WO2012118280A2 - Apparatus for generating stabilized extreme ultraviolet light using plasma - Google Patents

Apparatus for generating stabilized extreme ultraviolet light using plasma Download PDF

Info

Publication number
WO2012118280A2
WO2012118280A2 PCT/KR2012/000734 KR2012000734W WO2012118280A2 WO 2012118280 A2 WO2012118280 A2 WO 2012118280A2 KR 2012000734 W KR2012000734 W KR 2012000734W WO 2012118280 A2 WO2012118280 A2 WO 2012118280A2
Authority
WO
WIPO (PCT)
Prior art keywords
vacuum chamber
gas
plasma
extreme ultraviolet
vacuum
Prior art date
Application number
PCT/KR2012/000734
Other languages
French (fr)
Korean (ko)
Other versions
WO2012118280A3 (en
Inventor
장명식
임재원
Original Assignee
주식회사 에프에스티
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 에프에스티 filed Critical 주식회사 에프에스티
Publication of WO2012118280A2 publication Critical patent/WO2012118280A2/en
Publication of WO2012118280A3 publication Critical patent/WO2012118280A3/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G2/00Apparatus or processes specially adapted for producing X-rays, not involving X-ray tubes, e.g. involving generation of a plasma
    • H05G2/001X-ray radiation generated from plasma
    • H05G2/008X-ray radiation generated from plasma involving a beam of energy, e.g. laser or electron beam in the process of exciting the plasma
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G2/00Apparatus or processes specially adapted for producing X-rays, not involving X-ray tubes, e.g. involving generation of a plasma
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K5/00Irradiation devices
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G2/00Apparatus or processes specially adapted for producing X-rays, not involving X-ray tubes, e.g. involving generation of a plasma
    • H05G2/001X-ray radiation generated from plasma
    • H05G2/003X-ray radiation generated from plasma being produced from a liquid or gas

Definitions

  • the present invention relates to a stabilized extreme ultraviolet light generating apparatus using plasma, and more particularly, to a stabilized pole using plasma capable of generating effective and highly efficient Extreme Ultraviolet (EUV) light while simplifying a structure.
  • An ultraviolet generator capable of generating effective and highly efficient Extreme Ultraviolet (EUV) light while simplifying a structure.
  • the resolution of the exposure apparatus is proportional to the numerical aperture (NA) of the transfer optical system and inversely proportional to the wavelength of light used for exposure. For this reason, as an attempt to increase the resolution, an attempt has been made to use an Extreme Ultraviolet (EUV) light source having a short wavelength instead of visible or ultraviolet light for exposure transfer.
  • EUV Extreme Ultraviolet
  • As the EUV light generating device used in such an exposure transfer device there are a laser plasma EUV light source and a discharge plasma EUV light source.
  • the wavelength used in the EUV exposure apparatus is an EUV light source having a wavelength of 13.5 nm, and the use of Ne plasma using Ne gas as a target material of a laser plasma light source has been widely researched and developed because of relatively high conversion efficiency (obtained with respect to input energy). EUV light intensity ratio). Since Ne is a gaseous material at room temperature, the problem of debris is difficult. However, in order to obtain a high output EUV light source, there is a limit to using Ne gas as a target, and it is also desired to use other materials.
  • EUV light which is 13.5 nm generated from the plasma
  • EUV light which is 13.5 nm generated from the plasma
  • a vacuum environment ⁇ 10 -3 torr
  • a condenser mirror and a lens coated with a special material should be used.
  • the present invention for solving the above problems can be minimized by the vacuum induction and gas efficiency during the extreme ultraviolet ray generation by applying different vacuum degree of the plasma generation section and output section, and effectively reduce the EUV light source generated from the plasma It is an object of the present invention to provide a stabilized extreme ultraviolet generator using a plasma that can be collected.
  • the present invention for achieving the above object is a laser source for outputting a laser, the laser is supplied from the gas supply passage for the plasma induction furnace corresponding to the section in which the laser output from the laser source is in focus And a gas cell for generating extreme ultraviolet rays by forming a plasma by means of a gas and the gas cell, the first vacuum chamber part maintaining a constant vacuum degree, and receiving the extreme ultraviolet rays generated from the gas cells to receive the extreme ultraviolet rays.
  • a second vacuum chamber part for maintaining a constant vacuum degree as a space for exiting to the outside, a gas supply part for supplying gas for guiding the laser and plasma into a gas supply path of the gas cell, and the first vacuum chamber part and a second vacuum chamber part; It comprises a first vacuum pump and a second vacuum pump for forming the vacuum degree of the vacuum chamber portion, respectively.
  • the second vacuum chamber portion may have a higher vacuum degree than the first vacuum chamber portion.
  • the first vacuum chamber part and the second vacuum chamber part may include a partition wall through which extreme ultraviolet rays are transmitted in one vacuum chamber, and the first vacuum chamber part and the second vacuum chamber part may be divided into a first vacuum chamber part and a second vacuum chamber part.
  • the apparatus may further include a driver including at least one focusing mirror and a reflecting mirror before the light emitted from the laser source is incident on the gas cell, and controlling a position and an angle of the focusing mirror and the reflecting mirror. It is done.
  • a driver including at least one focusing mirror and a reflecting mirror before the light emitted from the laser source is incident on the gas cell, and controlling a position and an angle of the focusing mirror and the reflecting mirror. It is done.
  • the second vacuum chamber unit a dichroic mirror for reflecting only the extreme ultraviolet light incident from the first vacuum chamber to the outside, a beam splitter for dividing the remaining light transmitted through the dichroic mirror, the light split through the beam splitter
  • An image sensor that detects focusing of a laser beam incident on the gas cell by receiving one of the light beams, and focusing provided at the tip of the image sensor or the image sensor to detect whether the laser beam is focused on each gas cell position
  • a light detector configured to detect a state of a laser beam by receiving the driving unit for driving the lens back and forth and the other light split by the beam splitter.
  • an ND filter or an analyzer may be further provided at the front end of the image sensor and the photo detector.
  • the first vacuum chamber unit may include a window for receiving a laser beam output from the laser source, and the window may be installed at a Brewster angle.
  • the gas cell is characterized in that formed of a transparent material.
  • the gas cell is characterized in that formed of quartz.
  • the gas cell may further include a gas cell pump and a gas drain part for maintaining the vacuum degree of the plasma induction furnace and draining the gas supplied through the gas supply path through the exhaust path.
  • the present invention constructed and operated as described above has an advantage of increasing plasma efficiency generated by using Ne gas for inducing plasma and effectively collecting optimal EUV light generated from plasma.
  • the chamber portion having a different degree of vacuum there is an advantage that can stably output the extreme ultraviolet rays generated in the gas cell.
  • the extreme ultraviolet ray generating apparatus using the plasma according to the present invention has the effect of having a small size and relatively high luminance than other EUV light sources.
  • the system automation of the extreme ultraviolet generator is realized, which improves precision, high-speed alignment, and safely controls the device. have.
  • FIG. 1 is a schematic configuration diagram of a stabilized EUV apparatus using a plasma according to the present invention
  • FIG. 2 is a schematic configuration diagram of a gas cell for plasma induction of a stabilized extreme ultraviolet light generating apparatus using plasma according to the present invention
  • FIG. 3 is a configuration diagram of an extreme ultraviolet generator for automatic laser alignment according to another embodiment of the present invention.
  • FIG. 4 shows an image sensor image for laser automatic alignment according to the embodiment of FIG. 3.
  • the stabilized extreme ultraviolet ray generating apparatus using the plasma according to the present invention the laser source 100 for outputting the laser, the laser output from the laser source in the plasma induction furnace 330 corresponding to the section in which the focus is received
  • Gas chamber 300 receiving gas from the gas supply path 310 to form a plasma by laser and gas to generate extreme ultraviolet rays, and accommodating the gas cell to maintain a constant vacuum degree.
  • a second vacuum chamber unit 201 which maintains a constant vacuum degree as a space for receiving the extreme ultraviolet rays generated from the gas cell and emitting the extreme ultraviolet rays to the outside, and the laser is supplied to the gas supply path of the gas cell.
  • a gas supply unit for supplying gas for inducing plasma and a first vacuum pump for forming vacuum degrees of the first vacuum chamber part and the second vacuum chamber part, respectively. And a second vacuum pump.
  • the stabilized extreme ultraviolet light generating apparatus has a light efficiency according to the degree of vacuum in the process in which EUV light is generated in the gas cell (first vacuum chamber part) and then EUV light is output outside the vacuum chamber using gas plasma.
  • EUV stabilized by dividing the first vacuum chamber part 200 and the second vacuum chamber part 201 having different vacuum degrees, and performing EUV light generation and EUV light transmission functions in each chamber part to prevent degradation. It is a main technical point to provide an extreme ultraviolet generator capable of generating light.
  • FIG. 1 is a schematic configuration diagram of a stabilized EUV apparatus using a plasma according to the present invention.
  • the laser source 100, the first vacuum chamber part 200, the gas cell 300, the second vacuum chamber part 201, the gas supply part 500, and the plurality of vacuum pumps 600 are large. 610, it is composed of a plurality of optical components for delivering a laser beam.
  • the laser source 100 is a source source for outputting a laser having an arbitrary wavelength.
  • the laser source 100 generates extreme ultraviolet rays having a wavelength of 50 nm or less through plasma induction of the laser output from the laser source.
  • a femto sencond-class laser source as a detailed specification as a medium titanium sapphire amplification laser system, Wavelength 800nm, Repetition rate 1kHz, Pulse duration ⁇ 50fs, Energy per pulse> 3.5mJ at 1 kHz
  • Laser sources with energy stability ⁇ 0.5% and M 2 ⁇ 1.3 can be used.
  • the first vacuum chamber part 200 is an area in which extreme ultraviolet rays are generated
  • the second vacuum chamber part 201 corresponds to an area for stably supplying extreme ultraviolet rays generated in the first vacuum chamber part.
  • the plasma is induced by the laser beam and the gas supplied from the outside to generate the extreme ultraviolet rays, the extreme ultraviolet rays are generated through the gas cell to be described later.
  • a gas such as Ne, Xe, He, etc. is supplied into the gas cell from the outside, it is difficult to maintain a constant vacuum degree, and thus, in the chamber where the gas cell is located, EUV light efficiency generated in the gas cell may be reduced. Therefore, the gas cell is located in the first vacuum chamber portion which maintains a constant vacuum degree, and EUV light generated in the gas cell is transferred directly to the second vacuum chamber portion having a lower vacuum degree to prevent the efficiency from falling.
  • first vacuum chamber portion and the second vacuum chamber portion may be configured separately and have a structure to be delivered through the window, it is configured to maintain a different vacuum degree through a partition wall in a preferred embodiment of the present invention
  • EUV light is transmitted through windows or microholes installed in the bulkhead.
  • the first vacuum chamber part and the second vacuum chamber part are configured with a first vacuum pump 600 and a second vacuum pump 610, respectively, to maintain different vacuum degrees, and to form a lower vacuum degree in the second vacuum chamber.
  • a plurality of vacuum pumps suitable for this can be installed.
  • it consists of Medium Vacuum class vacuum pumps such as Cryo pump, Diffusion Pump, Turbo Pump and Ion pump.
  • Vacuum chambers each portion is preferably first the 10 -3 torr or less, a second vacuum chamber maintained in a vacuum chamber to a vacuum degree of less than 10 -6 torr.
  • FIG. 2 is a schematic configuration diagram of a gas cell for plasma induction of the extreme ultraviolet ray generating apparatus using the plasma according to the present invention.
  • the gas cell is made of a transparent material, preferably made of quartz, a through path through which a laser can pass is formed, and in the center thereof, a plasma induction furnace 330 which is a focal region where a laser output from a laser source is focused. ), An exhaust path 320 is formed at both sides of the plasma induction furnace, and a gas supply path 310 for supplying gas to the plasma induction furnace is connected to the plasma induction furnace.
  • the plasma induction furnace corresponding to the center portion of the gas cell is focused by the laser output from the laser source, and the Ne gas is supplied through the gas induction furnace 310 passing through the plasma induction furnace from the external gas supply unit 500. Supply.
  • exhaust paths 320 are formed at both sides of the plasma induction furnace to exhaust the supplied gas to the outside and maintain the degree of vacuum in the plasma induction furnace. If the gas supplied through the gas supply path is diffused outside the region where the laser focus is focused, smooth plasma induction may not be possible due to the scattering of gas particles.
  • this exhaust gas may also be an obstacle to EUV light generation. Maintain gas evacuation and vacuum through the furnace.
  • the exhaust path is exhausted through an external vacuum pump and exhausted through a gas drain 610 connected to the pump.
  • the material of the gas cell is made of glass such as quartz, and it can be observed from the outside whether the plasma is generated normally by the reaction of the input laser light and the injection gas.
  • the integrated gas cell is not only easy to replace, but also very advantageous for alignment after replacement, easy to drain the gas, and very effective in maintaining the vacuum of the vacuum chamber by reducing the amount of gas leaking from the gas cell into the vacuum chamber. .
  • the diameter (A) of the plasma flow path which is a plasma generation region closely related to the size of the point light source considering the inflow pressure of Ne gas and the laser power density, is 0.3 to 0.6 mm and the length ( B) consists of 5 to 10mm.
  • the laser spot light source is first introduced into the gas cell, and the last emitted tube diameter (C) is manufactured with a diameter of 1 to 3 mm to avoid the interference caused by the size of the focused laser point light source and to minimize the inflow of Ne gas into the vacuum chamber. do.
  • Ne gas required for the reaction (D) is composed of 0.5 ⁇ 2mm, the supply pressure is limited to 30 ⁇ 100 torr, which is effective considering the power density of the laser point light source and the space region of the B section, the plasma generation region It is for plasma generation.
  • the diameter (E) is 5 to 10 mm larger than the diameter of the point C where the laser is introduced to facilitate the vacuum pumping. At this time, to make gas pumping more easily, give 30 to 60 degrees of inclination angle based on the entrance and exit direction.
  • Ultraviolet (EUV) light generated by plasma induction is generated through the gas cell configured as described above.
  • the gas cell 300 is positioned in the first vacuum chamber, and the laser output from an external laser source is incident to the gas cell to generate EUV light.
  • a window 210 for transmitting a laser is provided at one side of the vacuum chamber.
  • the window is positioned at Brewster's angle. Therefore, the reflection loss is minimized to minimize the femtosecond laser beam reflection loss.
  • the laser beam transmitted through the window is focused and transmitted through a plurality of mirrors to be focused on the plasma induction path of the gas cell.
  • a focusing mirror 420 is provided between the first reflecting mirror 400 and the second reflecting mirror 410 so as to effectively implement focusing and mechanical size (chamber size). It installs and delivers the beam to the gas cell.
  • the first beam reflected and reflected by the first reflecting mirror is focused through the focusing mirror 420 and reflected by the second reflecting mirror. Light reflected back from the second reflection mirror is incident to the gas cell.
  • the configuration for light transmission can be easily changed, and if necessary, can be incident directly into the gas cell from the laser source.
  • the gas cell is configured to be located close to the partition wall, the extreme ultraviolet rays generated in the gas cell is transmitted to the second vacuum chamber portion is emitted to the outside in a more stable state by a low degree of vacuum.
  • the second vacuum chamber part is provided with a dichroic mirror (dichroic mirror; 430), and by adjusting the angle of the mirror, EUV light of wavelengths such as 13 nm and 6 nm of a desired size can be output.
  • a dichroic mirror driver 431 (picomotor) capable of controlling the angle of the dichroic mirror.
  • the present invention can provide an automated device for laser monitoring and automatic alignment implementation of the extreme ultraviolet generating device configured as described above.
  • 3 is a diagram illustrating a configuration of an extreme ultraviolet generator for automatic laser alignment according to another embodiment of the present invention
  • FIG. 4 is a view illustrating an image sensor image for automatic laser alignment according to the embodiment of FIG. 3.
  • an image sensor 450 installed outside the second vacuum chamber with respect to the beam axis emitted from the gas cell and an image sensor driver 452 for driving the image sensor in the beam axis direction are provided.
  • the light detector 470 for detecting the state information such as optical power or output by reflecting the beam incident to the image sensor is provided, and the first and second reflecting mirrors, focusing mirror, dichroic mirror Each drive unit for controlling the angle is provided.
  • the driver 421 is mounted on the first reflecting mirror, the second reflecting mirror, and the focusing lens so that the light emitted from the laser source can be accurately focused in the plasma induction path of the gas cell, thereby implementing angle adjustment or position adjustment.
  • a preferred example of the driving unit is a pico motor (Pico motor) is applied.
  • the image sensor 450 located on the gas cell beam axis is installed for beam alignment and beam monitoring. As shown in FIG. 4, beam spots for the first and second points of the gas cell can be detected.
  • the image sensor is obtained by moving the image sensor in the optical axis direction by the separate image sensor driver 452, and the resultant value is fed back to the driver 421 to automatically control the beam alignment.
  • the beam incident on the image sensor reflects extreme ultraviolet light through the dichroic mirror and enters the remaining transmitted light.
  • the focusing lens is installed at the tip of the image sensor to move the focusing lens to change the beam spot, thereby detecting whether the gas cell is focused.
  • a beam splitter such as a beam splitter 440, is installed in the middle of the beam axis incident to the image sensor and then reflects a part of the light incident to the image sensor to perform beam power monitoring, beam output check, beam status check, beam uniformity, and the like.
  • a photo detector such as a photo detector is installed outside the second vacuum chamber to detect an operating state of the extreme ultraviolet generator in real time.
  • an ND filter or an analyzer 460 may be installed at the tip of the image sensor and the light detector to control an incident beam.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • X-Ray Techniques (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

The present invention relates to an apparatus for generating stabilized extreme ultraviolet light using plasma, which comprises: a laser source which outputs a laser beam; a gas cell which receives the laser beam outputted from the laser source, receives gas supplied from a gas supply path, and generates extreme ultraviolet light by forming plasma by the laser beam and gas with respect to a plasma induction path corresponding to a section at which a focus is formed; a first vacuum chamber unit which accommodates the gas cell and maintains a constant vacuum; a second vacuum chamber unit which has a space to receive the extreme ultraviolet light generated by the gas cell and to emit the extreme ultraviolet light to the outside, and maintains a constant vacuum; a gas supply unit which supplies the gas supply path of the gas cell with gas for inducing the laser beam and plasma; and a first vacuum pump and a second vacuum pump for forming the vacuums of the first vacuum chamber unit and second vacuum chamber unit, respectively.

Description

플라즈마를 이용한 안정화된 극자외선 발생장치Stabilized EUV Generator Using Plasma
본 발명은 플라즈마를 이용한 안정화된 극자외선 발생장치에 관한 것으로, 좀 더 상세하게는 구조를 간소화하면서 효과적이고 효율이 높은 극자외선(EUV ; Extreme Ultraviolet)광을 발생시킬 수 있는 플라즈마를 이용한 안정화된 극자외선 발생장치에 관한 것이다.The present invention relates to a stabilized extreme ultraviolet light generating apparatus using plasma, and more particularly, to a stabilized pole using plasma capable of generating effective and highly efficient Extreme Ultraviolet (EUV) light while simplifying a structure. An ultraviolet generator.
반도체 집적 회로의 집적도가 증가함에 따라, 회로 패턴이 미세화되어 종래 사용되어 오던 가시광선이나 자외선을 사용한 노광 장치에서는 그 해상도가 부족해지고 있다. 반도체 제조공정에서 노광 장치의 해상도는 전사 광학계의 개구수(NA)에 비례하고, 노광에 사용하는 광의 파장에 반비례한다. 그 때문에 해상도를 높이는 한 시도로서, 가시광선이나 자외선광 대신 파장이 짧은 EUV(Extreme Ultraviolet) 광원을 노광 전사에 사용하는 시도가 이루어지고 있다. 이러한 노광 전사 장치에 사용되는 EUV 광 발생 장치로서 적용 되고 있는 것이 레이저 플라즈마 EUV 광원과 방전 플라즈마 EUV 광원이 있다.As the degree of integration of a semiconductor integrated circuit increases, the circuit pattern becomes finer, and the resolution of the exposure apparatus using visible light or ultraviolet rays, which have been conventionally used, is insufficient. In the semiconductor manufacturing process, the resolution of the exposure apparatus is proportional to the numerical aperture (NA) of the transfer optical system and inversely proportional to the wavelength of light used for exposure. For this reason, as an attempt to increase the resolution, an attempt has been made to use an Extreme Ultraviolet (EUV) light source having a short wavelength instead of visible or ultraviolet light for exposure transfer. As the EUV light generating device used in such an exposure transfer device, there are a laser plasma EUV light source and a discharge plasma EUV light source.
EUV 노광 장치에서 사용되는 파장은 파장 13.5㎚인 EUV 광원으로서, 레이저 플라즈마 광원의 타겟 물질로서 Ne 가스 이용한 Ne 플라즈마를 이용하는 것이 널리 연구 개발되고 있으며, 그 이유는 비교적 높은 변환 효율(입력 에너지에 대하여 얻어지는 EUV 광 강도의 비율)을 가지는 것이다. Ne은 상온에서 기체인 재료이기 때문에 비산 입자(debris)의 문제가 발생하는 어려운 점에 있다. 그러나 고출력의 EUV 광원을 얻기 위해서는 타겟으로서 Ne 가스를 사용하는 것은 한계가 있고, 다른 물질을 이용하는 것도 요망되고 있다.The wavelength used in the EUV exposure apparatus is an EUV light source having a wavelength of 13.5 nm, and the use of Ne plasma using Ne gas as a target material of a laser plasma light source has been widely researched and developed because of relatively high conversion efficiency (obtained with respect to input energy). EUV light intensity ratio). Since Ne is a gaseous material at room temperature, the problem of debris is difficult. However, in order to obtain a high output EUV light source, there is a limit to using Ne gas as a target, and it is also desired to use other materials.
레이저 플라즈마 EUV 광원 발생 시 여기(excitation) 레이저가 흡수되거나, 플라즈마로부터 발생하는 13.5nm인 EUV 광 그 자체가 대기 또는 보통의 집광거울 등에 모두 흡수되기 때문에 생각하는 것처럼 EUV 광의 변환 효율을 높일 수 없다고 하는 문제점이 있다. 이에 EUV광의 효율을 높이기 위해서는 일정 압력 이하의 진공환경(< 10-3 torr)이 필요하며 특수 물질로 코팅된 집광미러 및 렌즈 등을 이용해야 한다. When the laser plasma EUV light source is generated, excitation laser is absorbed, or EUV light, which is 13.5 nm generated from the plasma, is absorbed by the atmosphere or ordinary condensing mirror. There is a problem. In order to increase the efficiency of EUV light, a vacuum environment (<10 -3 torr) below a certain pressure is required, and a condenser mirror and a lens coated with a special material should be used.
따라서, 이러한 조건을 적용하여 보다 효율적으로 레이저 플라즈마를 이용한 EUV 광 발생장치의 개발이 필요한 실정이다.Therefore, it is necessary to develop an EUV light generator using laser plasma more efficiently by applying such conditions.
상기와 같은 문제점을 해결하기 위한 본 발명은 플라즈마 발생구간과 출력 구간의 진공도를 달리 적용함으로써 극자외선 발생 시 가스유입으로 진공도 저하와 더불어 효율 저하를 최소화 할 수 있고, 플라즈마로부터 발생되는 EUV 광원을 효과적으로 포집할 수 있는 플라즈마를 이용한 안정화된 극자외선 발생장치를 제공하고자 하는데 그 목적이 있다.The present invention for solving the above problems can be minimized by the vacuum induction and gas efficiency during the extreme ultraviolet ray generation by applying different vacuum degree of the plasma generation section and output section, and effectively reduce the EUV light source generated from the plasma It is an object of the present invention to provide a stabilized extreme ultraviolet generator using a plasma that can be collected.
또한, 극자외선 발생에 따른 레이저 빔의 얼라인먼트(alignment), 빔 모니터링, 빔 균일성을 자동적으로 제어하여 정확하고 효과적으로 극자외선을 발생시킬 수 있는 자동화된 극자외선 발생장치를 제공하고 하는데 그 목적이 있다.It is also an object of the present invention to provide an automated extreme ultraviolet generator that can generate extreme ultraviolet rays accurately and effectively by automatically controlling alignment, beam monitoring, and beam uniformity of laser beams caused by extreme ultraviolet rays. .
상기와 같은 목적을 달성하기 위한 본 발명은 레이저를 출력하는 레이저 소스, 상기 레이저 소스에서 출력되는 레이저를 입사받아 초점이 맺혀지는 구간에 해당하는 플라즈마 유도로에 대해 가스 공급로로부터 가스를 공급받아 레이저와 가스에 의해 플라즈마를 형성하여 극자외선을 발생시키는 가스셀, 상기 가스셀을 수용하는 것으로, 일정 진공도를 유지하는 제 1진공챔버부, 상기 가스셀에서 발생된 극자외선을 입사받아 상기 극자외선을 외부로 출사시키기 위한 공간으로써 일정 진공도를 유지하는 제 2진공챔버부, 상기 가스셀의 가스 공급로로 상기 레이저와 플라즈마를 유도하기 위한 가스를 공급하는 가스 공급부 및 상기 제 1진공챔버부와 제 2진공챔버부의 진공도를 각각 형성하기 위한 제 1진공펌프와 제 2진공펌프를 포함하여 구성된다.The present invention for achieving the above object is a laser source for outputting a laser, the laser is supplied from the gas supply passage for the plasma induction furnace corresponding to the section in which the laser output from the laser source is in focus And a gas cell for generating extreme ultraviolet rays by forming a plasma by means of a gas and the gas cell, the first vacuum chamber part maintaining a constant vacuum degree, and receiving the extreme ultraviolet rays generated from the gas cells to receive the extreme ultraviolet rays. A second vacuum chamber part for maintaining a constant vacuum degree as a space for exiting to the outside, a gas supply part for supplying gas for guiding the laser and plasma into a gas supply path of the gas cell, and the first vacuum chamber part and a second vacuum chamber part; It comprises a first vacuum pump and a second vacuum pump for forming the vacuum degree of the vacuum chamber portion, respectively.
또한, 상기 제 2진공챔버부는, 상기 제 1진공챔버부보다 고진공도를 가지는 것을 특징으로 한다.The second vacuum chamber portion may have a higher vacuum degree than the first vacuum chamber portion.
또한, 상기 제 1진공챔버부와 제 2진공챔버부는, 하나의 진공챔버내에 극자외선이 투과 가능한 격벽을 구비하여 제 1진공챔버부와 제 2진공챔버부로 분할 구성되는 것을 특징으로 한다.The first vacuum chamber part and the second vacuum chamber part may include a partition wall through which extreme ultraviolet rays are transmitted in one vacuum chamber, and the first vacuum chamber part and the second vacuum chamber part may be divided into a first vacuum chamber part and a second vacuum chamber part.
또한, 상기 레이저 소스에서 출사되는 광을 상기 가스셀에 입사하기 전에 적어도 한 개 이상의 포커싱 미러와 반사미러를 구비하고, 상기 포커싱 미러와 반사미러의 위치와 각도를 제어하는 구동부를 더 포함하는 것을 특징으로 한다.The apparatus may further include a driver including at least one focusing mirror and a reflecting mirror before the light emitted from the laser source is incident on the gas cell, and controlling a position and an angle of the focusing mirror and the reflecting mirror. It is done.
또한, 상기 제 2진공챔버부는, 상기 제 1진공챔버에서 입사된 극자외선광만 외부로 반사시키는 이색미러, 상기 이색미러를 투과한 나머지 광을 분할하는 빔스플리터, 상기 빔스플리터를 통해 분할된 광 중 한쪽 광을 입사받아 상기 가스셀에 입사되는 레이저빔의 포커싱 여부를 검출하는 이미지 센서, 상기 가스셀의 위치별 레이저빔의 포커싱 여부를 검출하기 위해 상기 이미지 센서 또는 상기 이미지 센서 선단에 구비된 포커싱 렌즈를 전/후로 구동시키는 구동부 및 상기 빔스플리터에서 분할된 다른 한쪽 광을 입사받아 레이저빔의 상태를 검출하는 광검출부를 더 포함하여 구성되는 것을 특징으로 한다.In addition, the second vacuum chamber unit, a dichroic mirror for reflecting only the extreme ultraviolet light incident from the first vacuum chamber to the outside, a beam splitter for dividing the remaining light transmitted through the dichroic mirror, the light split through the beam splitter An image sensor that detects focusing of a laser beam incident on the gas cell by receiving one of the light beams, and focusing provided at the tip of the image sensor or the image sensor to detect whether the laser beam is focused on each gas cell position And a light detector configured to detect a state of a laser beam by receiving the driving unit for driving the lens back and forth and the other light split by the beam splitter.
또한, 상기 이미지 센서와 광 검출기 선단으로는 ND filter 또는 Analyzer이 더 구비되는 것을 특징으로 한다.In addition, an ND filter or an analyzer may be further provided at the front end of the image sensor and the photo detector.
또한, 상기 제 1진공챔버부는, 상기 레이저소스에서 출력되는 레이저를 입사받기 위한 원도우를 구비하고, 상기 원도우는 브루스터 각도로 설치되는 것을 특징으로 한다.The first vacuum chamber unit may include a window for receiving a laser beam output from the laser source, and the window may be installed at a Brewster angle.
또한, 상기 가스셀은, 투명재료로 형성되는 것을 특징으로 한다.In addition, the gas cell is characterized in that formed of a transparent material.
또한, 상기 가스셀은, 석영으로 형성되는 것을 특징으로 한다.In addition, the gas cell is characterized in that formed of quartz.
또한, 상기 가스셀은, 플라즈마 유도로의 진공도 유지와, 상기 가스 공급로를 통해 공급된 가스를 상기 배기로를 통해 드레인 하기 위한 가스셀 펌프와 가스 드레인부를 더 포함하여 구성되는 것을 특징으로 한다.The gas cell may further include a gas cell pump and a gas drain part for maintaining the vacuum degree of the plasma induction furnace and draining the gas supplied through the gas supply path through the exhaust path.
상기와 같이 구성되고 작용되는 본 발명은 플라즈마를 유도하는 Ne 가스를 이용하여 생성되는 플라즈마 효율을 증가시키고, 플라즈마로부터 발생되는 최적의 EUV 광을 효과적으로 포집할 수 있는 이점이 있다. 더불어 진공도가 다른 챔버부를 각각 구성함에 따라 가스셀에서 발생된 극자외선의 안정적으로 출력시킬 수 있는 이점이 있다.The present invention constructed and operated as described above has an advantage of increasing plasma efficiency generated by using Ne gas for inducing plasma and effectively collecting optimal EUV light generated from plasma. In addition, by configuring the chamber portion having a different degree of vacuum, there is an advantage that can stably output the extreme ultraviolet rays generated in the gas cell.
또한, 본 발명에 따른 플라즈마를 이용한 극자외선 발생장치는 소형이면서도 상대적으로 다른 EUV 광원보다 높은 휘도를 갖는 효과가 있다.In addition, the extreme ultraviolet ray generating apparatus using the plasma according to the present invention has the effect of having a small size and relatively high luminance than other EUV light sources.
또한, 구동부를 통한 반사각도 제어와 위치를 제어하고, 이미지 센서를 통해 레이저 빔을 검출함으로써 극자외선 발생장치의 시스템 자동화를 구현함에 따라 정밀도 향상, 고속 정렬 및 안전적으로 장치를 제어할 수 있는 장점이 있다.In addition, by controlling the reflection angle and position through the drive unit and detecting the laser beam through the image sensor, the system automation of the extreme ultraviolet generator is realized, which improves precision, high-speed alignment, and safely controls the device. have.
도 1은 본 발명에 따른 플라즈마를 이용한 안정화된 극자외선 발생장치의 개략적인 구성도,1 is a schematic configuration diagram of a stabilized EUV apparatus using a plasma according to the present invention,
도 2는 본 발명에 따른 플라즈마를 이용한 안정화된 극자외선 발생장치의 플라즈마 유도를 위한 가스셀의 개략적인 구성도,2 is a schematic configuration diagram of a gas cell for plasma induction of a stabilized extreme ultraviolet light generating apparatus using plasma according to the present invention;
도 3은 본 발명에 따른 다른 실시예로 레이저 자동 얼라인먼트를 위한 극자외선 발생장치의 구성도,3 is a configuration diagram of an extreme ultraviolet generator for automatic laser alignment according to another embodiment of the present invention;
도 4는 도 3의 실시예에 따른 레이저 자동 얼라인먼트를 위한 이미지 센서 영상을 도시한 도면.4 shows an image sensor image for laser automatic alignment according to the embodiment of FIG. 3.
<도면의 주요부분에 대한 부호의 설명><Description of the symbols for the main parts of the drawings>
100 : 레이저 소스100: laser source
200 : 제 1진공챔버200: first vacuum chamber
201 : 제 2진공챔버201: second vacuum chamber
202 : 격벽202: bulkhead
210 : 원도우210: window
300 : 가스셀 300: gas cell
310 : 가스 공급로310: gas supply passage
320 : 배기로 320: exhaust passage
330 : 플라즈마 유도로330 plasma induction furnace
400 : 제 1반사미러400: first reflection mirror
410 : 제 2반사미러410: second reflecting mirror
420 : 포커싱 미러420: Focusing Mirror
421 : 구동부421: drive unit
430 : 다이크로익 미러(이색미러)430 dichroic mirror (dichroic mirror)
431 : 다이크로익 미러 구동부431 dichroic mirror drive unit
440 : 빔스플리터440: beam splitter
450 : 이미지 센서450: image sensor
451 : 포커싱 렌즈451: Focusing Lens
452 : 이미지 센서 구동부452: image sensor driver
460 : ND 필터460: ND filter
470 : 광검출부470: photodetector
500 : 가스 공급부500 gas supply unit
600 : 제 1진공펌프600: first vacuum pump
610 : 제 2진공펌프610: second vacuum pump
620 : 가스셀 펌프620: Gas Cell Pump
630 : 가스드레인부630: gas drain portion
이하, 첨부된 도면을 참조하여 본 발명에 따른 플라즈마를 이용한 안정화된 극자외선 발생장치의 바람직한 실시예를 상세히 설명하면 다음과 같다.Hereinafter, with reference to the accompanying drawings will be described in detail a preferred embodiment of the stabilized extreme ultraviolet light generating apparatus using a plasma according to the present invention.
본 발명에 따른 플라즈마를 이용한 안정화된 극자외선 발생장치는, 레이저를 출력하는 레이저 소스(100), 상기 레이저 소스에서 출력되는 레이저를 입사받아 초점이 맺혀지는 구간에 해당하는 플라즈마 유도로(330)에 대해 가스 공급로(310)로부터 가스를 공급받아 레이저와 가스에 의해 플라즈마를 형성하여 극자외선을 발생시키는 가스셀(300), 상기 가스셀을 수용하는 것으로, 일정 진공도를 유지하는 제 1진공챔버부(200), 상기 가스셀에서 발생된 극자외선을 입사받아 상기 극자외선을 외부로 출사시키기 위한 공간으로써 일정 진공도를 유지하는 제 2진공챔버부(201), 상기 가스셀의 가스 공급로로 상기 레이저와 플라즈마를 유도하기 위한 가스를 공급하는 가스 공급부 및 상기 제 1진공챔버부와 제 2진공챔버부의 진공도를 각각 형성하기 위한 제 1진공펌프와 제 2진공펌프를 포함하여 구성된다.The stabilized extreme ultraviolet ray generating apparatus using the plasma according to the present invention, the laser source 100 for outputting the laser, the laser output from the laser source in the plasma induction furnace 330 corresponding to the section in which the focus is received Gas chamber 300 receiving gas from the gas supply path 310 to form a plasma by laser and gas to generate extreme ultraviolet rays, and accommodating the gas cell to maintain a constant vacuum degree. A second vacuum chamber unit 201 which maintains a constant vacuum degree as a space for receiving the extreme ultraviolet rays generated from the gas cell and emitting the extreme ultraviolet rays to the outside, and the laser is supplied to the gas supply path of the gas cell. And a gas supply unit for supplying gas for inducing plasma and a first vacuum pump for forming vacuum degrees of the first vacuum chamber part and the second vacuum chamber part, respectively. And a second vacuum pump.
본 발명에 따른 안정화된 극자외선 발생장치는 가스 플라즈마를 이용하여 가스셀에서 EUV광이 생성되는 영역(제 1진공챔버부)과 그 후에 진공챔버 외부에 EUV 광이 출력되는 과정에서 진공도에 따른 광효율 저하를 방지하기 위하여 진공도가 서로 다른 제 1진공챔버부(200)와 제 2진공챔버부(201)를 분할 구성하고, 각각의 챔버부에서 EUV 광 생성, EUV 광 전달 기능을 수행함으로써 안정화된 EUV 광을 생성할 수 있는 극자외선 발생장치를 제공하고자 하는 것이 주요 기술적 요지에 해당한다.The stabilized extreme ultraviolet light generating apparatus according to the present invention has a light efficiency according to the degree of vacuum in the process in which EUV light is generated in the gas cell (first vacuum chamber part) and then EUV light is output outside the vacuum chamber using gas plasma. EUV stabilized by dividing the first vacuum chamber part 200 and the second vacuum chamber part 201 having different vacuum degrees, and performing EUV light generation and EUV light transmission functions in each chamber part to prevent degradation. It is a main technical point to provide an extreme ultraviolet generator capable of generating light.
*도 1은 본 발명에 따른 플라즈마를 이용한 안정화된 극자외선 발생장치의 개략적인 구성도이다. 도시된 바와 같이 본 발명은 크게 레이저 소스(100), 제 1진공챔버부(200), 가스셀(300), 제 2진공챔버부(201), 가스 공급부(500), 다수의 진공펌프(600, 610), 레이저빔을 전달하기 위한 다수의 광학부품들로 구성된다.1 is a schematic configuration diagram of a stabilized EUV apparatus using a plasma according to the present invention. As shown in the present invention, the laser source 100, the first vacuum chamber part 200, the gas cell 300, the second vacuum chamber part 201, the gas supply part 500, and the plurality of vacuum pumps 600 are large. 610, it is composed of a plurality of optical components for delivering a laser beam.
레이저 소스(100)는 임의의 파장을 가지는 레이저를 출력하는 소스원으로써, 상기 레이저 소스에서 출력되는 레이저를 플라즈마 유도를 통해 50nm 이하의 파장을 가지는 극자외선을 생성하게 된다. 본 발명에서는 일예로 펨토초(femto sencond)급 레이저 소스를 사용하여 세부 사양으로는 매질로 티타늄 사파이어 증폭 레이저 시스템으로써, Wavelength 800nm, Repetition rate 1kHz, Pulse duration <50fs, Energy per pulse >3.5mJ at 1 kHz, Energy stability <0.5%, M2 <1.3인 레이저 소스를 사용할 수 있다.The laser source 100 is a source source for outputting a laser having an arbitrary wavelength. The laser source 100 generates extreme ultraviolet rays having a wavelength of 50 nm or less through plasma induction of the laser output from the laser source. In the present invention, for example, using a femto sencond-class laser source as a detailed specification as a medium titanium sapphire amplification laser system, Wavelength 800nm, Repetition rate 1kHz, Pulse duration <50fs, Energy per pulse> 3.5mJ at 1 kHz Laser sources with energy stability <0.5% and M 2 <1.3 can be used.
제 1진공챔버부(200)는 극자외선이 생성되는 영역이며, 제 2진공챔버부(201)는 상기 제 1진공챔버부에서 생성된 극자외선을 안정적으로 공급하기 위한 영역에 해당한다. 본 발명에서는 레이저빔과 외부에서 공급되는 가스에 의해 플라즈마를 유도하여 극자외선을 생성하게 되는데, 후술할 가스셀을 통해 극자외선이 생성된다. 이때, 가스셀 내부로 외부에서 Ne, Xe, He 등과 같은 가스가 공급되기 때문에 일정한 진공도를 유지하기 어렵고, 이에 따라 가스셀이 위치한 챔버에서는 가스셀에서 생성된 EUV 광효율이 떨어질 수 있다. 따라서, 가스셀은 일정 진공도를 유지하는 제 1진공챔버부에 위치시키고, 가스셀에서 생성된 EUV 광은 바로 진공도가 더 낮은 제 2진공챔버부로 전달하여 효율이 떨어지는 것을 방지한다.The first vacuum chamber part 200 is an area in which extreme ultraviolet rays are generated, and the second vacuum chamber part 201 corresponds to an area for stably supplying extreme ultraviolet rays generated in the first vacuum chamber part. In the present invention, the plasma is induced by the laser beam and the gas supplied from the outside to generate the extreme ultraviolet rays, the extreme ultraviolet rays are generated through the gas cell to be described later. At this time, since a gas such as Ne, Xe, He, etc. is supplied into the gas cell from the outside, it is difficult to maintain a constant vacuum degree, and thus, in the chamber where the gas cell is located, EUV light efficiency generated in the gas cell may be reduced. Therefore, the gas cell is located in the first vacuum chamber portion which maintains a constant vacuum degree, and EUV light generated in the gas cell is transferred directly to the second vacuum chamber portion having a lower vacuum degree to prevent the efficiency from falling.
여기서, 제 1진공챔버부와 제 2진공챔버부는 별도로 구성하고 원도우를 통해 전달하는 구조를 가질 수 있으며, 본 발명의 바람직한 실시예를 하나의 챔버에 격벽을 통해 서로 다른 진공도를 유지할 수 있도록 구성하고, 격벽에 설치된 원도우(windows)나 미세홀을 통해 EUV광을 전달한다.Here, the first vacuum chamber portion and the second vacuum chamber portion may be configured separately and have a structure to be delivered through the window, it is configured to maintain a different vacuum degree through a partition wall in a preferred embodiment of the present invention In addition, EUV light is transmitted through windows or microholes installed in the bulkhead.
상기 제 1진공챔버부와 제 2진공챔버부는 서로 다른 진공도를 유지하기 위해 각각 제 1진공펌프(600)와 제 2진공펌프(610)가 구성되고, 제 2진공챔버에는 보다 낮은 진공도 형성을 위하여 그에 적합한 복수개의 진공펌프를 설치할 수 있다. 예를 들면, Cryo pump, Diffusion Pump, Turbo Pump, Ion pump등의 Medium Vacuum 급 진공펌프로 구성한다. 각 챔버부의 진공도는 제 1진공챔버부에서 10-3torr 이하, 제 2진공챔버부에서는 10-6torr 이하의 진공도를 유지하는 것이 바람직하다.The first vacuum chamber part and the second vacuum chamber part are configured with a first vacuum pump 600 and a second vacuum pump 610, respectively, to maintain different vacuum degrees, and to form a lower vacuum degree in the second vacuum chamber. A plurality of vacuum pumps suitable for this can be installed. For example, it consists of Medium Vacuum class vacuum pumps such as Cryo pump, Diffusion Pump, Turbo Pump and Ion pump. Vacuum chambers each portion is preferably first the 10 -3 torr or less, a second vacuum chamber maintained in a vacuum chamber to a vacuum degree of less than 10 -6 torr.
도 2는 본 발명에 따른 플라즈마를 이용한 극자외선 발생장치의 플라즈마 유도를 위한 가스셀의 개략적인 구성도이다. 상기 가스셀은 투명재료로 구비되며, 바람직하게는 석영으로 이루어지는 것으로 레이저가 통과할 수 있는 관통로가 형성되며, 그 중앙으로는 레이저 소스에서 출력되는 레이저가 집광되는 초점 영역인 플라즈마 유도로(330)가 구비되고, 상기 플라즈마 유도로 양측으로는 배기로(320)가 형성되며, 상기 플라즈마 유도로에 가스 공급을 위한 가스 공급로(310)가 플라즈마 유도로와 연결되어 있다.2 is a schematic configuration diagram of a gas cell for plasma induction of the extreme ultraviolet ray generating apparatus using the plasma according to the present invention. The gas cell is made of a transparent material, preferably made of quartz, a through path through which a laser can pass is formed, and in the center thereof, a plasma induction furnace 330 which is a focal region where a laser output from a laser source is focused. ), An exhaust path 320 is formed at both sides of the plasma induction furnace, and a gas supply path 310 for supplying gas to the plasma induction furnace is connected to the plasma induction furnace.
상기 가스셀의 중앙 부분에 해당하는 플라즈마 유도로에는 레이저 소스에서 출력되는 레이저의 초점이 맞아 집광되며, 외부 가스 공급부(500)에서 플라즈마 유도로와 관통하는 가스공급로(310)를 통해 Ne 가스를 공급한다. 또한, 플라즈마 유도로 양측으로는 공급된 가스를 외부로 배기시킴과 동시에 플라즈마 유도로 내의 진공도를 유지시키기 위한 배기로(320)가 각각 형성되어 있다. 가스 공급로를 통해 공급된 가스가 레이저 초점이 집광되는 영역 외에 확산되면 가스 입자의 비산으로 인해 원활한 플라즈마 유도가 불가능하다. 또한, 플라즈마 유도로 내에는 일정한 진공도가 유지되어 하지만, 진공 시스템의 다양한 문제점(진공챔버 실링, 불순물 등)으로 인해 일정 진공도를 유지 못할 경우 이 또한 EUV 광 생성에 방해 요소가 될 수 있기 때문에 상기 배기로를 통해 가스 배기 및 진공도를 유지시킨다. 상기 배기로는 외부 진공펌프를 통해 배기하며, 펌프와 연결된 가스 드레인부(610)를 통해 배기시킨다. EUV 광을 발생시키기 위해서는 레이저 점광원과 Ne 가스를 반응시켜 플라즈마 영역을 만드는 것이 중요하다. 앞서 언급한 바와 같이 가스셀의 재질은 석영과 같은 유리 재질로 제작되며, 이는 입력 레이저 광과 주입 가스가 반응하여 플라즈마가 정상적으로 발생하는지를 외부에서 관찰할 수 있다. 일체화된 가스셀은 교체가 용이할 뿐 아니라 교체 후 정렬에도 매우 유리한 이점이 있고, 가스 드레인(Drain)이 용이하며, 가스셀에서 진공챔버로 누출되는 가스양을 줄여 진공챔버의 진공도 유지에도 매우 효과적이다.The plasma induction furnace corresponding to the center portion of the gas cell is focused by the laser output from the laser source, and the Ne gas is supplied through the gas induction furnace 310 passing through the plasma induction furnace from the external gas supply unit 500. Supply. In addition, exhaust paths 320 are formed at both sides of the plasma induction furnace to exhaust the supplied gas to the outside and maintain the degree of vacuum in the plasma induction furnace. If the gas supplied through the gas supply path is diffused outside the region where the laser focus is focused, smooth plasma induction may not be possible due to the scattering of gas particles. In addition, although a constant degree of vacuum is maintained in the plasma induction furnace, if the constant degree of vacuum cannot be maintained due to various problems of the vacuum system (vacuum chamber sealing, impurities, etc.), this exhaust gas may also be an obstacle to EUV light generation. Maintain gas evacuation and vacuum through the furnace. The exhaust path is exhausted through an external vacuum pump and exhausted through a gas drain 610 connected to the pump. In order to generate EUV light, it is important to make a plasma region by reacting a laser point light source with Ne gas. As mentioned above, the material of the gas cell is made of glass such as quartz, and it can be observed from the outside whether the plasma is generated normally by the reaction of the input laser light and the injection gas. The integrated gas cell is not only easy to replace, but also very advantageous for alignment after replacement, easy to drain the gas, and very effective in maintaining the vacuum of the vacuum chamber by reducing the amount of gas leaking from the gas cell into the vacuum chamber. .
본 발명에 따른 일실시예로, Ne gas의 유입압력과 레이저 파워밀도를 고려한 점광원의 크기에, 밀접하게 관여하는 플라즈마 발생 영역인 플라즈마 유로의 관경(A)은 0.3 ~ 0.6mm로 하고 길이(B)는 5 ~ 10mm로 구성한다. 레이저 점광원이 가스셀로 최초 유입되고, 최후 방출되는 관경(C)은 focusing되는 레이저 점광원 크기에 의한 간섭을 피하고, Ne gas가 진공챔버로 유입되는 것을 최소화하기 위해 1 ~ 3mm의 관경으로 제작한다.In one embodiment according to the present invention, the diameter (A) of the plasma flow path, which is a plasma generation region closely related to the size of the point light source considering the inflow pressure of Ne gas and the laser power density, is 0.3 to 0.6 mm and the length ( B) consists of 5 to 10mm. The laser spot light source is first introduced into the gas cell, and the last emitted tube diameter (C) is manufactured with a diameter of 1 to 3 mm to avoid the interference caused by the size of the focused laser point light source and to minimize the inflow of Ne gas into the vacuum chamber. do.
반응에 필요한 Ne gas의 공급 관경(D)은 0.5 ~ 2mm로 구성하고, 이때 공급압력은 30 ~ 100 torr로 제한되는데 이것은 레이저 점광원의 파워밀도와 플라즈마 발생영역인 B구간의 공간영역을 고려한 효율적인 플라즈마 발생을 위한 것이다. 공급된 Ne gas가 C지점을 통해 진공챔버 내부로 유입되는 것을 막기 위해 관경(E)은 레이저가 유입되는 C지점의 관경보다 큰 5 ~ 10mm로 Vacuum pumping이 용이하게 제작한다. 이 때, Gas의 Pumping이 좀 더 용이하도록 입출구 방향을 기준으로 30 ~ 60도 경사각을 주어 제작한다.Ne gas required for the reaction (D) is composed of 0.5 ~ 2mm, the supply pressure is limited to 30 ~ 100 torr, which is effective considering the power density of the laser point light source and the space region of the B section, the plasma generation region It is for plasma generation. In order to prevent the supplied Ne gas from flowing into the vacuum chamber through the point C, the diameter (E) is 5 to 10 mm larger than the diameter of the point C where the laser is introduced to facilitate the vacuum pumping. At this time, to make gas pumping more easily, give 30 to 60 degrees of inclination angle based on the entrance and exit direction.
이와 같이 구성되는 가스셀을 통해 플라즈마 유도에 의한 극자외선(EUV)광을 생성한다.Ultraviolet (EUV) light generated by plasma induction is generated through the gas cell configured as described above.
다시 도 1을 참조하면, 제 1진공챔버부에 상기 가스셀(300)이 위치하며, 외부에 설치된 레이저 소스에서 출력되는 레이저를 가스셀로 입사되어 EUV 광을 생성한다. 이때, 진공챔버 일측으로는 레이저를 투과시키기 위한 원도우(210)가 구비되는데, 본 발명에서는 상기 원도우가 브루스터 각도(Brewster's angle)로 위치한다. 따라서 반사 손실을 최소화하여 펨토초 레이저빔 반사 손실을 최소화시킨다.Referring back to FIG. 1, the gas cell 300 is positioned in the first vacuum chamber, and the laser output from an external laser source is incident to the gas cell to generate EUV light. In this case, a window 210 for transmitting a laser is provided at one side of the vacuum chamber. In the present invention, the window is positioned at Brewster's angle. Therefore, the reflection loss is minimized to minimize the femtosecond laser beam reflection loss.
상기 원도우를 투과하여 입사된 레이저빔은 다수의 미러를 통해 포커싱 및 전달되어 가스셀의 플라즈마 유도로에 포커싱된다. 본 발명에 따른 실시예로 포커싱 구현과 기구적 사이즈(챔버 크기)를 효과적으로 구현하기 위해서 제 1반사미러(400)와 제 2반사미러(410)를 구비하고, 그 사이에 포커싱 미러(420)를 설치하여 가스셀로 빔을 전달한다. 최초 상기 제 1반사미러로 입사되어 반사된 빔은 상기 포커싱 미러(420)를 통해 포커싱되어 제 2반사미러로 반사시킨다. 제 2반사미러에서 다시 반사된 광은 가스셀로 입사되는 것이다. 이처럼 광전달을 위한 구성은 얼마든지 용이하게 변경할 수 있으며, 필요에 따라서는 레이저 소스에서 직접 가스셀로 입사시킬 수도 있다.The laser beam transmitted through the window is focused and transmitted through a plurality of mirrors to be focused on the plasma induction path of the gas cell. In an embodiment according to the present invention, a focusing mirror 420 is provided between the first reflecting mirror 400 and the second reflecting mirror 410 so as to effectively implement focusing and mechanical size (chamber size). It installs and delivers the beam to the gas cell. The first beam reflected and reflected by the first reflecting mirror is focused through the focusing mirror 420 and reflected by the second reflecting mirror. Light reflected back from the second reflection mirror is incident to the gas cell. As such, the configuration for light transmission can be easily changed, and if necessary, can be incident directly into the gas cell from the laser source.
또한, 가스셀은 격벽에 근접하게 위치하게 구성하며, 가스셀에서 발생된 극자외선은 제 2진공챔버부에 전달되어 낮은 진공도에 의해 보다 안정적인 상태에서 외부로 출사된다. 여기서 제 2진공챔버부에는 다이크로익 미러[dichroic mirror(이색미러 ; 430)]가 구비되고, 상기 미러의 각도를 조절함으로써 원하는 사이즈의 13nm, 6nm 급 등 파장별 EUV 광을 출력할 수 있다. 이는 다이크로익 미러의 각도를 제어할 수 있는 다이크로익 미러 구동부(431 ; 피코모터)를 통해 구현 가능하다.In addition, the gas cell is configured to be located close to the partition wall, the extreme ultraviolet rays generated in the gas cell is transmitted to the second vacuum chamber portion is emitted to the outside in a more stable state by a low degree of vacuum. Here, the second vacuum chamber part is provided with a dichroic mirror (dichroic mirror; 430), and by adjusting the angle of the mirror, EUV light of wavelengths such as 13 nm and 6 nm of a desired size can be output. This can be implemented through a dichroic mirror driver 431 (picomotor) capable of controlling the angle of the dichroic mirror.
한편, 본 발명에서는 상기와 같이 구성되는 극자외선 발생장치의 레이저 모니터링과 오토 얼라인먼트 구현을 위하여 자동화된 장치를 제공할 수 있다. 도 3은 본 발명에 따른 다른 실시예로 레이저 자동 얼라인먼트를 위한 극자외선 발생장치의 구성도, 도 4는 도 3의 실시예에 따른 레이저 자동 얼라인먼트를 위한 이미지 센서 영상을 도시한 도면이다.On the other hand, the present invention can provide an automated device for laser monitoring and automatic alignment implementation of the extreme ultraviolet generating device configured as described above. 3 is a diagram illustrating a configuration of an extreme ultraviolet generator for automatic laser alignment according to another embodiment of the present invention, and FIG. 4 is a view illustrating an image sensor image for automatic laser alignment according to the embodiment of FIG. 3.
우선, 도 3을 살펴보면, 가스셀에서 출사되는 빔축에 대해 제 2진공챔버 외부에 설치되는 이미지 센서(450)와 상기 이미지 센서를 빔축 방향으로 구동시킬 수 있는 이미지 센서 구동부(452)가 마련된다. 또한, 상기 이미지 센서로 입사되는 빔을 반사 받아 광 파워나 출력 등의 상태 정보를 검출하기 위한 광검출부(470)가 구비되며, 앞서 설명한 제 1, 2반사미러와 포커싱 미러, 다이크로익 미러의 각도를 제어할 수 있는 구동부가 각각 구비된다.First, referring to FIG. 3, an image sensor 450 installed outside the second vacuum chamber with respect to the beam axis emitted from the gas cell and an image sensor driver 452 for driving the image sensor in the beam axis direction are provided. In addition, the light detector 470 for detecting the state information such as optical power or output by reflecting the beam incident to the image sensor is provided, and the first and second reflecting mirrors, focusing mirror, dichroic mirror Each drive unit for controlling the angle is provided.
레이저 소스로부터 출사되는 광이 가스셀의 플라즈마 유도로 내에 정확하게 포커싱 될 수 있도록 제 1반사미러, 제 2반사미러, 포커싱 렌즈에는 각각 구동부(421)가 장착되어 각도 조절이나 위치조절을 구현한다. 이때 상기 구동부의 바람직한 예로는 피코모터(Pico motor)가 적용된다.The driver 421 is mounted on the first reflecting mirror, the second reflecting mirror, and the focusing lens so that the light emitted from the laser source can be accurately focused in the plasma induction path of the gas cell, thereby implementing angle adjustment or position adjustment. At this time, a preferred example of the driving unit is a pico motor (Pico motor) is applied.
가스셀 빔축에 위치한 이미지 센서(450)는 빔 얼라인먼트와 빔 모니터링을 위해 설치되는데, 도 4에 도시된 바와 같이 가스셀의 1번 지점과 2점 지점에 대한 빔 스폿(spot)을 각각 검출할 수 있도록 별도의 이미지 센서 구동부(452)에 의해 이미지 센서를 광축 방향으로 이동시키면서 획득하고, 여기서 얻어진 결과값은 상기 구동부(421)로 피드백 하여 빔 얼라인먼트를 자동 제어하게 된다. 상기 이미지 센서로 입사되는 빔은 다이크로익 미러를 통해 극자외선 광은 반사되고 나머지 투과한 광이 입사되는 것이다. 또한, 다른 실시예로는 이미지 센서 선단으로 포커싱 렌즈를 설치하여 포커싱 렌즈를 이동시켜 빔 스폿을 변화시켜 가스셀에 포커싱 여부를 검출할 수 있게 된다.The image sensor 450 located on the gas cell beam axis is installed for beam alignment and beam monitoring. As shown in FIG. 4, beam spots for the first and second points of the gas cell can be detected. The image sensor is obtained by moving the image sensor in the optical axis direction by the separate image sensor driver 452, and the resultant value is fed back to the driver 421 to automatically control the beam alignment. The beam incident on the image sensor reflects extreme ultraviolet light through the dichroic mirror and enters the remaining transmitted light. In another embodiment, the focusing lens is installed at the tip of the image sensor to move the focusing lens to change the beam spot, thereby detecting whether the gas cell is focused.
한편, 상기 이미지 센서로 입사되는 빔축 중간으로 빔스플리터(440)와 같이 빔분할기를 설치한 후 이미지 센서로 입사되는 광의 일부를 반사시켜 Beam Power Monitoring, Beam 출력 확인, Beam Status 확인, Beam Uniformity 등을 확인하기 위하여 포토 디텍터(Photo Detector)와 같은 광검출부가 제 2진공챔버부 외측에 설치되어 극자외선 발생장치의 동작 상태를 실시간으로 검출할 수 있는 것이다. 또한, 상기 이미지 센서와 광검출부 선단으로는 ND filter나 Analyzer(460)를 설치하여 입사되는 빔을 제어할 수 있다.Meanwhile, a beam splitter, such as a beam splitter 440, is installed in the middle of the beam axis incident to the image sensor and then reflects a part of the light incident to the image sensor to perform beam power monitoring, beam output check, beam status check, beam uniformity, and the like. In order to confirm, a photo detector such as a photo detector is installed outside the second vacuum chamber to detect an operating state of the extreme ultraviolet generator in real time. In addition, an ND filter or an analyzer 460 may be installed at the tip of the image sensor and the light detector to control an incident beam.
이상, 본 발명의 원리를 예시하기 위한 바람직한 실시예와 관련하여 설명하고 도시하였지만, 본 발명은 그와 같이 도시되고 설명된 그대로의 구성 및 작용으로 한정되는 것이 아니다. 오히려, 첨부된 청구범위의 사상 및 범주를 일탈함이 없이 본 발명에 대한 다수의 변경 및 수정이 가능함을 당업자들은 잘 이해할 수 있을 것이다. 따라서 그러한 모든 적절한 변경 및 수정과 균등물들도 본 발명의 범위에 속하는 것으로 간주되어야 할 것이다.While the invention has been described and illustrated in connection with a preferred embodiment for illustrating the principles of the invention, the invention is not limited to the construction and operation as shown and described. Rather, those skilled in the art will appreciate that many modifications and variations of the present invention are possible without departing from the spirit and scope of the appended claims. Accordingly, all such suitable changes and modifications and equivalents should be considered to be within the scope of the present invention.

Claims (10)

  1. 레이저를 출력하는 레이저 소스;A laser source for outputting a laser;
    상기 레이저 소스에서 출력되는 레이저를 입사받아 초점이 맺혀지는 구간에 해당하는 플라즈마 유도로에 대해 가스 공급로로부터 가스를 공급받아 레이저와 가스에 의해 플라즈마를 형성하여 극자외선을 발생시키는 가스셀;A gas cell configured to generate extreme ultraviolet rays by receiving a gas from a gas supply path to a plasma induction furnace corresponding to a section in which the laser output from the laser source is incident and focusing;
    상기 가스셀을 수용하는 것으로, 일정 진공도를 유지하는 제 1진공챔버부;A first vacuum chamber part accommodating the gas cell and maintaining a constant vacuum degree;
    상기 가스셀에서 발생된 극자외선을 입사받아 상기 극자외선을 외부로 출사시키기 위한 공간으로써 일정 진공도를 유지하는 제 2진공챔버부;A second vacuum chamber part configured to receive the extreme ultraviolet rays generated from the gas cell and maintain a constant vacuum degree as a space for emitting the extreme ultraviolet rays to the outside;
    상기 가스셀의 가스 공급로로 상기 레이저와 플라즈마를 유도하기 위한 가스를 공급하는 가스 공급부; 및A gas supply unit supplying a gas for guiding the laser and the plasma into a gas supply path of the gas cell; And
    상기 제 1진공챔버부와 제 2진공챔버부의 진공도를 각각 형성하기 위한 제 1진공펌프와 제 2진공펌프;를 포함하여 구성되는 것을 특징으로 하는 플라즈마를 이용한 안정화된 극자외선 발생장치.And a first vacuum pump and a second vacuum pump for forming vacuum degrees of the first vacuum chamber part and the second vacuum chamber part, respectively.
  2. 제 1항에 있어서, 상기 제 2진공챔버부는,The method of claim 1, wherein the second vacuum chamber portion,
    상기 제 1진공챔버부보다 고진공도를 가지는 것을 특징으로 하는 플라즈마를 이용한 안정화된 극자외선 발생장치.Stabilized extreme ultraviolet light generating device using a plasma, characterized in that having a higher vacuum than the first vacuum chamber.
  3. 제 1항 또는 제 2항에 있어서, 상기 제 1진공챔버부와 제 2진공챔버부는,The method of claim 1 or 2, wherein the first vacuum chamber portion and the second vacuum chamber portion,
    하나의 진공챔버내에 극자외선이 투과 가능한 격벽을 구비하여 제 1진공챔버부와 제 2진공챔버부로 분할 구성되는 것을 특징으로 하는 플라즈마를 이용한 안정화된 극자외선 발생장치.The stabilized extreme ultraviolet generator using the plasma, characterized in that the first vacuum chamber portion and the second vacuum chamber portion having a partition wall through which the extreme ultraviolet rays are transmitted in one vacuum chamber.
  4. 제 1항에 있어서,The method of claim 1,
    상기 레이저 소스에서 출사되는 광을 상기 가스셀에 입사하기 전에 적어도 한 개 이상의 포커싱 미러와 반사미러를 구비하고, 상기 포커싱 미러와 반사미러의 위치와 각도를 제어하는 구동부를 더 포함하는 것을 특징으로 하는 플라즈마를 이용한 안정화된 극자외선 발생장치.And a driving unit having at least one focusing mirror and a reflecting mirror before the light emitted from the laser source is incident on the gas cell, and controlling the position and angle of the focusing mirror and the reflecting mirror. Stabilized extreme ultraviolet generator using plasma.
  5. 제 4항에 있어서, 상기 제 2진공챔버부는,The method of claim 4, wherein the second vacuum chamber portion,
    상기 제 1진공챔버에서 입사된 극자외선광만 외부로 반사시키는 이색미러;A dichroic mirror reflecting only the extreme ultraviolet light incident from the first vacuum chamber to the outside;
    상기 이색미러를 투과한 나머지 광을 분할하는 빔스플리터;A beam splitter dividing the remaining light through the dichroic mirror;
    상기 빔스플리터를 통해 분할된 광 중 한쪽 광을 입사받아 상기 가스셀에 입사되는 레이저빔의 포커싱 여부를 검출하는 이미지 센서;An image sensor which receives one of the light split through the beam splitter and detects focusing of a laser beam incident on the gas cell;
    상기 가스셀의 위치별 레이저빔의 포커싱 여부를 검출하기 위해 상기 이미지 센서 또는 상기 이미지 센서 선단에 구비된 포커싱 렌즈를 전/후로 구동시키는 구동부; 및A driving unit for driving the focusing lens provided at the front end of the image sensor or the front of the image sensor in order to detect whether the laser beam is focused for each position of the gas cell; And
    상기 빔스플리터에서 분할된 다른 한쪽 광을 입사받아 레이저빔의 상태를 검출하는 광검출부;를 더 포함하여 구성되는 것을 특징으로 하는 플라즈마를 이용한 안정화된 극자외선 발생장치.And a light detector configured to detect the state of the laser beam by receiving the light split from the beam splitter and detecting the state of the laser beam.
  6. 제 5항에 있어서,The method of claim 5,
    상기 이미지 센서와 광 검출기 선단으로는 ND filter 또는 Analyzer이 더 구비되는 것을 특징으로 하는 플라즈마를 이용한 안정화된 극자외선 발생장치.The front end of the image sensor and the photo detector is a stabilized extreme ultraviolet generator using a plasma characterized in that the ND filter or an analyzer is further provided.
  7. 제 1항에 있어서, 상기 제 1진공챔버부는,The method of claim 1, wherein the first vacuum chamber portion,
    상기 레이저소스에서 출력되는 레이저를 입사받기 위한 원도우를 구비하고, 상기 원도우는 브루스터 각도로 설치되는 것을 특징으로 하는 플라즈마를 이용한 안정화된 극자외선 발생장치.And a window for receiving a laser beam output from the laser source, wherein the window is installed at a Brewster angle.
  8. 제 1항에 있어서, 상기 가스셀은,The method of claim 1, wherein the gas cell,
    투명재료로 형성되는 것을 특징으로 하는 플라즈마를 이용한 극자외선 발생장치.An apparatus for generating extreme ultraviolet rays using plasma, which is formed of a transparent material.
  9. 제 1항에 있어서, 상기 가스셀은,The method of claim 1, wherein the gas cell,
    석영으로 형성되는 것을 특징으로 하는 플라즈마를 이용한 극자외선 발생장치.An extreme ultraviolet ray generating device using plasma, characterized in that formed of quartz.
  10. 제 1항에 있어서, 상기 가스셀은,The method of claim 1, wherein the gas cell,
    플라즈마 유도로의 진공도 유지와, 상기 가스 공급로를 통해 공급된 가스를 상기 배기로를 통해 드레인 하기 위한 가스셀 펌프와 가스 드레인부를 더 포함하여 구성되는 것을 특징으로 하는 플라즈마를 이용한 극자외선 발생장치.And a gas cell pump and a gas drain part for maintaining the vacuum degree of the plasma induction furnace and draining the gas supplied through the gas supply path through the exhaust path.
PCT/KR2012/000734 2011-02-28 2012-01-31 Apparatus for generating stabilized extreme ultraviolet light using plasma WO2012118280A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2011-0017579 2011-02-28
KR1020110017579A KR101172622B1 (en) 2011-02-28 2011-02-28 Stabilized euv generation device using the plasma

Publications (2)

Publication Number Publication Date
WO2012118280A2 true WO2012118280A2 (en) 2012-09-07
WO2012118280A3 WO2012118280A3 (en) 2012-11-01

Family

ID=46758350

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/000734 WO2012118280A2 (en) 2011-02-28 2012-01-31 Apparatus for generating stabilized extreme ultraviolet light using plasma

Country Status (2)

Country Link
KR (1) KR101172622B1 (en)
WO (1) WO2012118280A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110113855A (en) * 2018-02-01 2019-08-09 三星电子株式会社 EUV generation device

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101849978B1 (en) * 2012-12-18 2018-04-19 삼성전자 주식회사 Apparatus and method for generating extreme ultra violet radiation
US9544984B2 (en) * 2013-07-22 2017-01-10 Kla-Tencor Corporation System and method for generation of extreme ultraviolet light
KR101736055B1 (en) * 2015-07-24 2017-05-29 한국기초과학지원연구원 Tunable UV LASER GENERATOR FOR ULTRA HIGH RESOLUTION MICROSCOPE LIGHT SOURCE AND GENERATING METHOD THEREOF
KR102244638B1 (en) 2019-04-18 2021-04-26 주식회사 에프에스티 Extreme ultraviolet ray generator using high harmonic wave with improved pollution prevention performance
KR102243189B1 (en) * 2020-10-12 2021-04-21 김윤호 Beam profiling imaging apparatus for vacuum
KR20230123576A (en) 2022-02-16 2023-08-24 주식회사 에프에스티 A thermal damage reduction device of an extreme ultraviolet generating device using high-order harmonic generation
KR20230157795A (en) 2022-05-10 2023-11-17 주식회사 이솔 Device for EUV Light Source
KR20230171246A (en) 2022-06-13 2023-12-20 주식회사 이솔 Device for EUV Light Source

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040007454A (en) * 2001-02-26 2004-01-24 가부시키가이샤 니콘 Extreme ultraviolet generating device, exposure device using the generating device, and semiconductor manufacturing method
KR20080088392A (en) * 2007-03-28 2008-10-02 도오쿄 인스티튜드 오브 테크놀로지 Extreme ultraviolet light source apparatus and method for generating extreme ultraviolet light
KR20090039589A (en) * 2007-10-17 2009-04-22 도오쿄 인스티튜드 오브 테크놀로지 Light source apparatus of extreme ultraviolet light and method of generating extreme ultraviolet light
JP2010147138A (en) * 2008-12-17 2010-07-01 Ushio Inc Extreme ultraviolet light source device and maintenance method of same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040007454A (en) * 2001-02-26 2004-01-24 가부시키가이샤 니콘 Extreme ultraviolet generating device, exposure device using the generating device, and semiconductor manufacturing method
KR20080088392A (en) * 2007-03-28 2008-10-02 도오쿄 인스티튜드 오브 테크놀로지 Extreme ultraviolet light source apparatus and method for generating extreme ultraviolet light
KR20090039589A (en) * 2007-10-17 2009-04-22 도오쿄 인스티튜드 오브 테크놀로지 Light source apparatus of extreme ultraviolet light and method of generating extreme ultraviolet light
JP2010147138A (en) * 2008-12-17 2010-07-01 Ushio Inc Extreme ultraviolet light source device and maintenance method of same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110113855A (en) * 2018-02-01 2019-08-09 三星电子株式会社 EUV generation device
CN110113855B (en) * 2018-02-01 2024-04-09 三星电子株式会社 EUV generating device

Also Published As

Publication number Publication date
WO2012118280A3 (en) 2012-11-01
KR101172622B1 (en) 2012-08-08

Similar Documents

Publication Publication Date Title
WO2012118280A2 (en) Apparatus for generating stabilized extreme ultraviolet light using plasma
KR102206501B1 (en) System and method for transverse pumping of laser-sustained plasma
CN105814662B (en) Radiation source, measurement equipment, lithography system and device making method
KR20010053391A (en) Method for decontaminating microlithography projection lighting devices
WO2016147910A1 (en) Target image-capture device, extreme-ultraviolet-light generation device, and extreme-ultraviolet-light generation system
KR101207983B1 (en) Using the EUV plasma generation device
JPH05505252A (en) Integral light source that utilizes fluorescent reflectors to improve light emission and color balance
WO2013141578A1 (en) Apparatus for generating extreme ultraviolet light using plasma
JP2011199302A (en) Apparatus for inspecting object, especially mask in microlithography
WO2014034596A1 (en) Illumination monitoring apparatus and exposure apparatus provided with same
US20080259303A1 (en) Projection exposure apparatus for microlithography
KR101269115B1 (en) Structure is simplified euv plasma generating apparatus
WO2013058552A1 (en) Led light source module for light exposure, led light source apparatus for light exposure, and system for managing led light source apparatus for light exposure
US20200064184A1 (en) Extreme ultraviolet light sensor unit and extreme ultraviolet light generation apparatus
WO2013141580A1 (en) Extreme ultraviolet light generating device for stabilization and improving energy efficiency through laser beam correction
JP6751138B2 (en) Extreme ultraviolet light sensor unit and extreme ultraviolet light generation device
WO2020017865A1 (en) Apparatus for monitoring gas component of gas laser
KR101359754B1 (en) Precision adjustable optical EUV light generating device
KR101401241B1 (en) EUV beam generating device to implement the alignment
CN210401825U (en) Lighting device of white light LED fluorescence module based on N way
WO2021071572A2 (en) Multi-capillary optical detection system
JP2002350111A (en) Observation apparatus using light and x-ray, exposure apparatus and exposure method
JP2006003662A (en) Fluorescence microscope apparatus
JP4554119B2 (en) Spot light source device
KR101324545B1 (en) Laser beam through the stabilization and calibration for EUV generation device to improve energy efficiency

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12752245

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12752245

Country of ref document: EP

Kind code of ref document: A2