WO2012118488A1 - Seat module for a mining vehicle - Google Patents

Seat module for a mining vehicle Download PDF

Info

Publication number
WO2012118488A1
WO2012118488A1 PCT/US2011/026646 US2011026646W WO2012118488A1 WO 2012118488 A1 WO2012118488 A1 WO 2012118488A1 US 2011026646 W US2011026646 W US 2011026646W WO 2012118488 A1 WO2012118488 A1 WO 2012118488A1
Authority
WO
WIPO (PCT)
Prior art keywords
seat
shuttle car
joystick control
mining
joystick
Prior art date
Application number
PCT/US2011/026646
Other languages
French (fr)
Inventor
Adam S. PETERSON
Douglas F. ANDERSON
Terry M. THOMAS
Darin M. SUTTON
Randy ARNOLD
Original Assignee
Joy Mm Delaware, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Joy Mm Delaware, Inc. filed Critical Joy Mm Delaware, Inc.
Priority to CN201180070416.5A priority Critical patent/CN103492212B/en
Priority to CN201711159243.XA priority patent/CN107878193A/en
Priority to AU2011360963A priority patent/AU2011360963B2/en
Priority to PCT/US2011/026646 priority patent/WO2012118488A1/en
Publication of WO2012118488A1 publication Critical patent/WO2012118488A1/en
Priority to ZA2013/06595A priority patent/ZA201306595B/en
Priority to AU2016250328A priority patent/AU2016250328B2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D1/00Steering controls, i.e. means for initiating a change of direction of the vehicle
    • B62D1/02Steering controls, i.e. means for initiating a change of direction of the vehicle vehicle-mounted
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K26/00Arrangements or mounting of propulsion unit control devices in vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60NSEATS SPECIALLY ADAPTED FOR VEHICLES; VEHICLE PASSENGER ACCOMMODATION NOT OTHERWISE PROVIDED FOR
    • B60N2/00Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles
    • B60N2/02Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles the seat or part thereof being movable, e.g. adjustable
    • B60N2/0224Non-manual adjustments, e.g. with electrical operation
    • B60N2/02246Electric motors therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60NSEATS SPECIALLY ADAPTED FOR VEHICLES; VEHICLE PASSENGER ACCOMMODATION NOT OTHERWISE PROVIDED FOR
    • B60N2/00Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles
    • B60N2/02Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles the seat or part thereof being movable, e.g. adjustable
    • B60N2/04Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles the seat or part thereof being movable, e.g. adjustable the whole seat being movable
    • B60N2/14Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles the seat or part thereof being movable, e.g. adjustable the whole seat being movable rotatable, e.g. to permit easy access
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60NSEATS SPECIALLY ADAPTED FOR VEHICLES; VEHICLE PASSENGER ACCOMMODATION NOT OTHERWISE PROVIDED FOR
    • B60N2/00Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles
    • B60N2/24Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles for particular purposes or particular vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60NSEATS SPECIALLY ADAPTED FOR VEHICLES; VEHICLE PASSENGER ACCOMMODATION NOT OTHERWISE PROVIDED FOR
    • B60N2/00Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles
    • B60N2/75Arm-rests
    • B60N2/79Adaptations for additional use of the arm-rests
    • B60N2/797Adaptations for additional use of the arm-rests for use as electrical control means, e.g. switches

Definitions

  • shuttle cars It is common in underground mining to use shuttle cars that tram on underground roadways.
  • the underground roadways are typically limited in width, and there can be insufficient space for the shuttle cars to turn around.
  • the shuttle cars tram forward when proceeding in one direction along a roadway, and rearward when proceeding in the opposite direction along the road.
  • the role of the shuttle cars is to efficiently remove the cut material from the working face.
  • a shuttle car typically employs a heavy-duty, high-power drive train that enables it to haul loads in arduous conditions.
  • a seat module for a mining shuttle car that includes a loading end, a discharge end, and a conveyor extending between the loading end and the discharge end.
  • the seat module includes an enclosure, a rotatable platform positioned within the enclosure, and a seat supported by the rotatable platform and rotatable therewith between a first secured position facing generally toward the loading end, a second secured position facing generally toward the discharge end, and at least one secured position between the first and second positions.
  • a mining shuttle car includes a loading end, a discharge end, and a conveyor system extending between the loading end and the discharge end.
  • a seat module is positioned adjacent the conveyor system and includes a rotatable seat. The seat is rotatable between a first secured position facing generally toward the loading end, a second secured position facing generally toward the discharge end, and at least one secured position between the first and second positions.
  • a method of operating a mining shuttle car includes rotating a seat to any one of a plurality of secured positions, tramming in a first direction and pushing a joystick control away from the seat to turn left and pulling the joystick control toward the seat to turn right, and tramming in a second direction opposite the first direction and pushing the joystick control away from the seat to turn right and pulling the joystick control toward the seat to turn left.
  • a mining shuttle car includes a loading end, a discharge end, and a conveyor system extending between the loading end and the discharge end.
  • a seat module is positioned adjacent the conveyor system and includes a seat facing generally toward the conveyor system.
  • the seat includes a joystick control coupled to the seat and operable to steer the mining shuttle car.
  • the mining shuttle car is configured such that forward movement of the joystick control relative to the seat steers the shuttle car about a point in front of the seat, and rearward movement of the joystick control relative to the seat steers the shuttle car about a point behind the seat.
  • FIG. 1 is a perspective view of a mining shuttle car that includes an operator's compartment.
  • Fig. 2 is a side view of the operator's compartment of Fig. 1.
  • Fig. 3 is a top view of the operator's compartment of Fig. 1 with a canopy removed.
  • Fig. 4 is a plan view of a control station in the operator's compartment of Fig. 1.
  • FIG. 5 is a perspective view of an operator's seat module from the operator's compartment of Figs. 1-3.
  • Fig. 6 is a side view of the operator's seat module of Fig. 5.
  • Fig. 7 is a plan view of a left joystick of the operator's seat module of Figs. 5 and 6.
  • Fig. 8 is a plan view of a right joystick of the operator's seat module of Figs. 5 and 6.
  • Fig. 9 is a perspective view of a foot-pedal control of the operator's seat module of Figs. 5 and 6.
  • Fig. 10 is a schematic representation of an operator executing a right turn when the shuttle car is traveling in the direction of its loading end.
  • Fig. 11 is a schematic representation of an operator executing a left turn when the shuttle car is traveling in the direction of its loading end.
  • Fig. 12 is a schematic representation of an operator executing a left turn when the shuttle car is traveling in the direction of its discharge end.
  • Fig. 13 is a schematic representation of an operator executing a right turn when the shuttle car is traveling in the direction of its discharge end.
  • Fig. 1 is a perspective view of a mining shuttle car 10 generally of the type used for maneuvering in underground roadways during mining operations.
  • the mining shuttle car 10 includes an operator's compartment or cab 12 and a plurality of wheels 14 that support the shuttle car 10 on a roadway surface.
  • a cable reel 13 reels in and pays out cable that connects to nearby plug-in stations along the underground roadway and supplies power to the shuttle car 10.
  • the shuttle car 10 defines a loading end 17 where the mined material is loaded, and a discharge end 19 where the material is discharged.
  • a central channel 15 includes a conveyor system 18 that extends between the loading and discharge ends 17, 19.
  • the operator's compartment 12 is positioned adjacent to the conveyor system 18 near the discharge end 19 of the shuttle car 10.
  • the shuttle car 10 In underground mining, the shuttle car 10 is powered through the cable 16 and moves or "trams" forwardly and rearwardly along the roadway. During typical operation, the operator maneuvers the car 10 such that the loading end 17 is positioned proximate a working face of the mine, where mined material can be loaded onto the conveyor system 18. Once sufficient material has been loaded, the operator maneuvers shuttle car 10 away from the working face to another location, where the loaded material can be discharged via the conveyor system 18. Because underground roadways frequently are very narrow, the shuttle car 10 is designed so that it need not turn around. Material can be loaded and/or discharged from either the loading end 17 or the discharge end 19, and the shuttle car 10 can tram in either direction.
  • the operator's compartment 12 defines an enclosure that can be entered through either of two angled doors 20, 21.
  • the door 20 generally faces toward the loading end 17 and the door 21 generally faces toward the discharge end 19. Both doors can be hinged on upright 24.
  • the use of two angled doors 20, 21 can allow an operator to enter or exit the cab 12 in either direction or from any seated position.
  • Other embodiments may include a single door or more than two doors.
  • the operator's compartment 12 can further include a canopy 22 supported by the upright 24 and a pair of support posts 25.
  • the posts 25 are mounted to a side of the shuttle car 10, and the upright 24 mounted to an outside wall of the operator's compartment 12.
  • the height of the canopy 22 can be adjusted to allow the operator additional headroom.
  • One or more flexible handles 26 can be disposed on the canopy 22.
  • the operator's compartment 12 also includes a rotatable operator's seat module 28, described further below, a control station 30, and video monitors 31.
  • the operator's compartment 12 can be pre-assembled as a unit. In this way, the operator's compartment 12 can be installed onto new shuttle cars 10 at final assembly, or retrofitted to shuttle cars.
  • the control station 30 can accommodate controls 32 and a diagnostics display 34.
  • the controls 32 in some embodiments can include one or more of the following: a head-light switch 36 to turn head lights on or off or turn the head lights on automatically when needed, an earth-leak test button 38, a button 40 to go back on the diagnostics display menu or reset the display, a button 42 to select a diagnostics display menu or reset the display, an emergency stop bar 44, a button 46 to move up on the diagnostics display menu, a button 48 to move down on the diagnostics display menu, an emergency brake release switch 50 to momentarily release a parking brake (not shown), and a pump switch 52 to start, run, or switch off a pump on the shuttle car 10.
  • the park brake release 50 can energize a solenoid to release one or more parking brakes.
  • the control station 30 can also include controls to start up and shut down the shuttle car 10.
  • Fig. 4 illustrates the controls 32 arranged in a particular manner, it is to be appreciated that other embodiments may utilize a different arrangement of controls 32. As a further alternative, certain controls illustrated distinctly in Fig. 4 can be combined into a single button or switch. In the illustrated
  • the diagnostics display 34 is disposed at the center of the control station 30, and a video monitor 31 is positioned adjacent each side of the control station 30.
  • Other arrangements of the diagnostics display 34, control station 30, and video monitors 31 may also be used.
  • the operator's seat module 28 includes an operator's seat 54 and a pair of foot-pedal controls 56, 57.
  • the left-side foot- pedal control 57 operates the brake
  • the right-side foot-pedal control 56 operates the drive system for tramming the shuttle car 10 in the direction of either the loading end 17 or the discharge end 19.
  • the pedals 56, 57 are arranged in the traditional "gas is on the right, brake is on the left" configuration.
  • Both the operator's seat 54 and foot-pedal controls 56, 57 are mounted on a rotatable platform 58 so as to be rotatable as a unit within the operator's compartment 12.
  • Rotating the seat module 28 can be accomplished by means of mechanical, hydraulic, pneumatic, or electric systems depending upon the capabilities and configuration of the shuttle car to which the operator's compartment 12 is attached. In the illustrated
  • a drum 59 (see Fig. 6) is positioned below the platform 58 and can be rotated by, for example, hydraulic, pneumatic, or electrical motors (not shown) drivingly coupled to the drum 59 by belts and pulleys, gear systems, or combinations thereof.
  • Other embodiments may utilize hydraulic cylinders or other linear actuators coupled to an outer portion of the platform 58 that extend and retract to rotate the platform 58.
  • a release mechanism (not shown) may be incorporated to allow manual rotation of the platform 58 when power is not available or if there is a malfunction in any of the components that provide automated rotation of the platform 58.
  • the platform 58 can rotate through a total of about 120 degrees so that the operator can position the seat 54 generally in either direction of travel.
  • the platform 58 and operator's seat 54 when centered the platform 58 and operator's seat 54 are positioned at a substantially right angle with respect to the conveyor system 18.
  • the platform 58 and operator's seat 54 can then be rotated approximately 60 degrees to either side as desired by the operator.
  • Other rotational positions are possible depending on the usage requirements or preferences for the particular shuttle car 10 or particular operator. In some constructions, there are a substantially infinite number of rotational positions in which the seat 54 can be secured.
  • the operator' s seat 54 can include cutouts 55 that
  • a seat base 67 is coupled to the platform 58 and supports the seat 54.
  • the seat base 67 includes slides, linkages, guides, and the like that allow the operator to adjust the height and distance of the seat 54 relative to the foot-pedal controls 56, 57.
  • the seat base 67 may also be configured to adjust the relative position of the seat 54 with respect to the arm rests 65.
  • the right and left joysticks 60, 61 include controls in the form of buttons and switches for operating the shuttle car 10 and the platform 58.
  • the right-hand joystick 60 can include one or more of the following: a button 62 to actuate the flash or horn, a tram-direction switch 64 for setting the tram direction of the shuttle car 10, and a button 66 for rotating the platform 58 to the right (e.g. , clockwise when viewed from above).
  • the right-hand joystick 60 is moveable fore and aft in an elongated slot 69 (see Fig. 5) for steering the shuttle car 10, as discussed below.
  • the tram-direction switch 64 is a rocker-type switch having right and left portions, one of which is depressed and thus “active” or “on” at any point in time. Other types of switches may also be used to select the direction in which the car 10 will travel.
  • the left-hand joystick 61 can include a button 68 for rotating the platform 58 to the left (e.g. , counterclockwise when viewed from above), a switch 70 for raising or lowering the conveyor system 18, and a button 72 to load or discharge the conveyor 18.
  • the right and left joysticks 60, 61 also each include a trigger 71, 73 (see Fig. 6 for trigger 73 on the left joystick 61).
  • a trigger 71, 73 see Fig. 6 for trigger 73 on the left joystick 61.
  • FIG. 7 and 8 illustrate the joystick controls arranged in a particular manner, it is to be appreciated that other embodiments may include a different arrangement of controls.
  • Fig. 9 illustrates the right-side foot-pedal control 56, the left-side foot-pedal control 57 being substantially the same.
  • the foot-pedal control 56 includes a bracket assembly 80 coupled to the platform 58 and a pedal 82 pivotally coupled to the bracket assembly 80 by a pin 84.
  • a torsion spring 74 surrounds the pin 84 and biases the pedal 82 generally upwardly.
  • a pushrod 86 extends through an opening in the platform 58 and into a foot-switch enclosure 76, which can include sensors, solenoids, and the like for actuating the drive mechanism of the shuttle car 10 in response to operation of the pedal 82.
  • the right joystick 60 is used to steer or turn the shuttle car 10 in a manner intended to be natural and intuitive for the operator. Pushing or pulling the right joystick 60 along the slot 69 between fore, neutral, and aft positions turns the wheels 14 of the shuttle car 10, thus allowing the shuttle car 10 to negotiate corners. Movement of the shuttle car 10 is controlled with a combination of the tram-direction switch 64, which determines the direction in which the shuttle car 10 will travel, and the foot-pedal controls 56, 57 which control the speed at which the shuttle car 10 travels in the direction associated with the position of the tram-direction switch 64. The operation of these controls is independent of the rotational position of the platform 58.
  • the joystick 60 is positioned in the neutral position and the tram-direction switch 64 is operated to select the loading end 17 as the front of the shuttle car 10. In the illustrated construction, this is accomplished by depressing the right-hand portion of the tram-direction switch 64, which is closest to the loading end 17 (see Figs. 1 and 7). The operator may then depress the right-foot pedal 56, thus activating the drive mechanism of the shuttle car 10 and moving the shuttle car 10 in the direction of the loading end 17. To travel in the opposite direction (e.g.
  • the operator can flip the tram-direction switch 64 such that the left portion of the switch is depressed, and depress the right-foot pedal 56, thus activating the drive mechanism of the shuttle car 10 and moving the shuttle car in the direction of the discharge end 19.
  • the joysticks 60, 61 and foot-pedal controls 56, 57 are arranged in a particular manner in some embodiments, it is to be appreciated that, in other embodiments, the arrangement can be different depending on the usage
  • the right-hand joystick 60 can offer an intuitive control for steering the shuttle car 10.
  • the operator can steer the shuttle car 10 toward the same side of the underground roadway as the operator is positioned, regardless of which direction the shuttle car 10 is traveling.
  • the operator can steer the shuttle car 10 toward the side of the underground roadway opposite the operator's position.
  • the operator can pull the right-hand joystick 60 rearwardly to steer the shuttle car 10 to the right. More specifically, in the illustrated construction having the cab 12 disposed in the illustrated location near the discharge end 19, the operator can flip the tram-direction switch 64 on the right-hand joystick 60 to the right, pull the right-hand joystick 60 rearwardly, and depress the right-foot pedal 56 to travel in the direction of the loading end 17 while executing a turn to the right.
  • the operator can pull the right-hand joystick 60 rearwardly to steer the shuttle car to the left. More specifically, in the illustrated construction having the cab 12 disposed in the illustrated location near the discharge end 19, the operator can flip the tram-direction switch 64 to the left, pull the right-hand joystick 60 rearwardly, and depress the right-foot pedal 56. Again, by pulling the right-hand joystick 60 toward the operator, the operator can steer the shuttle car 10 to the same side of the underground roadway as the operator is positioned, and by pushing the right-hand joystick 60 away from the operator, the operator can steer the car 10 to the side of the underground roadway opposite the operator's position.
  • the above-described method of steering the shuttle car 10 can be intuitive to the operator, because by pulling the joystick 60 toward the operator, the operator can steer the car 10 to the same side of the underground roadway as to where the cab 12 is disposed, regardless of the direction the operator is facing or tramming. Similarly, by pushing the joystick 60 away from the operator, the operator can steer the car 10 to the side of the underground roadway opposite to where the cab 12 is disposed, regardless of the direction the operator is facing or tramming.
  • the shuttle car 10 when the operator pulls on the joystick 60, the shuttle car 10 turns generally about a point that is behind the operator, such that, in the illustrated construction, the cab is positioned to the inside of the resulting turn, and when the operator pushes on the joystick 60, the shuttle car 10 turns generally about a point that is in front of the operator, such that, in the illustrated construction, the cab is positioned to the outside of the resulting turn, regardless of the direction in which the shuttle car is traveling.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Control Devices (AREA)
  • Steering Controls (AREA)
  • Body Structure For Vehicles (AREA)
  • Component Parts Of Construction Machinery (AREA)
  • Non-Deflectable Wheels, Steering Of Trailers, Or Other Steering (AREA)
  • Arrangement Or Mounting Of Control Devices For Change-Speed Gearing (AREA)

Abstract

A mining shuttle car that trams on underground roadways includes a conveyor system and an operator's compartment adjacent to the conveyor system. The operator's compartment includes a rotatable seat and a control station. The operator's seat module is coupled to one or more joysticks that control the car, and the operator's seat module and the control station are mounted on a rotatable platform so as to be rotatable as a unit between a plurality of secured positions for operating the mining shuttle car. Forward movement of the joystick control relative to the seat steers the shuttle car about a point in front of the seat, and rearward movement of the joystick control relative to the seat steers the shuttle car about a point behind the seat.

Description

SEAT MODULE FOR A MINING VEHICLE
BACKGROUND
[0001] It is common in underground mining to use shuttle cars that tram on underground roadways. The underground roadways are typically limited in width, and there can be insufficient space for the shuttle cars to turn around. Thus, the shuttle cars tram forward when proceeding in one direction along a roadway, and rearward when proceeding in the opposite direction along the road. The role of the shuttle cars is to efficiently remove the cut material from the working face. To this end, a shuttle car typically employs a heavy-duty, high-power drive train that enables it to haul loads in arduous conditions.
SUMMARY
[0002] In some embodiments, a seat module is provided for a mining shuttle car that includes a loading end, a discharge end, and a conveyor extending between the loading end and the discharge end. The seat module includes an enclosure, a rotatable platform positioned within the enclosure, and a seat supported by the rotatable platform and rotatable therewith between a first secured position facing generally toward the loading end, a second secured position facing generally toward the discharge end, and at least one secured position between the first and second positions.
[0003] In other embodiments, a mining shuttle car includes a loading end, a discharge end, and a conveyor system extending between the loading end and the discharge end. A seat module is positioned adjacent the conveyor system and includes a rotatable seat. The seat is rotatable between a first secured position facing generally toward the loading end, a second secured position facing generally toward the discharge end, and at least one secured position between the first and second positions.
[0004] In still other embodiments, a method of operating a mining shuttle car is provided and includes rotating a seat to any one of a plurality of secured positions, tramming in a first direction and pushing a joystick control away from the seat to turn left and pulling the joystick control toward the seat to turn right, and tramming in a second direction opposite the first direction and pushing the joystick control away from the seat to turn right and pulling the joystick control toward the seat to turn left.
[0005] In still further embodiments, a mining shuttle car includes a loading end, a discharge end, and a conveyor system extending between the loading end and the discharge end. A seat module is positioned adjacent the conveyor system and includes a seat facing generally toward the conveyor system. The seat includes a joystick control coupled to the seat and operable to steer the mining shuttle car. The mining shuttle car is configured such that forward movement of the joystick control relative to the seat steers the shuttle car about a point in front of the seat, and rearward movement of the joystick control relative to the seat steers the shuttle car about a point behind the seat.
BRIEF DESCRIPTION OF THE DRAWINGS
[0006] Fig. 1 is a perspective view of a mining shuttle car that includes an operator's compartment.
[0007] Fig. 2 is a side view of the operator's compartment of Fig. 1.
[0008] Fig. 3 is a top view of the operator's compartment of Fig. 1 with a canopy removed.
[0009] Fig. 4 is a plan view of a control station in the operator's compartment of Fig. 1.
[0010] Fig. 5 is a perspective view of an operator's seat module from the operator's compartment of Figs. 1-3.
[0011] Fig. 6 is a side view of the operator's seat module of Fig. 5.
[0012] Fig. 7 is a plan view of a left joystick of the operator's seat module of Figs. 5 and 6. [0013] Fig. 8 is a plan view of a right joystick of the operator's seat module of Figs. 5 and 6.
[0014] Fig. 9 is a perspective view of a foot-pedal control of the operator's seat module of Figs. 5 and 6. [0015] Fig. 10 is a schematic representation of an operator executing a right turn when the shuttle car is traveling in the direction of its loading end.
[0016] Fig. 11 is a schematic representation of an operator executing a left turn when the shuttle car is traveling in the direction of its loading end.
[0017] Fig. 12 is a schematic representation of an operator executing a left turn when the shuttle car is traveling in the direction of its discharge end.
[0018] Fig. 13 is a schematic representation of an operator executing a right turn when the shuttle car is traveling in the direction of its discharge end.
[0019] It should be understood that the invention is not limited in its application to the details of construction and the arrangements of the components set forth in the following description or illustrated in the above-described drawings. The invention is capable of other embodiments and of being practiced or being carried out in various ways. Also, it is to be understood that the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting.
DETAILED DESCRIPTION
[0020] Fig. 1 is a perspective view of a mining shuttle car 10 generally of the type used for maneuvering in underground roadways during mining operations. The mining shuttle car 10 includes an operator's compartment or cab 12 and a plurality of wheels 14 that support the shuttle car 10 on a roadway surface. A cable reel 13 reels in and pays out cable that connects to nearby plug-in stations along the underground roadway and supplies power to the shuttle car 10. The shuttle car 10 defines a loading end 17 where the mined material is loaded, and a discharge end 19 where the material is discharged. A central channel 15 includes a conveyor system 18 that extends between the loading and discharge ends 17, 19. In the illustrated construction, the operator's compartment 12 is positioned adjacent to the conveyor system 18 near the discharge end 19 of the shuttle car 10. [0021] In underground mining, the shuttle car 10 is powered through the cable 16 and moves or "trams" forwardly and rearwardly along the roadway. During typical operation, the operator maneuvers the car 10 such that the loading end 17 is positioned proximate a working face of the mine, where mined material can be loaded onto the conveyor system 18. Once sufficient material has been loaded, the operator maneuvers shuttle car 10 away from the working face to another location, where the loaded material can be discharged via the conveyor system 18. Because underground roadways frequently are very narrow, the shuttle car 10 is designed so that it need not turn around. Material can be loaded and/or discharged from either the loading end 17 or the discharge end 19, and the shuttle car 10 can tram in either direction.
[0022] With reference also to Figs. 2-3, in one embodiment, the operator's compartment 12 defines an enclosure that can be entered through either of two angled doors 20, 21. The door 20 generally faces toward the loading end 17 and the door 21 generally faces toward the discharge end 19. Both doors can be hinged on upright 24. The use of two angled doors 20, 21 can allow an operator to enter or exit the cab 12 in either direction or from any seated position. Other embodiments may include a single door or more than two doors.
[0023] The operator's compartment 12 can further include a canopy 22 supported by the upright 24 and a pair of support posts 25. In some embodiments, the posts 25 are mounted to a side of the shuttle car 10, and the upright 24 mounted to an outside wall of the operator's compartment 12. In some embodiments the height of the canopy 22 can be adjusted to allow the operator additional headroom. One or more flexible handles 26 can be disposed on the canopy 22. The operator's compartment 12 also includes a rotatable operator's seat module 28, described further below, a control station 30, and video monitors 31. In some embodiments, the operator's compartment 12 can be pre-assembled as a unit. In this way, the operator's compartment 12 can be installed onto new shuttle cars 10 at final assembly, or retrofitted to shuttle cars.
[0024] Referring to Fig. 4, the control station 30 can accommodate controls 32 and a diagnostics display 34. For example, the controls 32 in some embodiments can include one or more of the following: a head-light switch 36 to turn head lights on or off or turn the head lights on automatically when needed, an earth-leak test button 38, a button 40 to go back on the diagnostics display menu or reset the display, a button 42 to select a diagnostics display menu or reset the display, an emergency stop bar 44, a button 46 to move up on the diagnostics display menu, a button 48 to move down on the diagnostics display menu, an emergency brake release switch 50 to momentarily release a parking brake (not shown), and a pump switch 52 to start, run, or switch off a pump on the shuttle car 10. In some embodiments, the park brake release 50 can energize a solenoid to release one or more parking brakes. The control station 30 can also include controls to start up and shut down the shuttle car 10. Although Fig. 4 illustrates the controls 32 arranged in a particular manner, it is to be appreciated that other embodiments may utilize a different arrangement of controls 32. As a further alternative, certain controls illustrated distinctly in Fig. 4 can be combined into a single button or switch. In the illustrated
embodiment, the diagnostics display 34 is disposed at the center of the control station 30, and a video monitor 31 is positioned adjacent each side of the control station 30. Other arrangements of the diagnostics display 34, control station 30, and video monitors 31 may also be used.
[0025] Referring also to Figs. 5 and 6, the operator's seat module 28 includes an operator's seat 54 and a pair of foot-pedal controls 56, 57. In the illustrated construction, the left-side foot- pedal control 57 operates the brake, and the right-side foot-pedal control 56 operates the drive system for tramming the shuttle car 10 in the direction of either the loading end 17 or the discharge end 19. In this regard the pedals 56, 57 are arranged in the traditional "gas is on the right, brake is on the left" configuration. Both the operator's seat 54 and foot-pedal controls 56, 57 are mounted on a rotatable platform 58 so as to be rotatable as a unit within the operator's compartment 12. Rotating the seat module 28 can be accomplished by means of mechanical, hydraulic, pneumatic, or electric systems depending upon the capabilities and configuration of the shuttle car to which the operator's compartment 12 is attached. In the illustrated
embodiment, a drum 59 (see Fig. 6) is positioned below the platform 58 and can be rotated by, for example, hydraulic, pneumatic, or electrical motors (not shown) drivingly coupled to the drum 59 by belts and pulleys, gear systems, or combinations thereof. Other embodiments may utilize hydraulic cylinders or other linear actuators coupled to an outer portion of the platform 58 that extend and retract to rotate the platform 58. A release mechanism (not shown) may be incorporated to allow manual rotation of the platform 58 when power is not available or if there is a malfunction in any of the components that provide automated rotation of the platform 58. [0026] In some embodiments, the platform 58 can rotate through a total of about 120 degrees so that the operator can position the seat 54 generally in either direction of travel. For example, in the illustrated embodiment, when centered the platform 58 and operator's seat 54 are positioned at a substantially right angle with respect to the conveyor system 18. The platform 58 and operator's seat 54 can then be rotated approximately 60 degrees to either side as desired by the operator. Other rotational positions are possible depending on the usage requirements or preferences for the particular shuttle car 10 or particular operator. In some constructions, there are a substantially infinite number of rotational positions in which the seat 54 can be secured.
[0027] In some embodiments, the operator' s seat 54 can include cutouts 55 that
accommodate a self-rescuer or battery pack (generally worn by the operator), an adjustable headrest 63, an adjustable seat back, a seat belt, and armrests 65. Right and left side joysticks 60, 61 for controlling the shuttle car 10 and the platform 58 are positioned proximate the ends of respective armrests 65. A seat base 67 is coupled to the platform 58 and supports the seat 54. The seat base 67 includes slides, linkages, guides, and the like that allow the operator to adjust the height and distance of the seat 54 relative to the foot-pedal controls 56, 57. The seat base 67 may also be configured to adjust the relative position of the seat 54 with respect to the arm rests 65.
[0028] Referring also to Figs. 7 and 8, the right and left joysticks 60, 61 include controls in the form of buttons and switches for operating the shuttle car 10 and the platform 58. In some embodiments, the right-hand joystick 60 can include one or more of the following: a button 62 to actuate the flash or horn, a tram-direction switch 64 for setting the tram direction of the shuttle car 10, and a button 66 for rotating the platform 58 to the right (e.g. , clockwise when viewed from above). Moreover, in the illustrated embodiment, the right-hand joystick 60 is moveable fore and aft in an elongated slot 69 (see Fig. 5) for steering the shuttle car 10, as discussed below. In the illustrated construction, the tram-direction switch 64 is a rocker-type switch having right and left portions, one of which is depressed and thus "active" or "on" at any point in time. Other types of switches may also be used to select the direction in which the car 10 will travel.
[0029] The left-hand joystick 61 can include a button 68 for rotating the platform 58 to the left (e.g. , counterclockwise when viewed from above), a switch 70 for raising or lowering the conveyor system 18, and a button 72 to load or discharge the conveyor 18. In some embodiments, the right and left joysticks 60, 61 also each include a trigger 71, 73 (see Fig. 6 for trigger 73 on the left joystick 61). To reduce the potential for unwanted rotation of the platform 58, for example, when an operator is entering or exiting the operator's compartment, rotation of the platform 58 to the right may require the simultaneous pulling of the left joystick 61 trigger 73 and pressing of the right joystick 60 button 66. Similarly, rotation of the platform 58 to the left may require simultaneous pulling of the right joystick 60 trigger 71 and pressing of the left joystick 61 button 68. Generally speaking, when the operator is not in the process of rotating the seat 54 between various angular positions, the seat 54 is secured against rotation. Although Figs. 7 and 8 illustrate the joystick controls arranged in a particular manner, it is to be appreciated that other embodiments may include a different arrangement of controls.
[0030] Fig. 9 illustrates the right-side foot-pedal control 56, the left-side foot-pedal control 57 being substantially the same. The foot-pedal control 56 includes a bracket assembly 80 coupled to the platform 58 and a pedal 82 pivotally coupled to the bracket assembly 80 by a pin 84. A torsion spring 74 surrounds the pin 84 and biases the pedal 82 generally upwardly.
Positioning the torsion spring 74 above the platform 58 allows for easy serviceability. A pushrod 86 extends through an opening in the platform 58 and into a foot-switch enclosure 76, which can include sensors, solenoids, and the like for actuating the drive mechanism of the shuttle car 10 in response to operation of the pedal 82.
[0031] The right joystick 60 is used to steer or turn the shuttle car 10 in a manner intended to be natural and intuitive for the operator. Pushing or pulling the right joystick 60 along the slot 69 between fore, neutral, and aft positions turns the wheels 14 of the shuttle car 10, thus allowing the shuttle car 10 to negotiate corners. Movement of the shuttle car 10 is controlled with a combination of the tram-direction switch 64, which determines the direction in which the shuttle car 10 will travel, and the foot-pedal controls 56, 57 which control the speed at which the shuttle car 10 travels in the direction associated with the position of the tram-direction switch 64. The operation of these controls is independent of the rotational position of the platform 58. As such, regardless of whether the operator is facing at a right angle to the conveyor 18, generally toward the loading end 17, or generally the discharge end 19, steering and movement of the shuttle car 10 is controlled in the same manner. Although not necessary, operators are free to rotate the platform 58 such that they are facing generally in the direction they wish to travel.
[0032] Using the shuttle car 10 and operator's compartment 12 configuration in the drawings as an example, to travel in a straight line with the loading end 17 at the "front" of the shuttle car 10, the joystick 60 is positioned in the neutral position and the tram-direction switch 64 is operated to select the loading end 17 as the front of the shuttle car 10. In the illustrated construction, this is accomplished by depressing the right-hand portion of the tram-direction switch 64, which is closest to the loading end 17 (see Figs. 1 and 7). The operator may then depress the right-foot pedal 56, thus activating the drive mechanism of the shuttle car 10 and moving the shuttle car 10 in the direction of the loading end 17. To travel in the opposite direction (e.g. , with the discharge end 19 as the "front" of the shuttle car 10), the operator can flip the tram-direction switch 64 such that the left portion of the switch is depressed, and depress the right-foot pedal 56, thus activating the drive mechanism of the shuttle car 10 and moving the shuttle car in the direction of the discharge end 19. Although the joysticks 60, 61 and foot-pedal controls 56, 57 are arranged in a particular manner in some embodiments, it is to be appreciated that, in other embodiments, the arrangement can be different depending on the usage
requirements or preferences for the particular shuttle car 10.
[0033] With reference to Figs. 10- 13, the right-hand joystick 60 can offer an intuitive control for steering the shuttle car 10. In the illustrated embodiments, by pulling the right-hand joystick 60 rearwardly and toward the seat/operator, the operator can steer the shuttle car 10 toward the same side of the underground roadway as the operator is positioned, regardless of which direction the shuttle car 10 is traveling. Similarly, by pushing the right-hand joystick 60 forwardly and away from the seat/operator, the operator can steer the shuttle car 10 toward the side of the underground roadway opposite the operator's position.
[0034] For example, as shown in Fig. 10, when the shuttle car 10 travels in the direction of the loading end 17, the operator can pull the right-hand joystick 60 rearwardly to steer the shuttle car 10 to the right. More specifically, in the illustrated construction having the cab 12 disposed in the illustrated location near the discharge end 19, the operator can flip the tram-direction switch 64 on the right-hand joystick 60 to the right, pull the right-hand joystick 60 rearwardly, and depress the right-foot pedal 56 to travel in the direction of the loading end 17 while executing a turn to the right.
[0035] As shown in Fig. 11, when the shuttle car 10 travels in the direction of the loading end 17, the operator can push the right-hand joystick 60 forwardly to steer the shuttle 10 to the left. More specifically, in the illustrated construction having the cab 12 disposed in the illustrated location near the discharge end 19, the operator can flip the tram-direction switch 64 to the right, push the right-hand joystick 60 forwardly, and depress the right-foot pedal 56 to travel in the direction of the loading end 17 while executing a turn to the left.
[0036] As shown in Fig. 12, when the shuttle car 10 travels in the direction of the discharge end 19, the operator can push the right-hand joystick 60 forwardly to steer the shuttle car 10 to the right. More specifically, in the illustrated construction having the cab 12 disposed in the illustrated location near the discharge end 19, the operator can flip the tram-direction switch 64 to the left, push the right-hand joystick 60 forwardly, and depress the right-foot pedal 56 to travel in the direction of the discharge end 19 while executing a turn to the right.
[0037] As shown in Fig. 13, when the shuttle car 10 travels in the direction of the discharge end 19, the operator can pull the right-hand joystick 60 rearwardly to steer the shuttle car to the left. More specifically, in the illustrated construction having the cab 12 disposed in the illustrated location near the discharge end 19, the operator can flip the tram-direction switch 64 to the left, pull the right-hand joystick 60 rearwardly, and depress the right-foot pedal 56. Again, by pulling the right-hand joystick 60 toward the operator, the operator can steer the shuttle car 10 to the same side of the underground roadway as the operator is positioned, and by pushing the right-hand joystick 60 away from the operator, the operator can steer the car 10 to the side of the underground roadway opposite the operator's position.
[0038] The above-described method of steering the shuttle car 10 can be intuitive to the operator, because by pulling the joystick 60 toward the operator, the operator can steer the car 10 to the same side of the underground roadway as to where the cab 12 is disposed, regardless of the direction the operator is facing or tramming. Similarly, by pushing the joystick 60 away from the operator, the operator can steer the car 10 to the side of the underground roadway opposite to where the cab 12 is disposed, regardless of the direction the operator is facing or tramming. Stated slightly differently, when the operator pulls on the joystick 60, the shuttle car 10 turns generally about a point that is behind the operator, such that, in the illustrated construction, the cab is positioned to the inside of the resulting turn, and when the operator pushes on the joystick 60, the shuttle car 10 turns generally about a point that is in front of the operator, such that, in the illustrated construction, the cab is positioned to the outside of the resulting turn, regardless of the direction in which the shuttle car is traveling.

Claims

What is claimed is: 1. A seat module for a mining shuttle car that includes a loading end, a discharge end, and a conveyor extending between the loading end and the discharge end, the seat module comprising:
an enclosure;
a rotatable platform positioned within the enclosure; and
a seat supported by the rotatable platform and rotatable therewith between a first secured position facing generally toward the loading end, a second secured position facing generally toward the discharge end, and at least one secured position between the first and second positions.
2. The seat module of claim 1, wherein the seat is rotatable with the rotatable platform between a substantially infinite number of positions between the first and second positions.
3. The seat module of claim 1, further comprising foot controls supported by the rotatable platform and rotatable therewith.
4. The seat module of claim 1, further comprising a joystick control supported by the rotatable platform and rotatable therewith, the joystick control operable to steer the mining shuttle car.
5. The seat module of claim 4, wherein the joystick control is moveable forwardly and rearwardly relative to the seat to steer the mining shuttle car.
6. The seat module of claim 4, wherein forward movement of the joystick control relative to the seat steers the shuttle car about a point in front of the seat, and rearward movement of the joystick control relative to the seat steers the shuttle car about a point behind the seat, regardless of the rotational position of the seat.
7. The seat module of claim 4, wherein the joystick control includes a switch for setting a tramming direction of the mining shuttle car.
8. The seat module of claim 1, further comprising a first joystick control and a second joystick control each supported by the rotatable platform and rotatable therewith, the first joystick control operable to steer the mining shuttle car and including a switch for setting a tramming direction of the mining shuttle car, and the second joystick control including at least one control for operating the conveyor.
9. A mining shuttle car comprising:
a loading end;
a discharge end;
a conveyor system extending between the loading end and the discharge end; and a seat module positioned adjacent the conveyor system and including a rotatable seat, the seat being rotatable between a first secured position facing generally toward the loading end, a second secured position facing generally toward the discharge end, and at least one secured position between the first and second positions.
10. The mining shuttle car of claim 9, further comprising foot controls coupled to the seat and rotatable therewith.
11. The mining shuttle car of claim 9, further comprising a joystick control coupled to the seat and rotatable therewith, the joystick control operable to steer the mining shuttle car.
12. The mining shuttle car of claim 11, wherein the joystick control is moveable forwardly and rearwardly relative to the seat to steer the mining shuttle car.
13. The mining shuttle car of claim 11, wherein forward movement of the joystick control relative to the seat steers the shuttle car about a point in front of the seat, and rearward movement of the joystick control relative to the seat steers the shuttle car about a point behind the seat, regardless of the rotational position of the seat.
14. The mining shuttle car of claim 11, wherein the seat module is disposed to one side of the mining shuttle car, and wherein pulling the joystick toward the seat while tramming steers the mining shuttle car such that the seat module is positioned to the inside of the resulting turn, and wherein pushing the joystick away from the seat while tramming steers the mining shuttle car such that the seat module is positioned to the outside of the resulting turn.
15. The mining shuttle car of claim 9, further comprising a foot control rotatable with the seat.
16. A method of operating a mining shuttle car comprising:
rotating a seat to any one of a plurality of secured positions;
tramming in a first direction and pushing a joystick control away from the seat to turn left and pulling the joystick control toward the seat to turn right; and
tramming in a second direction opposite the first direction and pushing the joystick control away from the seat to turn right and pulling the joystick control toward the seat to turn left.
17. The method of claim 16, further comprising operating a foot control to tram the shuttle car in either the first direction or the second direction, the foot control coupled to the seat for rotation therewith.
18. The method of claim 17, further comprising selecting whether to tram in the first direction or the second direction with a switch mounted to the joystick control.
19. A mining shuttle car comprising:
a loading end;
a discharge end;
a conveyor system extending between the loading end and the discharge end; and a seat module positioned adjacent the conveyor system and including a seat facing generally toward the conveyor system, the seat including a joystick control coupled to the seat and operable to steer the mining shuttle car, wherein forward movement of the joystick control relative to the seat steers the shuttle car about a point in front of the seat, and wherein rearward movement of the joystick control relative to the seat steers the shuttle car about a point behind the seat.
20. The mining shuttle car of claim 19, wherein the seat is rotatable between a plurality of secured positions, and wherein forward and rearward movement of the joystick steers the shuttle car in the same manner regardless of the rotational position of the seat.
PCT/US2011/026646 2011-03-01 2011-03-01 Seat module for a mining vehicle WO2012118488A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201180070416.5A CN103492212B (en) 2011-03-01 2011-03-01 Seat module for a mining vehicle
CN201711159243.XA CN107878193A (en) 2011-03-01 2011-03-01 Seat module for a mining vehicle
AU2011360963A AU2011360963B2 (en) 2011-03-01 2011-03-01 Seat module for a mining vehicle
PCT/US2011/026646 WO2012118488A1 (en) 2011-03-01 2011-03-01 Seat module for a mining vehicle
ZA2013/06595A ZA201306595B (en) 2011-03-01 2013-09-03 Seat module for a mining vehicle
AU2016250328A AU2016250328B2 (en) 2011-03-01 2016-10-24 Seat module for a mining vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2011/026646 WO2012118488A1 (en) 2011-03-01 2011-03-01 Seat module for a mining vehicle

Publications (1)

Publication Number Publication Date
WO2012118488A1 true WO2012118488A1 (en) 2012-09-07

Family

ID=46758230

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2011/026646 WO2012118488A1 (en) 2011-03-01 2011-03-01 Seat module for a mining vehicle

Country Status (4)

Country Link
CN (2) CN103492212B (en)
AU (2) AU2011360963B2 (en)
WO (1) WO2012118488A1 (en)
ZA (1) ZA201306595B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022207154A1 (en) 2022-07-13 2024-01-18 Volkswagen Aktiengesellschaft Motor vehicle with a movable driver's seat

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114435619A (en) * 2022-03-11 2022-05-06 哈尔滨理工大学 Rotating platform device applied to special vehicle on shipboard platform

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030070900A1 (en) * 2001-10-11 2003-04-17 Jack Elwell Self-propelled belt loader
US20060061122A1 (en) * 2004-09-23 2006-03-23 Billger Steven C Rotating and swiveling seat
US20060144634A1 (en) * 2002-06-17 2006-07-06 Portscheller James I Operator control station for controlling different work machines
US20090276122A1 (en) * 2007-05-09 2009-11-05 Prairie Machine & Parts Mfg.(1978) Ltd. Steering system and method for train of wheeled vehicles
US20100300796A1 (en) * 2007-05-04 2010-12-02 Pwgk Holdings Pty Limited Vehicle with a variable driver position

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE518707C2 (en) * 2001-02-13 2002-11-12 Gremo Svenska Ab A support frame for a seat in a vehicle
CN2665073Y (en) * 2003-12-18 2004-12-22 云南昆船第一机械有限公司 Rail type linear type double-station shuttle
US7290635B2 (en) * 2004-07-02 2007-11-06 Caterpillar Inc. Work machine operator control station with moveably attached controller
US7520567B2 (en) * 2004-09-23 2009-04-21 Crown Equipment Corporation Systems and methods for seat repositioning
US7971677B2 (en) * 2009-01-27 2011-07-05 Clark Equipment Company Work machine vehicle having seat mounted controls with nested seatbar

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030070900A1 (en) * 2001-10-11 2003-04-17 Jack Elwell Self-propelled belt loader
US20060144634A1 (en) * 2002-06-17 2006-07-06 Portscheller James I Operator control station for controlling different work machines
US20060061122A1 (en) * 2004-09-23 2006-03-23 Billger Steven C Rotating and swiveling seat
US20100300796A1 (en) * 2007-05-04 2010-12-02 Pwgk Holdings Pty Limited Vehicle with a variable driver position
US20090276122A1 (en) * 2007-05-09 2009-11-05 Prairie Machine & Parts Mfg.(1978) Ltd. Steering system and method for train of wheeled vehicles

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022207154A1 (en) 2022-07-13 2024-01-18 Volkswagen Aktiengesellschaft Motor vehicle with a movable driver's seat

Also Published As

Publication number Publication date
AU2016250328B2 (en) 2018-06-07
ZA201306595B (en) 2014-04-30
AU2011360963A1 (en) 2013-09-19
AU2016250328A1 (en) 2016-11-10
CN107878193A (en) 2018-04-06
AU2011360963B2 (en) 2016-08-04
CN103492212A (en) 2014-01-01
CN103492212B (en) 2017-12-26

Similar Documents

Publication Publication Date Title
US10144316B2 (en) Seat modules for a mining vehicle
AU2008247324B2 (en) Vehicle with a variable driver position
US9057221B2 (en) Cab module for a mining machine
AU2016250328B2 (en) Seat module for a mining vehicle
JP2021049828A (en) Work vehicle
US7188991B1 (en) Auxiliary control station for a rear dispensing concrete mixing vehicle
WO2016046979A1 (en) Self-propelled mining machine
JP5893898B2 (en) Power unit and work vehicle
US7051832B2 (en) Material handling vehicle with dual control handles
JP2008029143A (en) Train running system and running device at ground side
JP3946214B2 (en) Emergency stop device for hydraulic travel device
JP2009228297A (en) Work vehicle
JP7455085B2 (en) Self-propelled work vehicle
JP7235629B2 (en) work vehicle
US2694460A (en) Control mechanism for trucks
JP6546682B1 (en) Self-propelled work machine and control system and control method of self-propelled work machine
JP7413243B2 (en) work vehicle
US20240025468A1 (en) Vehicle
EP1262097A2 (en) Verge trimming apparatus
JP2005298188A (en) Forklift and maintenance method for internal part of forklift
JPS5915701Y2 (en) Mobile control device for industrial vehicles
JP2022076577A (en) Rolling machine
JP2006068017A (en) Farm work vehicle
KR200228077Y1 (en) Loading box operating lever of safety loader vehicles
AU2015200239B2 (en) Cab module for a mining machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11859991

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2011360963

Country of ref document: AU

Date of ref document: 20110301

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 11859991

Country of ref document: EP

Kind code of ref document: A1