WO2012117943A1 - 被処理基板処理用ハロゲン除去装置、被処理基板処理装置、および被処理基板処理方法 - Google Patents

被処理基板処理用ハロゲン除去装置、被処理基板処理装置、および被処理基板処理方法 Download PDF

Info

Publication number
WO2012117943A1
WO2012117943A1 PCT/JP2012/054441 JP2012054441W WO2012117943A1 WO 2012117943 A1 WO2012117943 A1 WO 2012117943A1 JP 2012054441 W JP2012054441 W JP 2012054441W WO 2012117943 A1 WO2012117943 A1 WO 2012117943A1
Authority
WO
WIPO (PCT)
Prior art keywords
halogen
substrate
processed
processing
dissolving
Prior art date
Application number
PCT/JP2012/054441
Other languages
English (en)
French (fr)
Inventor
西本 伸也
野沢 俊久
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Publication of WO2012117943A1 publication Critical patent/WO2012117943A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02057Cleaning during device manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • H01L21/6704Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing
    • H01L21/67051Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing using mainly spraying means, e.g. nozzles

Definitions

  • the present invention relates to a halogen removal apparatus for processing a substrate to be processed, a substrate processing apparatus to be processed, and a method for processing a substrate to be processed, and in particular, a substrate processing apparatus for processing a substrate to be processed using plasma.
  • Substrate processing halogen removing device (hereinafter, also simply referred to as “halogen removing device”) provided in such a processing substrate processing apparatus, and a processing substrate that performs processing of the processing substrate using plasma It relates to a processing method.
  • Semiconductor elements such as LSI (Large Scale Integrated Circuit) and MOS (Metal Oxide Semiconductor) transistors are, for example, etching, CVD (Chemical Vapor Deposition), sputtering, etc. on a wafer (semiconductor substrate) to be processed. It is manufactured by applying.
  • processing such as etching, CVD, and sputtering, there are processing methods using plasma as an energy supply source, that is, plasma etching, plasma CVD, plasma sputtering, and the like.
  • the wafer processing apparatus includes a plasma processing apparatus as a process module (PM) that performs plasma processing on a wafer, and A transfer module (TM) that carries a wafer into and out of the plasma processing apparatus in an extremely low pressure environment, for example, in a vacuum environment, and is provided adjacent to the transfer module. , A load module (LM) serving as a wafer carry-in port to the wafer processing apparatus and a carry-out port to the outside of the wafer processing apparatus, and a load lock module (LLM) for adjusting the pressure between the transfer module and the load module.
  • LM load module
  • LLM load lock module
  • the unprocessed wafer enclosed in the hoop and loaded into the load module is transferred to the load lock module by a wafer transfer device provided in the load module. Then, after the pressure is reduced to a predetermined pressure by the load lock module, the wafer is carried into the plasma processing apparatus by the wafer transfer device provided in the transfer module. Then, in the plasma processing apparatus, plasma is generated using a process gas, and plasma processing such as plasma etching processing as described above is performed on the wafer. After performing the plasma processing on the wafer, the wafer is unloaded from the plasma processing apparatus to the transfer module by the wafer transfer apparatus. Thereafter, the wafer is unloaded to the load module under the atmospheric pressure environment via the load lock module and unloaded from the wafer processing apparatus. In this way, plasma processing is performed on the wafer.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 64-43384
  • a plasma processing apparatus as a process module, plasma processing is performed under various process conditions according to processing contents, characteristics required for a wafer, and the like.
  • a halogen gas such as corrosive HBr gas may be used during the etching process.
  • a halogen gas such as corrosive HBr gas
  • the total acid concentration that is, the so-called total acid concentration as low as possible in the load lock module and the hoop for pressure adjustment.
  • This is in order to suppress contamination of each module by the acid such as H in the HBr gas as the halogen gas and the generation of reaction by-products.
  • the total acid concentration is high in the hoop, specifically, when the total acid is present at a level of 45 ppb (part per billion) or more, the above-described cross contamination may occur in the hoop. Therefore, specifically, in the above-described load lock module and hoop, it is desired that the total acid concentration be 10 ppb or less. That is, it is desired that the remaining halogen is very small.
  • radical generator for generating radicals is installed in the transfer module, and after the plasma processing in the plasma processing apparatus, the halogen remaining on the wafer during the wafer processing is removed by radical processing.
  • the radical generator is generally expensive and causes an increase in the cost of the entire apparatus, and it is not preferable to employ such a method.
  • An object of the present invention is to provide a halogen removal apparatus for processing a substrate to be processed that can efficiently remove halogen remaining on the substrate to be processed.
  • Another object of the present invention is to provide a substrate processing apparatus which can efficiently reduce contamination in the apparatus.
  • Still another object of the present invention is to provide a substrate processing method that can reduce contamination of the apparatus.
  • Still another object of the present invention is to provide a substrate processing apparatus which can efficiently reduce contamination in the apparatus and improve productivity.
  • a halogen removal apparatus for processing a substrate according to the present invention is a halogen removal apparatus for processing a substrate to remove halogen remaining on the substrate to be processed, and the droplet diameter of a liquid capable of dissolving halogen is reduced. And a supply mechanism for supplying a liquid capable of dissolving halogen to the substrate to be processed.
  • the halogen removal apparatus for processing a substrate to be processed, since the droplet diameter of a liquid capable of dissolving halogen is reduced and supplied to the substrate to be processed, it is formed on the surface of the substrate to be processed by etching or the like. It is possible to make it easier for a halogen-dissolving liquid to enter the deep part of the fine groove. Therefore, efficient halogen removal becomes possible. Further, it is possible to make it difficult to form a liquid film capable of dissolving halogen on the surface of the substrate to be processed.
  • the substrate to be treated here includes the above-described wafer, glass substrate, and the like.
  • the liquid capable of dissolving the halogen is water
  • the control mechanism includes a superheated steam generator that heats the water to generate steam, and further heats the generated steam to generate superheated steam.
  • the mechanism supplies superheated steam generated by the superheated steam generator to the substrate to be processed.
  • the superheated steam generating device connects a mounting table on which the substrate to be processed can be mounted, a water storage container for storing water, an upper side portion of the water storage container, and an upper side portion of the mounting table. It includes a pipe, a first heating mechanism that heats water in the water storage container to form steam, and a second heating mechanism that heats steam in the pipe to form superheated steam.
  • control mechanism includes an ultrasonic generator that generates ultrasonic waves, and uses the ultrasonic generator to control the liquid capable of dissolving halogen to form a mist to reduce the particle size.
  • You may comprise so that the liquid which can melt
  • the ultrasonic generator includes a storage container that stores a liquid capable of dissolving halogen, and an ultrasonic transducer that can be disposed inside the storage container.
  • the supply mechanism has a mounting table on which the substrate to be processed can be mounted, and a jet port capable of supplying a liquid capable of dissolving the atomized halogen from the upper side of the substrate to be processed.
  • a pipe that connects the upper portion of the storage container and the upper portion of the mounting table;
  • the liquid capable of dissolving halogen contains water.
  • a temperature adjustment mechanism for adjusting the substrate to be processed to a predetermined temperature may be provided.
  • a recovery mechanism for recovering a liquid capable of dissolving the halogen supplied by the supply mechanism and an extraction mechanism for extracting halogen from the liquid capable of dissolving the halogen recovered by the recovery mechanism are provided.
  • a substrate processing apparatus for processing includes a plasma processing apparatus for performing plasma processing on a substrate to be processed, and a halogen removal for processing a substrate to remove halogen remaining on the substrate to be processed after the plasma processing.
  • An apparatus for processing a substrate to be processed including an apparatus, comprising: a halogen removing apparatus for processing a substrate to be processed; a control mechanism for controlling a particle size of a liquid droplet capable of dissolving halogen; and a liquid capable of dissolving halogen. And a supply mechanism for supplying the substrate to the substrate to be processed.
  • a processed substrate processing method is a processed substrate processing method for processing a processed substrate, and a plasma processing step of performing plasma processing on the processed substrate using a process gas; Then, after the plasma treatment step, there is provided a supply step of controlling the droplet diameter of the liquid capable of dissolving the halogen to be small and supplying a liquid capable of dissolving the halogen to the substrate to be processed.
  • a substrate processing apparatus is a substrate processing apparatus for processing a substrate to be processed, the plasma processing apparatus performing plasma processing on the substrate to be processed, and the plasma processing apparatus.
  • a transfer module having a transport path for a substrate to be processed to the plasma processing apparatus, and provided adjacent to the transfer module, the inside of which is an atmospheric pressure atmosphere.
  • a load module serving as a loading / unloading port for the substrate to be processed before and after the plasma processing and a transfer module are provided in the transfer module, and the pressure is adjusted between the transfer module and the load module by supplying and exhausting gas therein.
  • the load lock module to perform and the halo that remains on the substrate after plasma processing And a halogen removal apparatus for removing emissions.
  • the halogen removing device is a control mechanism for controlling the droplet diameter of a liquid capable of dissolving halogen to be reduced, and a liquid capable of dissolving halogen whose droplet diameter is reduced by the control mechanism is applied to a substrate to be processed.
  • Supply mechanism supplies a liquid capable of dissolving halogen whose droplet diameter is reduced by the control mechanism into the load lock module at the time of pressure adjustment.
  • Such a substrate processing apparatus to be processed can effectively reduce contamination in the apparatus and improve productivity.
  • the liquid capable of dissolving the halogen is water
  • the control mechanism includes a superheated steam generator that heats the water to generate steam, and further heats the generated steam to generate superheated steam.
  • the superheated steam generated by the superheated steam generator may be mixed with the pressure adjusting gas and supplied into the load lock module.
  • control mechanism includes an ultrasonic generator that generates ultrasonic waves, and uses the ultrasonic generator to control the liquid capable of dissolving halogen to form a mist to reduce the particle size.
  • a substrate processing apparatus is a substrate processing apparatus for processing a substrate to be processed, the plasma processing apparatus performing plasma processing on the substrate to be processed, and the plasma processing apparatus.
  • a transfer module having a transport path for a substrate to be processed to the plasma processing apparatus, and provided adjacent to the transfer module, the inside of which is an atmospheric pressure atmosphere.
  • a load module serving as a loading / unloading port for the substrate to be processed before and after the plasma processing and a transfer module are provided in the transfer module, and the pressure is adjusted between the transfer module and the load module by supplying and exhausting gas therein.
  • the halogen removing device is a control mechanism for controlling the droplet diameter of a liquid capable of dissolving halogen to be reduced, and a liquid capable of dissolving halogen whose droplet diameter is reduced by the control mechanism is applied to a substrate to be processed.
  • Supply mechanism supplies a liquid capable of dissolving the halogen whose droplet diameter is reduced by the control mechanism into the first load lock module at the time of pressure adjustment.
  • Such a substrate processing apparatus to be processed can reduce contamination in the apparatus more efficiently and improve productivity.
  • the halogen removal apparatus for processing a substrate to be processed, since the droplet diameter of a liquid capable of dissolving halogen is reduced and supplied to the substrate to be processed, it is formed on the surface of the substrate to be processed by etching or the like. It is possible to make it easier for a halogen-dissolving liquid to enter the deep part of the fine groove. Therefore, efficient halogen removal becomes possible. Further, it is possible to make it difficult to form a liquid film capable of dissolving halogen on the surface of the substrate to be processed.
  • the substrate processing apparatus and the substrate processing method it is possible to efficiently remove halogen remaining on the substrate during plasma processing, thereby reducing contamination in the substrate processing apparatus. Can do.
  • FIG. 1 is a schematic view schematically showing a configuration of a wafer processing apparatus as a substrate processing apparatus to be processed according to an embodiment of the present invention. It is a schematic sectional drawing which shows roughly the structure of the plasma processing apparatus with which the wafer processing apparatus shown in FIG. 1 is equipped. It is a schematic sectional drawing which shows roughly the structure of the halogen removal apparatus with which the wafer processing apparatus shown in FIG. 1 is equipped. It is a flowchart which shows the typical process at the time of processing a wafer using the wafer processing apparatus which concerns on one Embodiment of this invention. It is a schematic sectional drawing which shows a part of wafer, and shows the state using high temperature steam.
  • FIG. 1 is a schematic cross-sectional view schematically showing a configuration of a wafer processing apparatus as a substrate processing apparatus including a halogen removing apparatus according to an embodiment of the present invention.
  • a wafer processing apparatus 11 as a substrate processing apparatus to be processed includes two plasma processing apparatuses 12a and 12b as process modules (PM) provided adjacent to each other, and a plasma processing apparatus.
  • the load module (LM: Load Module) 14 under the atmospheric pressure atmosphere and the two load lock modules 15a and 15b for adjusting the pressure between the transfer module 13 and the load module 14 are provided.
  • Each of the plasma processing apparatuses 12a and 12b can perform plasma processing separately.
  • the two load lock modules 15a and 15b can also adjust the pressure of the wafers loaded therein. Note that a representative position where a wafer is arranged in the wafer processing apparatus 11 is indicated by a dotted line.
  • FIG. 2 is a schematic cross-sectional view schematically showing a configuration of one plasma processing apparatus 12a provided in the wafer processing apparatus 11 shown in FIG.
  • the description of the other plasma processing apparatus 12b is omitted because the configuration is the same as that of the one plasma processing apparatus 12a.
  • the plasma processing apparatus 12a is a microwave plasma processing apparatus using a microwave as a plasma source.
  • the plasma processing apparatus 12 a includes a processing container 21 having a processing space for performing plasma processing on the substrate W to be processed therein, a gas supply unit 22 for supplying a gas for plasma processing into the processing container 21, and the processing container 21.
  • a control unit (not shown) for controlling the entire apparatus 12a.
  • the gas supply unit 22 includes a center gas supply unit 32 having a gas supply port 31 for supplying gas toward the center of the substrate to be processed W, and an annular hollow member 33, and is directed radially inward.
  • an outer gas supply unit 35 having a gas supply port 34 for supplying gas.
  • the control unit controls process conditions for plasma processing the substrate W to be processed, such as a gas flow rate in the gas supply unit 22 and a pressure in the processing container 21.
  • the opening shape of the slot 28 is schematically shown in FIG.
  • the slot antenna plate 29 is formed so that a first slot that is long in one direction and a second slot that is long in a direction perpendicular to the first slot are adjacent to each other. A plurality of slot pairs are provided.
  • the microwave plasma to be processed in the plasma processing apparatus 12 a is generated by a radial line slot antenna (RLSA) including a slot antenna plate 29 and a dielectric window 30.
  • RLSA radial line slot antenna
  • the transfer module 13 is provided adjacent to a position different from the two plasma processing apparatuses 12a and 12b, and is provided in the transfer module 13 and a halogen removing apparatus 16 for removing halogen remaining on the wafer.
  • An arm unit (not shown) for loading / unloading wafers into / from the plasma processing apparatuses 12a and 12b, that is, carrying wafers and unloading wafers, and an optical sensor (not shown) for detecting positions in wafer conveyance.
  • a wafer transfer device 17a is schematically indicated by a one-dot chain line.
  • the load module 14 is provided at a position different from the purge storage (PS) 18 for cooling and degassing the wafer, and the purge storage 18, and a wafer exit from the wafer processing apparatus 11 for processing the processed wafer.
  • PS purge storage
  • LP Load Port
  • a plurality of wafers are stored in a sealed pod called a FOUP (Front Opening Unified Pod), and stored in the load ports 19a and 19b.
  • the two load ports 19a and 19b are sequentially used according to the processing timing.
  • LLM load lock modules 15 a and 15 b for adjusting the pressure are provided in the transfer module 13 at positions close to the load module 14, and the wafer between the transfer module 13 and the load module 14 is arranged. Adjust the temperature and pressure environment.
  • FIG. 3 is a schematic cross-sectional view schematically showing the configuration of the halogen removing apparatus 16 provided in the wafer processing apparatus 11 shown in FIG.
  • the halogen removing device 16 has a control mechanism 40 that controls the droplet diameter of pure water (H 2 O) as a liquid capable of dissolving halogen, and can dissolve halogen. And a supply mechanism 47 for supplying the liquid to the wafer.
  • the control mechanism 40 includes an ultrasonic generator 43 that includes a storage container 41 capable of storing pure water as a liquid capable of dissolving halogen, and an ultrasonic transducer 42 disposed in the storage container 41.
  • the ultrasonic generator 43 vibrates the ultrasonic vibrator 42 disposed in pure water.
  • the particle diameter of the pure water droplet is reduced by the generated ultrasonic waves. Specifically, the water stored in the storage container 41 is made into a mist.
  • the supply mechanism 47 includes a processing chamber 44 in which the wafer W can be accommodated, a mounting table 45 on which the wafer W can be mounted in the processing chamber 44, and an upper side of the processing chamber 44 from the upper side of the storage container 41. And an annular pipe 46 that continues to the mist, and supplies nebulized pure water to the wafer W.
  • pure water is atomized by the ultrasonic generator 43.
  • the atomized water sequentially moves in the pipe 46 in the direction indicated by the arrow III in FIG. 3, and is supplied to the processing chamber 44 side.
  • the wafer W is placed in a shower shape from above the wafer W placed on the mounting table 45.
  • a temperature regulator (not shown) as a temperature regulation mechanism such as a heater or a refrigerant is provided inside the mounting table 45, and the wafer W mounted on the mounting table 45 is set to a predetermined temperature. be able to.
  • the particle size of the liquid droplet capable of dissolving halogen is 10 ⁇ m. The following can be very small. Then, water molecules can easily enter into fine grooves and holes formed on the wafer surface by etching or the like. Further, since it is possible to make it difficult to form a liquid film capable of dissolving halogen on the surface of the wafer to be processed, there is no possibility of forming a watermark. Further, in such a configuration, it is possible to perform processing at a relatively low temperature, and it is possible to perform processing at a more preferable temperature suitable for halogen removal by appropriately controlling the temperature in halogen removal. Therefore, efficient halogen removal becomes possible.
  • the halogen removing device 16 may be provided with a recovery mechanism that recovers the mist-like water supplied by the supply mechanism 47, and a cold trap 48 as a recovery mechanism and pure water recovered by the cold trap 48 are used.
  • Filters 49a and 49b serving as filtration mechanisms for performing filtration, and a valve 50 that is disposed between the cold trap 48 and the filter 49b and adjusts the flow rate are provided.
  • the cold trap 48 collects the water after the halogen removal treatment by capturing the water according to the temperature difference.
  • a Peltier element may be provided so that the mounting table 45 can be heated and the cold trap 48 can be cooled. Since the collected water contains halogen, it is filtered by the filters 49a and 49b to remove the halogen from the water.
  • the water from which the halogen has been removed by the filter 49b is discharged to the outside of the halogen removing device 16 through the valve 50.
  • the filter 49a removes the halogen to about 1 ppb.
  • the pure water captured by the cold trap 48 may be filtered through the filter 49a to remove the halogen, and then returned to the storage container 41 again. By doing so, the halogen can be removed more efficiently while circulating pure water.
  • a wafer processing apparatus 11 includes plasma processing apparatuses 12a and 12b that perform plasma processing on a wafer, and a wafer processing halogen removal apparatus 16 that removes halogen remaining on the wafer after the plasma processing.
  • the wafer processing halogen removal apparatus 16 includes an ultrasonic generator 43 that generates ultrasonic waves, and a control mechanism 40 that controls the particle diameter of pure water droplets as a liquid capable of dissolving halogens to be reduced.
  • a supply mechanism 47 that uses an ultrasonic generator 43 to atomize a liquid capable of dissolving halogen and supplies the atomized liquid capable of dissolving halogen to the wafer.
  • FIG. 4 is a flowchart showing typical steps when a wafer is processed using the wafer processing apparatus according to the embodiment of the present invention.
  • plasma processing such as etching is performed on the wafer in plasma processing apparatus 12a (FIG. 4A).
  • the wafer as shown by the arrow A 1 in FIG. 1 is unloaded to the outside of the plasma processing apparatus 12a. Then, it is carried into the halogen removing device 16 via the transfer module 13. In this case, the wafer transfer device 17a is used. Then, residual halogen is removed from the plasma-treated wafer (FIG. 4B).
  • the halogen removal by the halogen removal device 16 will be described.
  • the wafer W that has been subjected to the plasma processing is placed on the mounting table 45.
  • the temperature controller of the mounting table 45 adjusts the temperature of the wafer W so as to be an appropriate temperature for processing.
  • an ultrasonic wave is generated in the ultrasonic wave generator 43.
  • dissolve halogen is made into a mist (mist form).
  • mist water is supplied to the wafer W on the mounting table 45.
  • the amount, time, and the like to be supplied are arbitrarily determined depending on the content of the plasma processing in the plasma processing apparatus 12a and the required degree of cleaning. In this way, the halogen is removed from the wafer W after the plasma processing.
  • the wafer is discharged out of the halogen removal device 16. Then, by way of the transfer module 13, as indicated by arrow A 2 in FIG. 1, is transferred into the load lock module 15a (FIG. 4 (C)).
  • the wafer is cooled while adjusting the pressure of the wafer. Specifically, the cooling of the wafer is performed by supplying N 2 gas at a predetermined temperature for about 30 seconds.
  • the load module 14 via the load module 14, as indicated by the arrow A 3 in FIG. 1, it is conveyed to the purge storage 18, further performing the cooling and degassing purge storage 18 (FIG. 4 (D)).
  • degassing it carries out by performing the down flow of the air of predetermined temperature for 3 minutes. This process may be performed by the load lock module 15a. It can also be omitted depending on the target process.
  • a wafer processing method as a substrate processing method is a wafer processing method for processing a wafer, and a plasma processing step for performing plasma processing on a wafer using a process gas; After the plasma treatment process, using an ultrasonic generator that generates ultrasonic waves, the halogen-dissolvable liquid is atomized so as to reduce the particle size of the halogen-dissolvable liquid droplets. And a supply step of supplying a liquid capable of dissolving halogen to the wafer.
  • a configuration enables efficient halogen removal.
  • halogen remaining on the wafer can be efficiently removed, contamination in the wafer processing apparatus 11 can be efficiently reduced.
  • halogen remaining on the wafer can be reduced, so that contamination of the apparatus can be reduced.
  • the influence of the halogen remaining on the wafer can be greatly reduced in the process after the halogen removal apparatus, particularly in the process performed under atmospheric pressure. That is, it is possible to suppress the generation of NH 4 Br which is a reaction product of NH 3 and halogen generated as a by-product of the reaction in the etching process of the remaining halogen and the silicon nitride film.
  • the mechanism of halogen removal is considered.
  • the cleaning mechanism becomes large and the cost may increase.
  • condensation occurs when the wafer temperature is lower than the water vapor temperature. If it does so, it is necessary to control the surface state of a wafer with the temperature of a wafer, and control will become complicated.
  • the water droplet 55 can have a relatively small particle size of 10 ⁇ m or less as shown in FIG. Since the water droplet 55 having a relatively small particle diameter can be made less likely to form a water film, the possibility of halogen remaining due to evaporation of water remaining on the surface of the wafer 56 can be reduced. Further, since the water droplet 55 has a small particle diameter, water molecules easily enter the bottom portion of the groove even when the aspect ratio of the groove formed on the surface of the wafer 56 is high, and the halogen residue 54 at the bottom portion of the groove. The possibility of remaining is also reduced. In addition, according to such a configuration, since the processing can be performed at a relatively low temperature, wafer temperature control and the like are facilitated. Also, the device configuration is relatively inexpensive.
  • water is used as the halogen removing solution capable of dissolving halogen.
  • the present invention is not limited to this.
  • alcohol, ether, hydrogen water, or the like may be used.
  • the particle size of the liquid droplet that can dissolve the halogen is reduced by using the ultrasonic wave in the control mechanism.
  • the present invention is not limited to this, and the liquid that can dissolve the halogen is used.
  • water may be used as the superheated steam to reduce the particle size.
  • FIG. 7 is a schematic cross-sectional view schematically showing a configuration of a halogen removing apparatus included in a wafer processing apparatus as a substrate processing apparatus to be processed according to another embodiment of the present invention, and corresponds to FIG.
  • a wafer processing apparatus according to another embodiment of the present invention is different from the wafer processing apparatus according to the embodiment of the present invention shown in FIG. 1 in that the halogen removing apparatus 16 shown in FIG. 3 is replaced with the halogen removing apparatus shown in FIG. It is equivalent to what has been replaced with.
  • a halogen removing device 61 included in a wafer processing apparatus generates superheated steam by heating pure water as a liquid capable of dissolving halogen to generate superheated steam.
  • a control mechanism 63 that includes an apparatus 62 and controls pure water as superheated steam to reduce the particle size of the droplets, and a supply mechanism 64 that supplies superheated steam to the wafer.
  • the superheated steam generator 62 includes a water storage container 65 capable of storing pure water, a first heating mechanism 66 that generates pure water by heating pure water in the water storage container 65, and superheated steam by heating the generated water vapor. And a second heating mechanism 67 for generating.
  • the supply mechanism 64 supplies a processing chamber 68 capable of accommodating the wafer W therein, a mounting table 69 on which the wafer W can be mounted, and pure water as superheated steam from above the wafer W. It includes a pipe 70 having a possible spout and connecting the upper portion of the water storage container 65 and the upper portion of the mounting table 69.
  • the first heating mechanism 66 is, for example, a first heater provided on the lower side of the water storage container 65, and pure water in the water storage container 65 is converted into water vapor by heating by the first heater.
  • the second heating mechanism 67 is, for example, disposed on the downstream side of the pipe 70, that is, on the side close to the mounting table 69, and heats the water vapor passing through the pipe 70 via the pipe 70. It is a heater. The generated water vapor is heated to 250 ° C. or higher by the second heater to form superheated water vapor.
  • An exhaust hole 71 for exhausting the processing chamber 68 is also provided.
  • water vapor 72 In the water storage container 65, pure water is heated by the first heating mechanism 66, and water vapor 72 is generated.
  • the steam 72 generated here is saturated steam, so-called wet steam, and has a relatively large particle diameter as shown in FIG.
  • the generated water vapor 72 sequentially moves in the pipe 70 in the direction indicated by the arrow VII in FIG. And it heats further by the 2nd heating mechanism 67 arrange
  • the superheated steam 73 generated in this way has a particle size that is much smaller than that of the water vapor 72, and is considered to have a particle size that is a concentration of water molecules and a plurality of water molecules.
  • the generated superheated steam 73 is supplied to the processing chamber 68 side.
  • the wafer W is placed in a shower shape from above the wafer W placed on the mounting table 69. In this way, the superheated steam 73 is supplied to the wafer W.
  • pure water as a liquid capable of dissolving halogen is heated to first generate water vapor, and further, the generated water vapor is heated and supplied to the wafer as superheated water vapor having a smaller particle size. Therefore, the superheated steam can easily enter the deep part of the fine groove formed on the wafer surface by etching or the like. Therefore, efficient halogen removal becomes possible. Further, it is possible to make it difficult to form a water film as a liquid capable of dissolving halogen on the surface of the wafer to be processed.
  • the generated superheated steam has a large heat capacity, and heat is transferred by radiation and condensation in addition to convection, so that the temperature of the wafer W can be raised in a short time. Therefore, it is not necessary to provide a heater inside the mounting table as in the halogen removing apparatus shown in FIG. In addition, since it is not necessary to apply pressure when generating superheated steam, the system of the halogen removing device 61 can be made compact and an inexpensive configuration can be achieved.
  • an existing vacuum pump (not shown) is used to connect to the exhaust hole 71 to exhaust the processing chamber 68. It is not necessary to provide a trap or the like unlike the halogen removing apparatus shown in FIG.
  • hydrogen water or the like can be used in addition to pure water.
  • a wafer processing apparatus as a substrate processing apparatus includes plasma processing apparatuses 12a and 12b that perform plasma processing on a wafer, and a wafer that removes halogen remaining on the wafer after the plasma processing.
  • a halogen removal apparatus 61 for processing is included.
  • the halogen removal device 61 for wafer processing includes a superheated steam generation device 62 that heats pure water as a liquid capable of dissolving halogen to generate superheated steam, and uses pure water as superheated steam to reduce the particle size of droplets.
  • a supply mechanism 64 for supplying superheated steam to the wafer.
  • a wafer processing method as a substrate processing method is a wafer processing method for processing a wafer, and a plasma processing step for performing plasma processing on a wafer using a process gas; And a supply step of supplying pure water to the wafer as superheated steam so as to reduce the particle size of the droplets of pure water as a liquid capable of dissolving halogen, after the plasma treatment step.
  • the second heating mechanism is provided on the downstream side of the pipe and the superheated steam is generated in the region close to the wafer W.
  • a second heating mechanism may be provided on the upstream side of the pipe or in the vicinity of the middle stream, and superheated steam may be generated in this portion. Furthermore, it is good also as providing a 2nd heating mechanism in the upper side of a water storage container, and producing
  • water having a reduced particle size is supplied from the upper side to the wafer placed on the mounting table.
  • the present invention is not limited to this, and the particle size is reduced.
  • the wafer In a state where the water is atomized, the wafer may be moved so as to be exposed so as to be exposed to the atomized water.
  • a halogen removing device is provided in the transfer module 13, and the wafer removal device 17a is used to remove the halogen while the processed wafer is being transferred from the wafer processing device 12a, 12b to the load lock module 15a, 15b. You may comprise so that it may perform.
  • mist-like water may be supplied in a state where the wafer is placed vertically to make it stand. Furthermore, mist-like water may be supplied to a plurality of wafers.
  • the processing chamber provided in the halogen removing apparatus shown in FIGS. 3 and 7 may be coated with PTFE (Polytetrafluorethylene) or the like. By doing so, the durability of the processing chamber can be improved.
  • PTFE Polytetrafluorethylene
  • HBr has been described as an example of the halogen gas.
  • the present invention is not limited to this.
  • a gas containing fluorine or a gas containing chlorine may be used.
  • the wafer processing apparatus includes two plasma processing apparatuses, two load lock modules, and two load ports.
  • the present invention is not limited thereto, and two or more are provided. Or one.
  • the load lock module that adjusts the pressure between the transfer module and the load module by supplying and exhausting gas therein may be configured to remove halogen during pressure adjustment.
  • FIG. 8 is a schematic view schematically showing the configuration of the substrate processing apparatus to be processed in this case.
  • a substrate processing apparatus according to still another embodiment of the present invention processes a substrate to be processed.
  • the substrate processing apparatus 81 includes two plasma processing apparatuses 82a and 82b as process modules provided adjacent to each other, and a transfer module 83 in a vacuum atmosphere provided adjacent to the plasma processing apparatuses 82a and 82b. Between the transfer module 83 and the load module 84, which is provided adjacent to the transfer module 83 and serves as an inlet for the substrate to be processed before processing and an outlet for the substrate to be processed after processing. And two load lock modules 85a and 85b for adjusting pressure and the like. Further, the substrate processing apparatus 81 includes substrate transfer apparatuses 87a and 87b, a purge storage 88, and two load ports 89a and 89b.
  • the plasma processing apparatuses 82a and 82b can perform plasma processing separately.
  • the two load lock modules 85a and 85b can also adjust the pressure of the substrate to be processed loaded therein. Note that a representative position where the substrate to be processed is arranged in the substrate processing apparatus 81 is indicated by a dotted line.
  • the substrate processing apparatus 81 includes a halogen removing apparatus 86a for removing halogen remaining on the substrate after the plasma processing.
  • a halogen removing apparatus 86a for removing halogen remaining on the substrate after the plasma processing.
  • the basic apparatus configuration other than the one load lock module 85a and the halogen removing apparatus 86a described above that is, the configuration of the plasma processing apparatuses 82a and 82b, the transfer module 83, the load module 84, the other load lock module 85b, etc. Since this is the same as that in the wafer processing apparatus 11 shown in FIG.
  • a halogen removing device 86a for removing halogen remaining on the substrate to be processed after plasma processing is attached.
  • the halogen removing device 86a controls a control mechanism for reducing the particle size of water droplets as a liquid capable of dissolving halogen, and supplies water whose droplet size is reduced by the control mechanism to the substrate to be processed.
  • Supply mechanism supplies the water whose droplet diameter has been reduced by the control mechanism into the load lock module 85a when adjusting the pressure.
  • the halogen removing device 86a includes a control mechanism as a superheated steam generator 86b including a water storage container 65, a first heating mechanism 66, and a second heating mechanism 67 shown in FIG. 7, and a pipe 86c.
  • a supply mechanism is provided.
  • a pipe 86c shown in FIG. 8 corresponds to the pipe 70 shown in FIG.
  • the container constituting the load lock module 85a corresponds to the processing chamber 68 provided with the exhaust hole 71 shown in FIG.
  • etc. Based on the water in the water storage container 65 is supplied in the load lock module 85a via the pipe 86c. Specifically, halogen removal is also performed at the time of pressure increase, that is, when pressure is increased from a vacuum atmosphere to an atmospheric pressure atmosphere in a substrate to be processed after plasma processing.
  • N 2 gas serving as a pressure adjusting gas is supplied into the load lock module 85a to increase the pressure in the load lock module 85a from a vacuum atmosphere to an atmospheric pressure atmosphere.
  • the N 2 gas supplied at the time of pressurization is supplied with superheated water vapor, and the halogen is removed together with the pressure increase while the halogen is dissolved in the superheated water vapor and exhausted.
  • the substrate to be processed as indicated by an arrow B 1 in FIG. 8 it is transported to the load lock module 85a. Then, the substrate to be processed after the plasma processing is enclosed in the load lock module 85a. Thereafter, the pressure is increased from a vacuum atmosphere to an atmospheric pressure atmosphere in the load lock module 85a.
  • N 2 gas containing superheated steam is supplied into the load lock module 85a using the halogen removing device 86a. In this way, the halogen is dissolved in superheated steam and removed.
  • N 2 gas containing superheated water vapor in which halogen is dissolved is exhausted from an exhaust hole corresponding to the exhaust hole 71 provided in the load lock module 85a.
  • the halogen is also removed when the pressure is increased from a vacuum atmosphere to an atmospheric pressure atmosphere.
  • the substrate to be processed is conveyed to the purge storage 88, as indicated by an arrow B 3, is unloaded to the load port 89a. Then, the substrate to be processed that has finished processing is finally carried out from the load port 89a.
  • the halogen removing device 86a includes a storage container 41 and a control mechanism as an ultrasonic generator including the ultrasonic transducer 42 and a supply mechanism including the pipe 46 shown in FIG. .
  • a pipe 86c shown in FIG. 8 corresponds to the pipe 46 shown in FIG.
  • the container constituting the load lock module 85a corresponds to the processing chamber 44 shown in FIG. 3, and is provided with an exhaust hole.
  • vibrator 62 etc. based on the pure water in the storage container 41 is supplied in the load lock module 85a through the pipe 86c.
  • the one containing N 2 gas and superheated steam is supplied.
  • the present invention is not limited to this, and it can also be supplied separately into the load lock module 85a.
  • N 2 gas and superheated steam can be supplied into the load lock module 85a using separate pipes or the like.
  • a dedicated load lock module for removing the halogen and other load lock modules may be separated.
  • FIG. 9 is a schematic view schematically showing a configuration of the substrate processing apparatus to be processed in this case.
  • a substrate processing apparatus to be processed according to still another embodiment of the present invention processes a substrate to be processed.
  • the substrate processing apparatus 91 is provided so as to be adjacent to two plasma processing apparatuses 92a and 92b as process modules provided adjacent to each other, and to be opposed to the plasma processing apparatuses 92a and 92b, respectively.
  • Transfer module 93 and load module In between 4 comprises four load-lock modules 95a to perform adjustment of the pressure, 95b, 95c, and 95d.
  • the substrate processing apparatus 91 includes substrate transfer apparatuses 97a and 97b, a purge storage 98, and three load ports 99a, 99b, and 99c.
  • the plasma processing apparatuses 92a to 92d can perform plasma processing separately. Further, each of the four load lock modules 95a to 95d can adjust the pressure of the substrate to be processed carried therein. Note that a representative position where a substrate to be processed is arranged in the substrate processing apparatus 91 is indicated by a dotted line.
  • the substrate processing apparatus 91 includes a halogen removing apparatus 96a that removes halogen remaining on the substrate after the plasma processing.
  • Basic apparatus configurations other than the load lock module 95a and the halogen removing apparatus 96a, that is, the plasma processing apparatuses 92a to 92d, the transfer module 93, the load module 94, the load lock modules 95b to 95d, etc. are described above with reference to FIG. Since it is the same as that in the wafer processing apparatus 11 shown in FIG. In this embodiment, three load ports 99a, 99b, and 99c are illustrated. However, the load ports 99a to 99c have the same configuration as the load ports described above.
  • a halogen removing device 96a for removing halogen remaining on the substrate to be processed after the plasma processing is attached to the load lock module 95a serving as the first load lock module.
  • the halogen removing device 96a supplies a control mechanism for controlling the particle size of water droplets as a liquid capable of dissolving halogen, and water having a droplet size reduced by the control mechanism to the substrate to be processed.
  • Supply mechanism supplies the water whose droplet diameter has been reduced by the control mechanism into the load lock module 95a when adjusting the pressure.
  • the halogen removing device 96a includes a control mechanism as a superheated steam generating device 96b including a water storage container 65, a first heating mechanism 66, and a second heating mechanism 67 shown in FIG. 7, and a supply including a pipe 96c.
  • a mechanism is provided.
  • the pipe 96c shown in FIG. 9 corresponds to the pipe 70 shown in FIG.
  • the container constituting the load lock module 95 a corresponds to the processing chamber 68 having the exhaust hole 71.
  • etc. Based on the water in the water storage container 65 is supplied in the load lock module 95a via the pipe 96c. Specifically, halogen removal is also performed at the time of pressure increase, that is, when pressure is increased from a vacuum atmosphere to an atmospheric pressure atmosphere in a substrate to be processed after plasma processing.
  • N 2 gas as a pressure adjusting gas is supplied into the load lock module 95a to increase the pressure in the load lock module 95a from a vacuum atmosphere to an atmospheric pressure atmosphere.
  • the N 2 gas supplied at the time of pressurization is supplied with superheated water vapor, and the halogen is removed together with the pressure increase while the halogen is dissolved in the superheated water vapor and exhausted.
  • a halogen removing device is not provided in the other load lock modules 95b to 95d which are the second load lock modules. That is, the load lock module 95a and the halogen removal device 96a provided in the substrate processing apparatus 91 shown in FIG. 9 are basically the same in configuration as the halogen removal device 86a and the load lock module 85a shown in FIG.
  • the load lock modules 95b to 95d provided in the substrate processing apparatus 91 shown in FIG. 9 have the same configuration as the load lock modules 15a and 15b shown in FIG.
  • the substrate to be processed As indicated by the arrow C 1 in FIG. 9, it is conveyed to the load lock module 95a. Then, the substrate to be processed after the plasma processing is enclosed in the load lock module 95a. Thereafter, the pressure is increased from a vacuum atmosphere to an atmospheric pressure atmosphere in the load lock module 95a.
  • N 2 gas containing superheated steam is supplied into the load lock module 95a using the halogen removing device 96a. In this way, the halogen is dissolved in superheated steam and removed.
  • N 2 gas containing superheated water vapor in which halogen is dissolved is exhausted from an exhaust hole corresponding to the exhaust hole 71 provided in the load lock module 95a.
  • the halogen is also removed when the pressure is increased from a vacuum atmosphere to an atmospheric pressure atmosphere.
  • the substrate to be processed is conveyed to the purge storage 98, as shown by the arrow C 3, it is unloaded to the load port 99a. Then, finally, the substrate to be processed that has been processed is unloaded from the load port 99a.
  • the substrate to be processed As indicated by the arrow C 4 in FIG. 9, it is conveyed to the load lock module 95b. Then, the substrate to be processed after the plasma processing is enclosed in the load lock module 95b. Thereafter, the pressure is increased from a vacuum atmosphere to an atmospheric pressure atmosphere in the load lock module 95a.
  • the substrate to be processed is conveyed to the purge storage 98, as shown by the arrow C 3, it is unloaded to the load port 99a. Then, finally, the substrate to be processed that has been processed is unloaded from the load port 99a.
  • the transfer route of the substrate to be processed can be made different between the substrate to be processed in which the halogen is generated and the substrate to be processed in which the halogen is not generated. That is, for the substrate to be processed that has undergone a process for generating halogen, the load lock module 95a removes the halogen together with the boost, and for the substrate to be processed for which no halogen is generated, the load lock module 95b to 95d Only boost the voltage. Therefore, contamination in the substrate processing apparatus 91 can be reduced more efficiently, and productivity can be improved.
  • the halogen removing device 96a includes a storage mechanism 41 shown in FIG. 3, a control mechanism as an ultrasonic generator including the ultrasonic transducer 42, and a supply mechanism including the pipe 46. .
  • the pipe 96c shown in FIG. 9 corresponds to the pipe 46 shown in FIG.
  • the container constituting the load lock module 95a corresponds to the processing chamber 44 shown in FIG. 3, and is provided with an exhaust hole.
  • vibrator 62 etc. based on the pure water in the storage container 41 is supplied in the load lock module 95a via the pipe 96c.
  • Such a mechanism is different in the substrate processing apparatus 91 to be processed in a plurality of different plasma processing apparatuses 92a to 92d, for example, plasma etching, plasma CVD, plasma sputtering, plasma doping which is a doping process using plasma.
  • plasma etching plasma CVD
  • plasma sputtering plasma doping which is a doping process using plasma.
  • plasma doping which is a doping process using plasma.
  • it can be effectively used when a plurality of different processes, specifically, a process for generating halogen and a process for generating no halogen are performed in parallel.
  • a partition is provided between the load lock module 95a for the substrate to be processed that has been processed to generate halogen and the load lock modules 95b to 95d for the substrate to be processed that have not been processed to generate halogen. It is good.
  • the plasma treatment using microwaves is performed at the time of etching.
  • the present invention is not limited to this.
  • parallel plate plasma ICP (Inductively-Coupled Plasma), ECR (ECR)
  • ECR Electron
  • Electron Electron Resonance

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

 被処理基板処理用ハロゲン除去装置(16)は、被処理基板(W)に残留するハロゲンを除去する被処理基板処理用ハロゲン除去装置であって、超音波を発生させる超音波発生装置(43)と、超音波発生装置(43)を用いて、ハロゲンを溶解可能な液としての水を霧状にして、霧状の水を被処理基板(W)に供給する供給機構(47)とを備える。

Description

被処理基板処理用ハロゲン除去装置、被処理基板処理装置、および被処理基板処理方法
 この発明は、被処理基板処理用ハロゲン除去装置、被処理基板処理装置、および被処理基板処理方法に関するものであり、特に、プラズマを用いて被処理基板の処理を行う被処理基板処理装置、このような被処理基板処理装置等に備えられる被処理基板処理用ハロゲン除去装置(以下、単に、「ハロゲン除去装置」ということもある)、およびプラズマを用いて被処理基板の処理を行う被処理基板処理方法に関するものである。
 LSI(Large Scale Integrated circuit)やMOS(Metal Oxide Semiconductor)トランジスタ等の半導体素子は、例えば、被処理基板となるウェハ(半導体基板)に対して、エッチングやCVD(Chemical Vapor Deposition)、スパッタリング等の処理を施して製造される。エッチングやCVD、スパッタリング等の処理については、そのエネルギー供給源としてプラズマを用いた処理方法、すなわち、プラズマエッチングやプラズマCVD、プラズマスパッタリング等がある。
 ここで、プラズマを用いて被処理基板としてのウェハの処理を行うウェハ処理装置の構成について簡単に説明すると、ウェハ処理装置は、ウェハに対するプラズマ処理を行うプロセスモジュール(PM)としてのプラズマ処理装置と、極低圧環境下、例えば、真空環境下においてプラズマ処理装置へのウェハの搬入およびプラズマ処理装置からの搬出を行うトランスファモジュール(TM)と、トランスファモジュールに隣接して設けられ、大気圧環境下において、ウェハ処理装置内へのウェハの搬入口およびウェハ処理装置外への搬出口となるロードモジュール(LM)と、トランスファモジュールおよびロードモジュール間における圧力調整を行なうロードロックモジュール(LLM)とを備える。ウェハ処理装置に対するウェハの搬出入に際しては、複数枚のウェハが、フープと呼ばれる密封ポッドに封入された状態で行なわれる。
 フープに封入され、ロードモジュール内に搬入された処理前のウェハは、ロードモジュール内に設けられたウェハ搬送装置によって、ロードロックモジュールに搬送される。そして、ロードロックモジュールにて、所定の圧力まで減圧された後、トランスファモジュール内に設けられたウェハ搬送装置によって、プラズマ処理装置内に搬入される。そして、プラズマ処理装置において、プロセスガスを用い、プラズマを発生させて、上記したようなプラズマエッチング処理等のプラズマ処理をウェハに対して行う。ウェハに対してプラズマ処理を行った後、ウェハ搬送装置によって、プラズマ処理装置からトランスファモジュールへウェハを搬出する。その後、ロードロックモジュールを介して、大気圧環境下のロードモジュールにウェハを搬出し、ウェハ処理装置外に搬出される。このようにして、ウェハに対するプラズマ処理が行われる。
 ここで、ウェハについては、高い清浄性が要求されるため、プロセスモジュールにおいて行なわれたエッチングにより発生した反応生成物等の残渣を、高いレベルで除去する洗浄が行なわれる。このようなウェハの洗浄に関する技術が、特開昭64-43384号公報(特許文献1)に開示されている。
特開昭64-43384号公報
 プロセスモジュールとしてのプラズマ処理装置においては、処理内容やウェハに求められる特性等に応じ、種々のプロセス条件においてプラズマ処理が施される。ここで、プラズマ処理装置においては、エッチング処理時において、腐食性のあるHBrガスのようなハロゲンガスを用いる場合がある。このようなハロゲンガスを用いてエッチング処理を行った場合、以下のような問題が発生する場合がある。
 まず、プラズマ処理時において、エッチング処理に用いたHBrガスのうちのBrがシリコン基板の素材と反応し、例えば、SiBrが生成される。この反応生成物であるSiBrが処理後のウェハに残留していた場合、真空環境下から大気圧環境下、すなわち、トランスファモジュールからロードモジュールにウェハが搬出された際に、ロードモジュール内の大気中に存在する微量の水分(HO)と反応し、HBrが生成される。その結果、ロードモジュール内のウェハ搬送装置等において、この生成されたHBrによる金属部分の腐食が発生してしまうおそれがある。特に、近年の配線間の微細化に対応したエッチング処理を行う場合には、エッチング処理にて形成された構造物間の間隔も短くなる。そのため、エッチング処理にて生成される反応生成物が、エッチング処理中に構造物間から十分に排出されないというおそれがある。
 また、ロードモジュール内において、大気中やシリコン窒化膜のエッチング処理における反応によって生成されたアンモニア(NH)が存在した場合、ロードモジュール内において生成されたHBrと反応する。そして、この反応によって生成した反応生成物が粉状のNHBrとなり、ロードモジュール内において、析出するおそれがある。このような固形の粉状の反応生成物は、ロードモジュール内におけるウェハ搬送装置において、ウェハの位置決め等を行なう光学センサの正確な位置検知を阻害し、位置決め異常を発生させるおそれがある。また、固形の反応生成物の影響によって、ウェハ搬送装置の可動部の動作不良も引き起こすおそれがある。すなわち、ウェハ搬送装置におけるウェハの搬送不良等が生じるおそれがある。
 さらに、フープ内においては、処理前のウェハと処理後のウェハとが混在することとなるが、このような狭い環境下においては、気流の乱れが生じ、上記したように生成されたHBrと大気中のNHが反応して、固形のNHBrが生成する。このような固形の反応生成物が処理前のウェハに付着した場合、いわゆるクロスコンタミ(クロスコンタミネーション)のおそれがある。つまり、固形の反応生成物がエッチング処理を阻害するおそれがある。そうすると、レジスト層の適切な形成を阻害し、所望の形状にプラズマ処理を行うことができないこととなってしまう。
 なお、このような固形の反応生成物や腐食については、トランスファモジュール等の真空環境下においてはほとんど見られないので、SiBrの真空昇華については、ほとんど発生していないと考えられる。
 ここで、圧力調整を行なうロードロックモジュール内およびフープ内においては、総合的な酸の濃度、いわゆる総合酸濃度をできるだけ低くすることが好ましい。これは、上記したハロゲンガスとしてのHBrガスにおけるHのような酸による各モジュール内への汚染や反応副生成物の発生の抑制のためである。特に、フープ内において、総合酸濃度が高い場合、具体的には、45ppb(part per billion)レベル以上総合酸が存在していた場合、フープ内において、上記したクロスコンタミが発生するおそれがある。そこで、上記したロードロックモジュールおよびフープ内においては、具体的には、総合酸濃度を10ppb以下とすることが望まれる。すなわち、残留するハロゲンを非常に少なくすることが望まれる。
 この場合、例えば、ラジカルを発生させるラジカル発生装置をトランスファモジュールに設置して、プラズマ処理装置におけるプラズマ処理後、ウェハ処理時においてウェハに残留したハロゲンをラジカル処理により除去する方法がある。しかし、ラジカル発生装置は一般的には高価であって、装置全体のコストアップの要因を招くこととなり、このような方法を採用することは好ましくない。
 この発明の目的は、被処理基板に残留したハロゲンの効率的な除去が可能な被処理基板処理用ハロゲン除去装置を提供することである。
 この発明の他の目的は、装置内の汚染を効率的に軽減することができる被処理基板処理装置を提供することである。
 この発明のさらに他の目的は、装置の汚染を軽減することができる被処理基板処理方法を提供することである。
 この発明のさらに他の目的は、装置内の汚染を効率的に軽減することができ、生産性を向上した被処理基板処理装置を提供することである。
 この発明に係る被処理基板処理用ハロゲン除去装置は、被処理基板に残留するハロゲンを除去する被処理基板処理用ハロゲン除去装置であって、ハロゲンを溶解可能な液の液滴の粒径を小さくするよう制御する制御機構と、ハロゲンを溶解可能な液を被処理基板に供給する供給機構とを備える。
 このような被処理基板処理用ハロゲン除去装置によると、ハロゲンを溶解可能な液の液滴の粒径を小さくして被処理基板に供給しているため、エッチング等により被処理基板面上に形成された細かい溝の奥の部分にもハロゲンを溶解可能な液を入り込みやすくすることができる。したがって、効率的なハロゲンの除去が可能となる。また、処理対象となる被処理基板の面上において、ハロゲンを溶解可能な液の膜を、形成し難くすることができる。なお、ここでいう被処理基板とは、上記したウェハやガラス基板等を含むものである。
 好ましくは、ハロゲンを溶解可能な液は、水であり、制御機構は、水を加熱して水蒸気を生成し、生成した水蒸気をさらに加熱して過熱水蒸気を生成する過熱水蒸気生成装置を含み、供給機構は、過熱水蒸気生成装置により生成した過熱水蒸気を被処理基板に供給する。
 さらに好ましくは、過熱水蒸気生成装置は、被処理基板をその上に載置可能な載置台と、水を貯留する貯水容器と、貯水容器の上方側部分と載置台の上方側部分とを連結するパイプと、貯水容器内の水を加熱して水蒸気とする第一の加熱機構と、パイプ内において水蒸気を加熱して過熱水蒸気とする第二の加熱機構とを含む。
 また、制御機構は、超音波を発生させる超音波発生装置を含み、超音波発生装置を用いて、ハロゲンを溶解可能な液を霧状にして粒径を小さくするよう制御し、供給機構は、霧状にしたハロゲンを溶解可能な液を被処理基板に供給するよう構成してもよい。
 好ましくは、超音波発生装置は、ハロゲンを溶解可能な液を貯留するする貯留容器と、貯留容器の内部に配置可能である超音波振動子とを備える。
 さらに好ましくは、供給機構は、被処理基板をその上に載置可能な載置台と、霧状にしたハロゲンを溶解可能な液を被処理基板の上方側から供給可能な噴出口を有し、貯留容器の上方側部分と載置台の上方側部分とを連結するパイプとを備える。
 さらに好ましい一実施形態として、ハロゲンを溶解可能な液は、水を含む。
 また、被処理基板を所定の温度に調整する温度調整機構を備えるよう構成してもよい。
 さらに好ましくは、供給機構により供給したハロゲンを溶解可能な液を回収する回収機構と、回収機構によって回収したハロゲンを溶解可能な液からハロゲンを抽出する抽出機構とを備える。
 この発明の他の局面においては、被処理基板処理装置は、被処理基板にプラズマ処理を行うプラズマ処理装置、およびプラズマ処理の後に被処理基板に残留するハロゲンを除去する被処理基板処理用ハロゲン除去装置を含む被処理基板処理装置であって、被処理基板処理用ハロゲン除去装置は、ハロゲンを溶解可能な液の液滴の粒径を小さくするよう制御する制御機構と、ハロゲンを溶解可能な液を被処理基板に供給する供給機構とを備える。
 この発明のさらに他の局面においては、被処理基板処理方法は、被処理基板を処理する被処理基板処理方法であって、プロセスガスを用いて、被処理基板にプラズマ処理を行うプラズマ処理工程と、プラズマ処理工程の後に、ハロゲンを溶解可能な液の液滴の粒径を小さくするよう制御し、ハロゲンを溶解可能な液を被処理基板に供給する供給工程とを備える。
 この発明のさらに他の局面においては、被処理基板処理装置は、被処理基板の処理を行う被処理基板処理装置であって、被処理基板にプラズマ処理を行うプラズマ処理装置と、プラズマ処理装置に隣接して設けられ、その内部を真空雰囲気とすることができ、プラズマ処理装置への被処理基板の搬送路を有するトランスファモジュールと、トランスファモジュールに隣接して設けられ、その内部を大気圧雰囲気とすることができ、プラズマ処理前後の被処理基板の搬入出口となるロードモジュールと、トランスファモジュール内に設けられ、トランスファモジュールおよびロードモジュール間において、その内部へのガスの供給および排気により圧力の調整を行うロードロックモジュールと、プラズマ処理の後に被処理基板に残留するハロゲンを除去するハロゲン除去装置とを含む。ハロゲン除去装置は、ハロゲンを溶解可能な液の液滴の粒径を小さくするよう制御する制御機構と、制御機構により液滴の粒径を小さくされたハロゲンを溶解可能な液を被処理基板に供給する供給機構とを含む。供給機構は、制御機構により液滴の粒径を小さくされたハロゲンを溶解可能な液を圧力調整時にロードロックモジュール内に供給する。
 このような被処理基板処理装置は、装置内の汚染を効率的に軽減することができ、生産性を向上することができる。
 また、ハロゲンを溶解可能な液は、水であり、制御機構は、水を加熱して水蒸気を生成し、生成した水蒸気をさらに加熱して過熱水蒸気を生成する過熱水蒸気生成装置を含み、供給機構は、過熱水蒸気生成装置により生成した過熱水蒸気を圧力調整用ガスに混合してロードロックモジュール内に供給するよう構成してもよい。
 また、制御機構は、超音波を発生させる超音波発生装置を含み、超音波発生装置を用いて、ハロゲンを溶解可能な液を霧状にして粒径を小さくするよう制御し、供給機構は、霧状にしたハロゲンを溶解可能な液を圧力調整用ガスに混合してロードロックモジュール内に供給するよう構成してもよい。
 この発明のさらに他の局面においては、被処理基板処理装置は、被処理基板の処理を行う被処理基板処理装置であって、被処理基板にプラズマ処理を行うプラズマ処理装置と、プラズマ処理装置に隣接して設けられ、その内部を真空雰囲気とすることができ、プラズマ処理装置への被処理基板の搬送路を有するトランスファモジュールと、トランスファモジュールに隣接して設けられ、その内部を大気圧雰囲気とすることができ、プラズマ処理前後の被処理基板の搬入出口となるロードモジュールと、トランスファモジュール内に設けられ、トランスファモジュールおよびロードモジュール間において、その内部へのガスの供給および排気により圧力の調整を行う第一および第二のロードロックモジュールと、プラズマ処理の後に被処理基板に残留するハロゲンを除去するハロゲン除去装置とを含む。ハロゲン除去装置は、ハロゲンを溶解可能な液の液滴の粒径を小さくするよう制御する制御機構と、制御機構により液滴の粒径を小さくされたハロゲンを溶解可能な液を被処理基板に供給する供給機構とを含む。供給機構は、制御機構により液滴の粒径を小さくされたハロゲンを溶解可能な液を圧力調整時に第一のロードロックモジュール内に供給する。
 このような被処理基板処理装置は、装置内の汚染をより効率的に軽減することができ、生産性を向上することができる。
 このような被処理基板処理用ハロゲン除去装置によると、ハロゲンを溶解可能な液の液滴の粒径を小さくして被処理基板に供給しているため、エッチング等により被処理基板面上に形成された細かい溝の奥の部分にもハロゲンを溶解可能な液を入り込みやすくすることができる。したがって、効率的なハロゲンの除去が可能となる。また、処理対象となる被処理基板の面上において、ハロゲンを溶解可能な液の膜を、形成し難くすることができる。
 また、このような被処理基板処理装置および被処理基板処理方法によると、プラズマ処理時において被処理基板に残留したハロゲンを効率的に除去できるため、被処理基板処理装置内の汚染を軽減することができる。
 また、このような被処理基板処理装置によると、装置内の汚染を効率的に軽減することができ、生産性を向上することができる。
この発明の一実施形態に係る被処理基板処理装置としてのウェハ処理装置の構成を概略的に示す概略図である。 図1に示すウェハ処理装置に備えられるプラズマ処理装置の構成を概略的に示す概略断面図である。 図1に示すウェハ処理装置に備えられるハロゲン除去装置の構成を概略的に示す概略断面図である。 この発明の一実施形態に係るウェハ処理装置を用いてウェハの処理を行う際の代表的な工程を示すフローチャートである。 ウェハの一部を示す概略断面図であり、高温の水蒸気を用いた状態を示す。 ウェハの一部を示す概略断面図であり、超音波により発生させた霧状の水滴を用いた状態を示す。 この発明の他の実施形態に係る被処理基板処理装置に備えられるハロゲン除去装置の構成を概略的に示す概略断面図である。 この発明のさらに他の実施形態に係る被処理基板処理装置の構成を概略的に示す概略図である。 この発明のさらに他の実施形態に係る被処理基板処理装置の構成を概略的に示す概略図である。
 以下、この発明の実施の形態を、図面を参照して説明する。まず、この発明の一実施形態に係るハロゲン除去装置を含む被処理基板処理装置の構成について説明する。図1は、この発明の一実施形態に係るハロゲン除去装置を含む被処理基板処理装置としてのウェハ処理装置の構成を概略的に示す概略断面図である。
 図1を参照して、被処理基板処理装置としてのウェハ処理装置11は、隣り合うようにして設けられるプロセスモジュール(PM:Process Module)としての2つのプラズマ処理装置12a、12bと、プラズマ処理装置12a、12bに隣接して設けられる真空雰囲気下のトランスファモジュール(TM:Transfer Module)13と、トランスファモジュール13に隣接して設けられ、処理前のウェハの搬入口や処理後のウェハの搬出口となる大気圧雰囲気下のロードモジュール(LM:Load Module)14と、トランスファモジュール13およびロードモジュール14間において、圧力の調整等を行なう2つのロードロックモジュール15a、15bとを備える。プラズマ処理装置12a、12bはそれぞれ別個にプラズマ処理を行うことができる。また、2つのロードロックモジュール15a、15bについてもそれぞれ、その内部に搬入されたウェハの圧力の調整等を行なうことができる。なお、ウェハ処理装置11においてウェハが配置される代表的な位置については、点線で示している。
 ここで、まず、ウェハ処理装置11に備えられるプラズマ処理装置12aの構成について、簡単に説明する。図2は、図1に示すウェハ処理装置11に備えられる一方のプラズマ処理装置12aの構成を概略的に示す概略断面図である。なお、他方のプラズマ処理装置12bについては、一方のプラズマ処理装置12aとその構成が同様であるため、その説明を省略する。
 図1および図2を参照して、プラズマ処理装置12aは、マイクロ波をプラズマ源とするマイクロ波プラズマ処理装置である。プラズマ処理装置12aは、その内部で被処理基板Wにプラズマ処理を行う処理空間を有する処理容器21と、処理容器21内にプラズマ処理用のガス等を供給するガス供給部22と、処理容器21内に設けられ、その上に被処理基板Wを保持する保持台23と、処理容器21の外部に設けられ、プラズマ励起用のマイクロ波を発生させるマイクロ波発生器24と、マイクロ波発生器24により発生させたマイクロ波を処理容器21内に導入する導波管25および同軸導波管26と、同軸導波管26の下方端部に連結されており、同軸導波管26によって導入されたマイクロ波を径方向に伝播する誘電体板27と、誘電体板27の下方側に配置されており、誘電体板27によって伝播されたマイクロ波を放射するスロット(長孔)28を複数有するスロットアンテナ板29と、スロットアンテナ板29の下方側に配置されており、スロット28から放射されたマイクロ波を径方向に伝播すると共に処理容器21内に透過させる誘電体窓30と、プラズマ処理装置12a全体を制御する制御部(図示せず)とを備える。ガス供給部22は、被処理基板Wの中央に向かってガスを供給するガス供給口31を有するセンターガス供給部32と、円環状の中空状部材33から構成されており、径方向内側に向かってガスを供給するガス供給口34を有するアウターガス供給部35とを含む。制御部は、ガス供給部22におけるガス流量、処理容器21内の圧力等、被処理基板Wをプラズマ処理するためのプロセス条件を制御する。なお、理解の容易の観点から、図2において、スロット28の開口形状を概略的に示している。
 スロットアンテナ板29には、一方方向に長い第一のスロットと、第一のスロットと直交する方向に長い第二のスロットとが、隣り合って一対となるように形成されており、このようなスロット対が複数設けられている。プラズマ処理装置12aにおいて処理に供されるマイクロ波プラズマは、スロットアンテナ板29および誘電体窓30を含むラジアルラインスロットアンテナ(RLSA:Radial Line Slot Antenna)により生成されている。このようなプラズマ処理装置12aによれば、比較的低い電子温度および比較的高い電子密度でプラズマ処理を行うことができるので、処理時における被処理基板Wに対するプラズマダメージを抑制することができる。
 次に、トランスファモジュール13の構成について説明する。トランスファモジュール13には、2つのプラズマ処理装置12a、12bとは異なる位置に隣接するようにして設けられ、ウェハに残留するハロゲンの除去を行なうハロゲン除去装置16と、トランスファモジュール13内に設けられ、プラズマ処理装置12a、12bに対してのウェハの出し入れ、すなわち、ウェハの搬入やウェハの搬出を行なうアーム部(図示せず)やウェハの搬送における位置を検出する光学センサ(図示せず)とを備えるウェハ搬送装置17aとを備える。ウェハ搬送装置17aについては、概略的に一点鎖線で示している。
 次に、ロードモジュール14の構成について説明する。ロードモジュール14は、ウェハの冷却や脱ガスを行なうパージストレージ(PS:Purge Strage)18と、パージストレージ18とは異なる位置に設けられ、処理が終了したウェハのウェハ処理装置11からの搬出口や、これから処理を行うウェハのウェハ処理装置11への搬入口となる2つのロードポート(LP:Load Port)19a、19bと、上記したウェハ搬送装置17aと基本的に同様の構成を有するウェハ搬送装置17bとを備える。ウェハは、フープ(FOUP:Front Opening Unified Pod)と呼ばれる密閉ポッドに複数枚収納され、ロードポート19a、19bに収納される。2つのロードポート19a、19bは、処理のタイミングに応じて、順次使用される。
 圧力を調整する2つのロードロックモジュール(LLM:Load Lock Module)15a、15bは、トランスファモジュール13内のうち、ロードモジュール14に近接した位置に設けられ、トランスファモジュール13およびロードモジュール14間におけるウェハの温度環境や圧力環境を調整する。
 次に、処理を行ったウェハに対して、残留したハロゲンの除去を行なうハロゲン除去装置の構成について説明する。図3は、図1に示すウェハ処理装置11に備えられるハロゲン除去装置16の構成を概略的に示す概略断面図である。
 図3を参照して、ハロゲン除去装置16は、ハロゲンを溶解可能な液としての純水(HO)の液滴の粒径を小さくするよう制御する制御機構40と、ハロゲンを溶解可能な液をウェハに供給する供給機構47とを備える。制御機構40は、ハロゲンを溶解可能な液としての純水を貯留可能な貯留容器41と、貯留容器41内に配置される超音波振動子42とを含む超音波発生装置43を備える。超音波発生装置43は、純水中に配置された超音波振動子42を振動させる。そして、この発生させた超音波によって、純水の液滴の粒径を小さくする。具体的には、貯留容器41内に貯留された水を霧状にする。
 供給機構47は、その内部にウェハWを収容可能な処理室44と、処理室44内において、ウェハWを載置可能な載置台45と、貯留容器41の上部側から処理室44の上部側に連なる環状のパイプ46とを含み、霧状にした純水をウェハWに供給する。貯留容器41において、超音波発生装置43によって、純水が霧状とされる。霧状にした水は、パイプ46内を図3中の矢印IIIで示す方向に順次移動し、処理室44側に供給される。そして、処理室44内において、載置台45上に載置されたウェハWの上方側からシャワー状に供給される。なお、載置台45の内部には、ヒータや冷媒等の温度調整機構としての温度調整器(図示せず)が設けられており、載置台45に載置されたウェハWを所定の温度とすることができる。
 このようなハロゲン除去装置16によると、ハロゲンを溶解可能な液を超音波により霧状、いわゆるドライミスト状としてウェハに供給しているため、ハロゲンを溶解可能な液の液滴の粒径を10μm以下と非常に小さくすることができる。そうすると、エッチング等によりウェハ面上に形成された細かい溝や孔にも水分子を入り込みやすくすることができる。また、処理対象となるウェハの面上において、ハロゲンを溶解可能な液の膜を、形成し難くすることができるため、ウォーターマークが形成されるおそれがない。さらに、このような構成においては、比較的低温での処理が可能となり、ハロゲン除去における温度管理を適切にして、ハロゲン除去に適したより好ましい温度で処理を行うことができる。したがって、効率的なハロゲンの除去が可能となる。
 また、ハロゲン除去装置16は、供給機構47により供給した霧状の水を回収する回収機構が備えられていてもよく、回収機構としてのコールドトラップ48と、コールドトラップ48により回収された純水に対して濾過を行なう濾過機構としてのフィルター49a、49bと、コールドトラップ48およびフィルター49bとの間に配置され、流量を調整するバルブ50とを備える。コールドトラップ48は、温度差によって、ハロゲン除去処理後の水を捕捉するようにして回収する。具体的には、載置台45を昇温し、コールドトラップ48を冷却できるようにペルチェ素子を設けてもよい。回収された水は、ハロゲンを含むため、フィルター49a、49bによって濾過され、水中からハロゲンが取り除かれる。バルブ50を介して、フィルター49bによってハロゲンが除去された水は、ハロゲン除去装置16外に排出される。この場合、フィルター49bによってハロゲンが除去されているため、以降の工程において、排管の汚染等のおそれはない。具体的には、フィルター49bの前段階において10ppm程度のハロゲンが含まれていたとしても、フィルター49aにより、1ppb程度にまでハロゲンが取り除かれる。また、コールドトラップ48によって捕捉された純水については、フィルター49aによって濾過してハロゲンを取り除いた後、再び貯留容器41内に戻すようにしてもよい。こうすることにより、純水を循環させながら、ハロゲンの除去をより効率的に行なうことができる。
 すなわち、この発明の一実施形態に係るウェハ処理装置11は、ウェハにプラズマ処理を行うプラズマ処理装置12a、12b、およびプラズマ処理の後にウェハに残留するハロゲンを除去するウェハ処理用ハロゲン除去装置16を含む。そして、ウェハ処理用ハロゲン除去装置16は、超音波を発生させる超音波発生装置43を含み、ハロゲンを溶解可能な液としての純水の液滴の粒径を小さくするよう制御する制御機構40と、超音波発生装置43を用いて、ハロゲンを溶解可能な液を霧状にして、霧状にしたハロゲンを溶解可能な液をウェハに供給する供給機構47とを備える。
 次に、ウェハ処理装置11において、プラズマ処理が行われた後のウェハの処理の流れについて、簡単に説明する。図4は、この発明の一実施形態に係るウェハ処理装置を用いてウェハの処理を行う際の代表的な工程を示すフローチャートである。
 図1~図4を参照して、プラズマ処理装置12aにおいて、エッチング等のプラズマ処理がウェハに対して行われる(図4(A))。プラズマ処理装置12aによってウェハにプラズマ処理が施された後、ウェハは図1中の矢印Aで示すように、プラズマ処理装置12a外に搬出される。そして、トランスファモジュール13を経由して、ハロゲン除去装置16内に搬入される。この場合、ウェハ搬送装置17aを用いて行われる。そして、プラズマ処理が施されたウェハについて、残留したハロゲンの除去が行なわれる(図4(B))。
 ここで、ハロゲン除去装置16によるハロゲンの除去について、説明する。まず、載置台45上にプラズマ処理が終了したウェハWを載置する。その後、載置台45における温度調整器において、ウェハWの温度を処理に適切な温度となるように調整する。次に、超音波発生装置43において超音波を発生させる。そして、ハロゲンを溶解可能な水を霧状(ミスト状)とする。
 そして、霧状の水を、載置台45上のウェハWに供給する。供給する量、時間等については、プラズマ処理装置12aにおけるプラズマ処理の内容や要求される清浄度合い等によって任意に定められる。このようにして、プラズマ処理が終了したウェハWにおけるハロゲンの除去が行なわれる。
 ウェハからハロゲンが除去された後、ハロゲン除去装置16外にウェハが排出される。その後、トランスファモジュール13を経由して、図1中の矢印Aで示すように、ロードロックモジュール15aに搬入される(図4(C))。ここで、ウェハの圧力調整を行ないながら、ウェハの冷却を行う。ウェハの冷却については、具体的には、所定の温度のNガスを約30秒供給することにより行なう。
 その後、ロードモジュール14を経由して、図1中の矢印Aで示すように、パージストレージ18に搬送され、パージストレージ18でさらに冷却および脱ガスを行なう(図4(D))。脱ガスについては、所定の温度の空気のダウンフローを3分間行なうことにより実施する。なお、この工程は、ロードロックモジュール15aで行うようにしてもよい。また、対象のプロセスにより省くこともできる。
 その後、ロードモジュール14を経由して、図1中の矢印Aで示すように、ロードポート19aに搬出される(図4(E))。そして、最終的にロードポート19aから処理が終了したウェハが搬出される。
 すなわち、この発明の一実施形態に係る被処理基板処理方法としてのウェハ処理方法は、ウェハを処理するウェハ処理方法であって、プロセスガスを用いて、ウェハにプラズマ処理を行うプラズマ処理工程と、プラズマ処理工程の後に、超音波を発生させる超音波発生装置を用いて、ハロゲンを溶解可能な液の液滴の粒径を小さくするようハロゲンを溶解可能な液を霧状にし、霧状にしたハロゲンを溶解可能な液をウェハに供給する供給工程とを備える。
 以上より、このような構成とすれば、効率的なハロゲンの除去が可能となる。また、このようなウェハ処理装置11によると、ウェハに残留したハロゲンを効率的に除去できるため、ウェハ処理装置11内の汚染を効率的に軽減することができる。また、このようなウェハ処理方法によると、ウェハに残留するハロゲンを低減することができるため、装置の汚染を軽減することができる。具体的には、ハロゲン除去装置よりも後の工程において、特に、大気圧下において処理される工程においては、ウェハに残留したハロゲンの影響を大きく低減することができる。すなわち、残留したハロゲンと、シリコン窒化膜のエッチング工程等において、反応の副生成物として生成されたNHとハロゲンとの反応生成物であるNHBrの生成等を抑制することができる。
 ここで、ハロゲン除去のメカニズムについて考察する。まず、通常の一般的な液体としての水を用い、ウェハに純水をかけたり、浸漬等によりウェハを洗浄し、ウェハのハロゲンを除去する方法が考えられる。しかし、この場合には、洗浄機構が大掛かりとなり、コストアップとなってしまうおそれがある。また、高湿度環境においた場合であっても、ウェハの温度が水蒸気温度よりも低い場合、結露が発生してしまう。そうすると、ウェハの温度によりウェハの表面状態を制御する必要があり、制御が複雑となってしまう。
 また、ハロゲンの除去を行なう方法として、高温の水蒸気を用いた場合について説明すると、高温の水蒸気を用いるには、例えば、純水を沸騰させる必要がある。このようにして得られた水蒸気については、水蒸気の粒径の制御ができない。図5に示すように、水蒸気51の粒径が大きいため、ウェハ面上に形成された細かい溝や孔に水分子を十分に供給することが難しい。また、ウェハ52の表面における水膜53が生じやすい。そうすると、この水膜状の水が蒸発したときに、ハロゲン残留物54がウェハ52上にそのまま残留してしまうことになる。ここで、水膜の膜厚を制御しようとすると、高温でのウェハの温度制御が必要となり、処理が煩雑となる。さらに、装置構成も比較的高価となってしまう。
 一方、上記した図3に示す構成のように、超音波によって水を霧状とした場合、図6に示すように、水滴55を10μm以下と比較的小さな粒径とすることができる。そして、比較的小さな粒径の水滴55については、水膜を生じにくくすることができるので、ウェハ56の表面に滞留した水の蒸発によるハロゲンの残留のおそれを低減することができる。また、水滴55の粒径が小さいため、ウェハ56の表面に形成された溝のアスペクト比の高いものについても、溝の底部分まで水分子が入りやすくなり、溝の底部分のハロゲン残留物54の残留のおそれも低減することができる。また、このような構成によると、比較的低温で処理を行うことができるため、ウェハの温度制御等が容易になる。また、装置構成も比較的安価となる。
 また、上記の実施の形態においては、ハロゲンを溶解可能なハロゲン除去液として、水を用いることとしたが、これに限らず、例えば、アルコールやエーテル、水素水等を用いることとしてもよい。
 なお、上記の実施の形態においては、制御機構において、超音波を用いてハロゲンを溶解可能な液の液滴の粒径を小さくすることにしたが、これに限らず、ハロゲンを溶解可能な液として水を用い、この水を過熱水蒸気として粒径を小さくするようにしてもよい。
 次に、この発明の他の実施形態に係るハロゲン除去装置を含む被処理基板処理装置としてのウェハ処理装置の構成について説明する。図7は、この発明の他の実施形態に係る被処理基板処理装置としてのウェハ処理装置に含まれるハロゲン除去装置の構成を概略的に示す概略断面図であり、図3に該当する。なお、この発明の他の実施形態に係るウェハ処理装置は、図1に示すこの発明の一実施形態に係るウェハ処理装置において、図3に示すハロゲン除去装置16を、図7に示すハロゲン除去装置に置き換えたものに相当するものである。
 図7を参照して、この発明の他の実施形態に係るウェハ処理装置に含まれるハロゲン除去装置61は、ハロゲンを溶解可能な液としての純水を加熱して過熱水蒸気を生成する過熱水蒸気生成装置62を含み、純水を過熱水蒸気として、液滴の粒径を小さくするよう制御する制御機構63と、過熱水蒸気をウェハに供給する供給機構64とを備える。
 過熱水蒸気生成装置62は、純水を貯留可能な貯水容器65と、貯水容器65内の純水を加熱して水蒸気を生成する第一の加熱機構66と、生成した水蒸気を加熱して過熱水蒸気を生成する第二の加熱機構67とを含む。また、供給機構64は、その内部にウェハWを収容可能な処理室68と、ウェハWをその上に載置可能な載置台69と、過熱水蒸気とした純水をウェハWの上方側から供給可能な噴出口を有し、貯水容器65の上方側部分と載置台69の上方側部分とを連結するパイプ70とを含む。
 第一の加熱機構66は、具体的には、例えば、貯水容器65の下部側に設けられた第一のヒータであり、第一のヒータによる加熱で、貯水容器65内の純水を水蒸気とする。第二の加熱機構67は、具体的には、例えば、パイプ70の下流側、すなわち、載置台69に近い側に配置され、パイプ70を介してパイプ70内を通る水蒸気を加熱する第二のヒータである。第二のヒータにより、生成された水蒸気を250℃以上に加熱して、過熱水蒸気とする。なお、処理室68内の排気用の排気孔71も設けられている。
 貯水容器65内において、第一の加熱機構66により、純水が加熱され、水蒸気72が生成される。ここで生成される水蒸気72は、飽和水蒸気、いわゆる湿り水蒸気であり、図5に示すように、比較的その粒径が大きいものである。生成された水蒸気72は、パイプ70内を図7中の矢印VIIで示す方向に順次移動する。そして、パイプ70の下流側に配置される第二の加熱機構67によりさらに加熱され、過熱水蒸気73、いわゆる乾き水蒸気が生成される。この場合、水蒸気72を第二の加熱機構67に供給するために圧力を加える必要はない。このようにして生成された過熱水蒸気73は、水蒸気72よりも非常にその粒径が小さいものであり、水分子および水分子が複数集合した程度の粒径と考えられる。生成された過熱水蒸気73は、処理室68側に供給される。そして、処理室68内において、載置台69上に載置されたウェハWの上方側からシャワー状に供給される。このようにして、過熱水蒸気73がウェハWに供給される。
 このように構成することにより、ハロゲンを溶解可能な液としての純水を、加熱してまず水蒸気を生成し、さらに生成した水蒸気を加熱して粒径のさらに小さな過熱水蒸気としてウェハに供給しているため、エッチング等によりウェハ面上に形成された細かい溝の奥の部分にも過熱水蒸気を入り込みやすくすることができる。したがって、効率的なハロゲンの除去が可能となる。また、処理対象となるウェハの面上において、ハロゲンを溶解可能な液としての水の膜を、形成し難くすることができる。
 この場合、生成される過熱水蒸気は、熱容量が大きく、対流に加えて放射や凝縮によっても伝熱するので、ウェハWを短時間に昇温することができる。したがって、上記した図3に示すハロゲン除去装置のように、載置台の内部にヒータを設けなくともよい。また、過熱水蒸気を生成するに際し、圧力を加えることを要しないので、ハロゲン除去装置61のシステムをコンパクトにすることができ、安価な構成とすることができる。
 また、この場合、単位体積辺りの水分量を非常に少なくすることができるので、例えば、既存の真空ポンプ(図示せず)を用い、排気孔71に接続し、処理室68内の排気を行うことができ、上記した図3に示すハロゲン除去装置のように、トラップ等を設ける必要がない。
 また、この場合、純水のほかに水素水等も用いることができる。
 また、この場合、処理室68内において、酸素をほとんど存在させずに、このような処理を行うことができる。したがって、処理中のウェハの酸化のおそれを低減することができる。
 すなわち、この発明の他の実施形態に係る被処理基板処理装置としてのウェハ処理装置は、ウェハにプラズマ処理を行うプラズマ処理装置12a、12b、およびプラズマ処理の後にウェハに残留するハロゲンを除去するウェハ処理用ハロゲン除去装置61を含む。そして、ウェハ処理用ハロゲン除去装置61は、ハロゲンを溶解可能な液としての純水を加熱して過熱水蒸気を生成する過熱水蒸気生成装置62を含み、純水を過熱水蒸気として、液滴の粒径を小さくするよう制御する制御機構63と、過熱水蒸気をウェハに供給する供給機構64とを備える。
 また、この発明の他の実施形態に係る被処理基板処理方法としてのウェハ処理方法は、ウェハを処理するウェハ処理方法であって、プロセスガスを用いて、ウェハにプラズマ処理を行うプラズマ処理工程と、プラズマ処理工程の後に、ハロゲンを溶解可能な液としての純水の液滴の粒径を小さくするよう純水を過熱水蒸気として、ウェハに供給する供給工程とを備える。
 なお、上記の実施の形態においては、パイプの下流側に第二の加熱機構を設け、ウェハWに近い領域で過熱水蒸気を生成することにしたが、これに限らず、他の部分、例えば、パイプの上流側や中流付近に第二の加熱機構を設け、この部分で過熱水蒸気を生成することにしてもよい。さらに、貯水容器の上方側において第二の加熱機構を設け、この領域で過熱水蒸気を生成することとしてもよい。
 また、上記の実施の形態においては、載置台上に載置されたウェハに対して、上方側から粒径を小さくした水を供給することとしたが、これに限らず、粒径を小さくした水を霧状にした状態において、ウェハを移動させるようにして霧状の水に曝すようにして供給することとしてもよい。つまり、トランスファモジュール13内にハロゲン除去装置が設けられ、ウェハ搬送装置17aを用いて、処理済みのウェハをウェハ処理装置12a、12bからロードロックモジュール15a、15bに搬送している間に、ハロゲン除去を行うように構成してもよい。さらに、ウェハを立てかけるようにして縦にした状態で、霧状の水を供給することにしてもよい。さらに、複数枚のウェハに、霧状の水を供給することにしてもよい。
 なお、上記の実施の形態において、図3や図7に示すハロゲン除去装置に備えられる処理室内を、PTFE(Polytetrafluoroethylene)等によってコートすることにしてもよい。こうすることにより、処理室の耐久性を向上させることができる。
 なお、上記の実施の形態において、ハロゲンガスとして、HBrを例にとり説明したが、これに限らず、例えば、フッ素が含まれるガスや塩素が含まれるガスであってもよい。
 なお、上記の実施の形態においては、ウェハ処理装置において、2つのプラズマ処理装置、2つのロードロックモジュール、2つのロードポートを備えることとしたが、これに限らず、それぞれ2つ以上備えることとしてもよいし、1つであってもよい。
 ここで、トランスファモジュールおよびロードモジュール間において、その内部へのガスの供給および排気により圧力の調整を行うロードロックモジュールについて、圧力調整時にハロゲンを除去する構成としてもよい。
 図8は、この場合における被処理基板処理装置の構成を概略的に示す概略図である。図8を参照して、この発明のさらに他の実施形態に係る被処理基板処理装置は、被処理基板の処理を行う。
 被処理基板処理装置81は、隣り合うようにして設けられるプロセスモジュールとしての2つのプラズマ処理装置82a、82bと、プラズマ処理装置82a、82bに隣接して設けられる真空雰囲気下のトランスファモジュール83と、トランスファモジュール83に隣接して設けられ、処理前の被処理基板の搬入口や処理後の被処理基板の搬出口となる大気圧雰囲気下のロードモジュール84と、トランスファモジュール83およびロードモジュール84間において、圧力の調整等を行う2つのロードロックモジュール85a、85bとを備える。また、被処理基板処理装置81は、被処理基板搬送装置87a、87bと、パージストレージ88と、2つのロードポート89a、89bとを含む。
 プラズマ処理装置82a、82bはそれぞれ別個にプラズマ処理を行うことができる。また、2つのロードロックモジュール85a、85bについてもそれぞれ、その内部に搬入された被処理基板の圧力の調整等を行なうことができる。なお、被処理基板処理装置81において被処理基板が配置される代表的な位置については、点線で示している。
 また、被処理基板処理装置81は、プラズマ処理の後に被処理基板に残留するハロゲンを除去するハロゲン除去装置86aを含む。上記した一方のロードロックモジュール85aおよびハロゲン除去装置86a以外の基本的な装置構成、すなわち、プラズマ処理装置82a、82b、トランスファモジュール83、ロードモジュール84、他方のロードロックモジュール85b等の構成については、上記した図1等に示すウェハ処理装置11におけるものと同じであるため、その説明を省略する。
 一方のロードロックモジュール85aには、プラズマ処理の後に被処理基板に残留するハロゲンを除去するハロゲン除去装置86aが取り付けられている。ハロゲン除去装置86aは、ハロゲンを溶解可能な液として水の液滴の粒径を小さくするよう制御する制御機構と、制御機構により液滴の粒径を小さくされた水を被処理基板に供給する供給機構とを含む。供給機構は、制御機構により液滴の粒径を小さくされた水を圧力調整時にロードロックモジュール85a内に供給する。
 ここで、このハロゲン除去装置86aおよびロードロックジュール85aの構成について説明する。ハロゲン除去装置86aは、図示はしないが、図7に示される貯水容器65、第一の加熱機構66、第二の加熱機構67を含む過熱水蒸気生成装置86bしての制御機構およびパイプ86cを含む供給機構を備えるものである。図8に示されるパイプ86cは、図7に示すパイプ70に相当するものである。また、ロードロックモジュール85aを構成する容器が、図7に示す排気孔71を備えた処理室68に相当するものである。そして、貯水容器65内の水を基に第一の加熱機構66等を用いて生成された過熱水蒸気を、パイプ86cを介してロードロックモジュール85a内に供給するものである。具体的には、昇圧時、すなわち、プラズマ処理後の被処理基板において真空雰囲気から大気圧雰囲気に昇圧する際に、ハロゲン除去も併せて行うものである。この場合、ロードロックモジュール85aにおいて、例えば、圧力調整用のガスとなるNガスをロードロックモジュール85a内に供給してロードロックモジュール85a内の圧力を真空雰囲気下から大気圧雰囲気まで昇圧するが、この昇圧時に供給するNガスに過熱水蒸気を含有させて供給し、過熱水蒸気にハロゲンを溶解させて排気しながら、昇圧と共にハロゲンを除去する。
 次に、このような被処理基板処理装置81を用いて被処理基板の処理を行う際の処理の流れについて説明する。
 プラズマ処理装置82aにおいて、プラズマ処理が被処理基板に行われた後、被処理基板は図8中の矢印Bで示すように、ロードロックモジュール85a内に搬送される。そして、プラズマ処理が終了した被処理基板がロードロックモジュール85a内に封入される。その後、ロードロックモジュール85a内において、真空雰囲気から大気圧雰囲気まで昇圧させる。この場合、上記したように、ハロゲン除去装置86aを用いて、ロードロックモジュール85a内に過熱水蒸気を含有させたNガスを供給する。このようにして、ハロゲンを過熱水蒸気に溶解させ、除去する。この場合、ハロゲンを溶解させた過熱水蒸気を含有したNガスは、ロードロックモジュール85aに設けられた排気孔71に相当する排気孔から排気される。このようにして、真空雰囲気から大気圧雰囲気まで昇圧する際に、ハロゲンの除去も行う。
 この場合、昇圧の初期において、この過熱水蒸気を含有させたNガスを供給し、昇圧の後期において、過熱水蒸気を含まないNガスを供給するようにすると、被処理基板の乾燥の面を十分に行うことができる。すなわち、排気を行いながらNガスを供給する際に、昇圧の初期において、過熱水蒸気を含有させたNガスを供給し、ハロゲンの除去を行う。そして、このハロゲンが溶解された過熱水蒸気を含有するNガスを置換するように、昇圧の後期において、過熱水蒸気を含まないNガスを供給する。こうすることにより、より効率的なハロゲンの除去を行うことができる。
 その後、矢印Bに示すように、被処理基板はパージストレージ88に搬送され、矢印Bに示すように、ロードポート89aに搬出される。そして、最終的にロードポート89aから処理が終了した被処理基板が搬出される。
 こうすることにより、被処理基板処理装置81内の汚染を効率的に軽減することができ、生産性を向上することができる。
 なお、この場合、過熱水蒸気を用いてハロゲンを除去することにしたが、これに限らず、図3に示すように、超音波発生装置を用いて純水を霧状にしたものを用いることとしてもよい。すなわち、ハロゲン除去装置86aは、詳しく図示はしないが、図3に示される貯留容器41、超音波振動子42を含む超音波発生装置としての制御機構およびパイプ46を含む供給機構を備えるものである。図8に示されるパイプ86cは、図3に示すパイプ46に相当するものである。また、ロードロックモジュール85aを構成する容器が、図3に示す処理室44に相当するものであり、これに排気孔を設けたものである。そして、貯留容器41内の純水を基に超音波振動子62等を用いて霧状にされた純水を、パイプ86cを介してロードロックモジュール85a内に供給するものである。
 また、上記の実施の形態においては、Nガスと過熱水蒸気等を含有させたものを供給することとしたが、これに限らず、それぞれ別にロードロックモジュール85a内に供給することもできる。すなわち、例えば、ロードロックモジュール85a内にNガスと過熱水蒸気等とをそれぞれ別のパイプ等を用いて供給する構成とすることもできる。
 また、このようなロードロックモジュール85a内におけるハロゲンを除去する機構については、ハロゲンを除去するための専用のロードロックモジュールとそれ以外のロードロックモジュールとを切り分けることにしてもよい。
 図9は、この場合における被処理基板処理装置の構成を概略的に示す概略図である。図9を参照して、この発明のさらに他の実施形態に係る被処理基板処理装置は、被処理基板の処理を行う。
 被処理基板処理装置91は、隣り合うようにして設けられるプロセスモジュールとしての2つのプラズマ処理装置92a、92bと、さらにプラズマ処理装置92a、92bとそれぞれ対向するように、かつ隣り合うようにして設けられるプロセスモジュールとしての2つのプラズマ処理装置92c、92dと、プラズマ処理装置92a、92bとプラズマ処理装置92c、92dとの間に設けられ、プラズマ処理装置92a、92b、92c、92dに隣接して設けられる真空雰囲気下のトランスファモジュール93と、トランスファモジュール93に隣接して設けられ、処理前の被処理基板の搬入口や処理後の被処理基板の搬出口となる大気圧雰囲気下のロードモジュール94と、トランスファモジュール93およびロードモジュール94間において、圧力の調整等を行う4つのロードロックモジュール95a、95b、95c、95dとを備える。また、被処理基板処理装置91は、被処理基板搬送装置97a、97bと、パージストレージ98と、3つのロードポート99a、99b、99cとを含む。
 プラズマ処理装置92a~92dはそれぞれ別個にプラズマ処理を行うことができる。また、4つのロードロックモジュール95a~95dについてもそれぞれ、その内部に搬入された被処理基板の圧力の調整等を行なうことができる。なお、被処理基板処理装置91において被処理基板が配置される代表的な位置については、点線で示している。
 また、被処理基板処理装置91は、プラズマ処理の後に被処理基板に残留するハロゲンを除去するハロゲン除去装置96aを含む。上記したロードロックモジュール95aおよびハロゲン除去装置96a以外の基本的な装置構成、すなわち、プラズマ処理装置92a~92d、トランスファモジュール93、ロードモジュール94、ロードロックモジュール95b~95d等については、上記した図1等に示すウェハ処理装置11におけるものと同じであるため、その説明を省略する。なお、この実施形態については、3つのロードポート99a、99b、99cを図示しているが、各ロードポート99a~99cについては、上記した各ロードポートと同様の構成である。
 第一のロードロックモジュールとなるロードロックモジュール95aには、プラズマ処理の後に被処理基板に残留するハロゲンを除去するハロゲン除去装置96aが取り付けられている。ハロゲン除去装置96aは、ハロゲンを溶解可能な液として水の液滴の粒径を小さくするよう制御する制御機構と、制御機構により液滴の粒径を小さくされた水を被処理基板に供給する供給機構とを含む。供給機構は、制御機構により液滴の粒径を小さくされた水を圧力調整時にロードロックモジュール95a内に供給する。
 ここで、このハロゲン除去装置96aおよびロードロックジュール95aの構成について説明する。ハロゲン除去装置96aは、図示はしないが、図7に示される貯水容器65、第一の加熱機構66、第二の加熱機構67を含む過熱水蒸気生成装置96bとしての制御機構およびパイプ96cを含む供給機構を備えるものである。図9に示されるパイプ96cは、図7に示すパイプ70に相当するものである。また、ロードロックモジュール95aを構成する容器が、排気孔71を備えた処理室68に相当するものである。そして、貯水容器65内の水を基に第一の加熱機構66等を用いて生成された過熱水蒸気を、パイプ96cを介してロードロックモジュール95a内に供給するものである。具体的には、昇圧時、すなわち、プラズマ処理後の被処理基板において真空雰囲気から大気圧雰囲気に昇圧する際に、ハロゲン除去も併せて行うものである。この場合、ロードロックモジュール95aにおいて、例えば、圧力調整用のガスとなるNガスをロードロックモジュール95a内に供給してロードロックモジュール95a内の圧力を真空雰囲気下から大気圧雰囲気まで昇圧するが、この昇圧時に供給するNガスに過熱水蒸気を含有させて供給し、過熱水蒸気にハロゲンを溶解させて排気しながら、昇圧と共にハロゲンを除去する。
 なお、第二のロードロックモジュールとなる他のロードロックモジュール95b~95dには、このようなハロゲン除去装置は、設けられていない。すなわち、図9に示す被処理基板処理装置91に備えられるロードロックモジュール95aおよびハロゲン除去装置96aは、基本的には、上記した図8に示すハロゲン除去装置86aおよびロードロックモジュール85aと同様の構成であり、図9に示す被処理基板処理装置91に備えられるロードロックモジュール95b~95dは、図1に示すロードロックモジュール15a、15bと同様の構成である。
 次に、このような被処理基板処理装置91を用いて被処理基板の処理を行う際の処理の流れについて説明する。
 ここでまず、ハロゲンが発生する可能性のある被処理基板の処理を行う場合について説明する。プラズマ処理装置92bにおいて、プラズマ処理が被処理基板に行われた後、被処理基板は図9中の矢印Cで示すように、ロードロックモジュール95a内に搬送される。そして、プラズマ処理が終了した被処理基板がロードロックモジュール95a内に封入される。その後、ロードロックモジュール95a内において、真空雰囲気から大気圧雰囲気まで昇圧させる。この場合、上記したように、ハロゲン除去装置96aを用いて、ロードロックモジュール95a内に過熱水蒸気を含有させたNガスを供給する。このようにして、ハロゲンを過熱水蒸気に溶解させ、除去する。この場合、ハロゲンを溶解させた過熱水蒸気を含有したNガスは、ロードロックモジュール95aに設けられた排気孔71に相当する排気孔から排気される。このようにして、真空雰囲気から大気圧雰囲気まで昇圧する際に、ハロゲンの除去も行う。
 この場合、昇圧の初期において、この過熱水蒸気を含有させたNガスを供給し、昇圧の後期において、過熱水蒸気を含まないNガスを供給するようにすると、被処理基板の乾燥の面を十分に行うことができる。すなわち、排気を行いながらNガスを供給する際に、昇圧の初期において、過熱水蒸気を含有させたNガスを供給し、ハロゲンの除去を行う。そして、このハロゲンが溶解された過熱水蒸気を含有するNガスを置換するように、昇圧の後期において、過熱水蒸気を含まないNガスを供給する。こうすることにより、より効率的なハロゲンの除去を行うことができる。
 その後、矢印Cに示すように、被処理基板はパージストレージ98に搬送され、矢印Cに示すように、ロードポート99aに搬出される。そして、最終的にロードポート99aから処理が終了した被処理基板が搬出される。
 次に、ハロゲンが発生する可能性のない被処理基板の処理を行う場合について説明する。プラズマ処理装置92aにおいて、プラズマ処理が被処理基板に行われた後、被処理基板は図9中の矢印Cで示すように、ロードロックモジュール95b内に搬送される。そして、プラズマ処理が終了した被処理基板がロードロックモジュール95b内に封入される。その後、ロードロックモジュール95a内において、真空雰囲気から大気圧雰囲気まで昇圧させる。
 その後、矢印Cに示すように、被処理基板はパージストレージ98に搬送され、矢印Cに示すように、ロードポート99aに搬出される。そして、最終的にロードポート99aから処理が終了した被処理基板が搬出される。
 こうすることにより、処理工程において、ハロゲンが発生する処理をした被処理基板とハロゲンが発生しない処理をした被処理基板との間において、被処理基板の搬送ルートを異ならせることができる。すなわち、ハロゲンが発生する処理をした被処理基板については、ロードロックモジュール95aにおいて、昇圧と共にハロゲンの除去を行い、ハロゲンが発生しない処理をした被処理基板については、ロードロックモジュール95b~95dにおいて、昇圧のみを行う。したがって、被処理基板処理装置91内の汚染をより効率的に軽減することができ、生産性を向上することができる。
 なお、この場合も、図3に示すように、超音波発生装置を用いて純水を霧状にしたものを用いることとしてもよい。すなわち、ハロゲン除去装置96aは、詳しく図示はしないが、図3に示される貯留容器41、超音波振動子42を含む超音波発生装置としての制御機構およびパイプ46を含む供給機構を備えるものである。図9に示されるパイプ96cは、図3に示すパイプ46に相当するものである。また、ロードロックモジュール95aを構成する容器が、図3に示す処理室44に相当するものであり、これに排気孔を設けたものである。そして、貯留容器41内の純水を基に超音波振動子62等を用いて霧状にされた純水を、パイプ96cを介してロードロックモジュール95a内に供給するものである。
 なお、このような機構は、被処理基板処理装置91において、複数の異なるプラズマ処理装置92a~92dにおいて異なる処理、例えば、プラズマエッチングやプラズマCVD、プラズマスパッタリング、プラズマを用いたドーピング処理であるプラズマドーピング等において、複数の異なる、具体的には、ハロゲンを発生させる処理とハロゲンを発生させない処理とを並行して行う場合に有効に用いることができる。
 この場合、例えば、ハロゲンが発生する処理をした被処理基板用のロードロックモジュール95aと、ハロゲンが発生しない処理をした被処理基板用のロードロックモジュール95b~95dとの間に、仕切りを設けることとしてもよい。
 なお、上記の実施の形態においては、エッチング行う際にマイクロ波を用いたプラズマ処理を行なうこととしたが、これに限らず、例えば、平行平板型プラズマ、ICP(Inductively-Coupled Plasma)、ECR(Electron Cyclotron Resonance)プラズマ等、他のプラズマを用いることもできる。
 以上、図面を参照してこの発明の実施形態を説明したが、この発明は、図示した実施形態のものに限定されない。図示した実施形態に対して、この発明と同一の範囲内において、あるいは均等の範囲内において、種々の修正や変形を加えることが可能である。
 11 ウェハ処理装置、12a,12b,82a,82b,92a,92b,92c,92d プラズマ処理装置、13,83,93 トランスファモジュール、14,84,94 ロードモジュール、15a,15b,85a,85b,95a,95b,95c,95d ロードロックモジュール、16,61,86a,96a ハロゲン除去装置、17a,17b ウェハ搬送装置、18,88,98 パージストレージ、19a,19b,89a,89b,99a,99b,99c ロードポート、21 処理容器、22 ガス供給部、23 保持台、24 マイクロ波発生器、25 導波管、26 同軸導波管、27 誘電体板、28 スロット、29 スロットアンテナ板、30 誘電体窓、31,34 ガス供給口、32 センターガス供給部、33 中空状部材、35 アウターガス供給部、40,63 制御機構、41 貯留容器、42 超音波振動子、43 超音波発生装置、44,68 処理室、45,69 載置台、46,70,86c,96c パイプ、47,64 供給機構、48 コールドトラップ、49a,49b フィルター、50 バルブ、51,72 水蒸気、52,56 ウェハ、53 水膜、54 ハロゲン残留物、55 水滴、62,86b,96b 過熱水蒸気生成装置、65 貯水容器、66,67 加熱機構、71 排気孔、73 過熱水蒸気、81,91 被処理基板処理装置、87a,87b,97a,97b 被処理基板搬送装置。

Claims (15)

  1. 被処理基板に残留するハロゲンを除去する被処理基板処理用ハロゲン除去装置であって、
     前記ハロゲンを溶解可能な液の液滴の粒径を小さくするよう制御する制御機構と、
     前記ハロゲンを溶解可能な液を前記被処理基板に供給する供給機構とを備える、被処理基板処理用ハロゲン除去装置。
  2. 前記ハロゲンを溶解可能な液は、水であり、
     前記制御機構は、前記水を加熱して水蒸気を生成し、生成した水蒸気をさらに加熱して過熱水蒸気を生成する過熱水蒸気生成装置を含み、
     前記供給機構は、前記過熱水蒸気生成装置により生成した過熱水蒸気を前記被処理基板に供給する、請求項1に記載の被処理基板処理用ハロゲン除去装置。
  3. 前記過熱水蒸気生成装置は、前記被処理基板をその上に載置可能な載置台と、
     水を貯留する貯水容器と、
     前記貯水容器の上方側部分と前記載置台の上方側部分とを連結するパイプと、
     前記貯水容器内の水を加熱して水蒸気とする第一の加熱機構と、
     前記パイプ内において前記水蒸気を加熱して過熱水蒸気とする第二の加熱機構とを含む、請求項2に記載の被処理基板処理用ハロゲン除去装置。
  4. 前記制御機構は、超音波を発生させる超音波発生装置を含み、前記超音波発生装置を用いて、ハロゲンを溶解可能な液を霧状にして粒径を小さくするよう制御し、
     前記供給機構は、霧状にした前記ハロゲンを溶解可能な液を前記ウェハに供給する、請求項1に記載の被処理基板処理用ハロゲン除去装置。
  5. 前記超音波発生装置は、前記ハロゲンを溶解可能な液を貯留する貯留容器と、
     前記貯留容器の内部に配置可能である超音波振動子とを備える、請求項4に記載の被処理基板処理用ハロゲン除去装置。
  6. 前記供給機構は、前記被処理基板をその上に載置可能な載置台と、
     霧状にした前記ハロゲンを溶解可能な液を前記被処理基板の上方側から供給可能な噴出口を有し、前記貯留容器の上方側部分と前記載置台の上方側部分とを連結するパイプとを備える、請求項5に記載の被処理基板処理用ハロゲン除去装置。
  7. 前記ハロゲンを溶解可能な液は、水を含む、請求項1に記載の被処理基板処理用ハロゲン除去装置。
  8. 前記被処理基板を所定の温度に調整する温度調整機構を備える、請求項1に記載の被処理基板処理用ハロゲン除去装置。
  9. 前記供給機構により供給した前記ハロゲンを溶解可能な液を回収する回収機構と、
     前記回収機構によって回収した前記ハロゲンを溶解可能な液からハロゲンを抽出する抽出機構とを備える、請求項1に記載の被処理基板処理用ハロゲン除去装置。
  10. 被処理基板にプラズマ処理を行うプラズマ処理装置、
     および前記プラズマ処理の後に前記被処理基板に残留するハロゲンを除去する被処理基板処理用ハロゲン除去装置を含む被処理基板処理装置であって、
     前記被処理基板処理用ハロゲン除去装置は、ハロゲンを溶解可能な液の液滴の粒径を小さくするよう制御する制御機構と、前記ハロゲンを溶解可能な液を前記被処理基板に供給する供給機構とを備える、被処理基板処理装置。
  11. 被処理基板を処理する被処理基板処理方法であって、
     プロセスガスを用いて、前記被処理基板にプラズマ処理を行うプラズマ処理工程と、
     前記プラズマ処理工程の後に、ハロゲンを溶解可能な液の液滴の粒径を小さくするよう制御して、前記ハロゲンを溶解可能な液を前記被処理基板に供給する供給工程とを備える、被処理基板処理方法。
  12. 被処理基板の処理を行う被処理基板処理装置であって、
     被処理基板にプラズマ処理を行うプラズマ処理装置と、
     前記プラズマ処理装置に隣接して設けられ、その内部を真空雰囲気とすることができ、前記プラズマ処理装置への前記被処理基板の搬送路を有するトランスファモジュールと、
     前記トランスファモジュールに隣接して設けられ、その内部を大気圧雰囲気とすることができ、プラズマ処理前後の前記被処理基板の搬入出口となるロードモジュールと、
     前記トランスファモジュール内に設けられ、前記トランスファモジュールおよび前記ロードモジュール間において、その内部へのガスの供給および排気により圧力の調整を行うロードロックモジュールと、
     前記プラズマ処理の後に前記被処理基板に残留するハロゲンを除去するハロゲン除去装置とを含み、
     前記ハロゲン除去装置は、ハロゲンを溶解可能な液の液滴の粒径を小さくするよう制御する制御機構と、前記制御機構により液滴の粒径を小さくされた前記ハロゲンを溶解可能な液を前記被処理基板に供給する供給機構とを含み、
     前記供給機構は、前記制御機構により液滴の粒径を小さくされた前記ハロゲンを溶解可能な液を圧力調整時に前記ロードロックモジュール内に供給する、被処理基板処理装置。
  13. 前記ハロゲンを溶解可能な液は、水であり、
     前記制御機構は、前記水を加熱して水蒸気を生成し、生成した水蒸気をさらに加熱して過熱水蒸気を生成する過熱水蒸気生成装置を含み、
     前記供給機構は、前記過熱水蒸気生成装置により生成した過熱水蒸気を前記圧力調整用ガスに混合して前記ロードロックモジュール内に供給する、請求項12に記載の被処理基板処理装置。
  14. 前記制御機構は、超音波を発生させる超音波発生装置を含み、前記超音波発生装置を用いて、ハロゲンを溶解可能な液を霧状にして粒径を小さくするよう制御し、
     前記供給機構は、霧状にした前記ハロゲンを溶解可能な液を前記圧力調整用ガスに混合して前記ロードロックモジュール内に供給する、請求項12に記載の被処理基板処理装置。
  15. 被処理基板の処理を行う被処理基板処理装置であって、
     被処理基板にプラズマ処理を行うプラズマ処理装置と、
     前記プラズマ処理装置に隣接して設けられ、その内部を真空雰囲気とすることができ、前記プラズマ処理装置への前記被処理基板の搬送路を有するトランスファモジュールと、
     前記トランスファモジュールに隣接して設けられ、その内部を大気圧雰囲気とすることができ、プラズマ処理前後の前記被処理基板の搬入出口となるロードモジュールと、
     前記トランスファモジュール内に設けられ、前記トランスファモジュールおよび前記ロードモジュール間において、その内部へのガスの供給および排気により圧力の調整を行う第一および第二のロードロックモジュールと、
     前記プラズマ処理の後に前記被処理基板に残留するハロゲンを除去するハロゲン除去装置とを含み、
     前記ハロゲン除去装置は、ハロゲンを溶解可能な液の液滴の粒径を小さくするよう制御する制御機構と、前記制御機構により液滴の粒径を小さくされた前記ハロゲンを溶解可能な液を前記被処理基板に供給する供給機構とを含み、
     前記供給機構は、前記制御機構により液滴の粒径を小さくされた前記ハロゲンを溶解可能な液を圧力調整時に前記第一のロードロックモジュール内に供給する、被処理基板処理装置。
     
PCT/JP2012/054441 2011-02-28 2012-02-23 被処理基板処理用ハロゲン除去装置、被処理基板処理装置、および被処理基板処理方法 WO2012117943A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011041366 2011-02-28
JP2011-041366 2011-02-28

Publications (1)

Publication Number Publication Date
WO2012117943A1 true WO2012117943A1 (ja) 2012-09-07

Family

ID=46757880

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/054441 WO2012117943A1 (ja) 2011-02-28 2012-02-23 被処理基板処理用ハロゲン除去装置、被処理基板処理装置、および被処理基板処理方法

Country Status (2)

Country Link
TW (1) TW201302329A (ja)
WO (1) WO2012117943A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180124726A (ko) * 2017-05-12 2018-11-21 램 리써치 코포레이션 할로겐 제거 모듈 및 연관된 시스템들 및 방법들
CN115889280A (zh) * 2021-08-04 2023-04-04 东京毅力科创株式会社 基片水蒸气处理方法和基片水蒸气处理系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05335293A (ja) * 1992-06-03 1993-12-17 Nippon Steel Corp 半導体素子の製造方法およびその装置
JPH0786253A (ja) * 1993-09-20 1995-03-31 Fujitsu Ltd レジスト膜の灰化方法と水蒸気の供給方法
JP2006210598A (ja) * 2005-01-27 2006-08-10 Shibaura Mechatronics Corp 基板の処理装置及び処理方法
JP2007324359A (ja) * 2006-05-31 2007-12-13 Choonpa Jozosho Kk 洗浄方法と洗浄装置
JP2010141238A (ja) * 2008-12-15 2010-06-24 Tokyo Electron Ltd 異物除去装置、異物除去方法及び記憶媒体

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05335293A (ja) * 1992-06-03 1993-12-17 Nippon Steel Corp 半導体素子の製造方法およびその装置
JPH0786253A (ja) * 1993-09-20 1995-03-31 Fujitsu Ltd レジスト膜の灰化方法と水蒸気の供給方法
JP2006210598A (ja) * 2005-01-27 2006-08-10 Shibaura Mechatronics Corp 基板の処理装置及び処理方法
JP2007324359A (ja) * 2006-05-31 2007-12-13 Choonpa Jozosho Kk 洗浄方法と洗浄装置
JP2010141238A (ja) * 2008-12-15 2010-06-24 Tokyo Electron Ltd 異物除去装置、異物除去方法及び記憶媒体

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180124726A (ko) * 2017-05-12 2018-11-21 램 리써치 코포레이션 할로겐 제거 모듈 및 연관된 시스템들 및 방법들
CN108878313A (zh) * 2017-05-12 2018-11-23 朗姆研究公司 卤素去除模块及相关系统和方法
JP2018195810A (ja) * 2017-05-12 2018-12-06 ラム リサーチ コーポレーションLam Research Corporation ハロゲン除去モジュールならびに関連のシステムおよび方法
JP7211716B2 (ja) 2017-05-12 2023-01-24 ラム リサーチ コーポレーション ハロゲン除去モジュールならびに関連のシステムおよび方法
KR102521160B1 (ko) * 2017-05-12 2023-04-12 램 리써치 코포레이션 할로겐 제거 모듈 및 연관된 시스템들 및 방법들
CN108878313B (zh) * 2017-05-12 2023-10-27 朗姆研究公司 卤素去除模块及相关系统和方法
CN115889280A (zh) * 2021-08-04 2023-04-04 东京毅力科创株式会社 基片水蒸气处理方法和基片水蒸气处理系统

Also Published As

Publication number Publication date
TW201302329A (zh) 2013-01-16

Similar Documents

Publication Publication Date Title
US9837284B2 (en) Oxide etch selectivity enhancement
KR101167355B1 (ko) 기판 처리 방법 및 기판 처리 장치
JP6139505B2 (ja) 枚葉式基板処理のためのエッチングシステム及び方法
KR101126536B1 (ko) 플라즈마 처리 시스템 및 플라즈마 처리 방법
JP2005340787A (ja) リモートプラズマ発生チューブの表面洗浄方法と、リモートプラズマ発生チューブを用いる基板処理方法と、基板処理装置
JP2009515366A (ja) バッチ式フォトレジスト乾式剥離・アッシングシステム及び方法
JP7190892B2 (ja) 基板処理装置および処理液濃縮方法
CN110660663B (zh) 蚀刻处理方法以及蚀刻处理装置
KR102650948B1 (ko) 플라즈마 처리 장치의 부품의 클리닝 방법
TW202425130A (zh) 膜之蝕刻方法
JP4716370B2 (ja) 低誘電率膜のダメージ修復方法及び半導体製造装置
TWI431692B (zh) 基板處理方法及基板處理系統
US8357615B2 (en) Method of manufacturing semiconductor device
US9922840B2 (en) Adjustable remote dissociation
JP2006270004A (ja) レジスト膜の除去方法および除去装置
WO2012117943A1 (ja) 被処理基板処理用ハロゲン除去装置、被処理基板処理装置、および被処理基板処理方法
TWI783412B (zh) 蝕刻方法
KR102606417B1 (ko) 에칭 방법, 대미지층의 제거 방법, 및 기억 매체
US20190027371A1 (en) Method of Removing Silicon Oxide Film
WO2020066172A1 (ja) エッチング方法、エッチング残渣の除去方法、および記憶媒体
JP7048596B2 (ja) 高圧アニーリング及び湿式エッチング速度の低下
JP2009238899A (ja) 基板処理装置および基板処理方法
KR102052337B1 (ko) 기판 처리 장치 및 기판 처리 방법
JP3015744B2 (ja) 連続処理装置
JP2004127990A (ja) 半導体装置の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12751831

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12751831

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP