WO2012118040A1 - 室温および温間での深絞り性に優れた高強度鋼板およびその温間加工方法 - Google Patents

室温および温間での深絞り性に優れた高強度鋼板およびその温間加工方法 Download PDF

Info

Publication number
WO2012118040A1
WO2012118040A1 PCT/JP2012/054838 JP2012054838W WO2012118040A1 WO 2012118040 A1 WO2012118040 A1 WO 2012118040A1 JP 2012054838 W JP2012054838 W JP 2012054838W WO 2012118040 A1 WO2012118040 A1 WO 2012118040A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
concentration
strength
warm
strength steel
Prior art date
Application number
PCT/JP2012/054838
Other languages
English (en)
French (fr)
Inventor
村上 俊夫
エライジャ 柿内
英雄 畠
浅井 達也
直気 水田
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to KR1020137022772A priority Critical patent/KR101534427B1/ko
Priority to US14/001,819 priority patent/US9194032B2/en
Priority to CN201280010977.0A priority patent/CN103403210B/zh
Priority to GB1315448.9A priority patent/GB2502026B/en
Publication of WO2012118040A1 publication Critical patent/WO2012118040A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/20Deep-drawing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0426Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • C21D9/48Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the present invention relates to a high-strength steel sheet excellent in deep drawability at room temperature and warm, and its warm working method.
  • the high-strength steel sheet of the present invention includes a cold-rolled steel sheet, a hot-dip galvanized steel sheet, and an alloyed hot-dip galvanized steel sheet.
  • Thin steel plates used for automobile framework parts are required to have high strength in order to achieve collision safety and improved fuel efficiency. Therefore, it is required to ensure press formability while increasing the strength of the steel plate to 980 MPa class or higher. It is known that in a high-strength steel sheet of 980 MPa class or higher, it is effective to use steel utilizing the TRIP effect to achieve both high strength and formability (for example, see Patent Document 1).
  • Patent Document 1 discloses a high-strength steel sheet containing bainite or bainitic ferrite as a main phase and containing retained austenite ( ⁇ R ) in an area ratio of 3% or more.
  • this high-strength steel sheet has a tensile strength at room temperature of 980 MPa or more and the total elongation does not reach 20%, and further improvement in mechanical properties (hereinafter also simply referred to as “characteristics”) is required.
  • Patent Document 3 discloses that the uniform elongation is improved by adding Y and REM. As shown in Table 3, the steel sheet having a tensile strength (TS) of up to 875 MPa. It is applicable only to. Patent Document 4 discloses that the balance between strength and uniform elongation is improved in a mixed structure of bainitic ferrite-polygonal ferrite-residual austenite. However, it can only be applied to steel sheets with a TS of up to 859 MPa.
  • Table 3 the steel sheet having a tensile strength (TS) of up to 875 MPa. It is applicable only to.
  • Patent Document 4 discloses that the balance between strength and uniform elongation is improved in a mixed structure of bainitic ferrite-polygonal ferrite-residual austenite. However, it can only be applied to steel sheets with a TS of up to 859 MPa.
  • the present invention has been made paying attention to the above circumstances, and its purpose is to further improve the room temperature strength and the room temperature and temperature by further improving uniform elongation at room temperature and warm while ensuring room temperature strength of 980 MPa or higher.
  • An object of the present invention is to provide a high-strength steel sheet having a deep drawability and a warm working method thereof.
  • the invention described in claim 1 % By mass (hereinafter the same for chemical components) C: 0.02 to 0.3%, Si: 1.0 to 3.0%, Mn: 1.8 to 3.0%, P: 0.1% or less (including 0%), S: 0.01% or less (including 0%), Al: 0.001 to 0.1%, N: 0.002 to 0.03% And the balance has a component composition consisting of iron and impurities,
  • the area ratio for all tissues hereinafter the same for tissues
  • composition further Cr: 0.01 to 3.0% Mo: 0.01 to 1.0%, Cu: 0.01 to 2.0%, Ni: 0.01 to 2.0%, 2.
  • the invention according to claim 3 Ingredient composition further Ca: 0.0005 to 0.01%, Mg: 0.0005 to 0.01%, 3.
  • the invention according to claim 4 A high-strength steel sheet warm working method characterized in that the high-strength steel sheet according to any one of claims 1 to 3 is processed within 3600 seconds after being heated to 200 to 400 ° C.
  • bainitic ferrite 50 to 85%
  • retained austenite 3% or more
  • martensite + residual austenite 10 to 45%
  • ferrite 5 to 40% in terms of area ratio to the whole structure
  • the residual austenite has a C concentration (C ⁇ R ) of 0.6 to 1.2% by mass and is based on the Mn concentration distribution obtained by EPMA line analysis.
  • the present inventors considered that the use of ferrite having a low dislocation density and high work hardening rate is effective for improving uniform elongation, and decided to introduce an appropriate amount of ferrite into the steel sheet structure.
  • the present invention by introducing an appropriate amount of ferrite and increasing the Mn concentration in ⁇ R while limiting the amount of added Mn, the ductility of the matrix (matrix) is improved and the TRIP effect by ⁇ R is maximized. It was decided to improve the strength by coexisting improvement of uniform elongation and further introducing martensite partially.
  • the steel sheet of the present invention is based on the structure of TRIP steel as in the above-described prior art, and particularly contains a predetermined amount of ferrite and a predetermined amount of ⁇ R having a predetermined carbon concentration, Furthermore, it is different from the above-described prior art in that the concentration distribution of Mn is controlled.
  • “Bainitic ferrite” in the present invention has a substructure having a lath-like structure with a high dislocation density in the bainite structure and is free of carbides in the structure. It is clearly different, and is also different from the polygonal ferrite structure with a substructure with little or no dislocation density, or a quasi-polygonal ferrite structure with a substructure such as fine subgrains. (See the publication “Steel Bainite Photobook-1”). This structure exhibits an acicular shape when observed with an optical microscope or SEM, and is difficult to distinguish. Therefore, in order to determine a clear difference from a bainite structure or a polygonal / ferrite structure, the structure of the lower structure by TEM observation is determined. Identification is necessary.
  • bainitic ferrite having a uniform and fine structure, high ductility, high dislocation density and high strength as the parent phase.
  • the amount of the bainitic ferrite structure needs to be 50 to 85% (preferably 60 to 85%, more preferably 70 to 85%) in terms of area ratio with respect to the entire structure. is there. This is because the effect of the bainitic ferrite structure is effectively exhibited. Note that the amount of the bainitic ferrite structure is determined by the balance with ⁇ R, and it is recommended that the amount be controlled appropriately so that desired characteristics can be exhibited.
  • contains 3% or more of retained austenite ( ⁇ R ) in area ratio with respect to the entire structure> ⁇ R is useful for improving the total elongation, and in order to effectively exhibit such action, the area ratio is 3% or more (preferably 5% or more, more preferably 10% or more) with respect to the entire structure. It is necessary to exist.
  • Ferrite here is polygonal ferrite, but since ferrite is a soft phase, it does not contribute to high strength, but it is effective in increasing ductility, so it balances strength and elongation.
  • the area ratio is 5% or more (preferably 10% or more, more preferably 15% or more), and 40% or less (preferably 35% or less, more preferably 30% or less).
  • C ⁇ R ⁇ C concentration (C ⁇ R ) in residual austenite ( ⁇ R ): 0.6 to 1.2% by mass>
  • C ⁇ R is an index that affects the stability with which ⁇ R transforms into martensite during processing. If C ⁇ R is too low, ⁇ R is unstable, and after the application of stress, work-induced martensitic transformation occurs before plastic deformation, so that stretch formability cannot be obtained. On the other hand, if C ⁇ R is too high, ⁇ R becomes too stable, and even if processing is applied, work-induced martensite transformation does not occur, so that stretch formability cannot be obtained. In order to obtain sufficient stretch formability, C ⁇ R needs to be 0.6 to 1.2% by mass. Preferably, the content is 0.7 to 0.9% by mass.
  • gamma enhances the Mn concentration in the R gamma R is as obtained at room temperature ing.
  • Mn concentration in the gamma R is too low, gamma stability of R is low, can not be ensured gamma R content at room temperature.
  • the present inventors have introduced a Mn [gamma] R / Mn av as an index for evaluating the segregation degree of Mn into the gamma R, the value of the index is 1.2 or more.
  • Bainite including 0%>
  • Steel sheet of the present invention the tissue only but may consist (bainitic ferrite, martensite, mixed structure of ferrite and gamma R), within a range not to impair the effects of the present invention, as other heterologous tissue , May have bainite.
  • this structure can inevitably remain in the manufacturing process of the steel sheet of the present invention, the smaller the number, the better. It is recommended to control the area ratio to 5% or less, more preferably 3% or less with respect to the entire structure. Is done.
  • the white area is defined as “martensite + residual austenite ( ⁇ R )” by repeller corrosion of the steel sheet and observation with a transmission electron microscope (TEM; magnification: 1500 times). After identifying the tissue, the area ratio of each phase was measured by observation with an optical microscope (magnification 1000 times).
  • the area ratio of ferrite each test steel sheet was subjected to nital corrosion, and the black area was identified as ferrite by observation with a scanning electron microscope (SEM; magnification 2000 times) to obtain the area ratio.
  • Component composition of the steel sheet of the present invention C: 0.02 to 0.3% C is an essential element for obtaining a desired main structure (bainitic ferrite + martensite + ⁇ R ) while ensuring high strength, and 0. It is necessary to add 02% or more (preferably 0.05% or more, more preferably 0.10% or more). However, if it exceeds 0.3%, it is not suitable for welding.
  • Si 1.0 to 3.0% Si is an element that effectively suppresses the generation of carbides by decomposition of ⁇ R.
  • Si is useful as a solid solution strengthening element.
  • it is necessary to add 1.0% or more of Si.
  • it is 1.1% or more, More preferably, it is 1.2% or more.
  • the upper limit is made 3.0%.
  • it is 2.5% or less, More preferably, it is 2.0% or less.
  • Mn 1.8-3.0%
  • Mn also exerts an effect of promoting transformation and promoting the formation of bainitic ferrite + martensite structure. Furthermore, it is an element necessary for stabilizing ⁇ and obtaining a desired ⁇ R. It also contributes to improving hardenability. In order to exhibit such an action effectively, it is necessary to add 1.8% or more. Preferably it is 1.9% or more, more preferably 2.0% or more. However, if added over 3.0%, adverse effects such as slab cracking are observed. Preferably it is 2.8% or less, more preferably 2.5% or less.
  • P 0.1% or less (including 0%) P is inevitably present as an impurity element, but is an element that may be added to ensure desired ⁇ R. However, when it exceeds 0.1%, secondary workability deteriorates. More preferably, it is 0.03% or less.
  • S 0.01% or less (including 0%) S is also an element unavoidably present as an impurity element, forms sulfide inclusions such as MnS, and becomes a starting point of cracking and deteriorates workability. Preferably it is 0.01% or less, More preferably, it is 0.005% or less.
  • Al 0.001 to 0.1%
  • Al is an element which is added as a deoxidizer and effectively suppresses the generation of carbides by decomposition of ⁇ R in combination with Si. In order to exhibit such an action effectively, it is necessary to add 0.001% or more of Al. However, even if added excessively, the effect is saturated and is economically wasteful, so the upper limit is made 0.1%.
  • N 0.002 to 0.03%
  • N is an unavoidable element, but forms a precipitate when combined with carbonitride-forming elements such as Al and Nb, and contributes to strength improvement and microstructure refinement.
  • austenite grain coarsening the N content is too low, as a result, the aspect ratio for gamma R which elongated lath structure becomes mainly increases.
  • the N content is too high, casting becomes difficult with low carbon steel such as the material of the present invention, and therefore the production itself cannot be performed.
  • the steel of the present invention basically contains the above components, and the balance is substantially iron and unavoidable impurities, but the following allowable components can be added as long as the effects of the present invention are not impaired. .
  • Mo 0.01 to 3.0%
  • Cu 0.01 to 2.0%
  • Ni 0.01 to 2.0%
  • B One or more elements of 0.00001 to 0.01% These elements are useful as steel strengthening elements, and are effective elements for stabilizing ⁇ R and securing a predetermined amount.
  • Mo 0.01% or more (more preferably 0.02% or more)
  • Cu 0.01% or more
  • Ni 0.01% or more
  • B 0.00001% or more (more preferably 0.0002% or more) are recommended.
  • Cr is 3.0%, Mo is 1.0%, Cu and Ni are each 2.0%, and even if B is added over 0.01%, the above effect is saturated, economically. It is useless. More preferably, Cr is 2.0% or less, Mo is 0.8% or less, Cu is 1.0% or less, Ni is 1.0% or less, and B is 0.0030% or less.
  • Ca 0.0005 to 0.01%
  • Mg 0.0005 to 0.01%
  • REM One or more of 0.0001 to 0.01%
  • These elements are effective elements for controlling the form of sulfide in steel and improving workability.
  • examples of the REM (rare earth element) used in the present invention include Sc, Y, and lanthanoid.
  • Ca and Mg are each added to 0.0005% or more (more preferably 0.0001% or more), and REM is added to 0.0001% or more (more preferably 0.0002% or more). It is recommended to do.
  • Ca and Mg are added in an amount of 0.01% and REM is added in excess of 0.01%, the above effects are saturated, which is economically wasteful. More preferably, Ca and Mg are 0.003% or less, and REM is 0.006% or less.
  • the steel sheet of the present invention is processed within 3600 s (more preferably within 1200 s) after heating to an appropriate temperature between 100 and 400 ° C.
  • Elongation and deep drawability can be maximized by processing before the decomposition of ⁇ R occurs under temperature conditions where the stability of ⁇ R is optimal.
  • Parts processed by this warm processing method have a uniform strength after cooling within the cross section, and there are fewer low-strength parts than parts with a large strength distribution in the same cross section, thus increasing the part strength. be able to.
  • a steel sheet containing ⁇ R generally has a low yield ratio and a high work hardening rate in a low strain region. Therefore, in the region where the applied strain amount is small, the strength after applying the strain, in particular, the strain amount dependency of the yield stress becomes very large.
  • the amount of strain applied varies depending on the part, and there is a region where strain is hardly applied partially. For this reason, a large strength difference may occur between a region where machining is performed and a region where machining is not performed in the component, and a strength distribution may be formed in the component.
  • deformation and buckling occur due to the yielding of the low-strength region, so that the part having the lowest strength is rate-determined.
  • the reason why the yield stress is low in the steel containing ⁇ R is thought to be that when ⁇ R is introduced, martensite formed at the same time introduces mobile dislocations in the surrounding matrix during transformation. Therefore, if this dislocation movement is prevented even in a region where the amount of processing is small, the yield stress can be improved and the component strength can be increased.
  • it is effective to heat the material to eliminate the movable dislocations or to stop it by strain aging such as solute carbon, which can increase the yield stress.
  • the steel sheet of the present invention is produced by hot rolling a steel material satisfying the above component composition, followed by cold rolling, followed by heat treatment.
  • the hot rolling conditions are not particularly limited.
  • the hot rolling finishing temperature (rolling end temperature, FDT) may be 800 to 900 ° C.
  • the winding temperature may be 300 to 600 ° C.
  • Heat treatment conditions Regarding the heat treatment conditions, Mn is properly distributed to ferrite ( ⁇ ) and austenite ( ⁇ ) by soaking at two stages in the ferrite + austenite ( ⁇ + ⁇ ) two-phase region, and a certain amount is austenitized, and a predetermined cooling is performed. After rapid cooling at a speed and supercooling, the desired structure can be obtained by holding at the supercooling temperature for a predetermined time and performing austempering. It should be noted that plating or further alloying treatment may be performed without significantly degrading the desired structure and within the range not impairing the action of the present invention.
  • the cold-rolled material after the cold rolling is subjected to a time of 60 to 1800 s in the temperature range (first soaking temperature) of (0.9Ac1 + 0.1Ac3) to (0.7Ac1 + 0.3Ac3) (first (Soaking time) and then holding for a period of 100 s or less (second soaking time) in the temperature range (second soaking temperature) of (0.4Ac1 + 0.6Ac3) to (0.1Ac1 + 0.9Ac3), It is rapidly cooled to 350 to 500 ° C at an average cooling rate of 15 ° C / s or more, and is kept at this quenching stop temperature (supercooling temperature) for 100 to 1800 s. Cooling.
  • the time (second soaking time) is maintained for 100 s or less in the temperature range (second soaking temperature) of (0.4Ac1 + 0.6Ac3) to (0.1Ac1 + 0.9Ac3)> Thereafter, by holding for a short time in the temperature range on the high temperature side of the two-phase region, the distribution of Mn distributed in the temperature region on the low-temperature side of the two-phase region (segregation to the ⁇ side) is eliminated before the austenite
  • the ratio of ferrite and austenite it is possible to secure a high Mn ⁇ R / Mn av ratio and a fraction of bainitic ferrite produced by reverse transformation from austenite during cooling. .
  • test steels having the respective component compositions shown in Table 1 below were melted in vacuum to form a slab having a plate thickness of 30 mm, and then the slab was heated to 1200 ° C., rolling end temperature (FDT) 900 ° C., and winding temperature 650
  • the steel sheet was hot-rolled at 2.4 ° C. to a sheet thickness of 2.4 mm, then cold-rolled at a cold rolling rate of 50% to obtain a cold-rolled material having a sheet thickness of 1.2 mm, and subjected to the heat treatment shown in Table 2 below.
  • the cold-rolled material is heated to the first soaking temperature T1 ° C. and held at that temperature for the first soaking time t1 seconds, it is further heated to the second soaking temperature T2 ° C. Hold at the second soaking time t2 seconds, then cool to the cooling stop temperature (supercooling temperature) T3 at a cooling rate of CR1 ° C./s, hold at that temperature for t3 seconds, and then cool by air or stop cooling
  • air cooling was performed.
  • TS tensile strength
  • uEL uniform elongation
  • EL total elongation
  • TS was measured using a JIS No. 5 test piece by a tensile test.
  • the tensile test was conducted at a strain rate of 1 mm / s.
  • steel No. which is the steel sheet of the present invention. 1 to 3, 9 to 13, 15, 16, 20, 21, and 23 to 25 were all subjected to heat treatment under recommended heat treatment conditions using steel types satisfying the range of the component composition of the present invention.
  • a high-strength steel sheet excellent in uniform elongation (uEL) at room temperature and warm was obtained while securing a strength (TS) of 980 kPa or more at room temperature.
  • steel No. which is a comparative steel.
  • steel grades that do not satisfy the requirements of the component composition specified in the present invention were used, and although heat treatment was performed under the recommended heat treatment conditions, the requirements of the structure provision of the present invention were not satisfied, and the room temperature strength (TS), at least one of the properties of uniform elongation (uEL) at room temperature and warm is inferior.
  • TS room temperature strength
  • steel No. another comparative steel.
  • Nos. 17 to 19 and 22 used steel types satisfying the range of the component composition of the present invention, but did not satisfy the requirements of the structure of the present invention as a result of heat treatment under conditions other than the recommended heat treatment conditions.
  • at least one of the properties of room temperature strength (TS), room temperature and uniform elongation (uEL) is inferior.
  • Steel No. Nos. 25, 26, and 27 measure the temperature characteristics of the steel sheets produced by performing the heat treatment under the same heat treatment conditions using the same steel type in order to confirm the appropriate range of the warm working temperature. It is a thing. By comparing these data, steel no. Both Nos. 26 and 27 were processed at a temperature outside the recommended warm working temperature range, so that uniform elongation (uEL) at the desired warm could not be obtained. No. 25 was processed at a temperature within the recommended warm working temperature range, and it can be seen that uniform elongation (uEL) at a desired warm temperature can be obtained.
  • the high-strength steel material of the present invention is suitable as a thin steel material for automobile frame parts.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Abstract

  本発明の高強度鋼材は、質量%で、C:0.02~0.3%、Si:1~3%、Mn:1.8~3%、P:0.1%以下、S:0.01%以下、Al:0.001~0.1%、N:0.002~0.03%を含み、残部が鉄および不純物からなる成分組成を有し、全組織に対する面積率で、ベイニティック・フェライト:50~85%、残留γ:3%以上、マルテンサイト+前記残留γ:10~45%、フェライト:5~40%の各相を含む組織を有し、EPMAでライン分析して得られたMn濃度分布に基づく、前記残留オーステナイト中のMn濃度MnγRと全組織中の平均Mn濃度Mnavとの比MnγR/Mnavが1.2以上である。これにより、980MPa級以上の強度を確保しつつ深絞り性に優れる。

Description

室温および温間での深絞り性に優れた高強度鋼板およびその温間加工方法
 本発明は、室温および温間での深絞り性に優れた高強度鋼板およびその温間加工方法に関する。なお、本発明の高強度鋼板としては、冷延鋼板、溶融亜鉛めっき鋼板、および、合金化溶融亜鉛めっき鋼板が含まれる。
 自動車用骨格部品に供される薄鋼板は衝突安全性と燃費改善を実現するため、高強度化が求められている。そのため、鋼板強度を980MPa級以上に高強度化しつつも、プレス成形性を確保することが要求されている。980MPa級以上の高強度鋼板において、高強度化と成形性確保を両立させるにはTRIP効果を活用した鋼を用いることが有効であることが知られている(例えば、特許文献1参照)。
 上記特許文献1には、ベイナイトまたはベイニティック・フェライトを主相とし、残留オーステナイト(γ)を面積率で3%以上含有する高強度鋼板が開示されている。しかしながら、この高強度鋼板は、室温での引張強度980MPa以上で全伸びが20%に達しておらず、さらなる機械的特性(以下、単に「特性」ともいう。)の改善が求められる。
 一方、冷間での成形ではTRIP鋼板でも成形性に限界があることから、一層の伸び改善のため、100~400℃で加工することでTRIP効果をさらに有効に発現させて伸びを高める技術が提案されている(非特許文献1、特許文献2参照)。
 上記特許文献2の表2に示すように、ベイニティック・フェライト主体の組織に炭素濃度1質量%以上のγRを存在させることで、200℃付近での伸び(全伸び)を1200MPa級で23%まで改善できている。しかしながら、プレス成形を考慮した場合、特に張出しや深絞り成形が主体の成形の場合は局部変形領域を利用するとひずみが局在化して破断につながるため、均一変形領域が活用されることが多い。そのため、単に、局部伸びをも含む全伸びを改善するだけでは不十分であり、均一伸びを向上させることが求められる。
 均一伸びについては、特許文献3には、YおよびREMを添加することで均一伸びが向上することが開示されているが、その表3に示すように、引張強度(TS)が875MPaまでの鋼板にしか適用できていない。また、特許文献4には、ベイニティック・フェライト-ポリゴナル・フェライト-残留オーステナイトの混合組織で強度と均一伸びのバランスが向上することが開示されているが、その表2に示すように、これもTSが859MPaまでの鋼板にしか適用できていない。
 そのため、980MPa級以上の鋼板においても良好な均一伸びを実現できる技術の開発が要請されていた。
日本国特開2003-193193号公報 日本国特開2004-190050号公報 日本国特開2004-244665号公報 日本国特開2006-274418号公報
杉本公一,宋星武,坂口淳也,長坂明彦,鹿島高弘,「超高強度低合金TRIP型ベイニティックフェライト鋼板の温間成形性」,鉄と鋼,2005年,第91巻、第2号,p.34-40
 本発明は上記事情に着目してなされたものであり、その目的は、980MPa級以上の室温強度を確保しつつ室温および温間での均一伸びをさらに向上させることにより、室温強度と室温および温間での深絞り性を兼備する高強度鋼板およびその温間加工方法を提供することにある。
 請求項1に記載の発明は、
 質量%で(以下、化学成分について同じ。)、
C :0.02~0.3%、
Si:1.0~3.0%、
Mn:1.8~3.0%、
P :0.1%以下(0%を含む)、
S :0.01%以下(0%を含む)、
Al:0.001~0.1%、
N :0.002~0.03%
を含み、残部が鉄および不純物からなる成分組成を有し、
全組織に対する面積率で(以下、組織について同じ。)、
ベイニティック・フェライト:50~85%、
残留オーステナイト:3%以上、
マルテンサイト+前記残留オーステナイト:10~45%、
フェライト:5~40%
の各相を含む組織を有し、
 前記残留オーステナイト中のC濃度(CγR)が0.6~1.2質量%であり、
EPMAでライン分析して得られたMn濃度分布に基づく、前記残留オーステナイト中のMn濃度MnγRと全組織中の平均Mn濃度Mnavとの比MnγR/Mnavが1.2以上であることを特徴とする室温および温間での深絞り性に優れた高強度鋼板である。 
 請求項2に記載の発明は、
 成分組成が、さらに、
Cr:0.01~3.0%
Mo:0.01~1.0%、
Cu:0.01~2.0%、
Ni:0.01~2.0%、
B :0.00001~0.01%の1種または2種以上
を含むものである請求項1に記載の室温および温間での深絞り性に優れた高強度鋼板である。
 請求項3に記載の発明は、
 成分組成が、さらに、
Ca :0.0005~0.01%、
Mg :0.0005~0.01%、
REM:0.0001~0.01%の1種または2種以上
を含むものである請求項1または2に記載の室温および温間での深絞り性に優れた高強度鋼板である。
 請求項4に記載の発明は、
 請求項1~3のいずれか1項に記載の高強度鋼板を、200~400℃に加熱後、3600s以内に加工することを特徴とする高強度鋼板の温間加工方法である。
 本発明によれば、全組織に対する面積率で、ベイニティック・フェライト:50~85%、残留オーステナイト:3%以上、マルテンサイト+前記残留オーステナイト:10~45%、フェライト:5~40%を含む組織を有し、前記残留オーステナイト中のC濃度(CγR)が0.6~1.2質量%であり、EPMAでライン分析して得られたMn濃度分布に基づく、前記残留オーステナイト中のMn濃度MnγRと全組織中の平均Mn濃度Mnavとの比MnγR/Mnavを1.2以上とすることで、980MPa級以上の室温強度を確保しつつ、室温および温間での均一伸びがさらに向上し、室温強度と室温および温間での深絞り性を兼備する高強度鋼板、およびその温間加工方法を提供できるようになった。
 上述したように、本発明者らは、上記従来技術と同様の、転位密度の高い下部組織(マトリックス)を有するベイニティック・フェライトと残留オーステナイト(γ)を含有するTRIP鋼板に着目し、室温強度を確保しつつ、均一伸びを改善することで深絞り性を一層向上させるべく、さらに検討を重ねてきた。
 本発明者らは、均一伸びの向上には転位密度が低く、加工硬化率の高いフェライトの利用が有効と考え、鋼板組織中にフェライトを適量導入することとした。
 また、均一伸びの向上に強く寄与するγRを多量につくり込むために、γRのMn濃度を高めることが有効であると考えた。
 ただし、γR中のMn濃度を高めるために、単に鋼への添加Mn量を増加すると、Mnの固溶強化作用によりフェライトの延性が低下してむしろ伸びが劣化するとともに、熱延板の強度が高くなり、冷間圧延が難しくなる。このため、鋼への添加Mn量を増加させることなく、γR中のMn濃度を高める必要がある。
 ここで、フェライト+オーステナイト(α+γ)2相域加熱を行うと、オーステナイト(γ)側にMnが濃化し、フェライト(α)からオーステナイト(γ)への変態量に影響することが知られている。すなわち、2相域加熱温度が低いと、フェライト分率が高くなるとともに、γR中のMn濃度も高くなるため、安定なγRは確保できるものの、強度は確保できなくなる。一方、2相域加熱温度が高いと、フェライト分率が低くなるとともに、γR中のMn濃度も低くなるため、強度は確保できるものの、安定なγRは確保できなくなる。
 従来技術では、フェライト分率とγR中のMn濃度がバランスさせられていなかったため、強度を確保しつつ、安定なγRを確保するのが困難であった。
 そこで、本発明では、適量のフェライトを導入するとともに、添加Mn量を制限しつつγR中のMn濃度を高めることで、マトリックス(母相)の延性向上とγRによるTRIP効果の最大化による均一伸びの向上の両立を図り、さらに部分的にマルテンサイトを導入することで、強度向上を実現することとした。
 具体的には、高強度化と高延性化の両立を実現するために、面積率で5~40%のフェライトを導入することで、マトリックス(母相)の強度を低くし、残留オーステナイト(γ)の面積率を3%以上、該γ中のC濃度(CγR)を0.6~1.2質量%とすることで、TRIP現象(ひずみ誘起変態)を促進して加工硬化を促し強度向上を図り、さらに、EPMAでライン分析して得られたMn濃度分布に基づく、前記γ中のMn濃度MnγRと全組織中の平均Mn濃度Mnavとの比MnγR/Mnavを1.2以上とすることで、γR中のMn濃度を高めて安定なγRを確保することにより、マトリックス(母相)の延性向上とγRによるTRIP効果の最大化による均一伸びの向上の両立を図ることによって、室温強度と深絞り性を並存しうることを見出した。
 そして、上記知見に基づいてさらに検討を進め、本発明を完成するに至った。
 以下、まず本発明鋼板を特徴づける組織について説明する。
〔本発明鋼板の組織〕
 上述したとおり、本発明鋼板は、上記従来技術と同じくTRIP鋼の組織をベースとするものであるが、特に、フェライトを所定量含有するとともに、所定の炭素濃度のγを所定量含有し、さらに、Mnの濃度分布が制御されている点で、上記従来技術と相違している。
<ベイニティック・フェライト:50~85%>
 本発明における「ベイニティック・フェライト」とは、ベイナイト組織が転位密度の高いラス状組織を持った下部組織を有しており、組織内に炭化物を有していない点で、ベイナイト組織とは明らかに異なり、また、転位密度がないかあるいは極めて少ない下部組織を有するポリゴナル・フェライト組織、あるいは細かいサブグレイン等の下部組織を持った準ポリゴナル・フェライト組織とも異なっている(日本鉄鋼協会基礎研究会 発行「鋼のベイナイト写真集-1」参照)。この組織は、光学顕微鏡観察やSEM観察するとアシキュラー状を呈しており、区別が困難であるため、ベイナイト組織やポリゴナル・フェライト組織等との明確な違いを判定するには、TEM観察による下部組織の同定が必要である。
 このように本発明鋼板の組織は、均一微細で延性に富み、かつ、転位密度が高く強度が高いベイニティック・フェライトを母相とすることで強度と成形性のバランスを高めることができる。
 本発明鋼板では、上記ベイニティック・フェライト組織の量は、全組織に対して面積率で50~85%(好ましくは60~85%、より好ましくは70~85%)であることが必要である。これにより、上記ベイニティック・フェライト組織による効果が有効に発揮されるからである。なお、上記ベイニティック・フェライト組織の量は、γRとのバランスによって定められるものであり、所望の特性を発揮し得るよう、適切に制御することが推奨される。
<残留オーステナイト(γ)を全組織に対して面積率で3%以上含有>
 γRは全伸びの向上に有用であり、このような作用を有効に発揮させるためには、全組織に対して面積率で3%以上(好ましくは5%以上、より好ましくは10%以上)存在することが必要である。
<マルテンサイト+上記残留オーステナイト(γ):10~45%>
 強度確保のため、組織中にマルテンサイトを一部導入するが、マルテンサイトの量が多くなりすぎると成形性が確保できなくなるので、全組織に対してマルテンサイト+γの合計面積率で10%以上(好ましくは12%以上、より好ましくは16%以上)45%以下に制限した。
<フェライト:5~40%>
 ここでいうフェライトとはポリゴナル・フェライトのことであるが、フェライトは軟質相であるため、高強度化には寄与しないが、延性を高めるのには有効であることから、強度と伸びのバランスを高めるため、強度が保証できる面積率5%以上(好ましくは10%以上、より好ましくは15%以上)40%以下(好ましくは35%以下、より好ましくは30%以下)の範囲で導入する。
<残留オーステナイト(γ)中のC濃度(CγR):0.6~1.2質量%>
 CγRは、加工時にγRがマルテンサイトに変態する安定度に影響する指標である。CγRが低すぎると、γRが不安定なため、応力付与後、塑性変形する前に加工誘起マルテンサイト変態が起るため、張り出し成形性が得られなくなる。一方、CγRが高すぎると、γRが安定になりすぎて、加工を加えても加工誘起マルテンサイト変態が起らないため、やはり張り出し成形性が得られなくなる。十分な張り出し成形性を得るためには、CγRは0.6~1.2質量%とする必要がある。好ましくは0.7~0.9質量%である。
<EPMAでライン分析して得られたMn濃度分布に基づく、前記γ中のMn濃度MnγRと全組織中の平均Mn濃度Mnavとの比MnγR/Mnav:1.2以上>
 鋼に添加されたMnを2相域加熱によりフェライトとオーステナイトの間で分配することで、マトリックスに高い延性を付与したまま、γ中のMn濃度を高めてγが室温で得られるようにしている。γ中のMn濃度が低すぎると、γの安定性が低く、室温でγ量を確保できない。また、フェライト中のMn濃度が高すぎると、マトリックスの変形能が低下し、伸びが劣化する。このため、本発明者らは、γ中へのMnの偏析度合いを評価する指標としてMnγR/Mnavを導入し、この指標の値は1.2以上とした。
<その他:ベイナイト(0%を含む)>
 本発明の鋼板は、上記組織のみ(ベイニティック・フェライト、マルテンサイト、フェライトならびにγRの混合組織)からなっていてもよいが、本発明の作用を損なわない範囲で、他の異種組織として、ベイナイトを有していてもよい。この組織は本発明鋼板の製造過程で必然的に残存し得るものであるが、少なければ少ない程よく、全組織に対して面積率で5%以下、より好ましくは3%以下に制御することが推奨される。
〔各相の面積率、γ中のC濃度(CγR)、全組織中の平均Mn濃度、および、γ中のMn濃度の各測定方法〕
 ここで、各相の面積率、γ中のC濃度(CγR)、全組織中の平均Mn濃度およびγ中のMn濃度の各測定方法について説明する。
 鋼板中組織の各相の面積率については、鋼板をレペラー腐食し、透過型電子顕微鏡(TEM;倍率1500倍)観察により、例えば白い領域を「マルテンサイト+残留オーステナイト(γ)」と定義して組織を同定した後、光学顕微鏡観察(倍率1000倍)により各相の面積率を測定した。
 なお、γRの面積率およびγR中のC濃度(CγR)については、各供試鋼板の1/4の厚さまで研削した後、化学研磨してからX線回折法により測定した(ISIJ Int.Vol.33,(1933),No.7,p.776)。また、フェライトの面積率については、各供試鋼板をナイタール腐食し、走査型電子顕微鏡(SEM;倍率2000倍)観察により、黒い領域をフェライトと同定して面積率を求めた。
 全組織中の平均Mn濃度およびγ中のMn濃度については、EPMAにより0.2μmステップで200μm以上の領域をライン分析し、全測定点のMn濃度の平均値を全組織中の平均Mn濃度と定義し、全測定点のMn濃度のうち、Mn濃度の高い側から5%分のMn濃度の平均値をγ中のMn濃度と定義した。
 次に、本発明鋼板を構成する成分組成について説明する。以下、化学成分の単位はすべて質量%である。
〔本発明鋼板の成分組成〕
C:0.02~0.3% 
 Cは、高強度を確保しつつ、所望の主要組織(ベイニティック・フェライト+マルテンサイト+γR)を得るために必須の元素であり、このような作用を有効に発揮させるためには0.02%以上(好ましくは0.05%以上、より好ましくは0.10%以上)添加する必要がある。ただし、0.3%超では溶接に適さない。
Si:1.0~3.0% 
 Siは、γRが分解して炭化物が生成するのを有効に抑制する元素である。特にSiは、固溶強化元素としても有用である。このような作用を有効に発揮させるためには、Siを1.0%以上添加する必要がある。好ましくは1.1%以上、より好ましくは1.2%以上である。ただし、Siを3.0%を超えて添加すると、ベイニティック・フェライト+マルテンサイト組織の生成が阻害される他、熱間変形抵抗が高くなって溶接部の脆化を起こしやすくなり、さらには鋼板の表面性状にも悪影響を及ぼすので、その上限を3.0%とする。好ましくは2.5%以下、より好ましくは2.0%以下である。
Mn:1.8~3.0%
 Mnは、固溶強化元素として有効に作用する他、変態を促進してベイニティック・フェライト+マルテンサイト組織の生成を促進する作用も発揮する。さらにはγを安定化し、所望のγRを得るために必要な元素である。また、焼入れ性の向上にも寄与する。このような作用を有効に発揮させるためには、1.8%以上添加することが必要である。好ましくは1.9%以上、より好ましくは2.0%以上である。ただし、3.0%を超えて添加すると、鋳片割れが生じる等の悪影響が見られる。好ましくは2.8%以下、より好ましくは2.5%以下である。
P :0.1%以下(0%を含む) 
 Pは不純物元素として不可避的に存在するが、所望のγRを確保するために添加してもよい元素である。ただし、0.1%を超えて添加すると二次加工性が劣化する。より好ましくは0.03%以下である。
S :0.01%以下(0%を含む) 
 Sも不純物元素として不可避的に存在し、MnS等の硫化物系介在物を形成し、割れの起点となって加工性を劣化させる元素である。好ましくは0.01%以下、より好ましくは0.005%以下である。
Al:0.001~0.1%
 Alは、脱酸剤として添加されるとともに、上記Siと相俟って、γRが分解して炭化物が生成するのを有効に抑制する元素である。このような作用を有効に発揮させるためには、Alを0.001%以上添加する必要がある。ただし、過剰に添加しても効果が飽和し経済的に無駄であるので、その上限を0.1%とする。
N:0.002~0.03%
 Nは、不可避的に存在する元素であるが、AlやNbなどの炭窒化物形成元素と結びつくことで析出物を形成し、強度向上や組織の微細化に寄与する。N含有量が少なすぎるとオーステナイト粒が粗大化し、その結果、伸長したラス状組織が主体になるためγのアスペクト比が大きくなる。一方、N含有量が多すぎると、本発明の材料のような低炭素鋼では鋳造が困難になるため、製造自体ができなくなる。
 本発明の鋼は上記成分を基本的に含有し、残部が実質的に鉄および不可避的不純物であるが、その他、本発明の作用を損なわない範囲で、以下の許容成分を添加することができる。
Cr:0.01~3.0%
Mo:0.01~1.0%、
Cu:0.01~2.0%、
Ni:0.01~2.0%、
B :0.00001~0.01%の1種または2種以上
 これらの元素は、鋼の強化元素として有用であるとともに、γRの安定化や所定量の確保に有効な元素である。このような作用を有効に発揮させるためには、Mo:0.01%以上(より好ましくは0.02%以上)、Cu:0.01%以上(より好ましくは0.1%以上)、Ni:0.01%以上(より好ましくは0.1%以上)、B:0.00001%以上(より好ましくは0.0002%以上)を、それぞれ添加することが推奨される。
 ただし、Crは3.0%、Moは1.0%、CuおよびNiはそれぞれ2.0%、Bは0.01%を超えて添加しても上記効果が飽和してしまい、経済的に無駄である。より好ましくはCr:2.0%以下、Mo:0.8%以下、Cu:1.0%以下、Ni:1.0%以下、B:0.0030%以下である。
Ca :0.0005~0.01%、
Mg :0.0005~0.01%、
REM:0.0001~0.01%の1種または2種以上
 これらの元素は、鋼中硫化物の形態を制御し、加工性向上に有効な元素である。ここで、本発明に用いられるREM(希土類元素)としては、Sc、Y、ランタノイド等が挙げられる。上記作用を有効に発揮させるためには、CaおよびMgはそれぞれ0.0005%以上(より好ましくは0.0001%以上)、REMは0.0001%以上(より好ましくは0.0002%以上)添加することが推奨される。ただし、CaおよびMgはそれぞれ0.01%、REMは0.01%を超えて添加しても上記効果が飽和してしまい、経済的に無駄である。より好ましくはCaおよびMgは0.003%以下、REMは0.006%以下である。
〔温間加工方法〕
 上記本発明鋼板は、100~400℃の間の適正な温度に加熱した後、3600s以内(より好ましくは1200s以内)に加工するのが特に推奨される。
 γRの安定度が最適になる温度条件下で、γRの分解が起る前に加工することにより、伸びおよび深絞り性を最大化させることができる。
 この温間加工方法で加工された部品は、その断面内で冷却後の強度が均一化され、同一断面内における強度分布が大きい部品に比べて低強度の部分が少なくなるので、部品強度を高めることができる。
 すなわち、γRを含む鋼板は一般に低降伏比であり、かつ、低ひずみ域での加工硬化率が高い。そのため、付与するひずみ量が小さい領域での、ひずみ付与後の強度、特に降伏応力のひずみ量依存性が非常に大きくなる。プレス加工により部品を成形する場合、部位により加わるひずみ量が異なり、部分的にはほとんどひずみが加わらないような領域も存在する。このため、部品内において加工の加わる領域と加工の加わらない領域とで大きな強度差が生じ、部品内に強度分布が形成されることがある。このような強度分布が存在する場合、強度の低い領域が降伏することで変形や座屈が起こるため、部品強度としては最も強度の低い部分が律速することとなる。
 γRを含む鋼で降伏応力が低い原因は、γRを導入する際に、同時に形成されるマルテンサイトが、変態時に周囲の母相中に可動転位を導入するためと考えられる。したがって、加工量の少ない領域でもこの転位の移動を防止すれば、降伏応力が向上でき、部品強度を高められる。可動転位の移動を抑制するには、素材を加熱して可動転位をなくしたり、固溶炭素などのひずみ時効で止めたりすることが有効であり、そうすることで降伏応力を高めることができる。
 そのため、γRを含む鋼板を100~400℃の間の適正温度に加熱してプレス成形(温間加工)すると、ひずみの小さい部分でも降伏強度が高くなって、部品中の強度分布が小さくなることで部品強度を向上させることができることとなる。
 次に、上記本発明鋼板を得るための好ましい製造方法を以下に説明する。
〔本発明鋼板の好ましい製造方法〕
 本発明鋼板は、上記成分組成を満足する鋼材を、熱間圧延し、ついで冷間圧延した後、熱処理を行って製造する。
[熱間圧延条件]
 熱間圧延条件は特に限定されるものではないが、例えば熱間圧延の仕上げ温度(圧延終了温度、FDT)を800~900℃、巻取り温度を300~600℃としてもよい。
[冷間圧延条件]
 また、冷間圧延の際の冷延率は20~70%としつつ、以下の熱処理条件にて熱処理を施す。
[熱処理条件]
 熱処理条件については、フェライト+オーステナイト(α+γ)2相域で2段階の温度レベルで均熱してMnをフェライト(α)とオーステナイト(γ)に適正に分配するとともに一定量をオーステナイト化し、所定の冷却速度で急冷して過冷した後、その過冷温度で所定時間保持してオーステンパ処理することで所望の組織を得ることができる。なお、所望の組織を著しく分解させることなく、本発明の作用を損なわない範囲で、めっき、さらには合金化処理してもよい。
 具体的には、上記冷間圧延後の冷延材を、(0.9Ac1+0.1Ac3)~(0.7Ac1+0.3Ac3)の温度域(第1均熱温度)で60~1800sの時間(第1均熱時間)保持した後、さらに(0.4Ac1+0.6Ac3)~(0.1Ac1+0.9Ac3)の温度域(第2均熱温度)で100s以下の時間(第2均熱時間)保持した後、15℃/s以上の平均冷却速度で350~500℃の温度域まで急冷して過冷し、この急冷停止温度(過冷温度)で100~1800sの時間保持してオーステンパ処理した後、常温まで冷却する。
<(0.9Ac1+0.1Ac3)~(0.7Ac1+0.3Ac3)の温度域(第1均熱温度)で60~1800sの時間(第1均熱時間)保持>
 2相域の低温側の温度域で長時間保持することで、Mnの分配(γ側への偏析)を促進させて高MnγR/Mnav比を実現するためである。
<さらに、(0.4Ac1+0.6Ac3)~(0.1Ac1+0.9Ac3)の温度域(第2均熱温度)で100s以下の時間(第2均熱時間)保持>
 その後、2相域の高温側の温度域で短時間保持することで、上記2相域の低温側の温度域で分配されたMnの分配(γ側への偏析)が解消される前にオーステナイト化を進めてフェライトとオーステナイトの分率を適正化することにより、高MnγR/Mnav比と、冷却時にオーステナイトからの逆変態で生成するベイニティック・フェライトの分率を確保することができる。
<15℃/s以上の平均冷却速度で、350~500℃の温度域まで急冷して過冷し、この急冷停止温度(過冷温度)で100~1800sの時間保持>
 オーステンパ処理することで所望の組織を得るためである。
 本発明の効果を確証するため、成分組成および熱処理条件を変化させた場合における高強度鋼板の室温および温間における機械的特性の影響について調査した。下記表1に示す各成分組成からなる供試鋼を真空溶製し、板厚30mmのスラブとした後、当該スラブを1200℃に加熱し、圧延終了温度(FDT)900℃、巻取り温度650℃で板厚2.4mmに熱間圧延し、その後、冷延率50%で冷間圧延して板厚1.2mmの冷延材とし、下記表2に示す熱処理を施した。具体的には、上記冷延材を、第1均熱温度T1℃まで加熱してその温度で第1均熱時間t1秒保持した後、さらに第2均熱温度T2℃まで加熱してその温度で第2均熱時間t2秒保持し、その後CR1℃/sの冷却速度で冷却停止温度(過冷温度)T3まで冷却し、その温度でt3秒保持した後、空冷するか、もしくは、冷却停止温度(過冷温度)T3℃でt3秒保持した後、さらに保持温度T4℃でt4秒保持したのち、空冷した。
 このようにして得られた鋼板について、上記[発明を実施するための形態]の項で説明した測定方法により、各相の面積率、γ中のC濃度(CγR)、全組織中の平均Mn濃度およびγ中のMn濃度を測定した。
 また、上記鋼板について、室温および温間での機械的特性を評価するため、下記要領で、室温および温間にて引張強度(TS)、均一伸び(uEL)、および、全伸び(EL)を、それぞれ測定した。
 TSは、引張試験によりJIS5号試験片を用いて測定した。なお、引張試験はひずみ速度1mm/sで行った。
 これらの結果を表3に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 これらの表に示すように、本発明鋼板である、鋼No.1~3、9~13、15、16、20、21、23~25はいずれも、本発明の成分組成の範囲を満足する鋼種を用い、推奨の熱処理条件で熱処理を施した結果、本発明の組織規定の要件を充足しており、室温での980kPa以上の強度(TS)を確保しつつ、室温および温間での均一伸び(uEL)に優れた高強度鋼板が得られた。
 これに対し、比較鋼である、鋼No.4~8はいずれも、本発明で規定する成分組成の要件を満足しない鋼種を用いたため、推奨の熱処理条件で熱処理を施しているものの、本発明の組織規定の要件を充足せず、室温強度(TS)、室温および温間での均一伸び(uEL)の少なくともいずれかの特性が劣っている。
 また、別の比較鋼である、鋼No.17~19、22はいずれも、本発明の成分組成の範囲を満足する鋼種を用いたものの、推奨の熱処理条件を外れた条件で熱処理を施した結果、本発明の組織の要件を充足せず、やはり、室温強度(TS)、室温および温間での均一伸び(uEL)の少なくともいずれかの特性が劣っている。
 また、鋼No.25、26、27は、温間加工温度の適正範囲を確認するために、同じ鋼種を用いて同じ熱処理条件で熱処理を施して作製した鋼板を、加熱温度を変えて温間特性の測定を行ったものである。これらのデータを比較することにより、鋼No.26、27はともに、推奨の温間加工温度範囲を外れた温度で加工したため、所望の温間での均一伸び(uEL)が得られないのに対し、鋼No.25は、推奨の温間加工温度範囲内の温度で加工したため、所望の温間での均一伸び(uEL)が得られることがわかる。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2011年3月2日出願の日本特許出願(特願2011-045163)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明の高強度鋼材は、自動車用骨格部品の薄鋼材として好適である。

Claims (4)

  1.  質量%で(以下、化学成分について同じ。)、
    C :0.02~0.3%、
    Si:1.0~3.0%、
    Mn:1.8~3.0%、
    P :0.1%以下(0%を含む)、
    S :0.01%以下(0%を含む)、
    Al:0.001~0.1%、
    N :0.002~0.03%
    を含み、残部が鉄および不純物からなる成分組成を有し、
    全組織に対する面積率で(以下、組織について同じ。)、
    ベイニティック・フェライト:50~85%、
    残留オーステナイト:3%以上、
    マルテンサイト+前記残留オーステナイト:10~45%、
    フェライト:5~40%
    の各相を含む組織を有し、
     前記残留オーステナイト中のC濃度(CγR)が0.6~1.2質量%であり、
    EPMAでライン分析して得られたMn濃度分布に基づく、前記残留オーステナイト中のMn濃度MnγRと全組織中の平均Mn濃度Mnavとの比MnγR/Mnavが1.2以上であることを特徴とする室温および温間での深絞り性に優れた高強度鋼板。
  2.  成分組成が、さらに、
    Cr:0.01~3.0%
    Mo:0.01~1.0%、
    Cu:0.01~2.0%、
    Ni:0.01~2.0%、
    B :0.00001~0.01%の1種または2種以上
    を含むものである請求項1に記載の室温および温間での深絞り性に優れた高強度鋼板。
  3.  成分組成が、さらに、
    Ca :0.0005~0.01%、
    Mg :0.0005~0.01%、
    REM:0.0001~0.01%の1種または2種以上
    を含むものである請求項1または2に記載の室温および温間での深絞り性に優れた高強度鋼板。
  4.  請求項1~3のいずれか1項に記載の高強度鋼板を、100~400℃に加熱後、3600s以内に加工することを特徴とする高強度鋼板の温間加工方法。
PCT/JP2012/054838 2011-03-02 2012-02-27 室温および温間での深絞り性に優れた高強度鋼板およびその温間加工方法 WO2012118040A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020137022772A KR101534427B1 (ko) 2011-03-02 2012-02-27 실온 및 온간에서의 딥드로잉성이 우수한 고강도 강판 및 그 온간 가공 방법
US14/001,819 US9194032B2 (en) 2011-03-02 2012-02-27 High-strength steel sheet with excellent deep drawability at room temperature and warm temperature, and method for warm working same
CN201280010977.0A CN103403210B (zh) 2011-03-02 2012-02-27 室温和温态下的深拉性优异的高强度钢板及其温加工方法
GB1315448.9A GB2502026B (en) 2011-03-02 2012-02-27 High-strength steel sheet with excellent deep drawability at room temperature and warm temperature, and method for warm working same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011045163A JP5667472B2 (ja) 2011-03-02 2011-03-02 室温および温間での深絞り性に優れた高強度鋼板およびその温間加工方法
JP2011-045163 2011-03-02

Publications (1)

Publication Number Publication Date
WO2012118040A1 true WO2012118040A1 (ja) 2012-09-07

Family

ID=46757972

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/054838 WO2012118040A1 (ja) 2011-03-02 2012-02-27 室温および温間での深絞り性に優れた高強度鋼板およびその温間加工方法

Country Status (6)

Country Link
US (1) US9194032B2 (ja)
JP (1) JP5667472B2 (ja)
KR (1) KR101534427B1 (ja)
CN (1) CN103403210B (ja)
GB (1) GB2502026B (ja)
WO (1) WO2012118040A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016021197A1 (ja) * 2014-08-07 2016-02-11 Jfeスチール株式会社 高強度鋼板およびその製造方法、ならびに高強度亜鉛めっき鋼板の製造方法
WO2016021194A1 (ja) * 2014-08-07 2016-02-11 Jfeスチール株式会社 高強度鋼板およびその製造方法、ならびに高強度亜鉛めっき鋼板の製造方法
WO2016021193A1 (ja) * 2014-08-07 2016-02-11 Jfeスチール株式会社 高強度鋼板およびその製造方法、ならびに高強度亜鉛めっき鋼板の製造方法
WO2016021198A1 (ja) * 2014-08-07 2016-02-11 Jfeスチール株式会社 高強度鋼板およびその製造方法、ならびに高強度亜鉛めっき鋼板の製造方法
JP2016180140A (ja) * 2015-03-23 2016-10-13 株式会社神戸製鋼所 成形性に優れた高強度鋼板
WO2022079988A1 (ja) * 2020-10-13 2022-04-21 Jfeスチール株式会社 高強度冷延鋼板,高強度めっき鋼板,高強度冷延鋼板の製造方法,及び高強度めっき鋼板の製造方法
WO2022079987A1 (ja) * 2020-10-13 2022-04-21 Jfeスチール株式会社 高強度冷延鋼板,高強度めっき鋼板,高強度冷延鋼板の製造方法,高強度めっき鋼板の製造方法,及び自動車部品

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105734404B (zh) 2011-07-21 2018-01-02 株式会社神户制钢所 热压成形钢构件的制造方法
JP5636347B2 (ja) 2011-08-17 2014-12-03 株式会社神戸製鋼所 室温および温間での成形性に優れた高強度鋼板およびその温間成形方法
JP5860308B2 (ja) 2012-02-29 2016-02-16 株式会社神戸製鋼所 温間成形性に優れた高強度鋼板およびその製造方法
JP5860354B2 (ja) 2012-07-12 2016-02-16 株式会社神戸製鋼所 降伏強度と成形性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
JP6282576B2 (ja) * 2014-11-21 2018-02-21 株式会社神戸製鋼所 高強度高延性鋼板
WO2016129550A1 (ja) * 2015-02-13 2016-08-18 株式会社神戸製鋼所 切断端部での耐遅れ破壊特性に優れた超高強度鋼板
JP2016148098A (ja) * 2015-02-13 2016-08-18 株式会社神戸製鋼所 降伏比と加工性に優れた超高強度鋼板
JP2016153524A (ja) 2015-02-13 2016-08-25 株式会社神戸製鋼所 切断端部での耐遅れ破壊特性に優れた超高強度鋼板
JP6932323B2 (ja) 2015-05-20 2021-09-08 クリーブランド−クリフス スティール プロパティーズ、インク. 低合金第3世代先進高張力鋼
US10704117B2 (en) 2015-07-29 2020-07-07 Jfe Steel Corporation Cold-rolled steel sheet, coated steel sheet, method for manufacturing cold-rolled steel sheet, and method for manufacturing coated steel sheet
JP6601253B2 (ja) * 2016-02-18 2019-11-06 日本製鉄株式会社 高強度鋼板
WO2019092483A1 (en) 2017-11-10 2019-05-16 Arcelormittal Cold rolled and heat treated steel sheet and a method of manufacturing thereof
JP2019002078A (ja) * 2018-09-10 2019-01-10 株式会社神戸製鋼所 降伏比と加工性に優れた超高強度鋼板
WO2020138343A1 (ja) * 2018-12-27 2020-07-02 日本製鉄株式会社 鋼板
MX2021010394A (es) * 2019-02-28 2021-10-01 Jfe Steel Corp Lamina de acero y miembro, y metodos para fabricar los mismos.
KR102524924B1 (ko) * 2019-03-29 2023-04-25 닛폰세이테츠 가부시키가이샤 강판
JP7191796B2 (ja) * 2019-09-17 2022-12-19 株式会社神戸製鋼所 高強度鋼板およびその製造方法
CN113151742B (zh) * 2021-04-15 2022-04-01 马鞍山钢铁股份有限公司 一种具有耐蚀高强高韧性合金工具钢及其热处理方法和生产方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005220440A (ja) * 2004-01-09 2005-08-18 Kobe Steel Ltd 耐水素脆化特性に優れた超高強度鋼板及びその製造方法
WO2006106668A1 (ja) * 2005-03-30 2006-10-12 Kabushiki Kaisha Kobe Seiko Sho 均一伸びに優れた高強度冷延鋼板およびその製造方法
WO2007142197A1 (ja) * 2006-06-05 2007-12-13 Kabushiki Kaisha Kobe Seiko Sho 成形性、耐遅れ破壊性に優れた高強度複合組織鋼板
JP2011202269A (ja) * 2010-03-03 2011-10-13 Kobe Steel Ltd 温間加工性に優れた高強度鋼板
JP2011219859A (ja) * 2010-03-24 2011-11-04 Kobe Steel Ltd 温間加工性に優れた高強度鋼板

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100849974B1 (ko) 2000-12-29 2008-08-01 니폰 스틸 코포레이션 도금 밀착성 및 프레스 성형성이 뛰어난 고강도 용융아연계 도금강판 및 그 제조방법
JP3854506B2 (ja) 2001-12-27 2006-12-06 新日本製鐵株式会社 溶接性、穴拡げ性および延性に優れた高強度鋼板およびその製造方法
JP3764411B2 (ja) 2002-08-20 2006-04-05 株式会社神戸製鋼所 焼付硬化性に優れた複合組織鋼板
JP4068950B2 (ja) * 2002-12-06 2008-03-26 株式会社神戸製鋼所 温間加工による伸び及び伸びフランジ性に優れた高強度鋼板、温間加工方法、及び温間加工された高強度部材または高強度部品
JP4227431B2 (ja) 2003-02-12 2009-02-18 新日本製鐵株式会社 高強度高延性鋼板及びその製造方法
EP1553202A1 (en) 2004-01-09 2005-07-13 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Ultra-high strength steel sheet having excellent hydrogen embrittlement resistance, and method for manufacturing the same
US7591977B2 (en) 2004-01-28 2009-09-22 Kabuhsiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) High strength and low yield ratio cold rolled steel sheet and method of manufacturing the same
ATE426686T1 (de) 2004-04-22 2009-04-15 Kobe Steel Ltd Hochfestes und kaltgewaltzes stahlblech mit hervorragender verformbarkeit und plattiertes stahlblech
JP4716358B2 (ja) 2005-03-30 2011-07-06 株式会社神戸製鋼所 強度と加工性のバランスに優れた高強度冷延鋼板およびめっき鋼板
US8986468B2 (en) 2005-03-31 2015-03-24 Kobe Steel, Ltd. High-strength cold-rolled steel sheet excellent in coating adhesion, workability and hydrogen embrittlement resistance, and steel component for automobile
KR100990772B1 (ko) 2005-12-28 2010-10-29 가부시키가이샤 고베 세이코쇼 초고강도 박강판
CN100510143C (zh) 2006-05-29 2009-07-08 株式会社神户制钢所 延伸凸缘性优异的高强度钢板
JP5030200B2 (ja) 2006-06-05 2012-09-19 株式会社神戸製鋼所 伸び、伸びフランジ性および溶接性に優れた高強度鋼板
KR101082680B1 (ko) 2006-07-14 2011-11-15 가부시키가이샤 고베 세이코쇼 고강도 강판 및 그 제조 방법
JP4164537B2 (ja) 2006-12-11 2008-10-15 株式会社神戸製鋼所 高強度薄鋼板
EP2216422B1 (en) 2007-11-22 2012-09-12 Kabushiki Kaisha Kobe Seiko Sho High-strength cold-rolled steel sheet
CN101960038B (zh) 2008-03-07 2013-01-23 株式会社神户制钢所 冷轧钢板
JP4712882B2 (ja) 2008-07-11 2011-06-29 株式会社神戸製鋼所 耐水素脆化特性および加工性に優れた高強度冷延鋼板
EP2415891A4 (en) 2009-04-03 2014-11-19 Kobe Steel Ltd COLD-ROLLED STEEL PLATE AND METHOD FOR THE PRODUCTION THEREOF

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005220440A (ja) * 2004-01-09 2005-08-18 Kobe Steel Ltd 耐水素脆化特性に優れた超高強度鋼板及びその製造方法
WO2006106668A1 (ja) * 2005-03-30 2006-10-12 Kabushiki Kaisha Kobe Seiko Sho 均一伸びに優れた高強度冷延鋼板およびその製造方法
WO2007142197A1 (ja) * 2006-06-05 2007-12-13 Kabushiki Kaisha Kobe Seiko Sho 成形性、耐遅れ破壊性に優れた高強度複合組織鋼板
JP2011202269A (ja) * 2010-03-03 2011-10-13 Kobe Steel Ltd 温間加工性に優れた高強度鋼板
JP2011219859A (ja) * 2010-03-24 2011-11-04 Kobe Steel Ltd 温間加工性に優れた高強度鋼板

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10662495B2 (en) 2014-08-07 2020-05-26 Jfe Steel Corporation High-strength steel sheet and production method for same, and production method for high-strength galvanized steel sheet
US10570475B2 (en) 2014-08-07 2020-02-25 Jfe Steel Corporation High-strength steel sheet and production method for same, and production method for high-strength galvanized steel sheet
WO2016021193A1 (ja) * 2014-08-07 2016-02-11 Jfeスチール株式会社 高強度鋼板およびその製造方法、ならびに高強度亜鉛めっき鋼板の製造方法
WO2016021198A1 (ja) * 2014-08-07 2016-02-11 Jfeスチール株式会社 高強度鋼板およびその製造方法、ならびに高強度亜鉛めっき鋼板の製造方法
JP5983895B2 (ja) * 2014-08-07 2016-09-06 Jfeスチール株式会社 高強度鋼板およびその製造方法、ならびに高強度亜鉛めっき鋼板の製造方法
JP5983896B2 (ja) * 2014-08-07 2016-09-06 Jfeスチール株式会社 高強度鋼板およびその製造方法、ならびに高強度亜鉛めっき鋼板の製造方法
WO2016021194A1 (ja) * 2014-08-07 2016-02-11 Jfeスチール株式会社 高強度鋼板およびその製造方法、ならびに高強度亜鉛めっき鋼板の製造方法
US20170175219A1 (en) * 2014-08-07 2017-06-22 Jfe Steel Corporation High-strength steel sheet and production method for same, and production method for high-strength galvanized steel sheet
US10662496B2 (en) 2014-08-07 2020-05-26 Jfe Steel Corporation High-strength steel sheet and production method for same, and production method for high-strength galvanized steel sheet
WO2016021197A1 (ja) * 2014-08-07 2016-02-11 Jfeスチール株式会社 高強度鋼板およびその製造方法、ならびに高強度亜鉛めっき鋼板の製造方法
JP2016180140A (ja) * 2015-03-23 2016-10-13 株式会社神戸製鋼所 成形性に優れた高強度鋼板
WO2022079988A1 (ja) * 2020-10-13 2022-04-21 Jfeスチール株式会社 高強度冷延鋼板,高強度めっき鋼板,高強度冷延鋼板の製造方法,及び高強度めっき鋼板の製造方法
WO2022079987A1 (ja) * 2020-10-13 2022-04-21 Jfeスチール株式会社 高強度冷延鋼板,高強度めっき鋼板,高強度冷延鋼板の製造方法,高強度めっき鋼板の製造方法,及び自動車部品
JP7070812B1 (ja) * 2020-10-13 2022-05-18 Jfeスチール株式会社 高強度冷延鋼板,高強度めっき鋼板,高強度冷延鋼板の製造方法,高強度めっき鋼板の製造方法,及び自動車部品
JP7078186B1 (ja) * 2020-10-13 2022-05-31 Jfeスチール株式会社 高強度冷延鋼板,高強度めっき鋼板,高強度冷延鋼板の製造方法,及び高強度めっき鋼板の製造方法

Also Published As

Publication number Publication date
KR101534427B1 (ko) 2015-07-06
JP2012180570A (ja) 2012-09-20
CN103403210B (zh) 2015-11-25
GB2502026B (en) 2018-05-02
KR20130121963A (ko) 2013-11-06
US9194032B2 (en) 2015-11-24
US20130330226A1 (en) 2013-12-12
CN103403210A (zh) 2013-11-20
GB2502026A (en) 2013-11-13
GB201315448D0 (en) 2013-10-16
JP5667472B2 (ja) 2015-02-12

Similar Documents

Publication Publication Date Title
JP5667472B2 (ja) 室温および温間での深絞り性に優れた高強度鋼板およびその温間加工方法
JP5662902B2 (ja) 成形性に優れた高強度鋼板、温間加工方法、および温間加工された自動車部品
JP5860308B2 (ja) 温間成形性に優れた高強度鋼板およびその製造方法
KR101497427B1 (ko) 열연 강판 및 그의 제조 방법
JP5824283B2 (ja) 室温および温間での成形性に優れた高強度鋼板
JP5667471B2 (ja) 温間での深絞り性に優れた高強度鋼板およびその温間加工方法
US10023934B2 (en) High-strength hot-dip galvannealed steel sheet having excellent bake hardening property and bendability
JP5662903B2 (ja) 成形性に優れた高強度鋼板、温間加工方法、および温間加工された自動車部品
JP6223905B2 (ja) 降伏強度と加工性に優れた高強度合金化溶融亜鉛めっき鋼板
JP5636347B2 (ja) 室温および温間での成形性に優れた高強度鋼板およびその温間成形方法
JP2012240095A (ja) 高強度鋼板の温間成形方法
WO2016129548A1 (ja) 降伏比と加工性に優れた超高強度鋼板
JP5365758B2 (ja) 鋼板及びその製造方法
JP6473022B2 (ja) 成形性に優れた高強度鋼板
JP2019002078A (ja) 降伏比と加工性に優れた超高強度鋼板
JP2016180139A (ja) 成形性に優れた高強度鋼板
WO2016152675A1 (ja) 加工性に優れた高強度鋼板
WO2015194572A1 (ja) 衝突特性に優れる超高強度鋼板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12751997

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14001819

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20137022772

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 1315448

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20120227

WWE Wipo information: entry into national phase

Ref document number: 1315448.9

Country of ref document: GB

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12751997

Country of ref document: EP

Kind code of ref document: A1