WO2012117490A1 - 家庭用浄化槽における一次処理方法 - Google Patents

家庭用浄化槽における一次処理方法 Download PDF

Info

Publication number
WO2012117490A1
WO2012117490A1 PCT/JP2011/054461 JP2011054461W WO2012117490A1 WO 2012117490 A1 WO2012117490 A1 WO 2012117490A1 JP 2011054461 W JP2011054461 W JP 2011054461W WO 2012117490 A1 WO2012117490 A1 WO 2012117490A1
Authority
WO
WIPO (PCT)
Prior art keywords
sludge
tank
septic tank
treatment
facultative anaerobic
Prior art date
Application number
PCT/JP2011/054461
Other languages
English (en)
French (fr)
Inventor
滋 片寄
Original Assignee
Katayose Shigeru
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Katayose Shigeru filed Critical Katayose Shigeru
Priority to JP2013502068A priority Critical patent/JP5550780B2/ja
Priority to PCT/JP2011/054461 priority patent/WO2012117490A1/ja
Publication of WO2012117490A1 publication Critical patent/WO2012117490A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/28Anaerobic digestion processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/02Odour removal or prevention of malodour

Definitions

  • the present invention is a single tank under the condition of constantly maintaining facultative anaerobic while irradiating the organic wastewater flowing into the domestic septic tank through the immersion type transparent cylinder with light inside the domestic septic tank.
  • the present invention relates to a water treatment method for performing a primary treatment.
  • this waste water treatment apparatus comprises an absolute anaerobic first filter bed provided at the bottom of the treatment tank, an oxygen-free second filter bed provided above the first filter bed, and its second filter.
  • An aerobic third filter bed provided at the upper part of the floor.
  • natural water inflow part is provided below the 1st filter bed part, and the sludge concentration part and the sedimentation sludge extraction part are provided in the bottom part of the processing tank.
  • a treated water discharge part is provided above the third filter bed part, and an air diffuser is provided below the third filter bed part.
  • a part of the treated water above the third filter bed is extracted and allowed to flow below the second filter bed through the nitrification liquid circulation path.
  • the extracted surplus sludge is transported to the treatment plant, then reprocessed, incinerated, or landfilled. Part of the extracted excess sludge is composted. Both processes are enormous in energy and cost.
  • An object of the present invention is to provide a primary treatment method in a domestic septic tank that converts water into sludge that can directly reduce the generated sludge while obtaining water.
  • the water treatment method of the present invention is a water treatment method for irradiating light inside a domestic septic tank through a submerged transparent cylinder and performing primary treatment under facultative anaerobic conditions. It includes at least a step of allowing sewage to flow in, a step of introducing facultative anaerobic microorganism material into the treatment tank, and a step of stirring the treatment tank continuously or intermittently.
  • the sewage is allowed to flow into a single treatment tank, the facultative anaerobic microorganism material is introduced into the treatment tank, and the inside of the treatment tank is continuously or intermittently stirred.
  • a single treatment tank having a mechanism that does not allow the sludge to be transferred to other tanks, it is possible to always maintain a microaerobic environment in which facultative anaerobic microorganisms are easily active. As a result, scum and odor are not generated unlike an anaerobic subject.
  • disassembly rate is quicker than an anaerobic main body, and sludge does not accumulate easily.
  • the organic matter removal rate is higher than that of the anaerobic main body, and highly treated water can be obtained. Furthermore, the sludge produced by irradiating light inside the domestic septic tank through the immersion type transparent cylinder is taken out of the water treatment system as surplus sludge, and if left under a light source, the photosynthetic bacteria group becomes activated and can be transformed into sludge having the property of turning red in 1 to 2 weeks.
  • the facultative anaerobic microbial material is a powder, solid or liquid compounded with facultative anaerobic microorganisms including at least two of lactic acid bacteria, yeasts, filamentous fungi, and actinomycetes. It is material of. In the present invention, this facultative anaerobic microbial material is introduced into a domestic septic tank once a year.
  • water treatment is performed under facultative anaerobic conditions by irradiating light inside the domestic septic tank through an immersion type transparent cylinder, not anaerobic main body.
  • the photosynthetic bacteria are activated when left under a light source and turn red in one to two weeks. It can be transformed into sludge.
  • the treatment tank is composed of a stirring tank for stirring sewage and facultative anaerobic microorganism material, and a sedimentation tank for separating solid and liquid after the stirring,
  • the solid separated in the sedimentation tank is returned to the agitation tank through gravity so that the generated sludge is not transferred to another tank.
  • the inside of the stirring tank can be maintained in a slightly aerobic environment.
  • the solid separated in the sedimentation tank is returned to the stirring tank via gravity, the bacterial density in the stirring tank becomes higher than the organic matter flowing into the stirring tank due to the cells returned to the stirring tank, and the decomposition of the organic matter is accelerated. Is possible.
  • the organic matter removal rate is higher than that of the anaerobic main body, and highly treated water can be obtained. Further, scum and odor are not generated unlike an anaerobic subject.
  • the photosynthetic bacteria group is activated and becomes red when left standing under a light source.
  • the sludge reddened by the photosynthetic bacteria group is characterized by the ability to reduce soil on-site without damaging crop growth even if it is carried out of the water treatment system in order to suppress spoilage bacteria.
  • the present invention it is possible to always keep the inside of the primary treatment tank in a microaerobic environment in which facultative anaerobic microorganisms are easily active. As a result, scum and odor are not generated unlike an anaerobic subject. Moreover, since it is facultative anaerobic, the organic matter decomposition rate is faster than that of the anaerobic main body, so the organic matter removal rate is high, and it becomes possible to obtain highly treated water. Furthermore, when sludge generated under light irradiation through a submerged transparent cylinder is transported out of the water treatment system as surplus sludge, the photosynthetic bacteria group is activated when left standing under a light source.
  • the sludge reddened by the photosynthetic bacteria group suppresses spoilage bacteria, so even if it is carried out of the water treatment system, it can reduce the soil on-site without causing any damage to crop growth. As a result, surplus sludge treatment costs can be reduced.
  • the sample sludge is drawn into a transparent bottle and left to stand for 3 to 7 days under a light source. This can be confirmed by the appearance of a double layer.
  • a single primary treatment tank is subjected to light passing through the submerged transparent cylinder, and at least two of lactic acid bacteria, yeasts, filamentous fungi, and actinomycetes are included.
  • lactic acid bacteria yeasts
  • filamentous fungi filamentous fungi
  • actinomycetes are included.
  • FIG. 1 is a diagram showing an outline of a water treatment method according to this embodiment.
  • the water treatment facility 1 includes a treatment tank 2, and the treatment tank 2 includes a stirring tank and a sedimentation tank described later.
  • sewage is caused to flow into the treatment tank 2 under light irradiation.
  • the facultative anaerobic microorganism material is put into the treatment tank 2.
  • This facultative anaerobic microbial material is a powdery, solid or liquid material in which facultative anaerobic microorganisms containing at least two of lactic acid bacteria, yeasts, filamentous fungi and actinomycetes are combined.
  • the inside of the processing tank 2 is stirred continuously or intermittently. And treated water is obtained.
  • a culture solution of facultative anaerobic microorganisms is used.
  • the purpose is mainly to diversify microorganisms involved in organic matter decomposition, and there is no purpose to transform the inside of the tank into produced sludge mainly composed of facultative anaerobic bacteria.
  • the culture solution or the like must be continuously or intermittently continued.
  • the water treatment method according to the present embodiment in order to create a ground for photosynthetic bacteria group activation, it is necessary to induce transformation into sludge mainly composed of facultative anaerobic bacteria in the treatment tank, and the intention of input is large. Different. Moreover, material input can be made once a year.
  • FIG. 2 is a diagram showing a schematic configuration of the processing tank 2.
  • the treatment tank 2 includes a stirring tank 2a that stirs sewage and facultative anaerobic microorganism material, and a settling tank 2b that separates solid and liquid after stirring.
  • the inflowing organic substance is agitated continuously or intermittently using aeration, rotating blades, agitation plates, or the like.
  • the inclined portion 2c serves to return the solid separated in the sedimentation tank 2b to the stirring tank 2a via gravity.
  • the partition plate 2d divides the treatment tank 2 into a stirring tank 2a and a settling tank 2b. The water treated in this way is taken out from the outlet 2e as treated water.
  • the inside of the agitation tank 2a can be maintained in a slightly aerobic environment.
  • the solid separated in the sedimentation tank 2b is returned to the stirring tank 2a via gravity, the bacterial density in the stirring tank 2a is higher than the organic matter flowing into the stirring tank 2a by the cells returned to the stirring tank 2a.
  • Decomposition can be accelerated. As a result, the decomposition rate of the organic matter is increased, the organic matter removal rate is higher than that of the anaerobic main body, and highly treated water can be obtained. Further, scum and odor are not generated unlike an anaerobic subject.
  • anaerobic decomposition was used in the primary treatment of household septic tanks.
  • anaerobic decomposition had a slow organic decomposition rate and generated scum and odor.
  • the generation of scum and malodor can be suppressed by stirring the sewage using facultative anaerobic microorganisms to bring it into a microaerobic state.
  • the generated sludge is a circulation system that is transferred to a treatment tank with various elements such as an aerobic tank and an anaerobic tank. Sludge is not always in an anaerobic environment.
  • the photosynthetic bacteria group is activated when left standing under a light source and turns red in 1 to 2 weeks. Since it is required to induce transformation to sludge with a coming property, the treatment in a single tank that always maintains a facultative anaerobic environment without advancing the generated sludge so as not to change the treatment environment. It is inevitable, compact, and economical.
  • the density of the staying cells inside the stirring tank 2a becomes higher than the density of the inflowing organic matter. Since the cell density in the stirring tank 2a is high, the decomposition rate of the organic matter is increased, and the organic matter removal rate is increased while performing the primary treatment. Thereby, in the water treatment method according to the present embodiment, when an aerobic treatment is performed in the next step, the treatment load can be reduced.
  • a transparent cylinder with a sealed bottom is submerged in the stirring tank, and the light source is placed in the transparent cylinder or the upper part of the stirring tank so that the light can reach the inside of the stirring tank and near the bottom of the tank through the transparent cylinder. And make sure that the cells are always in contact with light.
  • the inside of the agitation tank 2a is uniformly irradiated with light by the light source and the bottom sealed transparent cylinder 2f, thereby creating a groundwork for photosynthetic bacteria group activation.
  • the bottom sealed transparent cylinder 2f constitutes an immersion type transparent cylinder.
  • the relationship between photosynthetic bacteria and light is already known. However, only the contribution of light to the activity of photosynthetic bacteria does not reach the rate of activation.
  • the generated sludge is transformed into sludge having the property of turning red in 1 to 2 weeks when left as a light source when it is carried out of the water treatment system as surplus sludge. Is done.
  • (1) water treatment is always performed under facultative anaerobic conditions while irradiating light through an immersion type transparent cylinder.
  • the organic matter removal rate is increased to obtain highly treated water, and when the generated sludge is left outside the water treatment system as surplus sludge, if it is left under the light source, the photosynthetic bacteria group Is activated and transformed into sludge with the property of turning red in 1 to 2 weeks.
  • the sludge reddened by the photosynthetic bacteria group suppresses spoilage bacteria, so even if it is carried out of the water treatment system, it can reduce the soil on-site without causing any damage to crop growth. As a result, surplus sludge treatment costs can be reduced.
  • the sample sludge is drawn into a transparent bottle and left for 3 to 7 days under a light source. This can be confirmed by the appearance of a double layer.
  • FIG. 3 is a diagram showing a comparative example of the effects of the primary processing method according to the present embodiment and the conventional primary processing method.
  • this invention is not limited to a following example.
  • the primary treatment tank utilized a stirring tank and a sedimentation tank of the size shown below. That is, a stirring tank having a width of 70 mm, a depth of 141 mm, a height of 532 mm (water surface height of 462 mm), an effective capacity of 4.5 L, and an effective capacity of 7.4 L was used.
  • the dissolved oxygen in the tank was around 0.4 ppm
  • the amount of the facultative anaerobic microbial material charged was 1,000 ppm in the treatment tank volume ratio
  • the sewage contact residence time was 12 hours.
  • the dissolved oxygen is 1 ppm or less, preferably 0.5 ppm.
  • the sewage treatment method according to the present embodiment is very excellent in removing organic matter from sewage.
  • the generated sludge mainly composed of facultative anaerobic substances generated by this light irradiation is pumped into a 0.45 L transparent glass bottle, and the direction of the light source is at the top and side, under the light source, at room temperature of 20 ° C.
  • a red color appeared in 3-7 days.
  • the sludge pH immediately after the pumping was 7.96
  • the sludge pH of the deep red color after 1 month was 7.32, which was neutral.
  • an aerobic-produced sludge produced by a conventional water treatment method was subjected to an experiment under the same conditions. As a result, it gradually turned green and turned dark green after one month.
  • the sludge pH immediately after pumping was 6.94, and the sludge pH of dark green color after one month was 8.76, which was slightly shifted to alkali.
  • the neutral range in water treatment is 5.8 to 8.6.
  • the process of reddening was examined.
  • the generated facultative anaerobic fine sludge is pumped into a 0.45 L transparent glass bottle, surrounded by aluminum foil to prevent light from entering, and the light from the light source is directed in one direction from above.
  • the actual field is buried.
  • redness was caused by red non-sulfur bacteria or red sulfur bacteria. It turned red on a scale. It was found that sludge metamorphosis according to the present embodiment appears red regardless of the environment after standing. By the way, redness appears red or brown due to the accumulation of carotenoids contained in the cells of photosynthetic bacteria, and appears as a visible form.
  • an aerobic-based microbial sludge produced by a conventional water treatment method was tested under the same conditions in this respect. After 1 month, the surface became green, and after 2 months, the surface became dark green. Four months have passed. By the way, the sludge pH immediately after the transfer was 6.92, and the dark green sludge pH after 4 months was transferred to alkali with a supernatant liquid of 9.95 and a sludge layer of 8.80.
  • the present invention can also be applied to the treatment of excess sludge. That is, in this sludge treatment method, the inside of the sludge treatment tank in which the sludge as a nutrient is continuously added to the surplus sludge charged into the batch under the light irradiation through the submerged transparent cylinder, lactic acid bacteria, yeast, filamentous fungi By maintaining a uniform microaerobic environment in which facultative anaerobic microorganisms containing at least two actinomycetes are most active, they are transformed into microbial sludge mainly composed of facultative anaerobes. Thereby, even if it is carried out of the system, it does not give off a bad odor. Further, the microbial sludge mainly composed of facultative anaerobic bacteria introduced into the aging tank is allowed to stand still under a light source and agitate to grow the photosynthetic bacteria, turn red, and then directly reduce to the soil.
  • FIG. 4 is a diagram showing an outline of the sludge treatment method.
  • the sludge treatment facility 2-1 includes a sludge treatment tank 2-2 and an aging tank 2-3.
  • a sludge treatment tank 2-2 In the sludge treatment method according to the present embodiment, first, surplus sludge is batch-fed into the sludge treatment tank 2-2, and sewage as a nutrient is continuously introduced. Next, the facultative anaerobic material is put into the sludge treatment tank 2-2.
  • This facultative anaerobic material is a powdery, solid or liquid material in which facultative anaerobic microorganisms containing at least two of lactic acid bacteria, yeasts, filamentous fungi and actinomycetes are combined.
  • the sludge treatment tank 2-2 is stirred continuously or intermittently. And microbial sludge and treated water mainly of facultative anaerobic bacteria are obtained. Furthermore, microbial sludge mainly composed of facultative anaerobic bacteria is led to the aging tank 2-3. The derived microbial sludge mainly composed of facultative anaerobes is turned red in the aging tank 2-3.
  • FIG. 5 is a diagram showing a schematic configuration of the sludge treatment tank 2-2 and the aging tank 2-3.
  • the sludge treatment tank 2-2 is composed of a stirring tank 2-2a for stirring excess sludge, sewage as nutrients, and facultative anaerobic microorganism materials, and a bottom transparent cylinder 2-2f for light irradiation immersed in the stirring tank 2-2a. And a settling tank 2-2b that separates the solid and liquid after stirring.
  • the inflowing organic matter is agitated continuously or intermittently using aeration, rotating blades, agitation plates, or the like.
  • the partition plate 2-2c divides the sludge treatment tank 2-2 into a stirring tank 2-2a and a settling tank 2-2b.
  • the water treated in this way is taken out from the outlet 2-2d as treated water. Further, the microbial sludge mainly composed of facultative anaerobic bacteria generated in the stirring tank 2-2a is introduced from the discharge port 2-2e to the aging tank 2-3. In the aging tank 2-3, the standing and stirring are repeated under the light source 2-3a.
  • stirring tank 2-2a stirring is performed instead of aeration under light irradiation through the immersion transparent cylinder 2-2f, so that the inside of the stirring tank 2-2a has a uniform aerobic environment. It becomes possible to keep. Thereby, even if it is carried out of the system, it can be transformed into microbial sludge mainly composed of facultative anaerobic bacteria that does not give off malodor. Further, after the microbial sludge mainly composed of facultative anaerobic bacteria is introduced to the aging tank 2-3, the sewage is repeatedly left and stirred under the light source 2-3a. As a result, the growth of photosynthetic bacteria in the facultative anaerobic microbial sludge group is promoted, so that it becomes red and can be directly reduced to the soil.
  • surplus sludge treatment that has been carried out with conventional water treatment technology, after storing activated sludge as surplus sludge in a sludge storage tank, it is transported to a treatment plant by a baggage vehicle, incinerated and landfilled with energy and costs. Partly composted.
  • the surplus sludge treatment according to the present embodiment the surplus sludge is transformed into microbial sludge mainly composed of a facultative anaerobic bacterium, and then led out to an aging tank, and the standing and stirring are repeated under a light source.
  • the growth of photosynthetic bacteria in the facultative anaerobic microbial sludge group is promoted, so that it becomes red and can be directly reduced to the soil.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Microbiology (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Treatment Of Sludge (AREA)
  • Activated Sludge Processes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

 家庭用浄化槽の一次処理において、スカムおよび悪臭の発生、および処理槽内における流入有機物の堆積を抑制するとともに、有機物分解速度および有機物除去率を高める。家庭用浄化槽に流入した有機性排水の一次処理方法であって、前記家庭用浄化槽内部に設けられた浸漬型透明円筒を介して、前記家庭用浄化槽内部に光を照射し、常時通性嫌気条件下で前記有機性排水の処理を行なう工程と、前記浸漬型透明円筒を介して、前記家庭用浄化槽内部に光を照射しつつ、前記家庭用浄化槽に通性嫌気性主体の微生物資材を投入する工程と、前記浸漬型透明円筒を介して、前記家庭用浄化槽内部に光を照射しつつ、処理環境に変動を与えないよう生成汚泥を移流させずに、前記家庭用浄化槽内の通性嫌気性環境を維持する工程と、を含む。

Description

家庭用浄化槽における一次処理方法
 本発明は、家庭用浄化槽に流入する有機性排水を、浸漬型透明円筒を介して、前記家庭用浄化槽内部に光を照射しながら、通性嫌気を常時維持する条件下の単一槽において、一次処理を行う水処理方法に関する。
 従来から知られている水処理装置として、例えば、特開2003-205297号公報に開示された排水処理装置がある。この排水処理装置は、処理槽の下部に設けた絶対嫌気状態の第一ろ床部と、その第一ろ床部の上部に設けた無酸素状態の第二ろ床部と、その第二ろ床部の上部に設けた好気状態の第三ろ床部とを備えている。また、第一ろ床部の下方には原水流入部が設けられており、また、処理槽の底部には汚泥濃縮部および沈殿汚泥抜取部が設けられている。また、第三ろ床部の上方には処理水排出部が設けられ、第三ろ床部の下方には散気手段が設けられている。この排水処理装置では、第三ろ床部の上方の処理水の一部を抜き出して、硝化液循環経路によって、第二ろ床部の下方に流入させる。
特開2003-205297号公報
 しかしながら、従来の技術では家庭用浄化槽において、一次処理は嫌気分解を主としていることから、以下のような問題が存在する。すなわち、
(1)嫌気主体であるが故に、スカムが発生し、悪臭がする。
(2)嫌気主体であるため、有機物除去率が低く、次工程の好気処理に負荷がかかってしまう。また、好気処理に負荷がかかるため、高度処理水が得られにくい。
(3)嫌気主体であるため、有機物分解速度が遅い。有機物分解速度が遅いため、流入有機物が処理槽内に堆積しやすい。このため、処理槽内に有機物が堆積すると定期的に汚泥引き抜き作業が必要となる。
 また、引抜き余剰汚泥は、処理場に搬入されたのち、再処理され、焼却、あるいは埋め立てられる。また、引抜き余剰汚泥の一部は堆肥化される。いずれの処理にも多大なエネルギーとコストが掛けられている。
 本発明は、このような事情に鑑みてなされたものであり、スカムおよび悪臭の発生、および一次処理槽内における流入有機物の堆積を抑制するとともに、有機物分解速度および有機物除去率を高め、高度処理水を得ながら、かつ、生成汚泥を直接土壌還元することができる汚泥に変成する家庭用浄化槽における一次処理方法を提供することを目的とする。
 (1)上記の目的を達成するために、本発明は、以下のような手段を講じた。すなわち、本発明の水処理方法は、浸漬型透明円筒を介して、家庭用浄化槽内部に光を照射させ、通性嫌気条件下で一次処理を行なう水処理方法であって、単一の処理槽内に汚水を流入させる工程と、通性嫌気性微生物資材を前記処理槽に投入する工程と、前記処理槽内を連続的または間欠的に攪拌する工程と、を少なくとも含むことを特徴としている。
 このように、単一の処理槽内に汚水を流入させ、通性嫌気性微生物資材を処理槽に投入し、処理槽内を連続的または間欠的に攪拌する。汚泥を他槽へ移流させない仕組みを持つ単一の処理槽内は、通性嫌気性微生物が活動しやすい微好気の環境を常時保つことが可能となる。その結果、嫌気主体のように、スカムおよび悪臭が発生することがなくなる。また、通性嫌気性であるため、嫌気主体よりも有機物分解速度が速く、且つ汚泥が堆積しにくい。このため、嫌気主体よりも有機物除去率が高く、高度処理水を得ることが可能となる。さらに、浸漬型透明円筒を介して、家庭用浄化槽内部に光を照射させて生成された汚泥は、余剰汚泥として水処理系外に搬出された際、光源の元で静置をすると光合成細菌群が活性化し、1~2週間で赤色化してくる性質を持つ汚泥に変成されることが可能となる。
 また、本発明の水処理方法において、前記通性嫌気性微生物資材は、乳酸菌、酵母菌、糸状菌、放線菌の少なくとも2つを含む通性嫌気性の微生物を複合した粉状、固形または液状の資材である。本発明では、この通性嫌気性微生物資材を、家庭用浄化槽に、年1回投入することを特徴としている。
 この構成により、嫌気主体ではなく、浸漬型透明円筒を介して、家庭用浄化槽内部に光を照射させて、通性嫌気条件下で水処理を行なう。光照射の下で生成された汚泥は、余剰汚泥として水処理系外に搬出された際、光源の元で静置をすると光合成細菌群が活性化し、1~2週間で赤色化してくる性質を持つ汚泥に変成されることが可能となる。
 また、本発明の水処理方法において、前記処理槽は、汚水および通性嫌気性微生物資材を攪拌する攪拌槽と、前記攪拌後に固体と液体とを分離する沈降槽とから構成されており、前記沈降槽で分離された固体を、重力を介して前記攪拌槽に戻すことで、生成汚泥を他槽へ移流させない仕組みであることを特徴としている。
 このように、攪拌槽において、曝気ではなく攪拌を行なうので、攪拌槽内を微好気の環境に保つことが可能となる。また、沈降槽で分離された固体を、重力を介して攪拌槽に戻すので、攪拌槽に戻った菌体によって攪拌槽内の菌密度が流入する有機物よりも高くなり、有機物の分解を速めることが可能となる。その結果、嫌気主体よりも有機物除去率が高く、高度処理水を得ることが可能となる。さらに、嫌気主体のように、スカムおよび悪臭が発生することがなくなる。また、単一槽での菌密度の高さおよび他槽へ汚泥を移流させない環境下では、その処理環境に変動を与えないことから、通性嫌気性条件を常時維持することになる。このため、浸漬型透明円筒を介した光照射の下で生成された汚泥は、余剰汚泥として水処理系外に搬出された際、光源の元で静置をすると光合成細菌群が活性化し、1~2週間で赤色化してくる性質を持つ汚泥に変成されることを可能とする。
 (2)また、本発明の水処理方法において生成された汚泥は、余剰汚泥として水処理系外に搬出された際、光源の元で静置をすると光合成細菌群が活性化し、赤色化してくる。光合成細菌群が優先化し赤色化した汚泥は腐敗菌を抑制する為、水処理系外に搬出されても、作物生育に障害を与えず、オンサイトで土壌還元ができることを特徴としている。
 本発明によれば、一次処理槽内を、通性嫌気性微生物が活動しやすい微好気の環境に常時保つことが可能となる。その結果、嫌気主体のように、スカムおよび悪臭が発生することがなくなる。また、通性嫌気性であるため、嫌気主体よりも有機物分解速度が速いことから、有機物除去率が高く、高度処理水を得ることが可能となる。さらに、浸漬型透明円筒を介した光照射の下で生成された汚泥は、余剰汚泥として水処理系外に搬出された際、光源の元で静置をすると光合成細菌群が活性化し、1~2週間で赤色化してくる性質を持つ汚泥に変成される。光合成細菌群が優先化し赤色化した汚泥は腐敗菌を抑制する為、水処理系外に搬出されても、作物生育に障害を与えず、オンサイトで土壌還元ができる。その結果、余剰汚泥処理費が削減できる。なお、水処理過程において、赤色化する性質を持つ汚泥に変成されたか否かの確認は、試料汚泥を透明瓶に汲み、光源の元で3~7日静置すると、表層に赤とピンクの二重層が出現することで確認できる。
本実施形態に係る水処理方法の概要を示す図である。 第1の実施形態に係る一次処理槽2の概略構成を示す図である。 本実施形態に係る一次処理方法と、従来の一次処理方法の効果の比較例を示す図である。 余剰汚泥処理方法の概要を示す図である。 汚泥処理槽2-2と熟成槽2-3の概略構成を示す図である。
1 水処理施設
2 一次処理槽
2a 攪拌槽
2b 沈降槽
2c 傾斜部
2d 仕切板
2e 処理水取出し口
2f 光源および浸漬型底部密閉透明円筒
 (第1の実施形態)
 本発明に係る水処理方法では、浸漬型透明円筒内を介した光照射の下で、単一の一次処理槽内を、乳酸菌、酵母菌、糸状菌、放線菌の少なくとも2つを含む通性嫌気性の微生物が最も活動しやすい微好気の環境を常時保つことができるように、生成汚泥を他槽に移流させない仕組みを構築することによって、これらの通性嫌気性の微生物主体の分解を促進させる。これにより、悪臭やスカム発生を抑制しながら浄化の高度化を図り、さらに、光照射の下で生成された汚泥は、余剰汚泥として水処理系外に搬出された際、光源の元で静置をすると光合成細菌群が活性化し、1~2週間で赤色化してくる性質を持つ汚泥に変成される。以下、本発明の実施形態について、図面を参照しながら説明する。
 図1は、本実施形態に係る水処理方法の概要を示す図である。水処理施設1は、処理槽2を備えており、処理槽2は、後述する攪拌槽と沈降槽とを備えている。本実施形態に係る水処理方法では、まず、光照射の下で処理槽2内に汚水を流入させる。次に、通性嫌気性微生物資材を処理槽2に投入する。この通性嫌気性微生物資材は、乳酸菌、酵母菌、糸状菌、放線菌の少なくとも2つを含む通性嫌気性の微生物を複合した粉状、固形または液状の資材である。次に、処理槽2内を連続的または間欠的に攪拌する。そして、処理水を得る。
 従来の水処理技術においても、通性嫌気性微生物の培養液等が利用されている。しかし、従来の水処理技術では、有機物分解に係わる微生物を多様化する目的が主であり、槽内を通性嫌気性菌主体の生成汚泥に変成させる目的は持たない。また、培養液等は連続投入や間欠投入継続が必然となっている。本実施形態による水処理方法によれば、光合成細菌群活性化の下地をつくる為、処理槽内を通性嫌気性菌主体の生成汚泥に変成誘導することが必然であり、投入の意図が大きく異なる。また、資材投入は年1回にすることができる。
 図2は、処理槽2の概略構成を示す図である。処理槽2は、汚水および通性嫌気性微生物資材を攪拌する攪拌槽2aと、攪拌後に固体と液体とを分離する沈降槽2bとから構成されている。攪拌槽2aではエアレーション、回転羽、攪拌板等を用いて流入する有機物を連続的または間欠的に攪拌する。また、傾斜部2cは、沈降槽2bで分離された固体を、重力を介して攪拌槽2aに戻す機能を果たすものである。仕切り板2dは、処理槽2を攪拌槽2aと沈降槽2bとに分ける。このように処理された水は、処理水として取り出し口2eから取り出される。
 このように、攪拌槽2aにおいて、曝気ではなく攪拌を行なうので、攪拌槽2a内を微好気の環境に保つことが可能となる。また、沈降槽2bで分離された固体を、重力を介して攪拌槽2aに戻すので、攪拌槽2aに戻った菌体によって攪拌槽2a内の菌密度が流入する有機物よりも高くなり、有機物の分解を速めることが可能となる。その結果、有機物の分解速度が高まると共に、嫌気主体よりも有機物除去率が高く、高度処理水を得ることが可能となる。また、嫌気主体のように、スカムおよび悪臭を発生することがなくなる。
 従来の水処理技術において、家庭用浄化槽の一次処理では、嫌気分解が用いられていた。しかし、嫌気分解は有機物の分解速度が遅く、スカムや悪臭が発生していた。本実施形態に係る水処理方法では、通性嫌気性微生物を用いて汚水を攪拌し、微好気状態とすることによって、スカムおよび悪臭の発生を抑制することができる。
 また、図2に示したように、同一槽内に攪拌槽2aと沈降槽2bとを併せ持つ処理槽2に有機物(汚水)が流入すると、まず攪拌槽2aにおいて、固形物が分解され、沈降槽2bに移行する。しかし、沈降した残留固形物は、傾斜部2cによって、重力を介して再び攪拌槽2aに戻ることとなる。これにより、処理槽2内の通性嫌気性微生物群によって分解されることが繰り返される。ここで、攪拌槽2aにおける菌密度を高めると共に、沈降槽2bにおける沈降を安定化させるために、同一の処理槽2内における攪拌槽2aと沈降槽2bとの仕切りバランスは、沈降槽2bの容量を攪拌槽2aの容量の2倍以上とし、最小攪拌で済ませるためには縦長構造が好ましい。
 従来の水処理技術においても、通性嫌気性処理は行われているが、その生成汚泥は好気槽や嫌気槽など各要素を持った処理槽へ移流される循環システムとなっており、生成汚泥が常時通性嫌気性の環境下にない。本実施形態による水処理方法によれば、生成汚泥は余剰汚泥として水処理系外に搬出された際、光源の元で静置をすると光合成細菌群が活性化し、1~2週間で赤色化してくる性質を持つ汚泥に変成誘導することが求められることから、その処理環境に変動を与えないよう、生成汚泥を移流させず、常時通性嫌気性環境が維持される単一槽での処理が必然であり、且つコンパクトにもなり、経済的にも有利である。
 また、沈降槽2bで固体と液体とが分離し、傾斜部2cによって攪拌槽2aに戻った菌体により、攪拌槽2a内部の滞留菌体密度は、流入する有機物の密度よりも高くなる。攪拌槽2a内部での菌体密度が高いことから、有機物の分解速度が速まり、一次処理でありながら、その有機物除去率が高くなる。これにより、本実施形態に係る水処理方法では、次の工程で好気処理を行なう場合は、その処理負荷を軽減することができる。
 なお、光照射は、底部を密閉した透明円筒を攪拌槽内に沈め、光源を透明円筒内または攪拌槽上部に配置して、透明円筒内を通して攪拌槽内部及び槽底部近くにまで光が届くようにし、菌体が常に光と接触できるようにする。この構成により、攪拌槽2a内は光源及び底部密閉透明円筒2fによって、万遍なく光照射を受けることになり、光合成細菌群活性化の下地をつくることになる。底部密閉透明円筒2fは、浸漬型透明円筒を構成する。
 従来の水処理技術において、光合成細菌と光の関係はすでに知られているところである。しかし、光が光合成細菌の活動に寄与することだけで、活性化の速度にまでは及んでいない。本実施形態による光照射方法によれば、生成汚泥は余剰汚泥として水処理系外に搬出された際、光源の元で静置をすると1~2週間で赤色化してくる性質を持つ汚泥に変成される。
 以上のように、本実施形態に係る一次処理方法によれば、(1)浸漬型透明円筒を介して光を照射しながら、常時通性嫌気条件下で水処理を行うこと。(2)浸漬型透明円筒を介して光を照射しながら、通性嫌気性主体の微生物資材を投入すること。(3)浸漬型透明円筒を介して光を照射しながら、その処理環境に変動を与えないよう、生成汚泥を移流させずに、単一槽で通性嫌気性環境を常時維持すること。これらの3つの条件を組み合わせることで、有機物除去率を高めて高度処理水を得るとともに、生成汚泥は余剰汚泥として水処理系外に搬出された際、光源の元で静置をすると光合成細菌群が活性化し、1~2週間で赤色化してくる性質を持つ汚泥に変成される。光合成細菌群が優先化し赤色化した汚泥は腐敗菌を抑制する為、水処理系外に搬出されても、作物生育に障害を与えず、オンサイトで土壌還元ができる。その結果、余剰汚泥処理費が削減できる。ちなみに、水処理過程において、赤色化する性質を持つ汚泥に変成されたか否かの確認は、試料汚泥を透明瓶に汲み、光源の元で3~7日静置すると、表層に赤とピンクの二重層が出現することで確認できる。
 従来の水処理技術においても、すでに生成した汚泥に発酵と称して光合成細菌を人為的に加えて使用する例や活性を促すといった例はある。しかし、本実施形態による水処理方法によれば、通常の水処理を行い、且つ高度処理水を得る中で、その生成汚泥中に自然発生的に光合成細菌群が活性化してくるものであり、且つ水処理系外に搬出静置後、1~2週間ですばやく出現して赤色化する等、従来技術と大きく異なるところである。
 図3は、本実施形態に係る一次処理方法と、従来の一次処理方法の効果の比較例を示す図である。なお、本発明は、以下の実施例に限定されない。
 実施例として、一次処理槽は次に示す大きさの攪拌槽および沈降槽を利用した。すなわち、幅70mm、奥行き141mm、高さ532mm(水面高さ462mm)、有効容量4.5Lの攪拌槽と、有効容量7.4Lの沈降槽を利用した。この攪拌槽では槽内の溶存酸素を0.4ppm前後とし、投入の通性嫌気性微生物資材量は処理槽容量比1,000ppm、汚水接触滞留時間12時間とした。なお、本実施例では、溶存酸素は、1ppm以下で、好ましくは、0.5ppmとする。
 上述した一次処理槽において、光照射の下6ヶ月間通性嫌気性分解を実施した。流入汚水濃度平均値は168ppm、処理水平均値は5.2ppmだったことから、有機物除去率は平均96.9%である。
 比較例として、従来の家庭用浄化槽での一次処理方法である嫌気ろ床槽では流入有機物濃度が200ppmの場合、その一次処理水は100~80ppm、その有機物除去率は50~60%である。このように、汚水の有機物除去において、本実施形態による汚水処理方法は、非常に優れていることがわかる。
 さらに、この光照射の下で生成した通性嫌気性主体の生成汚泥を、0.45L透明ガラス瓶に汲置きし、室温20℃条件下で、光源の方向は上部と側面、その光源の下で静置したところ、3日~7日で赤色出現した。その後、静置と攪拌を繰り返したところ、1ヶ月で濃赤色化した。ちなみに、汲置き直後の汚泥pHは7.96、1ヵ月後の濃赤色化の汚泥pHは7.32、と中性を保っていた。
 比較例として、この点につき、従来の水処理方法で生成した好気主体の生成汚泥を、同条件下で実験をしたところ、序々に緑色に変化し、1ヶ月後は暗緑色化した。汲置き直後の汚泥pHは6.94、1ヵ月後の暗緑色化の汚泥pHは8.76で、ややアルカリに移行していた。ちなみに、水処理における中性域とは、5.8~8.6である。
 さらに、実施例として、赤色化の過程を調べてみた。上述した攪拌槽において、生成した通性嫌気性の微汚泥を、0.45L透明ガラス瓶に汲置きし、周囲をアルミ箔で囲って光の侵入を防ぎ、光源からの光を上からの1方向として実験を行った。これは、実際のフィールドでの埋設状態時を想定したものである。
 その結果、静置時間帯において、汚泥界面直下2~3cmが赤色移行し、その下に0.5cm幅のピンク帯層が出現、その下層は赤色前の汚泥色であった。これを攪拌時間帯に混ぜあわせる。この静置と攪拌を繰り返すことで、全体が序々に赤色化されてくることがわかった。
 さらに、実施例として、0.45L透明ガラス瓶の蓋を全開した試料と全閉した試料を作製し、赤色化が紅色非硫黄細菌か、紅色硫黄細菌によるものかの確認をしたところ、いずれも同規模で赤色化した。本実施形態による汚泥変成は、静置後の環境下に係らず、いずれも赤色出現することがわかった。ちなみに、赤色化は光合成細菌の細胞内に含有されるカロテノイドの蓄積により、赤色ないし褐色を呈することで、目に見える形として出現するものである。
 さらに、実施例として、赤色維持の確認のため、4ヶ月間追跡実験をした。上述した一次処理槽において、生成した通性嫌気性汚泥を、透明プラスチックケースに3L汲置きし、攪拌せず、常温静置を続けたところ、4日目で表層白い菌糸発生、8日目で表層赤色化、1ヶ月で表層濃赤色化し、表層淡赤色に移行しながら4ヶ月経過した。ちなみに、汲置き直後の汚泥pHは7.72、4ヶ月後の淡赤色汚泥pHは上澄み液8.01、汚泥層8.03、と中性を保っていた。
 比較例として、この点につき、従来の水処理方法で生成した好気主体の微生物汚泥を、同条件下で実験をしたところ、1ヶ月後は表層緑色化、2ヶ月後以降は表層暗緑色化のまま4ヶ月経過した。ちなみに、汲置き直後の汚泥pHは6.92、4ヶ月後の暗緑色汚泥pHは上澄み液9.95、汚泥層8.80、とアルカリに移行していた。
 さらに、実施例として、1ヶ月熟成した濃赤色汚泥を土壌還元できるかを実験した。土表面積50平方cmの丸プランターに小松菜の種を撒いたのち、濃赤色汚泥0.45Lで土表面を覆った。1週間後31個の発芽を確認し、1ヶ月後は葉丈10cmに成長したことから、濃赤色汚泥は土壌還元時に作物の発芽に影響しないことがわかった。
 さらに、実施例として、1ヶ月熟成した濃赤色汚泥が、成長途中の作物がある土壌に還元できるかを実験した。上述した小松菜の成長した丸プランターを用いて、発芽から2ヶ月後、葉丈19.5cmに成長した小松菜に、1ヶ月熟成した濃赤色汚泥0.45Lを、茎部が浸るほど土表面に撒いた。2週間後の葉丈は25cmに成長したことから、濃赤色汚泥は土壌還元時に作物の成長に影響しないことがわかった。ちなみに、森の土壌の表層部10~15cmは、光合成細菌を含む通性嫌気性微生物の住みかといわれている。
 さらに、実施例として、1ヶ月熟成した濃赤色汚泥が、作物の結実に障害を与えるか否かを実験した。無施肥および無処理の土壌各7Lを用意し、A区を対照区(追肥なし)とし、B区を赤色汚泥区(実験期間投入赤色汚泥0.45L×7回=合計3.15L投入)として、138日間ミニトマトの生育比較実験をした。結果、B区の赤色汚泥区はA区の対照区と比較して、茎丈比較で2倍増、収穫累計個数比較で4.1倍増、収穫累計重量比較で5.5倍増であったことから、濃赤色汚泥は作物の結実に障害を与えないばかりか、生育促進に寄与することがわかった。
 (第2の実施形態)
 本発明は、余剰汚泥の処理について適用することも可能である。すなわち、この汚泥処理方法では、浸漬型透明円筒内を介した光照射の下、バッチ投入した余剰汚泥に栄養分としての汚水を連続的に加えた汚泥処理槽内を、乳酸菌、酵母菌、糸状菌、放線菌の少なくとも2つを含む通性嫌気性の微生物が最も活動しやすい微好気の環境を均一に保つことによって、通性嫌気性菌主体の微生物汚泥に変成させる。これにより、系外に搬出されても悪臭を放すことがなくなる。さらに、熟成槽に導出された通性嫌気性菌主体の微生物汚泥は、光源の下で静置と攪拌とを繰り返すことにより、光合成細菌を増殖させ、赤色化したのち、土壌に直接還元する。
 図4は、上記汚泥処理方法の概要を示す図である。汚泥処理施設2-1は、汚泥処理槽2-2と熟成槽2-3とを備えている。本実施形態に係る汚泥処理方法では、まず、汚泥処理槽2-2内に余剰汚泥をバッチ投入し、栄養分としての汚水を連続流入させる。次に通性嫌気性資材を汚泥処理槽2-2に投入する。この通性嫌気性資材は、乳酸菌、酵母菌、糸状菌、放線菌の少なくとも2つを含む通性嫌気性の微生物を複合した粉状、固形または液状の資材である。
 次に、汚泥処理槽2-2内を連続または間欠に攪拌する。そして、通性嫌気性菌主体の微生物汚泥と処理水を得る。さらに、通性嫌気性菌主体の微生物汚泥は熟成槽2-3に導出される。導出された通性嫌気性菌主体の微生物汚泥は熟成槽2-3内で赤色化される。
 図5は、汚泥処理槽2-2と熟成槽2-3の概略構成を示す図である。汚泥処理槽2-2は余剰汚泥、栄養分としての汚水、ならびに通性嫌気性微生物資材を攪拌する攪拌槽2-2aと攪拌槽2-2a内に浸漬した光照射用底部密閉透明円筒2-2fと攪拌後に固体と液体とを分離する沈降槽2-2bとから構成されている。攪拌槽2-2aではエアレーション、回転羽、攪拌板等を用いて流入する有機物を連続的または間欠的に攪拌する。仕切り板2-2cは汚泥処理槽2-2を攪拌槽2-2aと沈降槽2-2bとに分ける。
 このように処理された水は、処理水として取出し口2-2dから取り出される。また、攪拌槽2-2a内で生成した通性嫌気性菌主体の微生物汚泥は排出口2-2eから熟成槽2-3に導かれる。熟成槽2-3では光源2-3aの下で静置と攪拌を繰返す。
 このように、攪拌槽2-2aにおいて、浸漬型透明円筒2-2f内を介した光照射の下、曝気ではなく攪拌を行なうので、攪拌槽2-2a内は微好気の環境を均一に保つことが可能となる。これにより、系外に搬出されても悪臭を放すことのない通性嫌気性菌主体の微生物汚泥に変成することができる。また、この通性嫌気性菌主体の微生物汚泥を熟成槽2-3に導いたのち、光源2-3aの下で静置と攪拌を繰り返す。これにより、通性嫌気性微生物汚泥群の中の光合成細菌の増殖が促進されることから、赤色化され、土壌に直接還元することが可能となる。
 従来の水処理技術においては、曝気による好気処理が用いられている。しかし、好気処理で生成した活性汚泥は、余剰汚泥として系外に搬出されると、時間経過とともに、その生息環境を失い、黒灰色の腐敗症状を呈し、悪臭を放していた。本実施形態に係る汚泥処理方法では、好気処理で生成した余剰汚泥をバッチ投入し、通性嫌気性微生物資材を用いて少量の栄養分としての汚水を連続投入しながら攪拌し、微好気状態とすることによって、通性嫌気性菌主体の微生物汚泥に変成し、系外に搬出しても、悪臭の発生を抑制できる。
 また、従来の水処理技術で行なわれていた余剰汚泥処理は、余剰汚泥としての活性汚泥を汚泥貯留槽に貯留後、バギューム車によって、処理場に搬出し、エネルギーおよびコストをかけて焼却、埋立て、一部堆肥化されていた。本実施形態に係る余剰汚泥処理によれば、余剰汚泥を通性嫌気性菌主体の微生物汚泥に変成したのち、熟成槽に導出し、光源の下で静置および攪拌を繰り返す。これにより、通性嫌気性微生物汚泥群の中の光合成細菌の増殖が促進されることから、赤色化され、土壌に直接還元することが可能となる。

Claims (2)

  1.  家庭用浄化槽に流入させた有機性排水の一次処理方法であって、
     前記家庭用浄化槽内部に設けられた浸漬型透明円筒を介して、前記家庭用浄化槽内部に光を照射し、常時通性嫌気条件下で前記有機性排水の処理を行なう工程と、
     前記浸漬型透明円筒を介して、前記家庭用浄化槽内部に光を照射しつつ、前記家庭用浄化槽に通性嫌気性主体の微生物資材を投入する工程と、
     前記浸漬型透明円筒を介して、前記家庭用浄化槽内部に光を照射しつつ、処理環境に変動を与えないよう生成汚泥を移流させずに、前記家庭用浄化槽内の通性嫌気性環境を維持する工程と、を含むことを特徴とする家庭用浄化槽における一次処理方法。
  2.  前記生成汚泥を系外に搬出する工程と、
     前記搬出した生成汚泥に対して、光を照射する工程と、を更に含むことを特徴とする請求項1記載の家庭用浄化槽における一次処理方法。
PCT/JP2011/054461 2011-02-28 2011-02-28 家庭用浄化槽における一次処理方法 WO2012117490A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013502068A JP5550780B2 (ja) 2011-02-28 2011-02-28 家庭用浄化槽における一次処理方法
PCT/JP2011/054461 WO2012117490A1 (ja) 2011-02-28 2011-02-28 家庭用浄化槽における一次処理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/054461 WO2012117490A1 (ja) 2011-02-28 2011-02-28 家庭用浄化槽における一次処理方法

Publications (1)

Publication Number Publication Date
WO2012117490A1 true WO2012117490A1 (ja) 2012-09-07

Family

ID=46757458

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/054461 WO2012117490A1 (ja) 2011-02-28 2011-02-28 家庭用浄化槽における一次処理方法

Country Status (2)

Country Link
JP (1) JP5550780B2 (ja)
WO (1) WO2012117490A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102436828B1 (ko) * 2021-04-19 2022-08-26 주식회사 부강테크 조류 그래뉼을 이용한 하·폐수 처리장치

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6438200A (en) * 1987-08-05 1989-02-08 Mitsui Shipbuilding Eng Treatment of sludge
JPH04166076A (ja) * 1990-10-26 1992-06-11 Fuji Electric Co Ltd 光合成リアクターシステム
JPH04305295A (ja) * 1991-04-03 1992-10-28 Denka Consult & Eng Co Ltd 有機性酸性廃水の生物処理方法及び装置
JPH09314165A (ja) * 1996-05-23 1997-12-09 Denka Consult & Eng Co Ltd 有機性物質含有廃水の処理方法
JP2000153292A (ja) * 1998-09-14 2000-06-06 Agency Of Ind Science & Technol 光を利用した有機性廃水及び/又は有機性廃棄物の嫌気的消化方法及び光合成細菌の生産方法
JP2001232388A (ja) * 2000-02-22 2001-08-28 Sumitomo Heavy Ind Ltd 廃液処理方法及び装置
JP2002177984A (ja) * 2000-12-12 2002-06-25 Yoshiki Taki 畜産排水の処理法
JP2002239591A (ja) * 2001-02-15 2002-08-27 Shimizu Masaharu 循環型水洗トイレの汚水処理法
JP2003053309A (ja) * 2001-08-22 2003-02-25 National Institute Of Advanced Industrial & Technology 有機性固形廃棄物の処理方法
JP2003211183A (ja) * 2002-01-29 2003-07-29 Yasutoshi Takashima 雨水などの浄水装置
JP2004358429A (ja) * 2003-06-06 2004-12-24 National Institute Of Advanced Industrial & Technology 汚泥処理装置および汚泥処理方法
JP2008272721A (ja) * 2007-04-25 2008-11-13 Toshikazu Shimodaira バイオ方式(無薬注・無曝気)水処理システム

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS519032B2 (ja) * 1972-07-10 1976-03-23
JPS61195399U (ja) * 1985-05-24 1986-12-05
FR2698350B1 (fr) * 1992-11-23 1994-12-23 Commissariat Energie Atomique Dispositif d'épuration d'un effluent liquide chargé en polluants et procédé d'épuration de cet effluent.
JPH07303898A (ja) * 1994-05-16 1995-11-21 Toshiba Corp 排水処理施設
JP2949211B2 (ja) * 1994-09-16 1999-09-13 工業技術院長 環境蘇生加速方法および装置
US6177498B1 (en) * 1999-02-19 2001-01-23 Hewlett-Packard Company Ink-jet ink compositions comprising a latex polymer and diol additives
JP2012035146A (ja) * 2008-12-05 2012-02-23 Shigeru Katayori 水処理方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6438200A (en) * 1987-08-05 1989-02-08 Mitsui Shipbuilding Eng Treatment of sludge
JPH04166076A (ja) * 1990-10-26 1992-06-11 Fuji Electric Co Ltd 光合成リアクターシステム
JPH04305295A (ja) * 1991-04-03 1992-10-28 Denka Consult & Eng Co Ltd 有機性酸性廃水の生物処理方法及び装置
JPH09314165A (ja) * 1996-05-23 1997-12-09 Denka Consult & Eng Co Ltd 有機性物質含有廃水の処理方法
JP2000153292A (ja) * 1998-09-14 2000-06-06 Agency Of Ind Science & Technol 光を利用した有機性廃水及び/又は有機性廃棄物の嫌気的消化方法及び光合成細菌の生産方法
JP2001232388A (ja) * 2000-02-22 2001-08-28 Sumitomo Heavy Ind Ltd 廃液処理方法及び装置
JP2002177984A (ja) * 2000-12-12 2002-06-25 Yoshiki Taki 畜産排水の処理法
JP2002239591A (ja) * 2001-02-15 2002-08-27 Shimizu Masaharu 循環型水洗トイレの汚水処理法
JP2003053309A (ja) * 2001-08-22 2003-02-25 National Institute Of Advanced Industrial & Technology 有機性固形廃棄物の処理方法
JP2003211183A (ja) * 2002-01-29 2003-07-29 Yasutoshi Takashima 雨水などの浄水装置
JP2004358429A (ja) * 2003-06-06 2004-12-24 National Institute Of Advanced Industrial & Technology 汚泥処理装置および汚泥処理方法
JP2008272721A (ja) * 2007-04-25 2008-11-13 Toshikazu Shimodaira バイオ方式(無薬注・無曝気)水処理システム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102436828B1 (ko) * 2021-04-19 2022-08-26 주식회사 부강테크 조류 그래뉼을 이용한 하·폐수 처리장치
WO2022225300A1 (ko) * 2021-04-19 2022-10-27 주식회사 부강테크 조류 그래뉼을 이용한 하·폐수 처리장치

Also Published As

Publication number Publication date
JPWO2012117490A1 (ja) 2014-07-07
JP5550780B2 (ja) 2014-07-16

Similar Documents

Publication Publication Date Title
Zhao et al. Evaluation of revolving algae biofilm reactors for nutrients and metals removal from sludge thickening supernatant in a municipal wastewater treatment facility
Tang et al. Enhanced nitrogen and phosphorus removal from domestic wastewater via algae-assisted sequencing batch biofilm reactor
Das et al. Microalgal nutrients recycling from the primary effluent of municipal wastewater and use of the produced biomass as bio-fertilizer
Franchino et al. Growth of three microalgae strains and nutrient removal from an agro-zootechnical digestate
Karya et al. Photo-oxygenation to support nitrification in an algal–bacterial consortium treating artificial wastewater
JP2015167912A (ja) 畜産糞尿処理システム
KR20160128311A (ko) 폐수 처리 및 바이오에너지 공급원료 생성을 위한 조류-슬러지 과립
KR20170105950A (ko) 내부공기 순환 및 간헐포기를 통한 고온소화 액비 제조 장치 및 그 제조 방법
CN106587356B (zh) 生物膜制备方法
CN106430820A (zh) 一种高氨氮养猪沼液的生物处理装置及其工艺
JP2009500152A (ja) バイオ廃棄物処理
CN103648987B (zh) 用于分解有机化合物的系统和其操作方法
Randrianarison et al. Microalgae plant (Chlorella sp.) for wastewater treatment and energy production
JP2006051493A (ja) 下水または有機性廃水スラッジ処理システムおよび処理方法
CN105060648B (zh) 工厂化循环水鱼类养殖脱氮零排放系统
KR101902337B1 (ko) 가축분뇨의 액체비료화 설비 시스템 및 이를 이용한 가축분뇨의 액체비료화 가공방법
KR101406327B1 (ko) 음식물류 폐기물의 탈리액인 음폐수를 이용한 토양개량제 제조 방법 및 이 방법에 의해 제조된 토양개량제
JP2018183763A (ja) 有機性廃水の処理法とその装置
JP5550780B2 (ja) 家庭用浄化槽における一次処理方法
KR100850677B1 (ko) 하수 또는 유기성 폐수의 슬러지 처리방법
JP2008200637A (ja) 水処理施設、水処理設備、並びに水処理方法
di Biase et al. Controlling biofilm retention time in an A-stage high-rate moving bed biofilm reactor for organic carbon redirection
KR20110055333A (ko) 유기성 폐기물의 폐수 처리용 조성물, 이를 이용한 유기성 폐기물의 폐수 처리방법 및 이에 의해 제조된 양액
JP2010240635A (ja) 複合発酵法による排水と海水の混合水の淡水化方法
RU2644013C2 (ru) Способ получения экологически чистых минералоорганических удобрений при метановом брожении на биогазовых станциях

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11859923

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013502068

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11859923

Country of ref document: EP

Kind code of ref document: A1