WO2013141580A1 - Extreme ultraviolet light generating device for stabilization and improving energy efficiency through laser beam correction - Google Patents

Extreme ultraviolet light generating device for stabilization and improving energy efficiency through laser beam correction Download PDF

Info

Publication number
WO2013141580A1
WO2013141580A1 PCT/KR2013/002253 KR2013002253W WO2013141580A1 WO 2013141580 A1 WO2013141580 A1 WO 2013141580A1 KR 2013002253 W KR2013002253 W KR 2013002253W WO 2013141580 A1 WO2013141580 A1 WO 2013141580A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
laser beam
vacuum chamber
extreme ultraviolet
gas
Prior art date
Application number
PCT/KR2013/002253
Other languages
French (fr)
Korean (ko)
Inventor
임재원
유부엽
최종립
Original Assignee
주식회사 에프에스티
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020120028464A external-priority patent/KR101324545B1/en
Priority claimed from KR1020120028461A external-priority patent/KR101401241B1/en
Application filed by 주식회사 에프에스티 filed Critical 주식회사 에프에스티
Publication of WO2013141580A1 publication Critical patent/WO2013141580A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70008Production of exposure light, i.e. light sources
    • G03F7/70033Production of exposure light, i.e. light sources by plasma extreme ultraviolet [EUV] sources
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G2/00Apparatus or processes specially adapted for producing X-rays, not involving X-ray tubes, e.g. involving generation of a plasma
    • H05G2/001X-ray radiation generated from plasma
    • H05G2/008X-ray radiation generated from plasma involving a beam of energy, e.g. laser or electron beam in the process of exciting the plasma

Definitions

  • the present invention relates to a stabilized extreme ultraviolet generator through laser beam correction, and more particularly, to an extreme ultraviolet generator capable of generating an ultra-ultraviolet beam with improved efficiency while maximizing the structure.
  • the resolution of the exposure apparatus is proportional to the numerical aperture (NA) of the transfer optical system and inversely proportional to the wavelength of light used for exposure. For this reason, as an attempt to increase the resolution, an attempt has been made to use an Extreme Ultraviolet (EUV) light source having a short wavelength instead of visible or ultraviolet light for exposure transfer.
  • EUV Extreme Ultraviolet
  • As the EUV light generating device used in such an exposure transfer device there are a laser plasma EUV light source and a discharge plasma EUV light source.
  • the wavelength used in the EUV exposure apparatus is 20 nm or less, and a typical 13.5 nm light source has been widely researched and developed using Ne plasma using Ne gas as a reaction material of a laser plasma light source. It has efficiency (ratio of EUV light intensity obtained with respect to input energy). Since Ne is a gaseous material at room temperature, the problem of debris is difficult. However, in order to obtain a high output EUV light source, there is a limit to using Ne gas as a target, and it is also desired to use other materials.
  • the region of 200 nm to 100 nm corresponding to half of the long wavelength side is called VUV light and the region of 100 nm to 10 nm corresponding to half of the short wavelength side is generally called EUV light.
  • EUV light with a center wavelength of less than 100 nm from plasma is absorbed by the optical system such as air or condenser mirror (applied with a general reflective coating), and thus is not absorbed by the optical system.
  • Korean Patent Application No. 10-2011-0017579 name of the invention: when looking at the stabilized extreme ultraviolet light generating apparatus using a plasma through Figure 1, the laser source 10 for outputting a laser, in the laser source
  • the gas cell 20 which generates extreme ultraviolet rays by generating a plasma by a laser and a gas by receiving a gas from a gas supply path to a plasma induction path corresponding to a section in which the output laser is incident and focused.
  • the first vacuum chamber unit 30 which maintains a constant vacuum degree
  • the second vacuum chamber which maintains a constant vacuum degree as a space for injecting extreme ultraviolet rays generated from the gas cell and emitting the extreme ultraviolet rays to the outside.
  • the unit 40 a gas supply unit for supplying a gas for inducing the laser and the plasma to the gas supply path of the gas cell and the first dust And a first vacuum pump and a second vacuum pump for forming vacuum degrees of the empty chamber portion and the second vacuum chamber portion, respectively, and a plurality of optical systems 71 to 75 transferring light output from the race source.
  • the extreme ultraviolet ray generating apparatus corresponds to a very excellent technology capable of generating stabilized extreme ultraviolet ray through the plasma reaction as the invention filed by the present applicant.
  • the wavefront of the laser beam output from the laser source is often distorted, and there is a need for a system capable of providing a stable and optimal light source.
  • the present invention for solving the above problems is generated by providing a generator capable of generating stable, energy-efficient ultra-ultraviolet light by correcting the wavefront distortion or shape of the light output from the laser beam as desired. It is an object of the present invention to provide an extreme ultraviolet generator that can simplify the structure of the device as much as possible.
  • a laser source for outputting a laser
  • a correction unit for correcting the wavefront of the laser beam output from the laser source
  • the reflected laser beam is corrected wavefront of the laser beam in the correction unit TLM (Tunable Laser Mirror) for reflecting back light
  • Focusing Mirror FM
  • Gas for the plasma induction path corresponding to the section in which the laser beam focused in the FM is focused It comprises a gas cell for receiving the reaction gas from the supply path to form a plasma by the laser beam and the reaction gas to generate extreme ultraviolet rays, and a vacuum chamber for receiving the TLM, FM, gas cells in a vacuum state.
  • the correction unit includes a DM (Deformable mirror) and a drive unit for controlling the shape deformation of the DM.
  • DM Deformable mirror
  • the first aperture is provided for the alignment of the laser beam focused in the FM, and the second aperture for transmitting only the central wavelength in the extreme ultraviolet beam generated in the gas cell.
  • the vacuum chamber is divided into a first vacuum chamber portion and a second vacuum chamber portion, the second vacuum chamber portion maintains a higher vacuum than the first vacuum chamber portion, the first vacuum chamber portion, TLM, FM And a gas cell, a first aperture, and the second vacuum chamber portion to receive the second aperture.
  • the apparatus may further include a beamsplitter for partially reflecting light reflected from the TLM, and an image sensor for detecting a wavefront of the beams reflected through the beamsplitter.
  • the present invention constructed and operated as described above outputs more effective extreme ultraviolet light by correcting the distortion of the laser beam wavefront output from the laser source through a deformable mirror (DM) configured by a correction unit under conditions for generating EUV light.
  • DM deformable mirror
  • the structure is very simple, it is easy to manufacture and the cost reduction can be realized, and the beam alignment is very easy by simplifying the optical system structure. There is an advantage that can be stably output of extreme ultraviolet rays.
  • FIG. 1 is a configuration diagram of an extreme ultraviolet ray generating apparatus using a plasma according to the prior art
  • FIG. 2 is a configuration diagram of an extreme ultraviolet generator for stabilization and energy efficiency improvement through laser beam correction according to the present invention
  • FIG. 3 is a schematic configuration diagram of a correction unit according to the present invention.
  • Figure 4 is a detailed view of a stabilized extreme ultraviolet light generating apparatus through laser beam correction according to the present invention.
  • FIG. 5 is a configuration diagram of an extreme ultraviolet ray generating apparatus using a simplified plasma structure according to the present invention
  • FIG. 6 is a schematic configuration diagram of an alignment mirror according to the present invention.
  • FIG. 7 is a view showing a driving example of an alignment mirror according to the present invention.
  • the extreme ultraviolet generator for stabilization and energy efficiency through laser beam correction according to the present invention, a laser source for outputting a laser, a correction unit for correcting the wavefront of the laser beam output from the laser source, the laser in the correction unit TLM (Tunable Laser Mirror) for reflecting the corrected reflected laser beam back to the wavefront of the beam, Focusing Mirror (FM) for focusing the laser beam reflected from the TLM, and is focused by receiving the laser focused on the FM Receiving the reaction gas from the gas supply path to the plasma induction path corresponding to the section to form a plasma by the laser beam and the reaction gas to generate the extreme ultraviolet rays and the TLM, FM, gas cells to receive the vacuum state It comprises a vacuum chamber.
  • TLM Tunable Laser Mirror
  • FM Focusing Mirror
  • the extreme ultraviolet generator according to the present invention is stable as a result of correcting the wavefront distortion of the source laser beam for generating the extreme ultraviolet light through the correction unit consisting of DM (Deforable mirror) of the wavefront of the laser beam output from the laser source. It is a main technical point of the present invention to provide an extreme ultraviolet light generating device capable of generating highly efficient ultraviolet light and satisfying the efficiency of extreme ultraviolet light while simplifying the structure.
  • DM Deflectable mirror
  • FIG. 2 is a block diagram of a stabilized extreme ultraviolet light generating apparatus through laser beam correction according to the present invention.
  • the extreme ultraviolet generator using the plasma according to the present invention includes a laser source 100 for outputting a laser beam, a TLM (Tunable Laser Mirror) 220 for reflecting the laser beam, and a FM (Focusing Mirror) for focusing the reflected laser beam; 230, a gas cell 240 generating extreme ultraviolet light through a plasma reaction, and a vacuum chamber accommodating the TLM, FM, and gas cells.
  • a laser source 100 for outputting a laser beam
  • a TLM (Tunable Laser Mirror) 220 for reflecting the laser beam
  • a FM (Focusing Mirror) for focusing the reflected laser beam
  • 230 a gas cell 240 generating extreme ultraviolet light through a plasma reaction
  • a vacuum chamber accommodating the TLM, FM, and gas cells.
  • the laser source 100 is a source source for outputting a laser having an arbitrary wavelength.
  • the laser source 100 generates extreme ultraviolet rays having a wavelength of 50 nm or less through plasma induction of the laser output from the laser source.
  • the source laser beam supplied from the outside to generate the extreme ultraviolet light is an IR laser of 800 nm class, and the source laser may be an IR laser of 800 nm or more.
  • an IR laser is used, but a pulse width laser of Femto second is used. That is, an IR femtosecond laser should be used, and a pulse width of 50 femto second laser is preferable.
  • the light output from the laser source first enters the correction unit 210 to correct the wavefront of the output beam.
  • the correction unit is formed of a deformable mirror (DM).
  • the DM is composed of a shape deformation mirror and a drive unit for controlling the mirror.
  • FIG 3 is a schematic configuration diagram of a correction unit according to the present invention
  • Figure 4 is a screen showing before and after the laser beam correction according to the present invention.
  • the IR wavefront sensor is used to detect the distortion of the laser wavefront.
  • the DM corresponds to a configuration capable of transforming the shape of the source laser beam into a beam shape most suitable for processing so that not only the distortion of the beam shape but also the most stable and efficient EUV beam can be generated.
  • the detected beam shape information calculates a signal to be corrected based on the measured laser wavefront, and controls the shape deformation mirror in the driver. As shown in FIG. 3, the first distorted laser wavefront is corrected.
  • a mirror 211 and a driver 212 are largely configured as an example of a correction unit, and are reflected by the beam splitter 213 and the beam splitter to reflect the beam to measure the wavefront of the incident laser beam. It consists of an image sensor 214 that measures the wavefront of the beam.
  • the image sensor may be, for example, a shack heartmann sensor or a wavefront measurement image sensor.
  • the laser wavefront is detected by the image sensor, and the driver feeds back the detected value to control the DM to output a desired beam shape.
  • the TLM 220 is a mirror that reflects a laser beam output from a laser source located outside the vacuum chamber.
  • the TLM 220 reflects the incident laser beam disposed on an incident path output from the laser source to the focusing mirror 230 to be described later.
  • the TLM is reflected such that the angle reflected by the focusing mirror has an angle of incidence of approximately 2 °, that is, the angle of the source beam incident into the focusing mirror is reflected by approximately 2 °.
  • the FM 230 focuses the incident light for generating extreme ultraviolet light.
  • the laser beam output from the laser source is reflected by the TLM mirror and reflected by the focusing mirror, and the focusing mirror FM focuses the incident laser beam into a gas cell that generates EUV light through plasma induction.
  • the gas cell is made of a transparent material, preferably made of quartz, a through path through which a laser can pass is formed, and in the center thereof, a plasma induction furnace 330 which is a focal region where a laser output from a laser source is focused. ), An exhaust path 320 is formed at both sides of the plasma induction furnace, and a gas supply path 310 for supplying gas to the plasma induction furnace is connected to the plasma induction furnace.
  • the gas cell 240 is formed of a transparent material, and a light induction path is formed at both sides, and a plasma induction path is formed at the center to connect the light induction paths.
  • the light reflected by the focusing mirror is focused to be focused on the center portion of the plasma induction furnace and reacts with the reaction gas supplied to the plasma induction furnace to generate EUV light. That is, the plasma induction furnace corresponding to the central portion is focused by focusing the laser output from the laser source, and the external gas supply unit 290 supplies Ne gas through the plasma induction furnace and through the gas supply passage.
  • exhaust paths are provided on both sides of the plasma induction furnace to exhaust the supplied gas to the outside and maintain the degree of vacuum in the plasma induction furnace.
  • the gas supplied through the gas supply path is diffused outside the region where the laser focus is focused, smooth plasma induction may not be possible due to the scattering of gas particles.
  • a constant degree of vacuum should be maintained in the plasma induction furnace. If the constant degree of vacuum cannot be maintained due to various problems of the vacuum system (vacuum chamber sealing, impurities, etc.), this exhaust gas may also be an obstacle to EUV light generation. Maintain gas evacuation and vacuum through the furnace.
  • the exhaust passage exhausts through an external drain pump 291 (a device for evacuating gas).
  • a vacuum chamber is configured to receive a component for generating extreme ultraviolet light in a vacuum state.
  • the vacuum chamber is divided into a first vacuum chamber 200 region and a second vacuum chamber 210 region.
  • the first vacuum chamber part 200 is an area in which extreme ultraviolet rays are generated
  • the second vacuum chamber part 210 corresponds to an area for stably supplying extreme ultraviolet rays generated in the first vacuum chamber part.
  • the plasma is induced by the laser beam and the gas supplied from the outside to generate the extreme ultraviolet rays, the extreme ultraviolet rays are generated through the gas cell to be described later.
  • a gas such as Ne, Xe, He, etc. is supplied into the gas cell from the outside, it is difficult to maintain a constant vacuum degree, and thus, in the chamber where the gas cell is located, EUV light efficiency generated in the gas cell may be reduced. Therefore, the gas cell is positioned in the first vacuum chamber portion maintaining a constant vacuum degree, and EUV light generated in the gas cell is transferred directly to the second vacuum chamber portion having a higher vacuum degree to prevent the efficiency from falling.
  • the first vacuum chamber part and the second vacuum chamber part are configured with a first vacuum pump 300 and a second vacuum pump 310 to maintain different vacuum degrees, respectively, and to form a lower vacuum degree in the second vacuum chamber.
  • a plurality of vacuum pumps suitable for this can be installed.
  • it consists of Medium Vacuum class vacuum pumps, such as a Cryo pump, a Diffusion Pump, and a Turbo Pump.
  • Vacuum chambers each portion is preferably first the 10 -3 torr or less, a second vacuum chamber maintained in a vacuum chamber to a vacuum degree of less than 10 -6 torr.
  • the first vacuum chamber is configured to generate extreme ultraviolet light
  • the second vacuum chamber is configured to prevent deterioration of efficiency so that the finally generated EUV light is supplied to the application.
  • the vacuum chamber is divided into a partition formed by forming a partition in one chamber, the partition is composed of a small tube of about 1mm so that the extreme ultraviolet rays generated in the gas cell can be transmitted through the first vacuum chamber through The beam passes through to the second vacuum chamber.
  • the light reflected by the beam splitter further includes a beam splitter 270 for reflecting, and is configured to detect a wavefront of incident light in an image sensor 280 (Shack heartmann sensor) installed outside the vacuum chamber.
  • Figure 4 is a detailed view of a stabilized extreme ultraviolet light generating apparatus through laser beam correction according to the present invention.
  • a gas supply path is formed to communicate with the outside to supply gas to the plasma induction path, and a gas exhaust path communicating with the light induction path is provided at both sides of the gas supply path.
  • the gas supply passage is connected to the external gas supply unit 290 to supply the reaction gas required for the plasma reaction, and the gas exhaust passage is connected to the external drain pump 291 (a device for exhausting the gas) to react. It is configured to exhaust the gas afterwards.
  • the extreme ultraviolet generator includes a race source 100 for outputting an infrared laser, a pinhole for passing only the center wavelength of the light output from the laser source, a TLM (Tunable Laser Mirror; 211) for reflecting light passing through the pinhole, An alignment mirror 221 for aligning the direction of the light reflected by the TLM, a focusing mirror (FM) for focusing the light reflected by the alignment mirror, and a gas cell 240 generating extreme ultraviolet light through a plasma reaction. And a vacuum chamber accommodating the TLM, alignment mirror, FM, and gas cells.
  • the laser source 100 is a source source for outputting an infrared laser having an arbitrary wavelength.
  • the laser source 100 generates extreme ultraviolet rays having a wavelength of 20 nm or less through plasma induction of the laser output from the laser source.
  • a titanium sapphire amplified laser system is used as a medium. It is preferable to have a pulse width of 25 fs to 60 fs and IR wave 800 nm to 1600 nm.
  • the center wavelength is preferably 800 nm, but in some cases, the center wavelength may be changed to 1600 nm long.
  • the pinhole passes only the light of the center wavelength in the output light from the infrared laser source and spatially removes the remaining outer light so that the laser beam can pass.
  • the light passing through the pinhole is incident to the TLM (Tunable Laser Mirror) 211.
  • the TLM is a mirror that reflects a laser beam output from a laser source located outside the vacuum chamber.
  • the TLM reflects a laser beam disposed on an incident path output from the laser source to a focusing mirror 230 to be described later.
  • the focusing mirror 230 focuses and reflects incident light for generating extreme ultraviolet light.
  • the laser beam output from the laser source is reflected by the TLM, and then the beam direction is accurately aligned through the alignment mirror 221, and then reflected by the focusing mirror.
  • the focusing mirror FM focuses the incident laser beam to guide the plasma. Focusing on the gas cell to generate the EUV light through.
  • FIG. 6 is a schematic configuration diagram of an alignment mirror according to the present invention
  • Figure 7 is a view showing a driving example of the alignment mirror according to the present invention.
  • the alignment mirror is positioned in a structure in which vertical rotation and horizontal rotation can be implemented.
  • the alignment mirror controls the vertical driving and the horizontal driving by the driving motor (unsigned) and controls the direction of the reflected beam.
  • the driving motor is precisely controlled by the control unit 241 for controlling it, and the beam reflected through the alignment mirror is measured through measuring means (eg, an image sensor, etc.) for checking the position of the beam on the optical path. Detect and control the beam direction.
  • FIG. 8 illustrates a horizontally rotated state of the alignment mirror, and (b) illustrates a vertically rotated state. Therefore, the position of the beam can be accurately aligned by automatically controlling the alignment mirror 221.
  • Gas cell 240 is a means for generating extreme ultraviolet light through a plasma reaction, the configuration is made of a transparent material, preferably made of quartz to form a through passage through which a laser can pass, the center of the A plasma induction furnace, which is a focal region in which a laser output from a laser source is focused, is provided, and exhaust paths are formed at both sides of the plasma induction furnace, and a gas supply path for supplying gas to the plasma induction furnace is a plasma induction furnace.
  • the gas cell 240 is formed of a transparent material, and a light induction path is formed at both sides, and a plasma induction path is formed at the center to connect the light induction paths.
  • the light reflected by the focusing mirror is focused to be focused on the center portion of the plasma induction furnace and reacts with the reaction gas supplied to the plasma induction furnace to generate EUV light. That is, the plasma induction furnace corresponding to the center portion is focused by focusing the laser output from the laser source, and the external gas supply unit 270 supplies Ne gas through the plasma induction furnace and through the gas supply passage.
  • exhaust paths are provided on both sides of the plasma induction furnace to exhaust the supplied gas to the outside and maintain the degree of vacuum in the plasma induction furnace.
  • the gas supplied through the gas supply path is diffused outside the region where the laser focus is focused, smooth plasma induction may not be possible due to the scattering of gas particles.
  • this exhaust gas may also be an obstacle to EUV light generation. Maintain gas evacuation and vacuum through the furnace.
  • the exhaust passage exhausts through an external drain pump 291 (a device for evacuating gas).
  • a vacuum chamber is configured to receive a component for generating extreme ultraviolet light in a vacuum state.
  • the vacuum chamber is divided into a first vacuum chamber 200 region and a second vacuum chamber 210 region.
  • the first vacuum chamber part 200 is an area in which extreme ultraviolet rays are generated
  • the second vacuum chamber part 201 corresponds to an area for stably supplying extreme ultraviolet rays generated in the first vacuum chamber part.
  • the plasma is induced by the laser beam and the gas supplied from the outside to generate the extreme ultraviolet rays, the extreme ultraviolet rays are generated through the gas cell to be described later.
  • a gas such as Ne, Xe, He, etc. is supplied into the gas cell from the outside, it is difficult to maintain a constant vacuum degree, and thus, in the chamber in which the gas cell is located, EUV light efficiency generated in the gas cell may decrease. Therefore, the gas cell is located in the first vacuum chamber portion which maintains a constant vacuum degree, and EUV light generated in the gas cell is transferred directly to the second vacuum chamber portion having a lower vacuum degree to prevent the efficiency from falling.
  • the first vacuum chamber part and the second vacuum chamber part are configured with a first vacuum pump 300 and a second vacuum pump 310 to maintain different vacuum degrees, respectively, and to form a lower vacuum degree in the second vacuum chamber.
  • a plurality of vacuum pumps suitable for this can be installed.
  • it consists of Medium Vacuum class vacuum pumps such as Cryo pump, Diffusion Pump, Turbo Pump and Ion pump.
  • Vacuum chambers each portion is preferably first the 10 -3 torr or less, a second vacuum chamber maintained in a vacuum chamber to a vacuum degree of less than 10 -6 torr.
  • the first vacuum chamber is configured to generate extreme ultraviolet light
  • the second vacuum chamber is configured to prevent deterioration of efficiency so that the final light is supplied to the application.
  • the vacuum chamber is divided into partitions formed by forming a partition in one chamber, and the partition wall and the partition wall is connected to a long pipe having a hole of about 1mm or less through which the extreme ultraviolet rays generated in the gas cell can pass. It is configured to maintain the degree of vacuum in each chamber.
  • the present invention configured as described above improves the wavefront of the source beam through a compensator composed of a deformable mirror, changes the shape of the beam so that the desired EUV beam is generated as much as possible, and changes the shape of the source beam so that the EUV beam is generated as much as possible.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Physics & Mathematics (AREA)
  • X-Ray Techniques (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

The present invention relates to an extreme ultraviolet (EUV) light generating device for stabilization and improving energy efficiency through laser beam correction. The EUV plasma generation device according to the present invention includes: a laser source which outputs a laser beam; a correction part correcting a wave front of the laser beam which is output from the laser source; a tunable laser mirror (TLM) once again reflecting the reflected laser beam of which the wave front is corrected in the correction part; a focusing mirror (FM) focusing the laser beam reflected by the TLM; a gas cell which receives the focused laser beam from the FM, receives a reaction gas supplied from a gas supply path, and generates extreme ultraviolet light by forming plasma using the laser beam and the reaction gas with respect to a plasma induction path corresponding to a section at which focus is made; and a vacuum chamber accommodating the TLM, the FM, and the gas cell in a vacuum state. As mentioned above, according to the present invention, the wave front of the laser beam which is output from the laser source through the correction part can be corrected to resultantly provide a stable light source. In addition, it is possible to efficiently output an EUV beam even with a simple structure.

Description

레이저 빔 보정을 통한 안정화와 에너지 효율 향상을 위한 극자외선 발생장치Extreme ultraviolet generator for stabilization and energy efficiency through laser beam compensation
본 발명은 레이저 빔 보정을 통한 안정화된 극자외선 발생장치에 관한 것으로, 좀 더 상세하게는 구조를 최대한 간소화시키면서 효율을 향상시킨 극자외선 빔을 발생시킬 수 있는 극자외선 발생장치에 관한 것이다.The present invention relates to a stabilized extreme ultraviolet generator through laser beam correction, and more particularly, to an extreme ultraviolet generator capable of generating an ultra-ultraviolet beam with improved efficiency while maximizing the structure.
반도체 집적 회로의 집적도가 증가함에 따라, 회로 패턴이 미세화되어 종래 사용되어 오던 가시광선이나 자외선을 사용한 노광 장치에서는 그 해상도가 부족해지고 있다. 반도체 제조공정에서 노광 장치의 해상도는 전사 광학계의 개구수(NA)에 비례하고, 노광에 사용하는 광의 파장에 반비례한다. 그 때문에 해상도를 높이는 한 시도로서, 가시광선이나 자외선광 대신 파장이 짧은 EUV(Extreme Ultraviolet) 광원을 노광 전사에 사용하는 시도가 이루어지고 있다. 이러한 노광 전사 장치에 사용되는 EUV 광 발생 장치로서 적용 되고 있는 것이 레이저 플라즈마 EUV 광원과 방전 플라즈마 EUV 광원이 있다.As the degree of integration of a semiconductor integrated circuit increases, the circuit pattern becomes finer, and the resolution of the exposure apparatus using visible light or ultraviolet rays, which have been conventionally used, is insufficient. In the semiconductor manufacturing process, the resolution of the exposure apparatus is proportional to the numerical aperture (NA) of the transfer optical system and inversely proportional to the wavelength of light used for exposure. For this reason, as an attempt to increase the resolution, an attempt has been made to use an Extreme Ultraviolet (EUV) light source having a short wavelength instead of visible or ultraviolet light for exposure transfer. As the EUV light generating device used in such an exposure transfer device, there are a laser plasma EUV light source and a discharge plasma EUV light source.
EUV 노광 장치에서 사용되는 파장은 20nm 이하이고, 대표적으로 13.5nm를 적용하고 있는 광원으로서, 레이저 플라즈마 광원의 반응 물질로서 Ne 가스 이용한 Ne 플라즈마를 이용하는 것이 널리 연구 개발되고 있으며, 그 이유는 비교적 높은 변환 효율(입력 에너지에 대하여 얻어지는 EUV 광 강도의 비율)을 가지는 것이다. Ne은 상온에서 기체인 재료이기 때문에 비산 입자(debris)의 문제가 발생하는 어려운 점에 있다. 그러나 고출력의 EUV 광원을 얻기 위해서는 타겟으로서 Ne 가스를 사용하는 것은 한계가 있고, 다른 물질을 이용하는 것도 요망되고 있다.The wavelength used in the EUV exposure apparatus is 20 nm or less, and a typical 13.5 nm light source has been widely researched and developed using Ne plasma using Ne gas as a reaction material of a laser plasma light source. It has efficiency (ratio of EUV light intensity obtained with respect to input energy). Since Ne is a gaseous material at room temperature, the problem of debris is difficult. However, in order to obtain a high output EUV light source, there is a limit to using Ne gas as a target, and it is also desired to use other materials.
광 파장이 200㎚ ~ 10㎚에 이르는 진공 자외선 영역에서 장파장 측의 반에 해당하는 200㎚ ~ 100㎚ 영역을 VUV 광, 단파장 측의 반에 해당하는 100㎚ ~ 10㎚ 영역을 EUV 광이라고 일반적으로 구분한다. 플라즈마로부터 발생하는 중심파장이 100nm 이하 정도인 EUV 광은 그 자체가 대기 또는 집광거울(일반적인 반사 코팅을 적용한) 등 광학계에서는 반사되지 못하고 흡수되기 때문에 EUV 광 변환 효율을 높이기에는 아직까지 산업계에서 어려움이 따른다.In the vacuum ultraviolet region where the light wavelength is 200 nm to 10 nm, the region of 200 nm to 100 nm corresponding to half of the long wavelength side is called VUV light and the region of 100 nm to 10 nm corresponding to half of the short wavelength side is generally called EUV light. Separate. EUV light with a center wavelength of less than 100 nm from plasma is absorbed by the optical system such as air or condenser mirror (applied with a general reflective coating), and thus is not absorbed by the optical system. Follow.
EUV 레이저와 같은 단파장 영역에서는 레이저 발진법이나 측정법, 사용 광학 재료 등에 많은 미해결 문제가 따르며, 응용 분야의 개발도 앞으로의 과제이다. 이에 EUV 광이 대기 중이나 광학계 등에서 소멸되는 문제점을 해결하기 위해서는 일정 압력 이하의 진공환경(< 10-3 torr)이 필요하며 특수 물질로 코팅된 집광 미러 및 렌즈 등을 이용해야 한다.In the short wavelength region such as the EUV laser, many unsolved problems such as laser oscillation method, measurement method, and optical material to be used, and the development of the application field is also a future problem. In order to solve the problem that EUV light is extinguished in the air or in the optical system, a vacuum environment (<10 -3 torr) below a certain pressure is required and a condensing mirror and a lens coated with a special material should be used.
따라서, 이러한 조건을 적용하여 보다 효율적으로 레이저 플라즈마를 이용한 EUV 광 발생장치의 개발이 필요한 실정이다.Therefore, it is necessary to develop an EUV light generator using laser plasma more efficiently by applying such conditions.
이에 따라 본 출원인은 대한민국 특허출원 제 10-2011-0017579호, 발명의 명칭 : 플라즈마를 이용한 안정화된 극자외선 발생장치를 도 1을 통해 살펴보면, 레이저를 출력하는 레이저 소스(10), 상기 레이저 소스에서 출력되는 레이저를 입사받아 초점이 맺혀지는 구간에 해당하는 플라즈마 유도로에 대해 가스 공급로로부터 가스를 공급받아 레이저와 가스에 의해 플라즈마를 형성하여 극자외선을 발생시키는 가스셀(20), 상기 가스셀을 수용하는 것으로, 일정 진공도를 유지하는 제 1진공챔버부(30), 상기 가스셀에서 발생된 극자외선을 입사받아 상기 극자외선을 외부로 출사시키기 위한 공간으로써 일정 진공도를 유지하는 제 2진공챔버부(40), 상기 가스셀의 가스 공급로로 상기 레이저와 플라즈마를 유도하기 위한 가스를 공급하는 가스 공급부 및 상기 제 1진공챔버부와 제 2진공챔버부의 진공도를 각각 형성하기 위한 제 1진공펌프와 제 2진공펌프 및 상기 레이스 소스에서 출력되는 광을 전달하는 복수개의 광학계(71 ~ 75)를 포함하여 구성된다.Accordingly, the applicant of the present invention, Korean Patent Application No. 10-2011-0017579, name of the invention: when looking at the stabilized extreme ultraviolet light generating apparatus using a plasma through Figure 1, the laser source 10 for outputting a laser, in the laser source The gas cell 20, which generates extreme ultraviolet rays by generating a plasma by a laser and a gas by receiving a gas from a gas supply path to a plasma induction path corresponding to a section in which the output laser is incident and focused. The first vacuum chamber unit 30 which maintains a constant vacuum degree, the second vacuum chamber which maintains a constant vacuum degree as a space for injecting extreme ultraviolet rays generated from the gas cell and emitting the extreme ultraviolet rays to the outside. The unit 40, a gas supply unit for supplying a gas for inducing the laser and the plasma to the gas supply path of the gas cell and the first dust And a first vacuum pump and a second vacuum pump for forming vacuum degrees of the empty chamber portion and the second vacuum chamber portion, respectively, and a plurality of optical systems 71 to 75 transferring light output from the race source.
상기와 같은 구성으로 극자외선 발생장치는 본 출원인이 출원한 발명으로써 플라즈마 반응을 통해 안정화된 극자외선을 발생시킬 수 있는 매우 우수한 기술에 해당한다.With the above configuration, the extreme ultraviolet ray generating apparatus corresponds to a very excellent technology capable of generating stabilized extreme ultraviolet ray through the plasma reaction as the invention filed by the present applicant.
하지만, 구조가 매우 복잡함에 따라 설계가 어렵고, 그에 따른 레이저 정렬이나 기구 배치 과정이 복잡하다. 또한, 복잡한 구조에 따라 많은 부품을 요구하기 때문에 생산 비용이 높아지는 문제점이 있다.However, as the structure is very complicated, the design is difficult and the laser alignment or instrument placement process is complicated. In addition, there is a problem in that the production cost is high because many parts are required according to the complicated structure.
또한, 기존의 극자외선 발생장치의 경우 레이저 소스에서 출력되는 레이저 빔의 파면이 비교적 왜곡된 경향을 나타나는 경우가 빈번한데, 안정적이면서 최적의 광원을 제공할 수 있는 시스템이 필요한 실정이다.In addition, in the case of the existing extreme ultraviolet generator, the wavefront of the laser beam output from the laser source is often distorted, and there is a need for a system capable of providing a stable and optimal light source.
상기와 같은 문제점을 해결하기 위한 본 발명은 레이저 빔에서 출력되는 광의 파면 왜곡이나 형상을 원하는데로 보정함으로써 결과적으로 안정되고, 에너지 효율을 높인 극자외선 광을 발생시킬 수 있는 발생장치를 제공함과 동시에 발생장치의 구조를 최대한 간소화시킬 수 있는 극자외선 발생장치를 제공하고자 하는데 그 목적이 있다.The present invention for solving the above problems is generated by providing a generator capable of generating stable, energy-efficient ultra-ultraviolet light by correcting the wavefront distortion or shape of the light output from the laser beam as desired. It is an object of the present invention to provide an extreme ultraviolet generator that can simplify the structure of the device as much as possible.
더불어, 효율 저하를 최소화 할 수 있고, 플라즈마로부터 발생되는 EUV 광원을 효과적으로 포집할 수 있는 플라즈마를 이용한 안정화된 극자외선 발생장치를 제공하고자 하는데 그 목적이 있다.In addition, it is an object of the present invention to provide a stabilized extreme ultraviolet light generating apparatus using a plasma that can minimize the decrease in efficiency and effectively collect the EUV light source generated from the plasma.
상기와 같은 목적을 달성하기 위한 본 발명은, 레이저를 출력하는 레이저 소스, 상기 레이저 소스에서 출력되는 레이저 빔의 파면을 보정하는 보정부, 상기 보정부에서 레이저 빔의 파면이 보정된 반사되는 레이저 빔을 다시 반사시키는 TLM(Tunable Laser Mirror), 상기 TLM에서 반사되는 레이저 빔을 포커싱하는 FM(Focusing Mirror), 상기 FM에서 포커싱되는 레이저를 입사받아 초점이 맺혀지는 구간에 해당하는 플라즈마 유도로에 대해 가스 공급로로부터 반응 가스를 공급받아 레이저 빔과 반응 가스에 의해 플라즈마를 형성하여 극자외선을 발생시키는 가스셀 및 상기 TLM, FM, 가스셀을 진공상태로 수용하는 진공챔버를 포함하여 구성된다.The present invention for achieving the above object, a laser source for outputting a laser, a correction unit for correcting the wavefront of the laser beam output from the laser source, the reflected laser beam is corrected wavefront of the laser beam in the correction unit TLM (Tunable Laser Mirror) for reflecting back light, Focusing Mirror (FM) for focusing the laser beam reflected by the TLM, Gas for the plasma induction path corresponding to the section in which the laser beam focused in the FM is focused It comprises a gas cell for receiving the reaction gas from the supply path to form a plasma by the laser beam and the reaction gas to generate extreme ultraviolet rays, and a vacuum chamber for receiving the TLM, FM, gas cells in a vacuum state.
또한, 상기 보정부는, DM (Deformable mirror ; 형상변형 거울 변형거울 기기)와 상기 DM의 형상 변형을 제어하는 구동부를 포함하여 구성된다.The correction unit includes a DM (Deformable mirror) and a drive unit for controlling the shape deformation of the DM.
또한, 상기 FM에서 포커싱되는 레이저 빔의 정렬을 위해 구비되는 제 1어퍼쳐와, 상기 가스셀에서 발생한 극자외선 빔에서 중심파장만 투과시키기 위한 제 2어퍼쳐를 포함하여 구성되는 것을 특징으로 한다.In addition, the first aperture is provided for the alignment of the laser beam focused in the FM, and the second aperture for transmitting only the central wavelength in the extreme ultraviolet beam generated in the gas cell.
또한, 상기 진공챔버는, 제 1진공챔버부와 제 2진공챔버부로 분할 구성되고, 상기 제 2진공챔버부가 제 1진공챔버부보다 고진공도를 유지하며, 상기 제 1진공챔버부는, TLM, FM, 가스셀, 제 1어퍼쳐를 수용하고, 상기 제 2진공챔버부는 상기 제 2어퍼쳐를 수용하도록 구성된다.In addition, the vacuum chamber is divided into a first vacuum chamber portion and a second vacuum chamber portion, the second vacuum chamber portion maintains a higher vacuum than the first vacuum chamber portion, the first vacuum chamber portion, TLM, FM And a gas cell, a first aperture, and the second vacuum chamber portion to receive the second aperture.
또한, 상기 TLM에서 반사되는 광의 일부 반사시키는 빔스플리터와, 상기 빔스플리터를 통해 반사되는 빔의 웨이브프론터(wavefront)를 검출하는 이미지 센서를 포함한다.The apparatus may further include a beamsplitter for partially reflecting light reflected from the TLM, and an image sensor for detecting a wavefront of the beams reflected through the beamsplitter.
상기와 같이 구성되고 작용되는 본 발명은 EUV 광을 발생시키기 위한 조건에서 레이저 소스에서 출력되는 레이저 빔 파면의 왜곡을 보정부로 구성되는 Deformable mirror(DM)를 통해 보정함으로써 보다 효과적인 극자외선 광을 출력할 수 있는 장점이 있다.The present invention constructed and operated as described above outputs more effective extreme ultraviolet light by correcting the distortion of the laser beam wavefront output from the laser source through a deformable mirror (DM) configured by a correction unit under conditions for generating EUV light. There is an advantage to this.
또한, 구조가 매우 간소하여 제조가 용이하고 원가 절감을 실현할 수 있고, 광학계 구조의 간소화를 통해 빔 정렬이 매우 용이한 효과가 있으며, 더불어, 진공도가 다른 챔버부를 각각 구성함에 따라 가스셀에서 발생된 극자외선의 안정적으로 출력시킬 수 있는 이점이 있다.In addition, since the structure is very simple, it is easy to manufacture and the cost reduction can be realized, and the beam alignment is very easy by simplifying the optical system structure. There is an advantage that can be stably output of extreme ultraviolet rays.
도 1은 종래 기술에 따른 플라즈마를 이용한 극자외선 발생장치의 구성도,1 is a configuration diagram of an extreme ultraviolet ray generating apparatus using a plasma according to the prior art,
도 2는 본 발명에 따른 레이저 빔 보정을 통한 안정화와 에너지 효율 향상을 위한 극자외선 발생장치의 구성도,2 is a configuration diagram of an extreme ultraviolet generator for stabilization and energy efficiency improvement through laser beam correction according to the present invention;
도 3은 본 발명에 따른 보정부의 개략적인 구성도,3 is a schematic configuration diagram of a correction unit according to the present invention;
도 4는 본 발명에 따른 레이저 빔 보정을 통한 안정화된 극자외선 발생장치의 상세도.Figure 4 is a detailed view of a stabilized extreme ultraviolet light generating apparatus through laser beam correction according to the present invention.
도 5는 본 발명에 따른 구조가 간소화된 플라즈마를 이용한 극자외선 발생장치의 구성도,5 is a configuration diagram of an extreme ultraviolet ray generating apparatus using a simplified plasma structure according to the present invention,
도 6은 본 발명에 따른 정렬미러의 개략적인 구성도,6 is a schematic configuration diagram of an alignment mirror according to the present invention;
도 7은 본 발명에 따른 정렬미러의 구동예를 도시한 도면.7 is a view showing a driving example of an alignment mirror according to the present invention;
이하, 첨부된 도면을 참조하여 본 발명에 따른 레이저 빔 보정을 통한 안정화와 에너지 효율 향상을 위한 극자외선 발생장치의 바람직한 실시예를 상세히 설명하면 다음과 같다.Hereinafter, with reference to the accompanying drawings will be described in detail a preferred embodiment of the extreme ultraviolet generating device for stabilization and energy efficiency improvement through laser beam correction according to the present invention.
본 발명에 따른 레이저 빔 보정을 통한 안정화와 에너지 효율 향상을 위한 극자외선 발생장치는, 레이저를 출력하는 레이저 소스, 상기 레이저 소스에서 출력되는 레이저 빔의 파면을 보정하는 보정부, 상기 보정부에서 레이저 빔의 파면이 보정된 반사되는 레이저 빔을 다시 반사시키는 TLM(Tunable Laser Mirror), 상기 TLM에서 반사되는 레이저 빔을 포커싱하는 FM(Focusing Mirror), 상기 FM에서 포커싱되는 레이저를 입사받아 초점이 맺혀지는 구간에 해당하는 플라즈마 유도로에 대해 가스 공급로로부터 반응 가스를 공급받아 레이저 빔과 반응 가스에 의해 플라즈마를 형성하여 극자외선을 발생시키는 가스셀 및 상기 TLM, FM, 가스셀을 진공상태로 수용하는 진공챔버를 포함하여 구성된다.The extreme ultraviolet generator for stabilization and energy efficiency through laser beam correction according to the present invention, a laser source for outputting a laser, a correction unit for correcting the wavefront of the laser beam output from the laser source, the laser in the correction unit TLM (Tunable Laser Mirror) for reflecting the corrected reflected laser beam back to the wavefront of the beam, Focusing Mirror (FM) for focusing the laser beam reflected from the TLM, and is focused by receiving the laser focused on the FM Receiving the reaction gas from the gas supply path to the plasma induction path corresponding to the section to form a plasma by the laser beam and the reaction gas to generate the extreme ultraviolet rays and the TLM, FM, gas cells to receive the vacuum state It comprises a vacuum chamber.
본 발명에 따른 극자외선 발생장치는, 레이저 소스에서 출력되는 레이저 빔의 파면을 DM(Deforable mirror)으로 구성되는 보정부를 통해 극자외선 광을 발생시키기 위한 소스 레이저 빔의 파면 왜곡을 보정함으로써 결과적으로 안정적이고 효율적인 극자외선 광을 발생시킬 수 있으며, 더불어 구조를 간소화하면서도 극자외선 광의 효율을 만족할 수 있는 극자외선 발생장치를 제공하고자 하는 것이 주요 기술적 요지로 한다.The extreme ultraviolet generator according to the present invention is stable as a result of correcting the wavefront distortion of the source laser beam for generating the extreme ultraviolet light through the correction unit consisting of DM (Deforable mirror) of the wavefront of the laser beam output from the laser source It is a main technical point of the present invention to provide an extreme ultraviolet light generating device capable of generating highly efficient ultraviolet light and satisfying the efficiency of extreme ultraviolet light while simplifying the structure.
도 2는 본 발명에 따른 레이저 빔 보정을 통한 안정화된 극자외선 발생장치의 구성도이다.2 is a block diagram of a stabilized extreme ultraviolet light generating apparatus through laser beam correction according to the present invention.
본 발명에 따른 플라즈마를 이용한 극자외선 발생장치는, 레이저 빔을 출력하는 레이저 소스(100), 레이저 빔을 반사시키는 TLM(Tunable Laser Mirror ; 220), 반사된 레이저 빔을 포커싱하는 FM(Focusing Mirror ; 230), 플라즈마 반응을 통해 극자외선 광을 생성하는 가스셀(240) 및 상기 TLM, FM, 가스셀을 수용하는 진공챔버로 구성된다.The extreme ultraviolet generator using the plasma according to the present invention includes a laser source 100 for outputting a laser beam, a TLM (Tunable Laser Mirror) 220 for reflecting the laser beam, and a FM (Focusing Mirror) for focusing the reflected laser beam; 230, a gas cell 240 generating extreme ultraviolet light through a plasma reaction, and a vacuum chamber accommodating the TLM, FM, and gas cells.
레이저 소스(100)는 임의의 파장을 가지는 레이저를 출력하는 소스원으로써, 상기 레이저 소스에서 출력되는 레이저를 플라즈마 유도를 통해 50nm 이하의 파장을 가지는 극자외선을 생성하게 된다. 상기 극자외선 광을 생성시키기 위해 외부에서 공급되는 소스 레이저 빔은 800nm급의 IR 레이저이며, 소스 레이저는 800nm 이상의 IR 레이저를 사용 하여도 되며, 이때, IR 레이저를 사용하되 Femto second의 pulse 폭의 레이저, 즉 IR 펨토 세컨드 레이저를 사용하여야 하며 펄스폭은 그 중에서도 50fs ~ 30fs 의 펨토 세컨드 레이저를 사용하는 것이 바람직하다.The laser source 100 is a source source for outputting a laser having an arbitrary wavelength. The laser source 100 generates extreme ultraviolet rays having a wavelength of 50 nm or less through plasma induction of the laser output from the laser source. The source laser beam supplied from the outside to generate the extreme ultraviolet light is an IR laser of 800 nm class, and the source laser may be an IR laser of 800 nm or more. In this case, an IR laser is used, but a pulse width laser of Femto second is used. That is, an IR femtosecond laser should be used, and a pulse width of 50 femto second laser is preferable.
상기 레이저 소스에서 출력되는 광은 우선적으로 보정부(210)로 입사되어 출력 빔의 파면을 보정한다. 앞서 언급한 바와 같이 상기 보정부는 Deformable mirror(DM)로 이루어진다. DM은 형상변형 미러와 상기 미러를 제어하는 구동부로 구성된다.The light output from the laser source first enters the correction unit 210 to correct the wavefront of the output beam. As mentioned above, the correction unit is formed of a deformable mirror (DM). The DM is composed of a shape deformation mirror and a drive unit for controlling the mirror.
도 3은 본 발명에 따른 보정부의 개략적인 구성도, 도 4는 본 발명에 따른 레이저 빔 보정 전과 후를 나타낸 화면이다. 우선, 레이저 파면을 보정하기 위해서 레이저 파면의 왜곡을 측정하기 위해 IR wavefront sensor를 이용하여 왜곡 여부를 검출한다. 또한, 상기 DM은 빔 형상의 왜곡뿐만 아니라 가장 안정적이고 효율적인 EUV빔이 발생 할 수 있도록 소스 레이저 빔의 형상을 프로세싱에 가장 적합 한 빔 형태로 변형할 수 있는 구성에 해당한다.3 is a schematic configuration diagram of a correction unit according to the present invention, Figure 4 is a screen showing before and after the laser beam correction according to the present invention. First, in order to measure the laser wavefront, the IR wavefront sensor is used to detect the distortion of the laser wavefront. In addition, the DM corresponds to a configuration capable of transforming the shape of the source laser beam into a beam shape most suitable for processing so that not only the distortion of the beam shape but also the most stable and efficient EUV beam can be generated.
검출된 빔 형상 정보는 측정된 레이저 파면을 기준으로 보정해야 할 신호를 계산하여 구동부에서 형상변형 거울을 제어한다. 도 3에 도시된 바와 같이 최초 왜곡된 레이저 파면을 보정한다. The detected beam shape information calculates a signal to be corrected based on the measured laser wavefront, and controls the shape deformation mirror in the driver. As shown in FIG. 3, the first distorted laser wavefront is corrected.
도 3에 나타낸 바와 같이 보정부의 예로 미러(211)와 구동부(212)로 크게 구성되며, 입사되는 레이저 빔의 파면을 측정하기 위하여 빔을 반사시키는 빔스플리터(213)와 상기 빔스플리터에 반사되는 빔의 파면을 측정하는 이미지 센서(214)로 구성된다. 여기서, 상기 이미지 센서는 일예로 Shack hartmann sensor 또는 wavefront 측정 이미지 센서가 적용될 수 있다. 상기 이미지 센서에서 레이저 파면을 검출하며, 여기서 검출된 값을 피드백하여 구동부가 DM을 제어하여 원하는 빔형상을 출력하게 된다.As shown in FIG. 3, a mirror 211 and a driver 212 are largely configured as an example of a correction unit, and are reflected by the beam splitter 213 and the beam splitter to reflect the beam to measure the wavefront of the incident laser beam. It consists of an image sensor 214 that measures the wavefront of the beam. The image sensor may be, for example, a shack hartmann sensor or a wavefront measurement image sensor. The laser wavefront is detected by the image sensor, and the driver feeds back the detected value to control the DM to output a desired beam shape.
TLM(220)은 진공챔버 외측에 위치한 레이저 소스로부터 출력되는 레이저 빔을 반사하여주는 미러로써, 레이저 소스에서 출력되는 입사 경로에 배치되어 입사 받은 레이저 빔을 후술할 포커싱 미러(230)로 반사시킨다. 이때, TLM은 포커싱 미러로 반사되는 각이 대략 2°의 입사각을 갖도록 반사되는데 즉, 포커싱 미러로 입사되는 소스빔의 각도가 대략 2°를 가지도록 반사시킨다.The TLM 220 is a mirror that reflects a laser beam output from a laser source located outside the vacuum chamber. The TLM 220 reflects the incident laser beam disposed on an incident path output from the laser source to the focusing mirror 230 to be described later. At this time, the TLM is reflected such that the angle reflected by the focusing mirror has an angle of incidence of approximately 2 °, that is, the angle of the source beam incident into the focusing mirror is reflected by approximately 2 °.
FM(230)은 극자외선 광 발생을 위해 입사 받은 광을 포커싱한다. 레이저 소스에서 출력된 레이저 빔은 TLM 미러를 통해 반사되어 포커싱 미러로 반사시키며, 상기 포커싱 미러(FM)는 입사된 레이저 빔을 포커싱하여 플라즈마 유도를 통해 EUV 광을 생성하는 가스셀로 포커싱한다.The FM 230 focuses the incident light for generating extreme ultraviolet light. The laser beam output from the laser source is reflected by the TLM mirror and reflected by the focusing mirror, and the focusing mirror FM focuses the incident laser beam into a gas cell that generates EUV light through plasma induction.
상기 가스셀은 투명재료로 구비되며, 바람직하게는 석영으로 이루어지는 것으로 레이저가 통과할 수 있는 관통로가 형성되며, 그 중앙으로는 레이저 소스에서 출력되는 레이저가 집광되는 초점 영역인 플라즈마 유도로(330)가 구비되고, 상기 플라즈마 유도로 양측으로는 배기로(320)가 형성되며, 상기 플라즈마 유도로에 가스 공급을 위한 가스 공급로(310)가 플라즈마 유도로와 연결되어 있다.The gas cell is made of a transparent material, preferably made of quartz, a through path through which a laser can pass is formed, and in the center thereof, a plasma induction furnace 330 which is a focal region where a laser output from a laser source is focused. ), An exhaust path 320 is formed at both sides of the plasma induction furnace, and a gas supply path 310 for supplying gas to the plasma induction furnace is connected to the plasma induction furnace.
가스셀(240)은 투명 재질로 형성되며, 양쪽으로 광유도로가 형성되고, 광 유도로를 연결하기 위해 중앙에 플라즈마 유도로가 형성된다. 상기 포커싱 미러에서 반사되는 광은 상기 플라즈마 유도로의 센터 부분에 집광되도록 포커싱 되며 플라즈마 유도로에 공급되는 반응가스와 반응하여 EUV 광을 생성한다. 즉, 중앙 부분에 해당하는 플라즈마 유도로에는 레이저 소스에서 출력되는 레이저의 초점이 맞아 집광되며, 외부 가스 공급부(290)에서 플라즈마 유도로와 관통하는 가스공급로를 통해 Ne 가스를 공급한다. 또한, 플라즈마 유도로 양측으로는 공급된 가스를 외부로 배기시킴과 동시에 플라즈마 유도로 내의 진공도를 유지시키기 위한 배기로가 각각 형성되어 있다. 가스 공급로를 통해 공급된 가스가 레이저 초점이 집광되는 영역 외에 확산되면 가스 입자의 비산으로 인해 원활한 플라즈마 유도가 불가능하다. 또한, 플라즈마 유도로 내에는 일정한 진공도가 유지되어야 하는데, 진공 시스템의 다양한 문제점(진공챔버 실링, 불순물 등)으로 인해 일정 진공도를 유지 못할 경우 이 또한 EUV 광 생성에 방해 요소가 될 수 있기 때문에 상기 배기로를 통해 가스 배기 및 진공도를 유지시킨다. 상기 배기로는 외부 드레인(drain) 펌프(291 : 가스를 배기시키기 위한 장치)를 통해 배기한다.The gas cell 240 is formed of a transparent material, and a light induction path is formed at both sides, and a plasma induction path is formed at the center to connect the light induction paths. The light reflected by the focusing mirror is focused to be focused on the center portion of the plasma induction furnace and reacts with the reaction gas supplied to the plasma induction furnace to generate EUV light. That is, the plasma induction furnace corresponding to the central portion is focused by focusing the laser output from the laser source, and the external gas supply unit 290 supplies Ne gas through the plasma induction furnace and through the gas supply passage. In addition, exhaust paths are provided on both sides of the plasma induction furnace to exhaust the supplied gas to the outside and maintain the degree of vacuum in the plasma induction furnace. If the gas supplied through the gas supply path is diffused outside the region where the laser focus is focused, smooth plasma induction may not be possible due to the scattering of gas particles. In addition, a constant degree of vacuum should be maintained in the plasma induction furnace. If the constant degree of vacuum cannot be maintained due to various problems of the vacuum system (vacuum chamber sealing, impurities, etc.), this exhaust gas may also be an obstacle to EUV light generation. Maintain gas evacuation and vacuum through the furnace. The exhaust passage exhausts through an external drain pump 291 (a device for evacuating gas).
한편, 극자외선 광을 발생시키기 위한 구성요소를 진공상태에서 수용하는 진공챔버가 구성된다. 상기 진공챔버는 제 1진공챔버(200) 영역과 제 2진공챔버(210) 영역으로 분할 구성된다.On the other hand, a vacuum chamber is configured to receive a component for generating extreme ultraviolet light in a vacuum state. The vacuum chamber is divided into a first vacuum chamber 200 region and a second vacuum chamber 210 region.
제 1진공챔버부(200)는 극자외선이 생성되는 영역이며, 제 2진공챔버부(210)는 상기 제 1진공챔버부에서 생성된 극자외선을 안정적으로 공급하기 위한 영역에 해당한다. 본 발명에서는 레이저빔과 외부에서 공급되는 가스에 의해 플라즈마를 유도하여 극자외선을 생성하게 되는데, 후술할 가스셀을 통해 극자외선이 생성된다. 이때, 가스셀 내부로 외부에서 Ne, Xe, He 등과 같은 가스가 공급되기 때문에 일정한 진공도를 유지하기 어렵고, 이에 따라 가스셀이 위치한 챔버에서는 가스셀에서 생성된 EUV 광효율이 떨어질 수 있다. 따라서, 가스셀은 일정 진공도를 유지하는 제 1진공챔버부에 위치시키고, 가스셀에서 생성된 EUV 광은 바로 진공도가 더 높은 제 2진공챔버부로 전달하여 효율이 떨어지는 것을 방지한다.The first vacuum chamber part 200 is an area in which extreme ultraviolet rays are generated, and the second vacuum chamber part 210 corresponds to an area for stably supplying extreme ultraviolet rays generated in the first vacuum chamber part. In the present invention, the plasma is induced by the laser beam and the gas supplied from the outside to generate the extreme ultraviolet rays, the extreme ultraviolet rays are generated through the gas cell to be described later. At this time, since a gas such as Ne, Xe, He, etc. is supplied into the gas cell from the outside, it is difficult to maintain a constant vacuum degree, and thus, in the chamber where the gas cell is located, EUV light efficiency generated in the gas cell may be reduced. Therefore, the gas cell is positioned in the first vacuum chamber portion maintaining a constant vacuum degree, and EUV light generated in the gas cell is transferred directly to the second vacuum chamber portion having a higher vacuum degree to prevent the efficiency from falling.
상기 제 1진공챔버부와 제 2진공챔버부는 서로 다른 진공도를 유지하기 위해 각각 제 1진공펌프(300)와 제 2진공펌프(310)가 구성되고, 제 2진공챔버에는 보다 낮은 진공도 형성을 위하여 그에 적합한 복수개의 진공펌프를 설치할 수 있다. 예를 들면, Cryo pump, Diffusion Pump, Turbo Pump, 등의 Medium Vacuum 급 진공펌프로 구성한다. 각 챔버부의 진공도는 제 1진공챔버부에서 10-3torr 이하, 제 2진공챔버부에서는 10-6torr 이하의 진공도를 유지하는 것이 바람직하다.The first vacuum chamber part and the second vacuum chamber part are configured with a first vacuum pump 300 and a second vacuum pump 310 to maintain different vacuum degrees, respectively, and to form a lower vacuum degree in the second vacuum chamber. A plurality of vacuum pumps suitable for this can be installed. For example, it consists of Medium Vacuum class vacuum pumps, such as a Cryo pump, a Diffusion Pump, and a Turbo Pump. Vacuum chambers each portion is preferably first the 10 -3 torr or less, a second vacuum chamber maintained in a vacuum chamber to a vacuum degree of less than 10 -6 torr.
따라서, 제 1진공챔버에서는 극자외선 광을 발생시키고, 제 2진공챔버에서는 효율 저하를 방지하여 최종적으로 생성된 EUV 광이 어플리케이션에 공급되도록 구성한다. 이때, 분할 구성되는 진공챔버는 하나의 챔버에서 격벽을 형성하여 분할 구성하며, 격벽으로는 가스셀에서 생성된 극자외선이 투과할 수 있도록 1mm 정도의 작은 관이 구성되고 여기를 통해 제 1진공챔버에서 제 2진공챔버로 빔이 통과한다.Therefore, the first vacuum chamber is configured to generate extreme ultraviolet light, and the second vacuum chamber is configured to prevent deterioration of efficiency so that the finally generated EUV light is supplied to the application. At this time, the vacuum chamber is divided into a partition formed by forming a partition in one chamber, the partition is composed of a small tube of about 1mm so that the extreme ultraviolet rays generated in the gas cell can be transmitted through the first vacuum chamber through The beam passes through to the second vacuum chamber.
한편, 레이저 소스를 통해 출력되는 광의 웨이브 프론트 검출을 위하여 TLM에서 반사되는 광 경로에 설치되어 입사 광을 소정량[웨이브프론트 이미지 센서 (Shack hartmann sensor를 말함)가 반응을 할 수 있을 정도의 광량] 반사시키는 빔 스플리터(270)를 더 포함하여 상기 빔스플리터에서 반사된 광은 진공챔버 외부에 설치되는 이미지 센서(280 ; wavefront 이미지 센서 또는 SHS(Shack hartmann sensor)에서 입사광의 파면을 검출하도록 구성한다.On the other hand, it is installed in the optical path reflected from the TLM for wave front detection of the light output through the laser source, and the amount of incident light can react to a predetermined amount (a wavefront image sensor (Shack hartmann sensor) can react). The light reflected by the beam splitter further includes a beam splitter 270 for reflecting, and is configured to detect a wavefront of incident light in an image sensor 280 (Shack hartmann sensor) installed outside the vacuum chamber.
도 4는 본 발명에 따른 레이저 빔 보정을 통한 안정화된 극자외선 발생장치의 상세도이다. 플라즈마 유도를 통해 극자외선 광이 생성되는 가스셀에는 플라즈마 유도로로 가스를 공급하기 위해 외부에 연통되는 가스 공급로가 형성되고, 가스 공급로 양측으로는 광 유도로와 연통되는 가스 배기로가 각각 형성되어 있다. 따라서, 가스 공급로는 외부 가스 공급부(290)에 연결되어 플라즈마 반응에 요구되는 반응 가스를 공급하며, 가스 배기로는 외부 드레인(drain) 펌프(291 ; 가스를 배기시키기 위한 장치)와 연결되어 반응 후의 가스를 외부로 배기시키도록 구성한다.Figure 4 is a detailed view of a stabilized extreme ultraviolet light generating apparatus through laser beam correction according to the present invention. In the gas cell in which the extreme ultraviolet light is generated through plasma induction, a gas supply path is formed to communicate with the outside to supply gas to the plasma induction path, and a gas exhaust path communicating with the light induction path is provided at both sides of the gas supply path. Formed. Therefore, the gas supply passage is connected to the external gas supply unit 290 to supply the reaction gas required for the plasma reaction, and the gas exhaust passage is connected to the external drain pump 291 (a device for exhausting the gas) to react. It is configured to exhaust the gas afterwards.
도 5는 본 발명에 다른 다른 실시예를 설명한다.5 illustrates another embodiment of the present invention.
본 발명의 극자외선 발생장치는, 적외선 레이저를 출력하는 레이스 소스(100), 상기 레이저 소스에서 출력되는 광의 중심파장만을 통과시키는 핀홀, 핀홀을 통과한 광의 반사시키는 TLM(Tunable Laser Mirror ; 211), 상기 TLM에서 반사된 광의 방향을 정렬하기 위한 정렬미러(221), 상기 정렬미러에서 반사되는 광을 포커싱하는 FM(Focusing Mirror ; 230), 플라즈마 반응을 통해 극자외선 광을 생성하는 가스셀(240) 및 상기 TLM, 정렬미러, FM, 가스셀을 수용하는 진공챔버로 구성된다.The extreme ultraviolet generator according to the present invention includes a race source 100 for outputting an infrared laser, a pinhole for passing only the center wavelength of the light output from the laser source, a TLM (Tunable Laser Mirror; 211) for reflecting light passing through the pinhole, An alignment mirror 221 for aligning the direction of the light reflected by the TLM, a focusing mirror (FM) for focusing the light reflected by the alignment mirror, and a gas cell 240 generating extreme ultraviolet light through a plasma reaction. And a vacuum chamber accommodating the TLM, alignment mirror, FM, and gas cells.
레이저 소스(100)는 임의의 파장을 가지는 적외선 레이저를 출력하는 소스원으로써, 상기 레이저 소스에서 출력되는 레이저를 플라즈마 유도를 통해 20nm 이하의 파장을 가지는 극자외선을 생성하게 된다. 본 발명에서는 일예로 펄스폭이 100fs 이하의 펨토초(femtosencond)급 레이저 소스를 사용하는 것이 바람직하며, 세부 사양으로는 매질로 티타늄 사파이어 증폭 레이저 시스템으로써, 그 특성은 4mJ, 1kHz 시스템에서 IR 펨토초 pulse 레이저의 펄스폭(pulse width)은 25fs ~ 60fs, IR wave 800nm ~ 1600nm 조건을 갖는 것이 바람직하나, 레이저 에너지는 5mj 6mj 등으로 커질수록 EUV 발생 파워도 커진다. 또한, 중심파장은 800nm를 적용하는 것이 바람직하나, 경우에 따라서는 중심파장을 길게는 1600nm 까지 변경 할 수 있다.The laser source 100 is a source source for outputting an infrared laser having an arbitrary wavelength. The laser source 100 generates extreme ultraviolet rays having a wavelength of 20 nm or less through plasma induction of the laser output from the laser source. In the present invention, it is preferable to use a femtosencond laser source having a pulse width of 100 fs or less as an example. As a detailed specification, a titanium sapphire amplified laser system is used as a medium. It is preferable to have a pulse width of 25 fs to 60 fs and IR wave 800 nm to 1600 nm. However, as the laser energy increases to 5mj 6mj, the EUV generating power also increases. In addition, the center wavelength is preferably 800 nm, but in some cases, the center wavelength may be changed to 1600 nm long.
핀홀은 상기 적외선 레이저 소스에서 출력광에서 중심파장의 광만 통과시키고 나머지 외곽 광들을 공간적으로 제거하여 레이저 빔이 통과할 수 있도록 한다.The pinhole passes only the light of the center wavelength in the output light from the infrared laser source and spatially removes the remaining outer light so that the laser beam can pass.
상기 핀홀을 통과한 광은 TLM(Tunable Laser Mirror ; 211)에 입사된다. TLM은 진공챔버 외측에 위치한 레이저 소스로부터 출력되는 레이저 빔을 반사하여주는 미러로써, 레이저 소스에서 출력되는 입사 경로에 배치되어 입사받은 레이저 빔을 후술할 포커싱 미러(230)로 반사시킨다.The light passing through the pinhole is incident to the TLM (Tunable Laser Mirror) 211. The TLM is a mirror that reflects a laser beam output from a laser source located outside the vacuum chamber. The TLM reflects a laser beam disposed on an incident path output from the laser source to a focusing mirror 230 to be described later.
포커싱 미러(230)는 극자외선 광 발생을 위해 입사받은 광을 포커싱하여 반사한다. 레이저 소스에서 출력된 레이저 빔은 TLM을 통해 반사된 후 정렬미러(221)를 통해 정확하게 빔 방향이 정렬된 후 포커싱 미러로 반사시키며, 상기 포커싱 미러(FM)는 입사된 레이저 빔을 포커싱하여 플라즈마 유도를 통해 EUV 광을 생성하는 가스셀로 포커싱한다.The focusing mirror 230 focuses and reflects incident light for generating extreme ultraviolet light. The laser beam output from the laser source is reflected by the TLM, and then the beam direction is accurately aligned through the alignment mirror 221, and then reflected by the focusing mirror. The focusing mirror FM focuses the incident laser beam to guide the plasma. Focusing on the gas cell to generate the EUV light through.
도 6은 본 발명에 따른 정렬미러의 개략적인 구성도, 도 7은 본 발명에 따른 정렬미러의 구동예를 도시한 도면이다. 도시된 바와 같이 정렬미러는 수직 회전과 수평 회전이 구현될 수 있는 구조체에 정렬미러가 위치하며, 구동모터(미부호)에 의해 수직 구동과 수평 구동을 제어하며 반사된 빔을 방향을 제어한다. 이때, 상기 구동모터는 이를 제어하는 제어부(241)를 통해 정밀 제어되며, 상기 정렬미러를 통해 반사되는 빔은 광 경로상에 빔의 위치를 확인할 수 있는 측정수단(ex. 이미지 센서 등)을 통해 검출하여 빔 방향을 제어하도록 구성할 수 있다. 도 8에서 보면, (a)은 정렬미러의 수평 회전되는 상태를 도시한 것이며, (b)는 수직 회전되는 상태를 도시한 것이다. 따라서, 상기 정렬미러(221)를 자동 제어함으로써 빔의 위치를 정확하게 정렬할 수 있다.Figure 6 is a schematic configuration diagram of an alignment mirror according to the present invention, Figure 7 is a view showing a driving example of the alignment mirror according to the present invention. As shown in the alignment mirror, the alignment mirror is positioned in a structure in which vertical rotation and horizontal rotation can be implemented. The alignment mirror controls the vertical driving and the horizontal driving by the driving motor (unsigned) and controls the direction of the reflected beam. In this case, the driving motor is precisely controlled by the control unit 241 for controlling it, and the beam reflected through the alignment mirror is measured through measuring means (eg, an image sensor, etc.) for checking the position of the beam on the optical path. Detect and control the beam direction. In FIG. 8, (a) illustrates a horizontally rotated state of the alignment mirror, and (b) illustrates a vertically rotated state. Therefore, the position of the beam can be accurately aligned by automatically controlling the alignment mirror 221.
가스셀(240)은 플라즈마 반응을 통해 극자외선 광을 생성하기 위한 수단으로써, 그 구성은 투명재료로 구비되되, 바람직하게는 석영으로 이루어지는 것으로 레이저가 통과할 수 있는 관통로가 형성되며, 그 중앙으로는 레이저 소스에서 출력되는 레이저가 집광되는 초점 영역인 플라즈마 유도로가 구비되고, 상기 플라즈마 유도로 양측으로는 배기로가 형성되며, 상기 플라즈마 유도로에 가스 공급을 위한 가스 공급로가 플라즈마 유도로와 연결되어 있다. Gas cell 240 is a means for generating extreme ultraviolet light through a plasma reaction, the configuration is made of a transparent material, preferably made of quartz to form a through passage through which a laser can pass, the center of the A plasma induction furnace, which is a focal region in which a laser output from a laser source is focused, is provided, and exhaust paths are formed at both sides of the plasma induction furnace, and a gas supply path for supplying gas to the plasma induction furnace is a plasma induction furnace. Connected with
가스셀(240)은 투명 재질로 형성되며, 양쪽으로 광유도로가 형성되고, 광 유도로를 연결하기 위해 중앙에 플라즈마 유도로가 형성된다. 상기 포커싱 미러에서 반사되는 광은 상기 플라즈마 유도로의 센터 부분에 집광되도록 포커싱 되며 플라즈마 유도로에 공급되는 반응가스와 반응하여 EUV 광을 생성한다. 즉, 중앙 부분에 해당하는 플라즈마 유도로에는 레이저 소스에서 출력되는 레이저의 초점이 맞아 집광되며, 외부 가스 공급부(270)에서 플라즈마 유도로와 관통하는 가스공급로를 통해 Ne 가스를 공급한다. 또한, 플라즈마 유도로 양측으로는 공급된 가스를 외부로 배기시킴과 동시에 플라즈마 유도로 내의 진공도를 유지시키기 위한 배기로가 각각 형성되어 있다. 가스 공급로를 통해 공급된 가스가 레이저 초점이 집광되는 영역 외에 확산되면 가스 입자의 비산으로 인해 원활한 플라즈마 유도가 불가능하다. 또한, 플라즈마 유도로 내에는 일정한 진공도가 유지되어 하지만, 진공 시스템의 다양한 문제점(진공챔버 실링, 불순물 등)으로 인해 일정 진공도를 유지 못할 경우 이 또한 EUV 광 생성에 방해 요소가 될 수 있기 때문에 상기 배기로를 통해 가스 배기 및 진공도를 유지시킨다. 상기 배기로는 외부 드레인(drain) 펌프(291 ; 가스를 배기시키기 위한 장치)를 통해 배기한다.The gas cell 240 is formed of a transparent material, and a light induction path is formed at both sides, and a plasma induction path is formed at the center to connect the light induction paths. The light reflected by the focusing mirror is focused to be focused on the center portion of the plasma induction furnace and reacts with the reaction gas supplied to the plasma induction furnace to generate EUV light. That is, the plasma induction furnace corresponding to the center portion is focused by focusing the laser output from the laser source, and the external gas supply unit 270 supplies Ne gas through the plasma induction furnace and through the gas supply passage. In addition, exhaust paths are provided on both sides of the plasma induction furnace to exhaust the supplied gas to the outside and maintain the degree of vacuum in the plasma induction furnace. If the gas supplied through the gas supply path is diffused outside the region where the laser focus is focused, smooth plasma induction may not be possible due to the scattering of gas particles. In addition, although a constant degree of vacuum is maintained in the plasma induction furnace, if the constant degree of vacuum cannot be maintained due to various problems of the vacuum system (vacuum chamber sealing, impurities, etc.), this exhaust gas may also be an obstacle to EUV light generation. Maintain gas evacuation and vacuum through the furnace. The exhaust passage exhausts through an external drain pump 291 (a device for evacuating gas).
한편, 극자외선 광을 발생시키기 위한 구성요소를 진공상태에서 수용하는 진공챔버가 구성된다. 상기 진공챔버는 제 1진공챔버(200) 영역과 제 2진공챔버(210) 영역으로 분할 구성된다.On the other hand, a vacuum chamber is configured to receive a component for generating extreme ultraviolet light in a vacuum state. The vacuum chamber is divided into a first vacuum chamber 200 region and a second vacuum chamber 210 region.
제 1진공챔버부(200)는 극자외선이 생성되는 영역이며, 제 2진공챔버부(201)는 상기 제 1진공챔버부에서 생성된 극자외선을 안정적으로 공급하기 위한 영역에 해당한다. 본 발명에서는 레이저빔과 외부에서 공급되는 가스에 의해 플라즈마를 유도하여 극자외선을 생성하게 되는데, 후술할 가스셀을 통해 극자외선이 생성된다. 이때, 가스셀 내부로 외부에서 Ne, Xe, He 등과 같은 가스가 공급되기 때문에 일정한 진공도를 유지하기 어렵고, 이에 따라 가스셀이 위치한 챔버에서는 가스셀에서 생성된 EUV 광 효율이 떨어질 수 있다. 따라서, 가스셀은 일정 진공도를 유지하는 제 1진공챔버부에 위치시키고, 가스셀에서 생성된 EUV 광은 바로 진공도가 더 낮은 제 2진공챔버부로 전달하여 효율이 떨어지는 것을 방지한다.The first vacuum chamber part 200 is an area in which extreme ultraviolet rays are generated, and the second vacuum chamber part 201 corresponds to an area for stably supplying extreme ultraviolet rays generated in the first vacuum chamber part. In the present invention, the plasma is induced by the laser beam and the gas supplied from the outside to generate the extreme ultraviolet rays, the extreme ultraviolet rays are generated through the gas cell to be described later. In this case, since a gas such as Ne, Xe, He, etc. is supplied into the gas cell from the outside, it is difficult to maintain a constant vacuum degree, and thus, in the chamber in which the gas cell is located, EUV light efficiency generated in the gas cell may decrease. Therefore, the gas cell is located in the first vacuum chamber portion which maintains a constant vacuum degree, and EUV light generated in the gas cell is transferred directly to the second vacuum chamber portion having a lower vacuum degree to prevent the efficiency from falling.
상기 제 1진공챔버부와 제 2진공챔버부는 서로 다른 진공도를 유지하기 위해 각각 제 1진공펌프(300)와 제 2진공펌프(310)가 구성되고, 제 2진공챔버에는 보다 낮은 진공도 형성을 위하여 그에 적합한 복수개의 진공펌프를 설치할 수 있다. 예를 들면, Cryo pump, Diffusion Pump, Turbo Pump, Ion pump등의 Medium Vacuum 급 진공펌프로 구성한다. 각 챔버부의 진공도는 제 1진공챔버부에서 10-3torr 이하, 제 2진공챔버부에서는 10-6torr 이하의 진공도를 유지하는 것이 바람직하다.The first vacuum chamber part and the second vacuum chamber part are configured with a first vacuum pump 300 and a second vacuum pump 310 to maintain different vacuum degrees, respectively, and to form a lower vacuum degree in the second vacuum chamber. A plurality of vacuum pumps suitable for this can be installed. For example, it consists of Medium Vacuum class vacuum pumps such as Cryo pump, Diffusion Pump, Turbo Pump and Ion pump. Vacuum chambers each portion is preferably first the 10 -3 torr or less, a second vacuum chamber maintained in a vacuum chamber to a vacuum degree of less than 10 -6 torr.
따라서, 제 1진공챔버에서는 극자외선 광을 발생시키고, 제 2진공챔버에서는 효율 저하를 방지하여 최종 광이 어플리케이션에 공급되도록 구성한다. 이때, 분할 구성되는 진공챔버는 하나의 챔버에서 격벽을 형성하여 분할 구성하며, 격벽으로는 가스셀에서 생성된 극자외선이 투과할 수 있는 1mm 이하 정도의 홀이 있는 긴 관을 격벽과 격벽을 연결하여 각각의 챔버에서 진공도를 유지 할 수 있도록 구성한다.Therefore, the first vacuum chamber is configured to generate extreme ultraviolet light, and the second vacuum chamber is configured to prevent deterioration of efficiency so that the final light is supplied to the application. At this time, the vacuum chamber is divided into partitions formed by forming a partition in one chamber, and the partition wall and the partition wall is connected to a long pipe having a hole of about 1mm or less through which the extreme ultraviolet rays generated in the gas cell can pass. It is configured to maintain the degree of vacuum in each chamber.
이와 같이 구성되는 본 발명은 Deformable mirror로 구성되는 보정부를 통해 소스빔의 wavefront를 좋게 하거나, 목적하는 EUV 빔이 최대한 발생되도록 빔의 형상을 변경하고, EUV 빔이 최대한 발생 되도록 소스 빔의 형상을 변형하여 효율을 최대한 높일 수 있으며, 전반적으로 광학계를 구조를 매우 간소화시켜 광 정렬이 용이하고 원가 절감을 실현할 수 있는 이점이 있다.The present invention configured as described above improves the wavefront of the source beam through a compensator composed of a deformable mirror, changes the shape of the beam so that the desired EUV beam is generated as much as possible, and changes the shape of the source beam so that the EUV beam is generated as much as possible. By increasing the efficiency as possible, the overall structure of the optical system is very simplified, there is an advantage that easy light alignment and cost reduction can be realized.
이상, 본 발명의 원리를 예시하기 위한 바람직한 실시 예와 관련하여 설명하고 도시하였지만, 본 발명은 그와 같이 도시되고 설명된 그대로의 구성 및 작용으로 한정되는 것이 아니다. 오히려, 첨부된 청구범위의 사상 및 범주를 일탈함이 없이 본 발명에 대한 다수의 변경 및 수정이 가능함을 당업자들은 잘 이해할 수 있을 것이다. 따라서 그러한 모든 적절한 변경 및 수정과 균등물들도 본 발명의 범위에 속하는 것으로 간주되어야 할 것이다.As described above and illustrated with reference to a preferred embodiment for illustrating the principles of the invention, the invention is not limited to the configuration and operation as shown and described as such. Rather, it will be apparent to those skilled in the art that many changes and modifications to the present invention are possible without departing from the spirit and scope of the appended claims. Accordingly, all such suitable changes and modifications and equivalents should be considered to be within the scope of the present invention.

Claims (10)

  1. 레이저를 출력하는 레이저 소스;A laser source for outputting a laser;
    상기 레이저 소스에서 출력되는 레이저 빔의 파면을 보정하는 보정부;A correction unit for correcting a wavefront of the laser beam output from the laser source;
    상기 보정부에서 레이저 빔의 파면이 보정된 반사되는 레이저 빔을 다시 반사시키는 TLM(Tunable Laser Mirror);A TLM (Tunable Laser Mirror) for reflecting the reflected laser beam whose wavefront of the laser beam is corrected in the corrector;
    상기 TLM에서 반사되는 레이저 빔을 포커싱하는 FM(Focusing Mirror);Focusing Mirror (FM) for focusing the laser beam reflected from the TLM;
    상기 FM에서 포커싱되는 레이저를 입사받아 초점이 맺혀지는 구간에 해당하는 플라즈마 유도로에 대해 가스 공급로로부터 반응 가스를 공급받아 레이저 빔과 반응 가스에 의해 플라즈마를 형성하여 극자외선을 발생시키는 가스셀; 및A gas cell generating extreme ultraviolet rays by receiving a reaction gas from a gas supply path to a plasma induction furnace corresponding to a section in which the laser focused in the FM is focused and generating plasma by a laser beam and the reaction gas; And
    상기 TLM, FM, 가스셀을 진공상태로 수용하는 진공챔버;를 포함하여 구성되는 레이저 빔 보정을 통한 안정화와 에너지 효율 향상을 위한 극자외선 발생장치.And a vacuum chamber accommodating the TLM, FM, and gas cells in a vacuum state. The extreme ultraviolet generator for stabilization and energy efficiency improvement through laser beam correction.
  2. 제 1항에 있어서, 상기 보정부는,The method of claim 1, wherein the correction unit,
    DM(Deformable mirror ; 형상변형 거울)와 상기 DM의 형상 변형을 제어하는 구동부를 포함하여 구성되는 레이저 빔 보정을 통한 안정화와 에너지 효율 향상을 위한 극자외선 발생장치.An apparatus for generating extreme ultraviolet rays for stabilization and energy efficiency through laser beam correction, comprising a DM (Deformable mirror) and a driving unit for controlling the shape deformation of the DM.
  3. 제 1항에 있어서,The method of claim 1,
    상기 FM에서 포커싱되는 레이저 빔을 투과시키는 제 1어퍼쳐 렌즈와, 상기 가스셀에서 발생한 극자외선 빔을 상기 진공챔버 외부로 투과시키는 제 2어퍼쳐 렌즈를 포함하여 구성되는 레이저 빔 보정을 통한 안정화와 에너지 효율 향상을 위한 극자외선 발생장치.Stabilization through laser beam correction including a first aperture lens for transmitting the laser beam focused in the FM and a second aperture lens for transmitting the extreme ultraviolet beam generated in the gas cell to the outside of the vacuum chamber; Extreme ultraviolet generator for energy efficiency.
  4. 제 3항에 있어서, 상기 진공챔버는,The method of claim 3, wherein the vacuum chamber,
    제 1진공챔버부와 제 2진공챔버부로 분할 구성되고, 상기 제 2진공챔버부가 제 1진공챔버부보다 고진공도를 유지하며, 상기 제 1진공챔버부는, TLM, FM, 가스셀, 제 1어퍼쳐 렌즈를 수용하고,The first vacuum chamber portion is divided into a second vacuum chamber portion, wherein the second vacuum chamber portion maintains a higher vacuum than the first vacuum chamber portion, the first vacuum chamber portion, TLM, FM, gas cell, first upper To accommodate the lens,
    상기 제 2진공챔버부는 상기 제 2어퍼쳐를 수용하도록 구성되는 레이저 빔 보정을 통한 안정화와 에너지 효율 향상을 위한 극자외선 발생장치.The second vacuum chamber unit is configured to receive the second aperture is extreme ultraviolet ray generating device for stabilization and energy efficiency through the laser beam correction.
  5. 제 1항에 있어서,The method of claim 1,
    상기 TLM에서 반사되는 광의 일부 반사시키는 빔스플리터;와,A beam splitter for partially reflecting the light reflected by the TLM; and
    상기 빔스플리터를 통해 반사되는 빔의 웨이브프론터(wavefront)를 검출하는 이미지 센서;를 포함하는 레이저 빔 보정을 통한 안정화와 에너지 효율 향상을 위한 극자외선 발생장치.And an image sensor detecting a wavefront of a beam reflected through the beam splitter. The extreme ultraviolet generator for stabilization and energy efficiency improvement through laser beam correction.
  6. 적외선 펨토초 레이저를 출력하는 레이저 소스;A laser source for outputting an infrared femtosecond laser;
    상기 레이저 소스에서 출력되는 레이저 빔을 반사시키는 TLM(Tunable Laser Mirror);Tunable Laser Mirror (TLM) for reflecting the laser beam output from the laser source;
    상기 TLM에서 반사된 빔을 정렬시키기 위한 정렬미러;An alignment mirror for aligning the beam reflected from the TLM;
    상기 정렬미러에서 반사되는 레이저 빔을 포커싱하는 FM(Focusing Mirror);Focusing Mirror (FM) for focusing the laser beam reflected from the alignment mirror;
    상기 FM에서 포커싱되는 레이저를 입사받아 초점이 맺혀지는 구간에 해당하는 플라즈마 유도로에 대해 가스 공급로로부터 반응 가스를 공급받아 레이저 빔과 반응 가스에 의해 플라즈마를 형성하여 극자외선을 발생시키는 가스셀;A gas cell generating extreme ultraviolet rays by receiving a reaction gas from a gas supply path to a plasma induction furnace corresponding to a section in which the laser focused in the FM is focused and generating plasma by a laser beam and the reaction gas;
    상기 TLM, 정렬미러, FM, 가스셀을 진공상태로 수용하는 진공챔버; 및A vacuum chamber accommodating the TLM, alignment mirror, FM, and gas cells in a vacuum state; And
    상기 정렬미러를 제어하여 진행광의 방향을 제어하는 제어부;를 포함하여 구성되는 빔 정렬을 구현하는 극자외선 발생장치.And a controller configured to control the alignment mirror to control the direction of the traveling light.
  7. 제 6항에 있어서,The method of claim 6,
    상기 레이저 소스에서 출력되는 빔의 중심 영역의 빔만 통과 되도록 하기 위하여 핀홀이 상기 진공챔버 내부에 구비되어 상기 레이저 소스에 출력되는 빔이 관통하는 것을 특징으로 하는 빔 정렬을 구현하는 극자외선 발생장치.And a pinhole is provided inside the vacuum chamber so that only the beam in the center region of the beam output from the laser source passes, through which the beam output to the laser source passes.
  8. 제 6항에 있어서,The method of claim 6,
    상기 가스셀에 공급되는 가스는 Ne 가스인 것을 특징으로 하는 빔 정렬을 구현하는 극자외선 발생장치.The gas supplied to the gas cell is an extreme ultraviolet generator for implementing the beam alignment, characterized in that the Ne gas.
  9. 제 6항에 있어서, 상기 레이저 소스는,The method of claim 6, wherein the laser source,
    IR wave length 800nm ~ 1600nm, pulse width 45fs ~ 60fs를 갖는 빔 정렬을 구현하는 극자외선 발생장치.Extreme ultraviolet generator that implements beam alignment with IR wave length 800nm ~ 1600nm, pulse width 45fs ~ 60fs.
  10. 제 6항에 있어서, 상기 진공챔버는,The method of claim 6, wherein the vacuum chamber,
    제 1진공챔버부와 제 2진공챔버부로 분할 구성되고,Divided into a first vacuum chamber portion and a second vacuum chamber portion,
    상기 제 2진공챔버부가 제 1진공챔버부보다 고진공도를 유지하며,The second vacuum chamber portion maintains a higher vacuum than the first vacuum chamber portion,
    상기 제 1진공챔버부는, TLM, 정렬미러, FM, 가스셀을 수용하고,The first vacuum chamber unit, accommodates the TLM, alignment mirror, FM, gas cell,
    상기 제 2진공챔버부는 상기 가스셀에서 발생된 EUV 광을 외부에 출력시키기 위한 진공 공간을 제공하는 것을 특징으로 하는 빔 정렬을 구현하는 극자외선 발생장치.And the second vacuum chamber unit provides a vacuum space for outputting EUV light generated from the gas cell to the outside.
PCT/KR2013/002253 2012-03-20 2013-03-19 Extreme ultraviolet light generating device for stabilization and improving energy efficiency through laser beam correction WO2013141580A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020120028464A KR101324545B1 (en) 2012-03-20 2012-03-20 Laser beam through the stabilization and calibration for EUV generation device to improve energy efficiency
KR10-2012-0028461 2012-03-20
KR1020120028461A KR101401241B1 (en) 2012-03-20 2012-03-20 EUV beam generating device to implement the alignment
KR10-2012-0028464 2012-03-20

Publications (1)

Publication Number Publication Date
WO2013141580A1 true WO2013141580A1 (en) 2013-09-26

Family

ID=49222966

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/002253 WO2013141580A1 (en) 2012-03-20 2013-03-19 Extreme ultraviolet light generating device for stabilization and improving energy efficiency through laser beam correction

Country Status (1)

Country Link
WO (1) WO2013141580A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106908950A (en) * 2017-03-16 2017-06-30 中国科学院西安光学精密机械研究所 Electromagnetic radiation generating device and using method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080088392A (en) * 2007-03-28 2008-10-02 도오쿄 인스티튜드 오브 테크놀로지 Extreme ultraviolet light source apparatus and method for generating extreme ultraviolet light
KR20090085600A (en) * 2006-10-13 2009-08-07 사이머 인코포레이티드 Drive laser delivery systems for euv light source
JP2010147138A (en) * 2008-12-17 2010-07-01 Ushio Inc Extreme ultraviolet light source device and maintenance method of same
KR20100130422A (en) * 2009-06-03 2010-12-13 삼성전자주식회사 Apparatus and method for measuring an aerial image of euv mask
KR20110137031A (en) * 2010-06-16 2011-12-22 한국과학기술원 Efficient substrate dicing by optimized temporal intensity distribution of ultrafast femtosecond pulses

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090085600A (en) * 2006-10-13 2009-08-07 사이머 인코포레이티드 Drive laser delivery systems for euv light source
KR20080088392A (en) * 2007-03-28 2008-10-02 도오쿄 인스티튜드 오브 테크놀로지 Extreme ultraviolet light source apparatus and method for generating extreme ultraviolet light
JP2010147138A (en) * 2008-12-17 2010-07-01 Ushio Inc Extreme ultraviolet light source device and maintenance method of same
KR20100130422A (en) * 2009-06-03 2010-12-13 삼성전자주식회사 Apparatus and method for measuring an aerial image of euv mask
KR20110137031A (en) * 2010-06-16 2011-12-22 한국과학기술원 Efficient substrate dicing by optimized temporal intensity distribution of ultrafast femtosecond pulses

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106908950A (en) * 2017-03-16 2017-06-30 中国科学院西安光学精密机械研究所 Electromagnetic radiation generating device and using method thereof
CN106908950B (en) * 2017-03-16 2023-02-14 中国科学院西安光学精密机械研究所 Electromagnetic radiation generating device and using method thereof

Similar Documents

Publication Publication Date Title
WO2012118280A2 (en) Apparatus for generating stabilized extreme ultraviolet light using plasma
CN105814662B (en) Radiation source, measurement equipment, lithography system and device making method
US20150334814A1 (en) Device for controlling laser beam and apparatus for generating extreme ultraviolet light
US9386675B2 (en) Laser beam controlling device and extreme ultraviolet light generating apparatus
KR101709820B1 (en) Metrology module for laser system
WO2013141578A1 (en) Apparatus for generating extreme ultraviolet light using plasma
KR101269115B1 (en) Structure is simplified euv plasma generating apparatus
WO2013141580A1 (en) Extreme ultraviolet light generating device for stabilization and improving energy efficiency through laser beam correction
KR20120081843A (en) Using the euv plasma generation device
CN105830198B (en) Radiation source, measurement equipment, etching system and device making method
JPH08279458A (en) Projecting aligner
US11125613B2 (en) Extreme ultraviolet light sensor unit and extreme ultraviolet light generation apparatus
WO2013162187A1 (en) Floating device and floating method
KR20130106709A (en) Euv beam generating device to implement the alignment
TW202109589A (en) Radiation sensor apparatus, system and method for determining a position of a radiation beam
KR20130106711A (en) Laser beam through the stabilization and calibration for euv generation device to improve energy efficiency
KR101359754B1 (en) Precision adjustable optical EUV light generating device
GB2143192A (en) Vacuum-tight radiation window
IL298613A (en) Precise vacuum window viewports and pellicles for rapid metrology recovery
WO2020017865A1 (en) Apparatus for monitoring gas component of gas laser
KR101416267B1 (en) Induced plasma for EUV light generated gas cell
CN104977082A (en) Ultraviolet spectrometer spectral resolution detection device and method
Nilson et al. Divertor Thomson scattering on DIII-D
CN114527420B (en) Ultraviolet imager calibration device and method based on multi-directional light path switching wheel
WO2010076924A1 (en) Apparatus for haze accelerating detection and detecting method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13764695

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 03/02/2015)

122 Ep: pct application non-entry in european phase

Ref document number: 13764695

Country of ref document: EP

Kind code of ref document: A1