve 5 and having its temperature lowered with the air sent to the passenger compartment 1.
  • the said air conditioner when the compressor 3 of the cooler 2 is driven and the refrigerant is circulated, the low-temperature refrigerant passes through the evaporator 6 and the air sent to the passenger compartment 1 is cooled by the refrigerant.
  • the air conditioner is provided with a circulation circuit 8 that circulates cooling water that exchanges heat with the internal combustion engine 7 and that heats the air sent to the passenger compartment 1 with the cooling water.
  • This circulation circuit 8 heat-exchanges the electric pump 9 for circulating the cooling water in the circuit 8 and the cooling water in the circuit 8 and the air sent to the vehicle interior 1 to exchange the air.
  • a heater core 10 that is heated by the cooling water.
  • the circulation circuit 8 includes a first path 8a for realizing the passage of the cooling water circulating inside the internal combustion engine 7, a second path 8b for realizing the bypass of the cooling water internal combustion engine 7, and a circulation circuit.
  • a switching valve 11 for switching a path for circulating the cooling water 8 to one of the first path 8a and the second path 8b.
  • either the first path 8 a or the second path 8 b is used as a path for circulating the cooling water of the circulation circuit 8.
  • the internal combustion engine 7 generates heat when the cooling water is circulating through the first path 8 a in the circulation circuit 8, the temperature of the cooling water is increased by receiving heat from the internal combustion engine 7.
  • the first path 8a includes a radiator 12 that exchanges heat between the cooling water and the outside air, and a thermostat 13 that prohibits or allows passage of the cooling water radiator 12 based on the temperature of the cooling water in the first path 8a. ing.
  • the thermostat 13 prohibits the passage of the cooling water radiator 12 when the temperature of the cooling water in the first path 8a is less than a predetermined determination value, while the temperature of the cooling water is equal to or higher than the determination value.
  • the cooling water radiator 12 is allowed to pass. Therefore, when the cooling water circulates in the circulation circuit 8 through the first path 8a, the cooling water is caused to flow to the radiator 12 when the temperature of the cooling water becomes equal to or higher than the determination value. And the heat exchange with cooling water and external air is performed in the radiator 12, the cooling water is cooled and the excessive temperature rise of the cooling water is suppressed.
  • the circulation circuit 8 is provided with a passage 14 that connects the upstream and downstream of the heater core 10 and a shut-off valve 15 that can shut off the flow of cooling water between the heater core 10 and the circulation circuit 8. It has been.
  • the shut-off valve 15 performs a switching operation so that cooling water selectively flows to the heater core 10 and the passage 14. Then, by flowing the cooling water through the passage 14 through the switching operation of the shut-off valve 15, the cooling water is not flowed to the heater core 10, and the heater core 10 blocks the flow of the cooling water to and from the circulation circuit 8. It will be in the state.
  • the temperature adjustment in the passenger compartment 1 by the air conditioner is realized by cooling the air sent to the passenger compartment 1 with the evaporator 6 of the cooler 2 or heating the air with the heater core 10 of the circulation circuit 8. Is done. Since the cooling water of the circulation circuit 8 passing through the heater core 10 receives the heat from the internal combustion engine 7 and rises in temperature, the heat of the internal combustion engine 7 is used to heat the air sent to the passenger compartment 1. Become. However, in a hybrid vehicle, there is a situation in which the operation of the internal combustion engine 7 is frequently stopped, such as when running on a motor generator. It becomes difficult to use.
  • a Peltier element 16 for heating the cooling water of the circulation circuit 8 is provided.
  • the Peltier element 16 includes a heating unit 16a that dissipates heat and a cooling unit 16b that absorbs heat, and the cooling water circulating in the circulation circuit 8 is heated by the heating unit 16a.
  • the Peltier element 16 is moved from the cooling unit 16b to the heating unit 16a.
  • the smaller the temperature difference between the cooling unit 16b and the heating unit 16a the more efficiently the heat transfer from the cooling unit 16b to the heating unit 16a, in other words, the heating of the cooling water by the heating unit 16a is performed. be able to.
  • the cooling water heated by the heating unit 16 a of the Peltier element 16 heats the air sent to the vehicle compartment 1 when passing through the heater core 10. Therefore, the Peltier element 16 can heat the air sent to the vehicle compartment 1 through the cooling water by heating the cooling water of the circulation circuit 8 with the heating part 16a.
  • the air conditioner is provided with a cooling water circuit 17 that circulates cooling water that exchanges heat with the cooling portion 16b of the Peltier element 16.
  • the cooling water circuit 17 guides the cooling water circulating therethrough to the radiator 12 of the circulation circuit 8 (first path 8a), and causes the radiator 12 to exchange heat between the cooling water and the outside air.
  • the cooling water circuit 17 shares a portion of the first path 8 a extending from the upstream side to the downstream side of the radiator 12 with the circulation circuit 8.
  • the cooling water circuit 17 is provided with an electric pump 18 for circulating the cooling water in the circuit 17.
  • the cooling water circuit 17 has a control valve 19 for prohibiting or allowing cooling water to flow between the portion corresponding to the cooling portion 16b of the Peltier element 16 and the shared portion of the first path 8a. Is provided. The passage of the cooling water is prohibited when the control valve 19 is closed, but is allowed when the control valve 19 is opened.
  • the cooling water of the cooling water circuit 17 When the cooling water of the cooling water circuit 17 is cooled by the cooling unit 16b of the Peltier element 16, the cooling water is supplied to the radiator 12 of the circulation circuit 8 (first path 8a) by opening the control valve 19 and driving the pump 18. If the heat is exchanged between the cooling water and the outside air by the radiator 12, the temperature of the cooling water in the cooling water circuit 17 is suppressed from becoming excessively low. For this reason, it is suppressed that the cooling part 16b of the Peltier device 16 heat-exchanged with the cooling water of the cooling water circuit 17 also falls too much.
  • the Peltier element 16 transfers heat from the cooling unit 16b to the heating unit 16a as the temperature difference between the heating unit 16a and the cooling unit 16b is smaller, in other words, heating the cooling water of the circulation circuit 8 by the heating unit 16a. Can be performed efficiently. Therefore, by suppressing the temperature drop of the cooling part 16b in the Peltier element 16, the temperature difference between the heating part 16a and the cooling part 16b of the Peltier element 16 is suppressed, and thereby the circulation circuit 8 by the heating part 16a of the Peltier element 16 The cooling water can be efficiently heated.
  • the air conditioner includes an electronic control device 20 mounted on a hybrid vehicle so as to perform various operation controls of the motor generator and the internal combustion engine 7.
  • the electronic control device 20 performs drive control of various devices in the air conditioner, that is, drive control of the compressor 3, the pump 9, the switching valve 11, the shutoff valve 15, the Peltier element 16, the pump 18, the control valve 19, and the like.
  • Air conditioning (temperature adjustment, etc.) of the passenger compartment 1 in the hybrid vehicle is performed through drive control of various devices of the air conditioner by the electronic control device 20.
  • the operation mode of the air conditioner is switched to one of the first to fifth modes.
  • the first to fifth modes of the air conditioner for performing air conditioning of the passenger compartment 1 will be described individually in detail.
  • the pump 9 of the circulation circuit 8 is driven to circulate the cooling water in the circuit 8, and the second path 8b is used as a path for circulating the cooling water.
  • the switching valve 11 is switched. Furthermore, the shutoff state of the heater core 10 with respect to the circulation circuit 8 is released through the switching operation of the shutoff valve 15, and the cooling water circulating in the circulation circuit 8 by driving the Peltier element 16 is heated by the heating unit 16 a of the Peltier element 16. To do.
  • the cooling water heated by the Peltier element 16 and having its temperature increased flows through the heater core 10.
  • the air sent to the passenger compartment 1 is heated by the cooling water, and the heated air is sent to the passenger compartment 1 to heat the passenger compartment 1.
  • the cooling water of the circulation circuit 8 is heated by the heating unit 16a of the Peltier element 16 through the driving of the Peltier element 16, the heat transfer from the cooling unit 16b to the heating unit 16a is performed in the Peltier element 16. Therefore, the temperature of the cooling part 16b is lowered.
  • the control valve 19 of the cooling water circuit 17 is opened, and the part corresponding to the cooling part 16b of the Peltier element 16 in the cooling water circuit 17 and the above-mentioned
  • the cooling water in the cooling water circuit 17 is circulated by allowing the cooling water to come and go between the common part with the one path 8 a and driving the pump 18.
  • the cooling water of the cooling water circuit 17 When the cooling water of the cooling water circuit 17 is circulated in this way, even if the cooling water is cooled by the cooling portion 16b of the Peltier element 16, heat is generated between the cooling water and the outside air when passing through the radiator 12. It is suppressed that the temperature of the cooling water is excessively lowered after the replacement. Furthermore, since the cooling water in which the temperature reduction is suppressed in this way and the cooling portion 16b of the Peltier element 16 are heat-exchanged, the temperature reduction of the cooling portion 16b is also suppressed.
  • the compressor 3 of the cooler 2 is in a drive stop state. For this reason, the air sent to the passenger compartment 1 is not cooled by the cooler 2.
  • This mode is used to heat the passenger compartment 1 when the hybrid vehicle motor generator and the internal combustion engine 7 are used together or when the internal combustion engine 7 is operated alone, in other words, when the internal combustion engine 7 is operated. Is called. Under such circumstances, since the heat generation from the internal combustion engine 7 increases, it becomes possible to use the internal combustion engine 7 as a heat source for heating the cabin 1 (temperature increase). Therefore, in the first mode, when the air sent to the passenger compartment 1 is heated to heat the passenger compartment 1, the air is heated using the heat of the internal combustion engine 7.
  • the pump 9 of the circulation circuit 8 is driven to circulate the cooling water in the circuit 8, and the first path 8a is used as a path for circulating the cooling water.
  • the switching valve 11 is switched. Further, the shutoff state of the heater core 10 with respect to the circulation circuit 8 is released through the switching operation of the shutoff valve 15.
  • the cooling water whose temperature has risen due to heat received from the internal combustion engine 7 flows through the heater core 10.
  • the air sent to the passenger compartment 1 is heated by the cooling water, and the heated air is sent to the passenger compartment 1 to heat the passenger compartment 1.
  • the thermostat 13 causes the cooling water radiator 12 will be allowed to pass. As a result, the cooling water circulating in the circulation circuit 8 is caused to flow to the radiator 12. Thus, since the cooling water that has flowed to the radiator 12 is cooled by the outside air, the temperature of the cooling water that circulates in the circulation circuit 8 is suppressed from rising excessively.
  • the Peltier element 16 In the second mode, the Peltier element 16 is stopped. For this reason, the cooling water circulating in the circulation circuit 8 is not heated by the heating part 16 a of the Peltier element 16. Even in the second mode, the compressor 3 of the cooler 2 is stopped. For this reason, the air sent to the passenger compartment 1 is not cooled by the cooler 2.
  • the cooling water is circulated in the circuit 8 by driving the pump 9 of the circulation circuit 8, and the switching valve 11 is switched so that the first path 8a is used as a path for circulating the cooling water.
  • the heater core 10 is shut off from the circulation circuit 8 through the switching operation of the shut-off valve 15 so that the high-temperature cooling water circulating in the circulation circuit 8 does not flow into the heater core 10.
  • This mode is for dehumidifying and heating the passenger compartment 1 when the hybrid vehicle motor generator and the internal combustion engine 7 are used in combination or when the internal combustion engine 7 is operated alone, that is, when the internal combustion engine 7 is operated.
  • the air sent to the passenger compartment 1 is heated in the same manner as in the second mode (FIG. 3), and in the passenger compartment 1 as in the third mode (FIG. 4). Cooling of the air sent is performed. Thereby, the dehumidification heating of the compartment 1 is performed similarly to the 4th mode.
  • This air conditioning routine is periodically executed through the electronic control unit 20 by, for example, a time interruption every predetermined time.
  • the operation mode of the air conditioner is switched to one of the first to fifth modes based on the presence / absence of various requests such as a cooling request, a heating request, and a dehumidification request for the passenger compartment 1.
  • the presence or absence of a cooling request or a heating request for the passenger compartment 1 can be determined based on, for example, the actual temperature in the passenger compartment 1, the target temperature of the passenger compartment set by the passenger, and the like.
  • the presence / absence of a dehumidification request in the passenger compartment 1 can be determined according to, for example, the operation position of a switch related to dehumidification operated by a passenger.
  • the air conditioner In the air conditioning routine, if there is a cooling request for the passenger compartment 1 (S101: NO), the air conditioner is operated in the third mode to cool the passenger compartment 1 (S110). On the other hand, if it is determined in S101 that there is no cooling request for the passenger compartment 1, it is determined whether there is a heating request for the passenger compartment 1 (S102). If an affirmative determination is made here, it is determined whether or not the vehicle is running with only the motor generator, in other words, whether or not it is difficult to heat the passenger compartment 1 using the heat of the internal combustion engine 7. (S103). If an affirmative determination is made in S103, it is determined whether or not there is a request for dehumidification of the passenger compartment 1 (S104).
  • the air conditioner is operated in the first mode to heat the passenger compartment 1 (S105). If the determination in S104 is negative, the air conditioner is in order to perform dehumidification heating of the passenger compartment 1. It is operated in the 4 mode (S106).
  • the electronic control unit 20 and the switching valve 11 switch the path for circulating the cooling water in the circulation circuit 8 to the second path 8b and the Peltier element 16 It functions as a control unit for heating the heating unit 16a.
  • the vehicle compartment 1 It is determined whether there is a request for dehumidification (S107). If the determination in S107 is affirmative, the air conditioner is operated in the second mode to heat the passenger compartment 1 (S108). If the determination in S107 is negative, the air conditioner is required to perform dehumidification heating of the passenger compartment 1. It is operated in the 5 mode (S109).
  • the electronic control unit 20 and the switching valve 11 switch the path for circulating the cooling water in the circulation circuit 8 to the first path 8a and the Peltier element 16 It functions as a control unit for heating the heating unit 16a.
  • the cooling is performed by the cooler 2 which is a vapor compression heat pump. Further, when heating the air sent to the passenger compartment 1 for temperature adjustment (air conditioning) of the passenger compartment 1, the heating is realized by using the heat of the internal combustion engine 7 or by the Peltier element 16. It is possible to do.
  • the thing provided in the conventional air conditioner can be utilized as the said cooler 2, it can avoid that the structure of an air conditioner changes significantly. Even when it is difficult to use the internal combustion engine 7 as a heat source for air conditioning of the passenger compartment 1 such as when running only with a motor generator, air sent to the passenger compartment 1 is transmitted by the Peltier element 16. Since it can heat, it becomes possible to air-condition a vehicle (heating). Therefore, in a vehicle in which it is difficult to use the internal combustion engine 7 as a heat source for air conditioning the passenger compartment, the passenger compartment can be air-conditioned without significantly changing the structure.
  • the cooling water is circulated through the circulation circuit 8. Can be collected and used for air conditioning (heating) of the passenger compartment 1.
  • the circulation circuit 8 includes a first path 8a for realizing the passage of the cooling water circulating inside the internal combustion engine 7 and a second path 8b for realizing the bypass of the cooling water internal combustion engine 7. And one of the first path 8a and the second path 8b is used as a path for circulating the cooling water.
  • the second path 8b is selected when the internal combustion engine 7 generates a small amount of heat
  • the first path 8a is selected when the internal combustion engine 7 generates a large amount of heat. It becomes possible to do.
  • the electronic control device 20 and the switching valve 11 are used.
  • the path for circulating the cooling water in the circulation circuit 8 is switched to the second path 8b.
  • the heating part 16a of the Peltier element 16 is heated, and the cooling water of the circulation circuit 8 is heated by the heating part 16a.
  • the electronic control device 20 and the switching valve 11 are used to circulate the circuit 8.
  • the path for circulating the cooling water at is switched to the first path 8a. Further, at this time, the heating of the heating part 16a of the Peltier element 16 is stopped, whereby the heating of the cooling water in the circulation circuit 8 by the heating part 16a is also stopped.
  • the second path 8b As described above as the path for circulating the cooling water in the circulation circuit 8 when the passenger compartment 1 is heated while the hybrid vehicle is running with the internal combustion engine 7 stopped.
  • the heat of the cooling water heated by the heating part 16 a of the Peltier element 16 is not taken away by the internal combustion engine 7. For this reason, the effective cooling water heating by the heating part 16a of the Peltier element 16 can be performed.
  • the first path 8a is selected as the path for circulating the cooling water in the circulation circuit 8 as described above.
  • the cooling water can be heated by the internal combustion engine 7 without being heated by the heating portion 16a of the Peltier element 16. For this reason, the heating of the heating part 16a of the Peltier element 16 can be stopped, and thereby unnecessary driving of the Peltier element 16 can be avoided.
  • the cooling water circuit 17 that circulates the cooling water that exchanges heat with the cooling unit 16b of the Peltier element 16 guides the cooling water to the radiator 12 of the circulation circuit 8, and the radiator 12 uses the cooling water and the outside air. Let the heat exchange occur. It is suppressed that the temperature of the cooling water in the cooling water circuit 17 becomes excessively low due to such heat exchange, and as a result, the temperature of the cooling portion 16b of the Peltier element 16 that exchanges heat with the cooling water is also suppressed from excessively decreasing. .
  • the Peltier element 16 is more efficient in transferring heat from the cooling unit 16b to the heating unit 16a, in other words, heating the cooling water in the circulation circuit 8 by the heating unit 16a. Can be done well. Therefore, by suppressing the temperature drop of the cooling part 16b in the Peltier element 16 as described above, the temperature difference between the heating part 16a of the Peltier element 16 and the cooling part 16b can be suppressed small, and the heating part of the Peltier element 16 Thus, the cooling water can be efficiently heated.
  • the cooling water circuit 17 is different from that of the first embodiment.
  • the cooling water circuit 17 is provided independently from the circulation circuit 8.
  • the cooling water circuit 17 cools various electric devices such as the motor generator 21 and the electronic device 22 such as an inverter with the cooling water circulating therethrough.
  • the motor generator 21 functions as a prime mover of the hybrid vehicle, and is driven and controlled by the electronic control unit 20.
  • the cooling water circuit 17 includes a heat exchanger 23 that causes the cooling water circulating therethrough to exchange heat between the cooling water and the outside air.
  • FIGS. 9 to 13 The first to fifth modes of the air conditioner are shown in FIGS. 9 to 13, respectively.
  • the cooling water in the cooling water circuit 17 is circulated through the drive of the pump 18 in any of the first to fifth modes.
  • various electric devices such as the motor generator 21 and the electronic device 22 such as an inverter in the hybrid vehicle are cooled by the cooling water of the cooling water circuit 17.
  • heat is transferred from the cooling unit 16b to the heating unit 16a by driving the Peltier element 16, in other words, the cooling water of the circulation circuit 8 by the heating unit 16a. Is heated. At this time, a temperature drop occurs in the cooling portion 16b of the Peltier element 16. Then, the cooling water whose temperature is reduced by heat exchange between the cooling unit 16b and the cooling water of the cooling water circuit 17 is used for cooling the electric devices (the motor generator 21 and the electronic device 22). On the other hand, since the cooling water circulating in the cooling water circuit 17 receives heat from the electric device, the temperature of the cooling water is prevented from excessively decreasing.
  • the following effects can be obtained. (5) In the first mode and the fourth mode of the air conditioner, even if the cooling water of the cooling water circuit 17 is cooled by the cooling unit 16b as the temperature of the cooling unit 16b of the Peltier element 16 decreases, Since the heat from the electric device is received, an excessive decrease in the temperature of the cooling water is suppressed. For this reason, it is suppressed that the cooling part 16b of the Peltier device 16 heat-exchanged with the said cooling water also falls too much.
  • the temperature difference between the heating unit 16a and the cooling unit 16b in the Peltier element 16 is suppressed to be small, and as a result, the heating by the heating unit 16a of the Peltier element 16 is efficiently performed. It becomes like this.
  • the temperature difference between the heating unit 16a and the cooling unit 16b of the Peltier element 16 can be suppressed small.
  • the cooling water of the circulation circuit 8 is efficiently heated by the heating portion 16a of the Peltier element 16.
  • each said embodiment can also be changed as follows, for example.
  • auxiliary heating by the Peltier element 16 of the cooling water in the circulation circuit 8 may be performed in the second mode or the fifth mode.
  • the second path 8b and the switching valve 11 in the circulation circuit 8 may be omitted, and the cooling water circulating in the circuit 8 may always pass through the internal combustion engine 7. In the first and second embodiments, it is not always necessary to exchange heat between the cooling unit 16 b of the Peltier element 16 and the cooling water of the cooling water circuit 17.
  • the air sent to the passenger compartment 1 may be directly heated by the heating unit 16a of the Peltier element 16.
  • SYMBOLS 1 Vehicle compartment, 2 ... Cooling machine, 3 ... Compressor, 4 ... Condenser, 5 ... Expansion valve, 6 ... Evaporator, 7 ... Internal combustion engine, 8 ... Circulation circuit, 9 ... Pump, 10 ... Heater core, 8a ... 1st path

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

 空調装置において、車室(1)に送られる空気の冷却は、蒸気圧縮式のヒートポンプである冷却機(2)によって行われる。また、上記空気の加熱は、内燃機関(7)の熱を利用して実現したり、ペルチェ素子(16)によって実現したりすることが可能とされる。冷却機(2)としては従来の空調装置に設けられていたものを利用することができるため、空調装置の構造が大幅に変わることを避けることができる。また、モータジェネレータのみでの走行時など、車室(1)の空調を行うための熱源として内燃機関(7)を利用することが困難な状況であっても、車室(1)に送られる空気をペルチェ素子(16)で加熱することができるため、車室の空調(暖房)を行うことが可能になる。従って、車室の空調を行うための熱源として内燃機関(7)を利用することが困難な車両において、構造を大幅に変えることなく車室の空調を行うことができる。

Description

車両の空調装置
 本発明は、車両の空調装置に関する。
 内燃機関を搭載した自動車等の車両では、車室に送られる空気を冷却機で冷却したり、同空気を内燃機関の熱を利用して加熱したりすることによって、車室内の温度を調節するようにしていた。しかし近年では、車室の空調(温度調節)を行うための熱源として内燃機関を利用することが困難な車両が増えてきている。こうした車両としては、例えば、原動機として内燃機関を搭載せずモータのみを搭載した電気自動車や、原動機としてモータと内燃機関とを搭載して同機関の運転を頻繁に停止させるハイブリッド自動車などがあげられる。
 このような実情から、例えば特許文献1に示されるペルチェ素子を用いて車室の空調を行うことが考えられる。同ペルチェ素子は、吸熱を行う冷却部と放熱を行う加熱部とを備えており、電極の極性を反転させることによって上記冷却部と上記放熱部とを入れ替えることが可能となっている。そして、車室の温度を低下させるべく空調装置によって冷房を行う際には、同車室に送られる空気がペルチェ素子の冷却部によって冷却される。一方、車室の温度を上昇させるべく空調装置によって暖房を行う際には、ペルチェ素子における電極の極性が上記冷房の場合から反転され、それによって車室に送られる空気がペルチェ素子の加熱部によって加熱される。
特開平10-35268公報(段落[0012]~[0014]、図1)
 上述したようにペルチェ素子を用いて車室の空調を行うようにすれば、車室の空調を行うための熱源として内燃機関を利用することが困難な車両であっても、車室の空調(暖房)を行うことができるようにはなる。
 ただし、こうしたペルチェ素子を用いた空調装置では、車室に送られる空気を冷却機で冷却したり内燃機関の熱を利用して加熱したりしていた従来の空調装置に対し、装置の構造が大幅に変わることは避けられない。このように空調装置の構造が大幅に変わると、同装置を製造するに当たって従来の設備等を活用することができなくなり、装置を製造するための設備等を新しくしなければならなくなる。その結果、製造のための設備等を新しくしなければならなくなる分、空調装置を製造する際のコストアップが生じるという問題がある。
 このため、車室に送られる空気を冷却機で冷却したり内燃機関の熱を利用して加熱したりしていた従来の空調装置を利用しつつ、車室の空調を行うための熱源として内燃機関を利用することが困難な車両において車室の空調(暖房)を行えるようにすることが望まれている。
 本発明はこのような実情に鑑みてなされたものであって、その目的は、車室の空調を行うための熱源として内燃機関を利用することが困難な車両において、構造を大幅に変えることなく車室の空調を行うことができる車両の空調装置を提供することにある。
 上記目的を達成するため、本発明に従う車両の空調装置では、車室の温度を調節すべく同車室に送られる空気の冷却や加熱を行う際、同空気の冷却が冷却機によって行われるとともに、同空気の加熱がペルチェ素子によって行われるようにしている。ここで、上記冷却機としては従来の空調装置に設けられていたものを利用することができるため、空調装置の構造が大幅に変わることを避けることができる。また、車室の空調を行うための熱源として内燃機関を利用することが困難な車両であっても、車室に送られる空気をペルチェ素子で加熱することができるため、車室の空調(暖房)を行うことが可能になる。従って、車室の空調を行うための熱源として内燃機関を利用することが困難な車両において、構造を大幅に変えることなく車室の空調を行うことができる。
 なお、従来の空調装置では、車両に搭載される内燃機関と熱交換される冷却水を循環させる循環回路を備え、その冷却水によって車室に送られる空気を加熱することが行われていた。従って、内燃機関を搭載した車両では、上記ペルチェ素子による車室に送られる空気の加熱の仕方として、同ペルチェ素子の加熱部により上記循環回路の冷却水を加熱し、その冷却水を通じて上記空気を加熱するという仕方を採用することが可能である。この場合、従来の空調装置に設けられていた上記循環回路を利用して、車室に送られる空気のペルチェ素子による加熱を実現することができる。このため、空調装置の構造が従来から大幅に変わることを避けることができる。また、内燃機関が運転されて熱を発しているとき、その熱を循環回路を循環する冷却水により回収して車室の空調(暖房)に利用することもできる。
 本発明の一態様では、上記循環回路は、そこを循環する冷却水の内燃機関の内部の通過を実現する第1経路と、同冷却水の内燃機関のバイパスを実現する第2経路とを備えており、冷却水を循環させるための経路として上記第1経路と上記第2経路との一方を用いる。この場合、上記循環回路で冷却水を循環させるための経路として、内燃機関の発熱が少ないときに上記第2経路を選択する一方、内燃機関の発熱が多いときに上記第1経路を選択することが可能になる。内燃機関の発熱が少ないとき、上記循環回路で冷却水を循環させるための経路として上述したように第2経路を選択すれば、ペルチェ素子の加熱部により加熱された冷却水の熱が内燃機関によって奪われることはなくなるため、同ペルチェ素子の加熱部による効果的な冷却水の加熱を行うことができる。また、内燃機関の発熱が多いとき、上記循環回路で冷却水を循環させるための経路として上述したように第1経路を選択すれば、冷却水を内燃機関によって加熱することができるため、ペルチェ素子の加熱部による冷却水の加熱を停止したり、同加熱の際の熱量を小さくしたりすることができる。
 本発明の一態様では、上記循環回路は、そこを循環する冷却水の温度が予め定められた判定値以上のとき、その冷却水を流して同冷却水と外気との熱交換を行わせるラジエータを備える。また、ペルチェ素子は、冷却水回路を循環する冷却水との間で熱交換を行う冷却部を備える。そして、冷却水回路は、そこを循環する冷却水を上記循環回路のラジエータに導いて同ラジエータにて同冷却水と外気との熱交換を行わせる。こうした熱交換により冷却水回路の冷却水の温度が過度に低くなることは抑制され、ひいては同冷却水と熱交換されるペルチェ素子の冷却部も過度に温度低下することが抑制される。ここで、ペルチェ素子は、その加熱部による加熱が行われるとき、同素子の冷却部から加熱部への熱の移動が行われるものである。このため、ペルチェ素子では、冷却部と加熱部との温度差が小さいほど、冷却部から加熱部への熱の移動、言い換えれば加熱部による加熱を効率よく行うことができる。従って、上述したようにペルチェ素子における冷却部の温度低下を抑制することで、ペルチェ素子の加熱部と冷却部との温度差を小さく抑えることができ、ペルチェ素子の加熱部による加熱を効率よく行うことができる。
 本発明の一態様では、ペルチェ素子は、冷却水回路を循環して車両に搭載された電気機器を冷却する冷却水との間で熱交換を行う冷却部を備える。ここで、ペルチェ素子は、その加熱部による加熱が行われるとき、同素子の冷却部から加熱部への熱の移動が行われるため、冷却部では温度低下が生じる。このペルチェ素子の冷却部と冷却水回路の冷却水との熱交換により温度低下した同冷却水を上記電気機器の冷却に用いることで、その冷却を効果的に行うことができる。また、冷却水回路の冷却水は上記電気機器からの熱を受けて過度に温度低下することが抑制されるため、ペルチェ素子の冷却部も過度に温度低下することは抑制される。同ペルチェ素子では、冷却部と加熱部との温度差が小さいほど、冷却部から加熱部への熱の移動、言い換えれば加熱部による加熱を効率よく行うことが可能になる。従って、上述したようにペルチェ素子における冷却部の温度低下が抑制されることで、ペルチェ素子の加熱部と冷却部との温度差が小さく抑えられる。その結果、ペルチェ素子の加熱部による加熱が効率よく行われるようになる。
 本発明の一態様では、上記冷却水回路は、そこを循環する冷却水を流して同冷却水と外気との熱交換を行わせる熱交換器を備える。この構成により、冷却水回路の冷却水がペルチェ素子の冷却部により冷却されている状態において、電気機器からの受熱だけでは冷却水回路の冷却水の温度低下を抑制しきれない場合には、冷却水回路の熱交換器での上記冷却水と外気との熱交換により同冷却水の温度が過度に低くなることは抑制される。このため、同冷却水と熱交換されるペルチェ素子の冷却部も過度に温度低下することが抑制される。このようにペルチェ素子における冷却部の温度低下が抑制されることで、ペルチェ素子の加熱部と冷却部との温度差が小さく抑えられる。その結果、ペルチェ素子の加熱部による加熱が効率よく行われるようになる。
 本発明の一態様では、内燃機関を停止させた状態での車両の走行時に車室の暖房を行う際、循環回路における冷却水を循環させるための経路を第2経路に切り換えるとともにペルチェ素子の加熱部を加熱させる制御部を備える。この制御部は、内燃機関を運転した状態での車両の走行時に車室の暖房を行う際には、循環回路における冷却水を循環させるための経路を第1経路に切り換えるとともに、ペルチェ素子の加熱部の加熱を停止させる。内燃機関を停止させた状態での車両の走行時に車室の暖房を行う際、循環回路で冷却水を循環させるための経路として上述したように第2経路を選択することで、ペルチェ素子の加熱部により加熱された冷却水の熱が内燃機関によって奪われることはなくなる。このため、ペルチェ素子の加熱部による効果的な冷却水の加熱を行うことができる。また、内燃機関を運転した状態での車両の走行時に車室の暖房を行う際、循環回路で冷却水を循環させるための経路として上述したように第1経路を選択することで、上記冷却水をペルチェ素子の加熱部で加熱しなくても内燃機関によって加熱することができる。このため、ペルチェ素子の加熱部の加熱を停止することができ、それによってペルチェ素子の無駄な駆動を回避することができる。
第1実施形態の空調装置全体を示す略図。 同空調装置における第1モードを示す略図。 同空調装置における第2モードを示す略図。 同空調装置における第3モードを示す略図。 同空調装置における第4モードを示す略図。 同空調装置における第5モードを示す略図。 車室の空調を行う手順を示すフローチャート。 第2実施形態の空調装置全体を示す略図。 同空調装置における第1モードを示す略図。 同空調装置における第2モードを示す略図。 同空調装置における第3モードを示す略図。 同空調装置における第4モードを示す略図。 同空調装置における第5モードを示す略図。
 [第1実施形態]
 以下、本発明を、ハイブリッド自動車の空調装置に具体化した第1実施形態について、図1~図7を参照して説明する。
 このハイブリッド自動車は、モータジェネレータと内燃機関とを原動機として搭載しており、走行状態や走行要求に応じて使用する原動機を切り換える。詳しくは、モータジェネレータのみを原動機として使用したり、内燃機関のみを原動機として使用したり、内燃機関とモータジェネレータとの両方を原動機として使用したりする。
 こうしたハイブリッド自動車の空調装置には、図1に示すように、車室1に送られる空気を冷却する冷却機2が設けられている。この冷却機2は、蒸気圧縮式のヒートポンプである。同冷却機2は、冷媒を圧縮するコンプレッサ3と、そのコンプレッサ3で圧縮されて昇温した冷媒を外気により冷却するコンデンサ4と、そのコンデンサ4で冷却された冷媒を膨張させる膨張弁5と、その膨張弁5で膨張して温度低下した冷媒を車室1に送られる空気との間で熱交換させるエバポレータ6とを備えている。このため、上記空調装置では、冷却機2のコンプレッサ3を駆動して冷媒を循環させると、エバポレータ6を低温の冷媒が通過して車室1に送られる空気が同冷媒によって冷却される。
 また、上記空調装置には、内燃機関7と熱交換される冷却水を循環させるとともに車室1に送られる空気を同冷却水によって加熱する循環回路8が設けられている。この循環回路8は、同回路8内の冷却水を循環させるための電動式のポンプ9と、同回路8内の冷却水と車室1に送られる空気とを熱交換させることで同空気を上記冷却水によって加熱するヒータコア10とを備えている。また、循環回路8は、そこを循環する冷却水の内燃機関7の内部の通過を実現する第1経路8aと、上記冷却水の内燃機関7のバイパスを実現する第2経路8bと、循環回路8の冷却水を循環させるための経路を第1経路8a及び第2経路8bのうちのいずれか一方に切り換える切換弁11とを備えている。この切換弁11の切り換え動作により、第1経路8aと第2経路8bとのいずれか一方が循環回路8の冷却水を循環させるための経路として用いられる。そして、循環回路8において第1経路8aを通過して冷却水が循環しているときに内燃機関7が熱を発すると、その冷却水が内燃機関7からの熱を受けることによって温度上昇する。
 第1経路8aは、冷却水を外気と熱交換させるラジエータ12と、第1経路8aの冷却水の温度に基づき同冷却水のラジエータ12の通過を禁止したり許容したりするサーモスタット13とを備えている。サーモスタット13は、第1経路8a内の冷却水の温度が予め定められた判定値未満のときに上記冷却水のラジエータ12の通過を禁止する一方、上記冷却水の温度が判定値以上のときに同冷却水のラジエータ12の通過を許容する。従って、冷却水が第1経路8aを通って循環回路8を循環する際、その冷却水の温度が上記判定値以上になると、同冷却水がラジエータ12に流されるようになる。そして、ラジエータ12にて冷却水と外気との熱交換が行われることで、その冷却水が冷却されて同冷却水の過度の温度上昇が抑制される。
 循環回路8には、ヒータコア10の上流と下流とを繋ぐ通路14、及び、ヒータコア10を循環回路8との間での冷却水の流通を遮断した状態とすることが可能な遮断弁15が設けられている。この遮断弁15は、ヒータコア10と通路14とに対して選択的に冷却水を流すべく切り換え動作する。そして、遮断弁15の切り換え動作を通じて通路14に冷却水を流すことで、ヒータコア10に同冷却水が流されることはなくなり、同ヒータコア10は循環回路8との間での冷却水の流通が遮断された状態となる。一方、遮断弁15の切り換え動作を通じて通路14に冷却水が流されないようにすると、ヒータコア10に同冷却水が流されるようになり、同ヒータコア10の循環回路8に対する遮断状態が解除される。従って、循環回路8を循環する冷却水の温度が高いとき、ヒータコア10の循環回路8に対する遮断状態を解除して同ヒータコア10に冷却水を流すと、車室1に送られる空気が同冷却水によって加熱されるようになる。
 上記空調装置での車室1内の温度調節は、車室1に送られる空気を冷却機2のエバポレータ6で冷却したり、同空気を循環回路8のヒータコア10で加熱したりすることによって実現される。上記ヒータコア10を通過する循環回路8の冷却水は内燃機関7からの熱を受けて温度上昇するため、上記車室1に送られる空気の加熱には内燃機関7の熱が利用されることとなる。ただし、ハイブリッド自動車ではモータジェネレータでの走行時など内燃機関7の運転を頻繁に停止させる状況が生じ、そうした状況のもとでは車室1の温度調節(空調)を行うための熱源として内燃機関7を利用することが困難になる。このため、上記空調装置では、車室1の温度調節を行うための熱源として内燃機関7を利用することが困難な状況のもとでも、車室1に送られる空気を加熱することができるよう循環回路8の冷却水を加熱するペルチェ素子16が設けられている。
 ペルチェ素子16は、放熱を行う加熱部16aと吸熱を行う冷却部16bとを備えており、その加熱部16aによって循環回路8内を循環する冷却水を加熱する。同ペルチェ素子16は、その加熱部16aによる冷却水の加熱が行われるとき、冷却部16bから加熱部16aへの熱の移動が行われるものである。このため、ペルチェ素子16では、冷却部16bと加熱部16aとの温度差が小さいほど、冷却部16bから加熱部16aへの熱の移動、言い換えれば加熱部16aによる冷却水の加熱を効率よく行うことができる。こうしたペルチェ素子16の加熱部16aにより加熱された冷却水は、ヒータコア10を通過する際に車室1に送られる空気を加熱する。従って、ペルチェ素子16は、その加熱部16aで循環回路8の冷却水を加熱することにより、同冷却水を通じて車室1に送られる空気を加熱することが可能になる。
 上記空調装置には、ペルチェ素子16の冷却部16bと熱交換される冷却水を循環させる冷却水回路17が設けられている。冷却水回路17は、そこを循環する冷却水を循環回路8(第1経路8a)のラジエータ12に導いて同ラジエータ12にて上記冷却水と外気との熱交換を行わせるものである。そして、冷却水回路17は、第1経路8aにおけるラジエータ12の上流から下流に亘る部分を循環回路8と共有している。この冷却水回路17には、同回路17内の冷却水を循環させるための電動式のポンプ18が設けられている。また、冷却水回路17には、ペルチェ素子16の冷却部16bに対応した部分と上記第1経路8aとの共有部分との間での冷却水の行き来を禁止したり許容したりする制御弁19が設けられている。上記冷却水の行き来は、制御弁19の閉弁によって禁止される一方、同制御弁19の開弁時には許容される。
 冷却水回路17の冷却水がペルチェ素子16の冷却部16bによって冷却されるとき、制御弁19の開弁及びポンプ18の駆動により、上記冷却水を循環回路8(第1経路8a)のラジエータ12に導いて同ラジエータ12にて同冷却水と外気との熱交換を行わせれば、冷却水回路17の冷却水の温度が過度に低くなることは抑制される。このため、冷却水回路17の冷却水と熱交換されるペルチェ素子16の冷却部16bも過度に温度低下することが抑制される。ペルチェ素子16は、上述したように加熱部16aと冷却部16bとの温度差が小さいほど冷却部16bから加熱部16aへの熱の移動、言い換えれば加熱部16aによる循環回路8の冷却水の加熱を効率よく行うことが可能になる。従って、ペルチェ素子16における冷却部16bの温度低下を抑制することで、ペルチェ素子16の加熱部16aと冷却部16bとの温度差を小さく抑え、それによってペルチェ素子16の加熱部16aによる循環回路8の冷却水の加熱を効率よく行うことができる。
 上記空調装置は、モータジェネレータや内燃機関7の各種運転制御等を行うべくハイブリッド自動車に搭載された電子制御装置20を備えている。この電子制御装置20は、空調装置における各種機器の駆動制御、すなわちコンプレッサ3、ポンプ9、切換弁11、遮断弁15、ペルチェ素子16、ポンプ18、及び制御弁19等の駆動制御を行う。こうした電子制御装置20による空調装置の各種機器の駆動制御を通じて、ハイブリッド自動車における車室1の空調(温度調節等)が行われる。なお、このハイブリッド自動車では車室1の空調を行うに当たり、空調装置の動作モードが第1~第5モードのうちのいずれかに切り換えられる。以下、車室1の空調を行うための空調装置の第1~第5モードについて個別に詳しく説明する。
 [第1モード]
 このモードは、ハイブリッド自動車のモータジェネレータのみによる走行時、言い換えれば内燃機関7を停止させた状態での走行時に車室1を暖房するために行われる。ハイブリッド自動車のモータジェネレータのみによる走行時には、内燃機関7からの発熱が少なくなることから、車室1の暖房(温度上昇)を行うための熱源として内燃機関7を利用することが困難になる。このため、第1モードでは、車室1に送られる空気を加熱して同車室1を暖房する際、その空気の加熱がペルチェ素子16によって行われる。
 具体的には、図2に示すように、循環回路8のポンプ9を駆動して同回路8内の冷却水を循環させるとともに、同冷却水を循環させる経路として第2経路8bが用いられるよう切換弁11を切り換え動作させる。更に、遮断弁15の切り換え動作を通じてヒータコア10の循環回路8に対する遮断状態が解除されるとともに、ペルチェ素子16を駆動して循環回路8を循環する冷却水を同ペルチェ素子16の加熱部16aで加熱する。以上により、ペルチェ素子16によって加熱されて温度上昇した冷却水がヒータコア10を流れる。その結果、車室1に送られる空気が上記冷却水によって加熱され、同加熱された空気が車室1に送られることで同車室1が暖房される。
 また、上述したペルチェ素子16の駆動を通じて循環回路8の冷却水がペルチェ素子16の加熱部16aによって加熱されているとき、同ペルチェ素子16では冷却部16bから加熱部16aへの熱の移動が行われることから、その冷却部16bの温度が低下するようになる。同冷却部16bの温度が過度に低下することを避けるため、このときには冷却水回路17の制御弁19を開弁して冷却水回路17におけるペルチェ素子16の冷却部16bに対応した部分と上記第1経路8aとの共有部分との間での冷却水の行き来を許容するとともにポンプ18を駆動することで、冷却水回路17内の冷却水を循環させる。
 このように冷却水回路17の冷却水を循環させると、その冷却水がペルチェ素子16の冷却部16bによって冷却されるとしても、同冷却水がラジエータ12を通過する際に外気との間で熱交換されて同冷却水の温度が過度に低下することは抑制される。更に、このように温度低下が抑制される冷却水とペルチェ素子16の冷却部16bとが熱交換されるため、その冷却部16bが過度に温度低下することも抑制される。従って、同冷却部16bの温度低下によりペルチェ素子16の加熱部16aと冷却部16bとの温度差が大きくなることを抑制でき、ひいてはペルチェ素子16での循環回路8の冷却水の加熱を効率よく行うことができるようになる。
 なお、第1モードでは、冷却機2のコンプレッサ3は駆動停止状態とされる。このため、車室1に送られる空気が冷却機2により冷却されることはない。
 [第2モード]
 このモードは、ハイブリッド自動車のモータジェネレータと内燃機関7との併用による走行時もしくは同機関7のみによる走行時、言い換えれば内燃機関7を運転した状態での走行時に車室1を暖房するために行われる。こうした状況のもとでは、内燃機関7からの発熱が多くなることから、車室1の暖房(温度上昇)を行うための熱源として内燃機関7を利用することが可能になる。このため、第1モードでは、車室1に送られる空気を加熱して同車室1を暖房する際、その空気の加熱が内燃機関7の熱を利用して行われる。
 具体的には、図3に示すように、循環回路8のポンプ9を駆動して同回路8内の冷却水を循環させるとともに、同冷却水を循環させる経路として第1経路8aが用いられるよう切換弁11を切り換え動作させる。更に、遮断弁15の切り換え動作を通じてヒータコア10の循環回路8に対する遮断状態が解除される。以上により、内燃機関7からの受熱により温度上昇した冷却水がヒータコア10を流れる。その結果、車室1に送られる空気が上記冷却水によって加熱され、同加熱された空気が車室1に送られることで車室1が暖房される。
 循環回路8を循環する冷却水が内燃機関7からの受熱等を通じて温度上昇することにより、第1経路8aを通過する冷却水の温度が上記判定値以上になると、サーモスタット13が同冷却水のラジエータ12の通過を許容するようになる。その結果、循環回路8を循環する冷却水がラジエータ12に流される。このようにラジエータ12に流された冷却水は外気により冷却されることから、循環回路8を循環する冷却水の温度が過度に上昇することは抑制される。
 なお、第2モードでは、ペルチェ素子16は駆動停止状態とされる。このため、循環回路8を循環する冷却水がペルチェ素子16の加熱部16aによって加熱されることはない。また、第2モードでも、冷却機2のコンプレッサ3は駆動停止状態とされる。このため、車室1に送られる空気が冷却機2により冷却されることはない。
 [第3モード]
 このモードは、車室1を冷房する際に行われる。具体的には、図4に示すように、冷却機2のコンプレッサ3を駆動して同冷却機2の冷媒を循環させることにより、エバポレータ6を低温の冷媒が通過して車室1に送られる空気が同冷媒によって冷却されるようにする。そして、このように冷却された空気が車室1に送られることで同車室1が冷房されるようになる。
 なお、第3モードでは、車室1に送られる空気の加熱は行われないため、ペルチェ素子16によって循環回路8の冷却水を加熱する必要はないことから、同ペルチェ素子16が駆動停止状態とされる。また、ハイブリッド自動車のモータジェネレータのみによる走行時には、循環回路8のポンプ9の駆動が停止されて同回路8での冷却水の循環が停止される。
 一方、ハイブリッド自動車のモータジェネレータと内燃機関7との併用による走行時、もしくは内燃機関7のみによる走行時には、内燃機関7の温度の過上昇を抑制すべく同機関を冷却する必要が生じる。このため、循環回路8のポンプ9の駆動を通じて同回路8内での冷却水の循環が行われるとともに、同冷却水を循環させる経路として第1経路8aが用いられるよう切換弁11が切り換え動作される。なお、このときには循環回路8を循環する高温の冷却水がヒータコア10に流れないよう、遮断弁15の切り換え動作を通じてヒータコア10が循環回路8に対し遮断状態とされる。
 [第4モード]
 このモードは、ハイブリッド自動車のモータジェネレータのみによる走行時、言い換えれば内燃機関7を停止させた状態での走行時に、車室1を除湿暖房するために行われる。具体的には、図5に示すように、第1モード(図2)と同様に車室1に送られる空気の加熱が行われるとともに、第3モード(図4)と同様に車室1に送られる空気の冷却が行われる。その結果、車室1に送られる空気は、ヒータコア10にて加熱された状態でエバポレータ6にて除湿されるようになり、それによって温度上昇し且つ水分の少ない状態となる。こうした空気を車室1に送ることで同車室1の除湿暖房が行われる。
 [第5モード]
 このモードは、ハイブリッド自動車のモータジェネレータと内燃機関7との併用による走行時もしくは同機関7のみによる走行時、言い換えれば内燃機関7を運転した状態での走行時に、車室1を除湿暖房するために行われる。具体的には、図6に示すように、第2モード(図3)と同様に車室1に送られる空気の加熱が行われるとともに、第3モード(図4)と同様に車室1に送られる空気の冷却が行われる。これにより、第4モードと同様に車室1の除湿暖房が行われる。
 次に、車室1の空調(温度調節等)の実行手順について、空調ルーチンを示す図7のフローチャートを参照して説明する。この空調ルーチンは、電子制御装置20を通じて、例えば所定時間毎の時間割り込みにて周期的に実行される。
 同ルーチンでは、車室1の冷房要求、暖房要求、及び除湿要求といった各種要求の有無に基づき、空調装置の動作モードが第1~第5モードのうちのいずれかに切り換えられる。なお、車室1の冷房要求や暖房要求の有無は、例えば、同車室1内の実際の温度、及び、乗員により設定される車室の目標温度等に基づいて判断することが可能である。また、車室1の除湿要求の有無は、例えば、乗員により操作される除湿に関係するスイッチの操作位置等に応じて判断することが可能である。
 空調ルーチンにおいては、車室1の冷房要求があれば(S101:NO)、車室1の冷房を行うべく空調装置が第3モードで動作される(S110)。
 一方、S101で車室1の冷房要求がない旨判断されると、車室1の暖房要求があるか否かが判断される(S102)。ここで肯定判定であれば、モータジェネレータのみでの走行時であるか否か、言い換えれば内燃機関7の熱を利用しての車室1の暖房が困難な状況であるか否かが判断される(S103)。このS103で肯定判定がなされると、車室1の除湿要求があるか否かが判断される(S104)。そして、S104で肯定判定であれば車室1の暖房を行うべく空調装置が第1モードで動作され(S105)、S104で否定判定であれば車室1の除湿暖房を行うべく空調装置が第4モードで動作される(S106)。なお、空調装置が第1モードまたは第4モードで動作するとき、電子制御装置20及び切換弁11は、循環回路8における冷却水を循環させるための経路を第2経路8bに切り換えるとともにペルチェ素子16の加熱部16aを加熱させる制御部として機能する。
 上記S103で否定判定、すなわちモータジェネレータのみでの走行時ではなく、モータジェネレータと内燃機関7との併用による走行時、もしくは内燃機関7のみでの走行時である旨判断された場合、車室1の除湿要求があるか否かが判断される(S107)。そして、S107で肯定判定であれば車室1の暖房を行うべく空調装置が第2モードで動作され(S108)、S107で否定判定であれば車室1の除湿暖房を行うべく空調装置が第5モードで動作される(S109)。なお、空調装置が第2モードまたは第5モードで動作するとき、電子制御装置20及び切換弁11は、循環回路8における冷却水を循環させるための経路を第1経路8aに切り換えるとともにペルチェ素子16の加熱部16aを加熱させる制御部として機能する。
 以上詳述した本実施形態によれば、以下に示す効果が得られるようになる。
 (1)車室1の温度調節(空調)のために同車室1に送られる空気を冷却する場合、その冷却は蒸気圧縮式のヒートポンプである冷却機2によって行われる。また、車室1の温度調節(空調)のために同車室1に送られる空気を加熱する場合、その加熱については内燃機関7の熱を利用して実現したり、ペルチェ素子16によっても実現したりすることが可能である。ここで、上記冷却機2としては従来の空調装置に設けられていたものを利用することができるため、空調装置の構造が大幅に変わることを避けることができる。また、モータジェネレータのみでの走行時など、車室1の空調を行うための熱源として内燃機関7を利用することが困難な状況であっても、車室1に送られる空気をペルチェ素子16で加熱することができるため、車室の空調(暖房)を行うことが可能になる。従って、車室の空調を行うための熱源として内燃機関7を利用することが困難な車両において、構造を大幅に変えることなく車室の空調を行うことができる。
 (2)内燃機関7と熱交換される冷却水を循環させる循環回路(本実施形態の循環回路8に相当)を設けること、及び同回路の冷却水の熱で車室1に送られる空気を加熱することは、従来の空調装置においても行われていた。この実施形態の空調装置では、ペルチェ素子16の加熱部16aで循環回路8の冷却水を加熱するようにしている。このため、車室1に送られる空気は、上記冷却水を通じてペルチェ素子16の加熱部16aで加熱されるようになる。この場合、従来の空調装置にも設けられていた上記循環回路を利用して、車室1に送られる空気のペルチェ素子16による加熱を実現することができる。このため、空調装置の構造が従来から大幅に変わることを避けることができる。また、モータジェネレータと内燃機関7との併用による走行時や内燃機関7のみでの走行時など、内燃機関7が運転されて熱を発しているとき、その熱を循環回路8で循環する冷却水により回収して車室1の空調(暖房)に利用することもできる。
 (3)上記循環回路8は、そこを循環する冷却水の内燃機関7の内部の通過を実現する第1経路8aと、同冷却水の内燃機関7のバイパスを実現する第2経路8bとを備えており、冷却水を循環させるための経路として上記第1経路8aと上記第2経路8bとの一方を用いる。この場合、循環回路8で冷却水を循環させるための経路として、内燃機関7の発熱が少ないときに第2経路8bを選択する一方、内燃機関7の発熱が多いときに第1経路8aを選択することが可能になる。
 具体的には、内燃機関7を停止させた状態(内燃機関7の発熱が少ない状態)でのハイブリッド自動車の走行時に車室1の暖房を行う際には、電子制御装置20及び切換弁11により、循環回路8における冷却水を循環させるための経路が第2経路8bに切り換えられる。更に、このときにはペルチェ素子16の加熱部16aが加熱され、その加熱部16aにより循環回路8の冷却水が加熱される。また、内燃機関7を運転した状態(内燃機関7の発熱が多い状態)でのハイブリッド自動車の走行時に車室1の暖房を行う際には、電子制御装置20及び切換弁11により、循環回路8における冷却水を循環させるための経路が第1経路8aに切り換えられる。更に、このときにはペルチェ素子16の加熱部16aの加熱が停止され、それによって加熱部16aによる循環回路8の冷却水の加熱も停止される。
 内燃機関7を停止させた状態でのハイブリッド自動車の走行時に車室1の暖房を行う際、循環回路8で冷却水を循環させるための経路として上述したように第2経路8bを選択することで、ペルチェ素子16の加熱部16aにより加熱された冷却水の熱が内燃機関7によって奪われることはなくなる。このため、ペルチェ素子16の加熱部16aによる効果的な冷却水の加熱を行うことができる。また、内燃機関7を運転した状態でのハイブリッド自動車の走行時に車室1の暖房を行う際、循環回路8で冷却水を循環させるための経路として上述したように第1経路8aを選択することで、上記冷却水をペルチェ素子16の加熱部16aで加熱しなくても内燃機関7によって加熱することができる。このため、ペルチェ素子16の加熱部16aの加熱を停止することができ、それによってペルチェ素子16の無駄な駆動を回避することができる。
 (4)ペルチェ素子16の冷却部16bと熱交換する冷却水を循環させる冷却水回路17は、その冷却水を循環回路8のラジエータ12に導いて同ラジエータ12にて同冷却水と外気との熱交換を行わせる。こうした熱交換により冷却水回路17の冷却水の温度が過度に低くなることは抑制され、ひいては同冷却水と熱交換されるペルチェ素子16の冷却部16bも過度に温度低下することが抑制される。このペルチェ素子16は、冷却部16bと加熱部16aとの温度差が小さいほど、冷却部16bから加熱部16aへの熱の移動、言い換えれば加熱部16aによる循環回路8の冷却水の加熱を効率よく行うことができる。従って、上述したようにペルチェ素子16における冷却部16bの温度低下を抑制することで、ペルチェ素子16の加熱部16aと冷却部16bとの温度差を小さく抑えることができ、ペルチェ素子16の加熱部による上記冷却水の加熱を効率よく行うことができる。
 [第2実施形態]
 次に、本発明の第2実施形態を図8~図13に基づき説明する。
 図8に示すように、この実施形態の空調装置では、冷却水回路17が第1実施形態と異なっている。同冷却水回路17は、循環回路8から独立して設けられている。また、冷却水回路17は、そこを循環する冷却水により、モータジェネレータ21やインバータ等の電子機器22といった各種の電気機器を冷却する。上記モータジェネレータ21は、ハイブリッド自動車の原動機として機能するものであり、電子制御装置20によって駆動制御される。更に、冷却水回路17は、そこを循環する冷却水を流して同冷却水と外気との熱交換を行わせる熱交換器23を備えている。
 ここで、上記空調装置の第1~第5モードにおける第1実施形態と異なる部分について詳しく説明する。上記空調装置の第1~第5モードをそれぞれ図9~図13に示す。これらの図から分かるように、第1~第5モードのいずれにおいても、冷却水回路17内の冷却水がポンプ18の駆動を通じて循環される。これにより、ハイブリッド自動車におけるモータジェネレータ21やインバータ等の電子機器22といった各種の電気機器が、冷却水回路17の冷却水によって冷却される。
 また、第1モード(図9)及び第4モード(図12)では、ペルチェ素子16の駆動により冷却部16bから加熱部16aへの熱の移動、言い換えれば加熱部16aによる循環回路8の冷却水の加熱が行われる。このときのペルチェ素子16の冷却部16bでは温度低下が生じる。そして、同冷却部16bと冷却水回路17の冷却水との熱交換により温度低下した同冷却水が、上記電気機器(モータジェネレータ21、電子機器22)の冷却に用いられる。一方、冷却水回路17内を循環する冷却水は上記電気機器からの熱を受けることから、同冷却水の温度が過度に低下することは抑制される。
 本実施形態によれば、以下に示す効果が得られるようになる。
 (5)空調装置の第1モード及び第4モードにおいて、ペルチェ素子16の冷却部16bの温度低下に伴い同冷却部16bによって冷却水回路17の冷却水が冷却されるとしても、その冷却水は上記電気機器からの熱を受けるため、同冷却水の温度が過度に低下することは抑制される。このため、上記冷却水と熱交換されるペルチェ素子16の冷却部16bも過度に温度低下することは抑制される。このように冷却部16bの温度低下を抑制することで、ペルチェ素子16における加熱部16aと冷却部16bとの温度差が小さく抑えられ、ひいてはペルチェ素子16の加熱部16aによる加熱が効率よく行われるようになる。
 (6)冷却水回路17の冷却水がペルチェ素子16の冷却部16bにより冷却されている状態において、上記電気機器からの受熱だけでは冷却水回路17の冷却水の温度低下を抑制しきれない場合、冷却水回路17の熱交換器23での上記冷却水と外気との熱交換により同冷却水の温度が過度に低くなることは抑制される。このため、同冷却水と熱交換されるペルチェ素子16の冷却部16bも過度に温度低下することが抑制される。従って、上記電気機器からの受熱だけでは冷却水回路17の冷却水の温度低下を抑制しきれない場合であっても、ペルチェ素子16の加熱部16aと冷却部16bとの温度差が小さく抑えられ、ひいてはペルチェ素子16の加熱部16aによる循環回路8の冷却水の加熱が効率よく行われるようになる。
 [その他の実施形態]
 なお、上記各実施形態は、例えば以下のように変更することもできる。
 ・第1及び第2実施形態において、第2モードもしくは第5モードで循環回路8の冷却水のペルチェ素子16による補助的な加熱を行ってもよい。
 ・第1及び第2実施形態において、循環回路8における第2経路8b及び切換弁11を省略して、同回路8を循環する冷却水が常に内燃機関7を通過するようにしてもよい。
 ・第1及び第2実施形態において、ペルチェ素子16の冷却部16bを必ずしも冷却水回路17の冷却水と熱交換させる必要はない。
 ・第1及び第2実施形態において、ペルチェ素子16の加熱部16aにより車室1に送られる空気を直接的に加熱してもよい。
 1…車室、2…冷却機、3…コンプレッサ、4…コンデンサ、5…膨張弁、6…エバポレータ、7…内燃機関、8…循環回路、9…ポンプ、10…ヒータコア、8a…第1経路、8b…第2経路、11…切換弁、12…ラジエータ、13…サーモスタット、14…通路、15…遮断弁、16…ペルチェ素子、16a…加熱部、16b…冷却部、17…冷却水回路、18…ポンプ、19…制御弁、20…電子制御装置、21…モータジェネレータ、22…電子機器、23…熱交換器。

Claims (7)

  1.  車室に送られる空気を冷却したり加熱したりすることで車室内の温度を調節する車両の空調装置において、
     前記車室に送られる空気を冷却する冷却機と、
     前記車室に送られる空気を加熱するペルチェ素子と、
    を備えることを特徴とする車両の空調装置。
  2.  請求項1記載の車両の空調装置において、
     車両に搭載される内燃機関と熱交換される冷却水を循環させるとともに前記車室に送られる空気を前記冷却水によって加熱する循環回路を備えており、
     前記ペルチェ素子は、その加熱部による前記循環回路の冷却水の加熱を通じて、前記車室に送られる空気を加熱する
    ことを特徴とする車両の空調装置。
  3.  前記循環回路は、そこを循環する冷却水の内燃機関の内部の通過を実現する第1経路と、前記冷却水の内燃機関のバイパスを実現する第2経路とを備えており、冷却水を循環させるための経路として前記第1経路と前記第2経路との一方を用いる請求項2記載の車両の空調装置。
  4.  前記循環回路は、そこを循環する冷却水の温度が予め定められた判定値以上のとき、その冷却水を流して同冷却水と外気との熱交換を行わせるラジエータを備えており、
     前記ペルチェ素子は、冷却水回路を循環する冷却水との間で熱交換を行う冷却部を備えており、
     前記冷却水回路は、そこを循環する冷却水を前記ラジエータに導いて同ラジエータにて前記冷却水と外気との熱交換を行わせる請求項2または3記載の車両の空調装置。
  5.  前記ペルチェ素子は、冷却水回路を循環する冷却水との間で熱交換を行う冷却部を備えており、
     前記冷却水回路は、そこを循環する冷却水により車両に搭載された電気機器を冷却する請求項2または3記載の車両の空調装置。
  6.  前記冷却水回路は、そこを循環する冷却水を流して同冷却水と外気との熱交換を行わせる熱交換器を備えている請求項5記載の車両の空調装置。
  7.  請求項3記載の車両の空調装置において、
     前記内燃機関を停止させた状態での車両の走行時に前記車室の暖房を行う際には、前記循環回路における冷却水を循環させるための経路を前記第2経路に切り換えるとともに前記ペルチェ素子の加熱部を加熱させ、前記内燃機関を運転した状態での車両の走行時に前記車室の暖房を行う際には、前記循環回路における冷却水を循環させるための経路を前記第1経路に切り換えるとともに前記ペルチェ素子の加熱部の加熱を停止させる制御部を備えることを特徴とする車両の空調装置。
PCT/JP2011/055132 2011-03-04 2011-03-04 車両の空調装置 WO2012120603A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US14/002,335 US20130333395A1 (en) 2011-03-04 2011-03-04 Vehicle air-conditioning apparatus
RU2013142681/11A RU2555567C2 (ru) 2011-03-04 2011-03-04 Автомобильный кондиционер
PCT/JP2011/055132 WO2012120603A1 (ja) 2011-03-04 2011-03-04 車両の空調装置
KR1020137023426A KR20130124554A (ko) 2011-03-04 2011-03-04 차량의 공조 장치
EP11860157.4A EP2682291B1 (en) 2011-03-04 2011-03-04 Vehicle air-conditioning apparatus
CN2011800689042A CN103402796A (zh) 2011-03-04 2011-03-04 车辆的空调装置
JP2013503253A JP5817824B2 (ja) 2011-03-04 2011-03-04 車両の空調装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/055132 WO2012120603A1 (ja) 2011-03-04 2011-03-04 車両の空調装置

Publications (1)

Publication Number Publication Date
WO2012120603A1 true WO2012120603A1 (ja) 2012-09-13

Family

ID=46797613

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/055132 WO2012120603A1 (ja) 2011-03-04 2011-03-04 車両の空調装置

Country Status (7)

Country Link
US (1) US20130333395A1 (ja)
EP (1) EP2682291B1 (ja)
JP (1) JP5817824B2 (ja)
KR (1) KR20130124554A (ja)
CN (1) CN103402796A (ja)
RU (1) RU2555567C2 (ja)
WO (1) WO2012120603A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014059134A (ja) * 2012-09-18 2014-04-03 Dr Ing Hcf Porsche Ag 熱電ヒートポンプの配置構造
US20140165596A1 (en) * 2012-12-18 2014-06-19 Dr. Ing. H.C.F. Porsche Aktiengesellschaft Thermoelectric arrangement for use in a cooling system of a motor vehicle and cooling system having such a thermoelectric arrangement
CN104943503A (zh) * 2015-06-01 2015-09-30 南京航空航天大学 车辆动力、制冷供能系统及其工作方法
US10589594B2 (en) 2012-07-18 2020-03-17 Hanon Systems Heat distribution in a motor vehicle
JP2021113625A (ja) * 2020-01-16 2021-08-05 生活協同組合コープさっぽろ 冷却システム

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5533812B2 (ja) * 2011-07-28 2014-06-25 株式会社デンソー 車両用空調装置
JP6269307B2 (ja) * 2014-05-13 2018-01-31 株式会社デンソー 車両用空調装置
US9863671B2 (en) 2014-07-29 2018-01-09 Ford Global Technologies, Llc Heat pump assisted engine cooling for electrified vehicles
KR101693964B1 (ko) * 2015-02-23 2017-01-06 현대자동차주식회사 하이브리드 차량용 난방시스템 및 하이브리드 차량용 난방시스템의 제어방법
US10486495B2 (en) * 2017-06-16 2019-11-26 Ford Global Technologies, Llc Method and system to manage vehicle thermal conditions
US20230113329A1 (en) * 2021-10-08 2023-04-13 Paccar Inc Thermoelectric cooling and heating system for non-idling vehicle

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006001530A (ja) * 2004-05-10 2006-01-05 Visteon Global Technologies Inc ハイブリッド車のための車室内温度制御システム
JP2011001048A (ja) * 2009-05-19 2011-01-06 Toyota Industries Corp 車両用空調システム

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2129492C1 (ru) * 1997-06-04 1999-04-27 Общество с ограниченной ответственностью "МАК-БЭТ" Термоэлектрический кондиционер
JP2000335230A (ja) * 1999-03-24 2000-12-05 Tgk Co Ltd 車両用暖房装置
RU14726U1 (ru) * 2000-02-25 2000-08-20 Швецов Андрей Владимирович Устройство кондиционирования транспортного средства
JP2001260640A (ja) * 2000-03-21 2001-09-26 Calsonic Kansei Corp 車両用暖房装置
US7743614B2 (en) * 2005-04-08 2010-06-29 Bsst Llc Thermoelectric-based heating and cooling system
US20070101737A1 (en) * 2005-11-09 2007-05-10 Masao Akei Refrigeration system including thermoelectric heat recovery and actuation
KR101195839B1 (ko) * 2006-07-21 2012-10-30 한라공조주식회사 열전소자 모듈을 이용한 자동차용 보조 냉난방장치
KR20080008871A (ko) * 2006-07-21 2008-01-24 한라공조주식회사 열전소자 모듈을 이용한 자동차용 보조 냉난방장치
US7779639B2 (en) * 2006-08-02 2010-08-24 Bsst Llc HVAC system for hybrid vehicles using thermoelectric devices
KR101193898B1 (ko) * 2006-10-25 2012-10-29 한라공조주식회사 열전소자 모듈을 이용한 자동차 보조 냉난방장치
US9038400B2 (en) * 2009-05-18 2015-05-26 Gentherm Incorporated Temperature control system with thermoelectric device
JP5316819B2 (ja) * 2010-12-13 2013-10-16 三菱自動車工業株式会社 車両用暖房装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006001530A (ja) * 2004-05-10 2006-01-05 Visteon Global Technologies Inc ハイブリッド車のための車室内温度制御システム
JP2011001048A (ja) * 2009-05-19 2011-01-06 Toyota Industries Corp 車両用空調システム

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10589594B2 (en) 2012-07-18 2020-03-17 Hanon Systems Heat distribution in a motor vehicle
JP2014059134A (ja) * 2012-09-18 2014-04-03 Dr Ing Hcf Porsche Ag 熱電ヒートポンプの配置構造
US20140165596A1 (en) * 2012-12-18 2014-06-19 Dr. Ing. H.C.F. Porsche Aktiengesellschaft Thermoelectric arrangement for use in a cooling system of a motor vehicle and cooling system having such a thermoelectric arrangement
US9829219B2 (en) * 2012-12-18 2017-11-28 Dr. Ing. H.C.F. Porsche Aktiengesellschaft Thermoelectric arrangement for use in a cooling system of a motor vehicle and cooling system having such a thermoelectric arrangement
CN104943503A (zh) * 2015-06-01 2015-09-30 南京航空航天大学 车辆动力、制冷供能系统及其工作方法
CN104943503B (zh) * 2015-06-01 2017-03-29 南京航空航天大学 车辆动力、制冷供能系统及其工作方法
JP2021113625A (ja) * 2020-01-16 2021-08-05 生活協同組合コープさっぽろ 冷却システム
JP7083363B2 (ja) 2020-01-16 2022-06-10 生活協同組合コープさっぽろ 冷却システム

Also Published As

Publication number Publication date
RU2555567C2 (ru) 2015-07-10
EP2682291B1 (en) 2017-11-08
EP2682291A4 (en) 2014-08-20
RU2013142681A (ru) 2015-04-10
CN103402796A (zh) 2013-11-20
JPWO2012120603A1 (ja) 2014-07-07
KR20130124554A (ko) 2013-11-14
EP2682291A1 (en) 2014-01-08
JP5817824B2 (ja) 2015-11-18
US20130333395A1 (en) 2013-12-19

Similar Documents

Publication Publication Date Title
JP5817824B2 (ja) 車両の空調装置
JP7095848B2 (ja) 車両用空気調和装置
JP6743844B2 (ja) 冷却水回路
JP7185469B2 (ja) 車両の熱管理システム
WO2018193770A1 (ja) 車両用空気調和装置
US9573437B2 (en) Vehicular air conditioning system
WO2020031569A1 (ja) 車両用空気調和装置
WO2020031568A1 (ja) 車両用空気調和装置
US20170158019A1 (en) Air conditioning device for vehicle
JP7092429B2 (ja) 車両用空気調和装置
JP6842375B2 (ja) 車両用空気調和装置
JP7316872B2 (ja) 車両搭載発熱機器の温度調整装置及びそれを備えた車両用空気調和装置
JP2020055344A (ja) 車両の熱管理システム
JP6963405B2 (ja) 車両用空気調和装置
US9579951B2 (en) Air conditioning device and method for air conditioning an interior and/or at least one component of an electric vehicle
CN109203909B (zh) 用于车辆的加热、通风和空调系统
JP2020142789A (ja) 熱管理システム
JP6203490B2 (ja) 電気自動車用空調装置およびその運転方法
CN113015638A (zh) 车用空调装置
JP7095845B2 (ja) 複合弁及びそれを用いた車両用空気調和装置
JP2022546954A (ja) 車両内のバッテリーの温度及び室内空気調和装置の温度の統合的制御システム
WO2023203943A1 (ja) 車両用空調装置
JP7559692B2 (ja) 車両用熱マネジメントシステム
JP7513962B2 (ja) 車両用熱マネジメントシステム
WO2023248714A1 (ja) 車両用空調装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11860157

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2011860157

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2013503253

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14002335

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20137023426

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2013142681

Country of ref document: RU

Kind code of ref document: A