WO2012117143A1 - Sistema y procedimiento de moldeo de piezas con moldes autoportantes - Google Patents

Sistema y procedimiento de moldeo de piezas con moldes autoportantes Download PDF

Info

Publication number
WO2012117143A1
WO2012117143A1 PCT/ES2012/070128 ES2012070128W WO2012117143A1 WO 2012117143 A1 WO2012117143 A1 WO 2012117143A1 ES 2012070128 W ES2012070128 W ES 2012070128W WO 2012117143 A1 WO2012117143 A1 WO 2012117143A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
self
supporting
parts
molding
Prior art date
Application number
PCT/ES2012/070128
Other languages
English (en)
French (fr)
Inventor
Javier Antonio Vazquez Sanchez
Jose Antonio De Saja Saez
Miguel Angel Rodriguez Perez
Javier Escudero Arconada
Original Assignee
Abn Pipe Systems, S.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Abn Pipe Systems, S.L. filed Critical Abn Pipe Systems, S.L.
Publication of WO2012117143A1 publication Critical patent/WO2012117143A1/es

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/34Moulds or cores; Details thereof or accessories therefor movable, e.g. to or from the moulding station
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/36Feeding the material to be shaped
    • B29C44/38Feeding the material to be shaped into a closed space, i.e. to make articles of definite length
    • B29C44/388Feeding the material to be shaped into a closed space, i.e. to make articles of definite length into moving moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/03Injection moulding apparatus
    • B29C45/04Injection moulding apparatus using movable moulds or mould halves

Definitions

  • the invention falls within the field of manufacturing systems for parts of various polymeric materials and other additives with different characteristics such as compact parts, structural parts of reduced density or parts of reduced density.
  • a traditional injection molding system consists of three main modules: the molten polymer injection or plasticization unit, the closing unit, which supports the mold and the part opening, closing and ejection system; and finally, the control unit of all the parameters involved in the process. It is important to emphasize that in this technology molds that are not self-supporting are used and that the temperatures of the mold are generally clearly below the softening temperature of the raw materials used.
  • the process of obtaining an injected plastic part follows an order of operations that is repeated in each of the pieces. This process is called the injection cycle, and is formed by the following stages: mold closure, plasticization or dosing phase, plastic injection (filling and maintenance), cooling, and finally mold opening and ejection of the part . Of all the previous stages it is the cooling stage that occupies the longest time within the cycle.
  • injection molding is a fully developed technique with sufficiently known advantages, although it has some drawbacks from the point of view of the process and the realization of certain types of parts. These disadvantages are discussed below.
  • the pieces obtained by injection molding usually have low surface quality, have welding lines, plugs and are subject to high thermal contractions, which is due to the fact that the piece has been subjected to thermal and mechanical stress.
  • the maximum volume of parts that can be manufactured using this technology is limited to about 10 liters due to the high pressures required to fill the molds.
  • the co-injection system (US2009152768 (A1), US200301283 (A1)) has independent injection systems, allowing simultaneous use of aesthetic and rectified polymeric materials. It was designed as an alternative to the structural foaming process. Unlike other multicomponent processes, in co-injection one of the materials can encapsulate the other. This process provides good surface finishes, cost reduction and in some cases cellular structural parts. The viscosity and melting temperature of both components is the fundamental control parameter for the process to be effective. As disadvantages, referring to the equipment, it involves a large investment and amortization of molds, and is restricted to mass runs.
  • the Heat and Cool system (JP 60 111335 A, US4963312, US6451403) is based on an exhaustive control of the mold temperature, performing a thermal cycling of the mold that heats and cools in each cycle to provide a better surface finish.
  • the pieces obtained have high brightness and resistance, lower internal stresses, and reduced joining and flow lines.
  • this system requires a large investment in molds due to the high mechanical performance required, in addition to the incorporation of a heating and cooling system into the mold and an increase in cycle times compared to the conventional process. At present, this process is usually restricted to the manufacture of parts for the automotive and electronic sectors.
  • ⁇ SAIM Gas-assisted Injection (ES 2253281 T3, WO03091007A1, DE4435012 (C1)) molds plastic parts with hollow sections inside, thus reducing the amount of raw material, shorter cycles and reducing thermal stress, improving the surface finish and reducing the closing forces of the system.
  • This system is not valid for manufacturing. of all types of injected parts and involves a large initial investment, precautions for work with inert gas under pressure, greater specialization and greater number of variables in the process of difficult control.
  • the thickness of the piece with hollow section is not predictable or uniform, although it is reproducible.
  • ⁇ WIT or WAIM A variant of the previous system is ia Water-assisted Injection (WIT) (DE 19518963 A, US 6896844, WO2007036037), in which the functions performed by the gas in the previous system are replaced by pressurized water with The goal of reducing the cooling time.
  • WIT Water-assisted Injection
  • This system improves the properties of the piece obtained, the cycle time and the thickness control, comparing with the GAIM system, although it does not give solution to the high cost of the system and the molds, its possible corrosion by the introduction into the system of water and the difficult control of the process parameters.
  • Mucell technology ⁇ (US6169122, US6231942, US6235380, etc.) implements its own system for controlling the cellular structure of the part with advantages in the manufacturing process and in the cost of equipment, but is only available for the manufacture of cellular pieces of different plastic materials and of limited dimensions, with low weight reductions (usually not exceeding 25% weight reduction) and poor surface finishes.
  • the invention relates to a molding system with self-supporting molds comprising:
  • a feeding equipment for molding material in a self-supporting mold comprising a plurality of feeding means of different compounds for introduction into self-supporting molds such as hoppers, extrusion units or injection units.
  • an actuator of a heating element of the self-supporting mold located next to the actuator itself or in the self-supporting mold itself, configured for the initial tempering of a self-supporting mold, and to reach the thermal cycle necessary to achieve the filling of the self-supporting moide.
  • the heating element can be a fixed furnace system at different temperatures located in the heating module itself, which provides the appropriate manufacturing conditions for any part of the system, and is operated by the actuator of the heating element, or it can be an element mobile heater located in the self-supporting mold itself that is operated by the actuator located in the heating module.
  • a cooling equipment of the self-supporting mold filled with material configured to cool the self-supporting mold, by means of air, water or other means, until the temperature of the self-supporting mold decreases to values that allow the mold to open without deteriorating the surface shape and quality of the piece
  • a demoulding equipment of the molded part in the self-supporting mold all of them being independent equipment installed in work modules through which the self-supporting mold transits by means of displacement selected between manual and automatic, meaning work module equipment or set of equipment grouped together in a same place for the realization of a specific work on the supporting mold, such as heating (heating module), feeding (feeding module), heating and feeding (heating and feeding module), cooling ( cooling modules), (demolding module) demolding ....
  • Certain materials may require pre-mixing and processing that could be done in a compounding line, in an internal mixer, in cold blending equipment, etc.
  • the feeding of the molds can be carried out with the raw material at temperatures above that of softening or with the raw materials in solid state.
  • Relative density is understood as the density of the final piece obtained divided by the density of the starting material in the process. It is a measure of the porosity of the manufactured part and therefore it is also a measure of the weight reduction achieved compared to a compact part.
  • Self-supporting mold is understood as the mold coupled system and its closing system.
  • the mold and its closing system are designed in such a way that they are able to withstand the internal pressures and temperatures to which they are subjected during the entire manufacturing process.
  • the self-supporting molds used in this The invention can go through the different modules of the process, in which the different manufacturing stages take place, these molds being watertight to the molten polymer.
  • the mold of this invention has an internal cavity in which the piece is to be manufactured.
  • the self-supporting mold has a cavity prior to the internal cavity of the mold that we will call a collector.
  • a collector Both, self-supporting mold and collector, by means of a suitable closing system form a self-supporting unit that can pass through the different stages of the manufacturing process being watertight to the molten polymer.
  • the purpose of the collector is to facilitate the filling of the mold.
  • the system can include:
  • the internal coating of the mold with materials capable of absorbing gases may be necessary, this process could be carried out at a stage prior to feeding of the mold or the mold could have been manufactured incorporating said coatings.
  • the method of molding parts with self-supporting molds used by the system described above comprises:
  • a step of filling a self-supporting mold comprising feeding the mold with molding material of the part and heating the self-supporting mold, being able to first heat the mold and then the feeding or first the feeding and then the heating of the mo!
  • the filling of the interior of the self-supporting mold can be carried out by feeding in the mold a polymeric material mixed with a chemical foaming agent capable of generating a gaseous phase, and the heating is carried out by raising the temperature above the decomposition temperature of said foaming agent, which expands the material that fills the mold.
  • a self-supporting mold with a collector can be used, so that at the filling stage the feeding can be carried out by introducing material! polymeric in the self-supporting mold and subsequent application of pressure inside the self-supporting mold through the collector by means of a foaming agent that expands by raising its temperature, or by other means such as with hydraulic pistons or by introducing steam, oil or water.
  • the families of parts obtained by the present invention can be classified into three main categories according to their density (p) and internal structure:
  • Pieces of reduced density (p piece «p starting material) with relative densities between 0.02 and 0.99
  • the system of manufacturing parts by stages using self-supporting molds involves a versatile process for the manufacture of parts of very different sizes, shapes, and chemical compositions with excellent surface quality, low internal stresses, with the possibility of manufacturing parts of reduced density using molds and low cost machinery.
  • the technology allows manufacturing several types of parts simultaneously and eliminates the need for mold assembly and calibration of the same inherent to traditional injection molding processes.
  • the system object of the invention is sustainable, the end of its useful life is not predictable because the forming elements are independent and replaceable,
  • the process is automated, the molds being coded so that the reading of the code of each one allows the direct application of the process parameters and the autonomous manufacture of each of the pieces.
  • the molds are autonomous, simple and self-supporting, assuming less investment in the process and access to a greater number of parts to be manufactured.
  • the system requires working pressures that are much lower than those of conventional injection.
  • the filling pressures of the self-supporting molds are always below 160 bars, being typically less than 50 bars.
  • the piece obtained has no plugs and welding lines
  • the material that composes the piece suffers less thermal stress, the working pressures are lower than those of the traditional process and the thermal contractions are better controlled.
  • the density of the manufactured part is reduced to 98% by weight.
  • the pieces can have macroscopic regions (several tens of cm 3 in volume) with different chemical compositions and densities. That is, for example, the same piece could be constituted by two or more areas made of different polymers, or different formulations and also with clearly different densities in two or more areas of the piece.
  • Pieces with solid skin structure-foamed core can be manufactured.
  • the global system is divided into different stations to perform each of the stages, the traffic between them can be done through an automaton.
  • the manufacturing conditions are reproducible.
  • FIG 1 shows scheme of the system of the invention.
  • Figure 2 shows a perspective view of a self-supporting mold with collector.
  • Figure 3 shows a scheme of a system option in which the procedure is cyclic.
  • the system of the invention of a preferred embodiment, as shown in Figure 1 comprises:
  • (1) of molding material in a self-supporting mold comprising at least one feeding station with feeding means of different compounds for introduction into the self-supporting molds,
  • a heating module (11) comprising a heating equipment (14) and an actuating equipment (2) of a heating element (14) of the self-supporting mold,
  • a cooling module (12) comprising a cooling equipment (3) of the self-supporting mold filled with material
  • a desmoid module (13) comprising a demoulding equipment (4) of the molded part in the self-supporting mold
  • the filling phase of the self-supporting mold of the molding process of the invention and the type of self-supporting mold to be used varies according to the type of part to be manufactured.
  • Certain parts, such as compact parts and structural parts of reduced density are manufactured using self-supporting molds comprising several pieces that give rise to a cavity inside (6), a collector (7) and a closure system (9) that ensures the tightness to the polymer during the mold filling process.
  • the manifold (7) is not necessary, since the mold is formed by a set of pieces that give rise to an internal cavity (6) and a closing system (9) that ensures that the mold is being a polymer throughout the process.
  • Figure 3 shows an alternative to Figure 1, which shows two possible paths for the mold in which the complete process circuit is closed allowing it to be a cyclic process.
  • foaming agent means that material that when it reaches a critical temperature, which we will call decomposition temperature, generates a gaseous phase. Said gas phase may allow the expansion of a second material into which the foaming agent has been previously introduced.
  • a first stage of filling a self-supporting mold (5) comprising a collecting system (7), which comprises heating the self-supporting mold, and the feeding, being able to be performed in reverse, first feed the mold and then heat it,
  • the filling of the mold is carried out by introducing into the self-supporting mold a polymeric material at temperatures above that of softening the material or in solid state and applying pressure inside the self-supporting mold through the manifold (7) so that the polymeric material introduced into the mold, in the first stage, be able to fill the internal volume thereof, by any of the following methods: ⁇
  • the quantity (volume) of material containing foaming agent and the. Amount (volume) of foaming agent is selected so that the cellular material remains inside the collector.
  • the pieces obtained through this process are compact and therefore do not have porosity. Its relative density is equal to 1.
  • the manufacturing process of structural parts of reduced density by means of the manufacturing system of the invention uses a self-supporting mold with a collecting system that is subjected to the following process:
  • a first stage of filling a self-supporting mold comprising a collector, comprising heating the self-supporting mold and feeding it, being able to first feed the mold and then heating or vice versa,
  • Filling is achieved by feeding a polymeric material in the mold at temperatures above that of softening the material or in a solid state and by feeding through the collector a material mixed with a foaming agent or a foaming agent.
  • the foaming agent allows, once heated above its decomposition temperature, to generate the necessary pressure to fill the mold.
  • the application of pressure inside the self-supporting mold through the manifold allows the polymeric material introduced into the mold to be able to fill the internal volume thereof.
  • the amount of material containing foaming agent and the amount of foaming agent are selected from so that the cellular material generated in the collector is able to be introduced into the piece giving rise to a piece with internal cellular structure and therefore with a controllable porosity. These pieces have relative densities in the range 0.02 to 0.99.
  • the manufacturing process of reduced density parts by means of the manufacturing system of the invention uses a self-supporting mold without a collecting system that is subjected to the following process:
  • the filling of the mold is carried out by introducing a polymeric material at temperatures above the softening of the material or solid state in the mold and a chemical foaming agent that is capable of generating a gaseous phase when the temperature rises above of the decomposition temperature of said agent. Said gas expands the material that fills the mold.
  • the pieces obtained through this process are cellular and therefore have porosity.
  • the relative density range attainable by this process is between 0.02 and 0.99.
  • the internal areas of the mold cavity in which it is desired to be obtained can be coated with a material capable of dissolving gas and thermally stable at temperatures greater than foaming.
  • a material capable of dissolving gas and thermally stable at temperatures greater than foaming are silicones, polysulfones or polytetrafluoroethylene (PTFE).
  • this can be achieved by introducing solid particles of a material capable of dissolving gas and stable at temperatures higher than the decomposition of the foaming agent in the mixture of raw materials used. To feed the mold.
  • the mold would be fed with different materials, each of them with different chemical compositions and / or quantities or type of foaming agents.
  • the piece During the filling phase the piece would be constituted by macroscopic regions of diverse chemical compositions and / or densities that could vary significantly from one area to another.
  • a practical application of the invention would be the manufacture of structural parts with dense skins and cell cores for which in the mold filling stage a self-supporting mold feeding is carried out in the feeding module, in three sub-stages:

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

Sistema y procedimiento de moldeo de piezas con moldes autoportantes (5) que comprende: - un equipo alimentador (1) de material de moldeo en un molde autoportante, que comprende una pluralidad de medios de alimentación de diferentes compuestos, - un equipo accionador (2) de un elemento calefactor (14) del molde autoportante, - un equipo enfriador (3) del molde autoportante lleno de material, y - un equipo desmoldeador (4) de la pieza moldeada en el molde autoportante, siendo todos ellos equipos independientes instalados en módulos de trabajo por los que transita el molde autoportante (5), de manera que el sistema permite fabricar piezas compactas, piezas estructurales de densidad reducida y piezas de densidad reducida.

Description

SISTEMA Y PROCEDIMIENTO DE MOLDEO DE PIEZAS CON MOLDES
AUTOPORTANTES
Campo de la invención
La invención se engloba dentro del campo de los sistemas de fabricación de piezas de diversos materiales poliméricos y otros aditivos con diferentes características como piezas compactas, piezas estructurales de densidad reducida o piezas de densidad reducida.
Antecedentes de la invención
La mayor parte de los precedentes de esta invención están relacionados con el moldeo por inyección, que es la tecnología más extendida para la fabricación de piezas de productos plásticos.
John Hyatt patentó en 1872 el primer sistema de inyección, compuesto por un pistón que contenía derivados de la celulosa fundidos en una cámara. Sin embargo, no es hasta 1928 cuando se atribuye a la compañía alemana Cellon-Werkw, la primera patente de una máquina de inyección moderna. Paralelamente, Beard y Delafield desarrollaron la técnica en Inglaterra, con los derechos de la patente inglesa para la compañía F.A. Hughes Ltd. Los sistemas anteriores funcionaban con aire comprimido, la extracción y parte de los controles eran manuales y carecían de sistemas de seguridad.
En 1932 se patentó la primera máquina de inyección operada por sistemas eléctricos (Eckert & Ziegler). Es en esta década cuando el polietileno (PE) y el policloruro de vinilo (PVC), materiales de alta producción y bajo coste, provocaron una revolución en el desarrollo de la maquinaria. Ya en 1956 se patentó el primer sistema de inyección mediante husillo en EEUU, esta aportación supone el cambio de mayor relevancia en el desarrollo de los sistemas inyectores. A partir de la década de los 80, las mejoras se enfocan a la automatización de los diseños, la eficacia y el control de los procesos.
Un sistema de moldeo por inyección tradicional está formado por tres módulos principales: la unidad de inyección o plastificación del polímero fundido, la unidad de cierre, que soporta el molde y el sistema de apertura, cierre y expulsión de la pieza; y por último, la unidad de control de todos los parámetros involucrados en el proceso. Es importante resaltar que en esta tecnología se usan moldes que no son autoportantes y que las temperaturas del molde son en general claramente inferiores a la temperatura de reblandecimiento de las materias primas utilizadas. El proceso de obtención de una pieza de plástico inyectada sigue un orden de operaciones que se repite en cada una de las piezas. Este proceso recibe el nombre de ciclo de inyección, y está formado por las siguientes etapas: cierre del molde, fase de plastificación o dosificación, inyección del plástico (llenado y mantenimiento), enfriamiento, y por último apertura del molde y expulsión de la pieza. De todas las etapas anteriores es la etapa de enfriamiento la que ocüpa el mayor tiempo dentro del ciclo.
Los diseños actuales de un sistema de moldeo por inyección están condicionados por las necesidades geométricas de las piezas y los diferentes polímeros involucrados. Generalmente se trata de disponer de sistemas rápidos de inyección, bajas temperaturas y un ciclo de moldeo corto que asegure menores costos de producción.
En resumen, el moldeo por inyección es una técnica completamente desarrollada de ventajas suficientemente conocidas, si bien presenta algunos inconvenientes desde el punto de vista del proceso y la realización de ciertos tipos de piezas. Se discuten a continuación dichas desventajas.
Para comenzar la fabricación de un tipo de pieza es necesario realizar un complicado montaje del molde en el equipo de inyección. Posteriormente, es necesario, preparar el sistema y calibrarlo, para comenzar la tirada de una sola serie de piezas. Dicha tirada debe ser lo suficientemente numerosa para que todo el proceso sea rentable. Adicionalmente, debido a las altas presiones de trabajo, los moldes utilizados son muy costosos, por lo que la inversión, en máquina y moldes, es muy elevada.
En segundo lugar, las piezas obtenidas mediante moldeo por inyección suelen presentar baja calidad superficial, presentan líneas de soldadura, rechupes y están sometidas a elevadas contracciones térmicas, lo que se debe a que la pieza ha sido sometida a estrés térmico y mecánico. Además el volumen máximo de las piezas fabricables mediante esta tecnología está limitado a unos 10 litros por las elevadas presiones necesarias para llenar los moldes. Por último, existen ciertas limitaciones en las materias primas que se usan. Por ejemplo, es necesario usar polímeros de baja viscosidad (elevado índice de fluidez) y no es posible emplear formulaciones con elevados cantidades de. refuerzos o cargas (en la práctica no se suelen usar cantidades de refuerzo superiores al 30% en peso) por el incremento de viscosidad que producen estos materiales y que dificulta el llenado del molde.
Podemos por tanto concluir que mediante el moldeo por inyección, es posible obtener piezas compactas de volúmenes inferiores a 10 litros asumiendo una elevada inversión inicial y un acabado superficial mejorable. El proceso sólo resulta rentable cuando el número de piezas fabricadas es muy elevado.
Durante las últimas décadas han surgido algunas tecnologías que introducen variantes importantes en el proceso tradicional de moldeo por inyección, con el objetivo de mejorar algunos de los inconvenientes de está técnica. A continuación se revisan los avances más destacados:
Coinvección: El sistema de coinyección ( US2009152768(A1), US200301283(A1 ) ) posee sistemas de inyección independientes, permitiendo el uso simultáneo de materiales poliméricos estéticos y rectclados. Se diseñó como alternativa al proceso estructural de espumado. A diferencia de otros procesos multicomponente, en la coinyección uno de los materiales puede encapsular al otro. Este proceso proporciona buenos acabados superficiales, reducción de coste y en algunos casos piezas estructurales celulares. La viscosidad y temperatura de fusión de ambos componentes es el parámetro de control fundamental para que el proceso sea eficaz. Como inconvenientes, referentes al equipamiento, supone una gran inversión y amortización de moldes, y está restringido a tiradas masivas.
Heat & Cool: El sistema Heat and Cool ( JP 60 111335 A, US4963312, US6451403) se basa en un control exhaustivo de la temperatura del molde, realizando un ciclado térmico del molde que se calienta y enfría en cada ciclo para proporcionar un mejor acabado superficial, Las piezas obtenidas presentan elevado brillo y resistencia, menores tensiones internas, y reducidas líneas de unión y de flujo. Nuevamente, este sistema requiere de una gran inversión en moldes por las altas prestaciones mecánicas requeridas, además de la incorporación de un sistema de calentamiento y enfriamiento ai molde y de un incremento de los tiempos de ciclo respecto al proceso convencional. En la actualidad este proceso suele estar restringido a la fabricación de piezas para los sectores de automoción y electrónico.
SAIM: La Inyección asistida por Gas (ES 2253281 T3, WO03091007A1, DE4435012 (C1)) moldea piezas plásticas con secciones huecas en su interior, consiguiendo así reducción en la cantidad de materia prima, ciclos más cortos y reducción del estrés térmico, mejorando el acabado superficial y reduciendo las fuerzas de cierre del sistema. Este sistema no es válido para la fabricación de todo tipo de piezas inyectadas y supone una gran inversión inicial, precauciones por el trabajo con gas inerte a presión, mayor especialización y mayor número de variables en el proceso de difícil control. Además, el espesor de la pieza con sección hueca no es predecible ni uniforme, aunque si es reproducible.
WIT o WAIM: Una variante del sistema anterior es ia Inyección asistida por Agua (WIT) (DE 19518963 A, US 6896844, WO2007036037), en la que se sutituye las funciones realizadas por el gas en el sistema previo por agua a presión con el objetivo de reducir el tiempo de enfriamiento. Este sistema mejora las propiedades de la pieza obtenida, el tiempo de ciclo y el control del espesor, comparando con el sistema GAIM, si bien no da solución al elevado coste del sistema y los moldes, su posible corrosión por la introducción en el sistema de agua y el difícil control de los parámetros del proceso.
MUCELL: Por último, la tecnología Mucell (US6169122, US6231942, US6235380, etc) implementa un sistema propio de control de la estructura celular de la pieza con ventajas en el proceso de fabricación y en el coste del equipamiento, pero sólo está disponible para la fabricación de piezas celulares de diferentes materiales plásticos y de dimensiones limitadas, con reducciones de peso bajas (no suelen superar e! 25% de reducción de peso) y pobres acabados superficiales.
En cuanto a otras tecnologías de fabricación independientes del moldeo por inyección, como pueden ser el moldeo por soplado, ei termoconformado, etc, no proporcionan la versatilidad suficiente para fabricar cualquier tipo de pieza, siendo sólo aplicables a algunas geometrías, tamaños y materiales.
Descripción de la invención
La invención se refiere a un sistema de moldeo con moldes autoportantes que comprende:
- un equipo alimentador de material de moldeo en un molde autoportante, que comprende una pluralidad de medios de alimentación de diferentes compuestos para su introducción en los moldes autoportantes como tolvas, unidades de extrusión o unidades de inyección.
- un equipo accionador de un elemento calefactor del molde autoportante, situado junto al propio accionador o en el propio molde autoportante, configurado para el atemperado inicial de un molde autoportante, y para alcanzar eí ciclo térmico necesario para conseguir el llenado del moide autoportante. El elemento calefactor puede ser un sistema de hornos fijo a diferentes temperaturas situado en el propio módulo de calentamiento, que proporcione las condiciones de fabricación apropiadas para cualquier pieza del sistema, y se accione por el equipo accionador del elemento calefactor, o puede ser un elemento calefactor móvil situado en el propio moldé autoportante que es accionado por el equipo accionador situado en el módulo de calentamiento.
- un equipo enfriador del molde autoportante lleno de material configurado para enfriar el molde autoportante, mediante aire, agua u otros medios, hasta disminuir la temperatura del molde autoportante a valores que permitan la apertura del molde sin deterioro de la forma y calidad superficial de la pieza, y - un equipo de desmoldeo de la pieza moldeada en el molde autoportante, siendo todos ellos equipos independientes instalados en módulos de trabajo por los que transita el molde autoportante por medios de desplazamiento seleccionados entre manuales y automáticos, entendiéndose por módulo de trabajo al equipo o conjunto de equipos agrupados en un mismo lugar para la realización de un trabajo específico sobre el molde portante, como calentamiento (módulo de calentamiento), alimentación (módulo de alimentación), calentamiento y alimentación (módulo de calentamiento y alimentación) , enfriamiento (módulos de enfriamiento), (módulo de desmoldeo) desmoldeo....
Ciertos materiales pueden requerir de un mezclado y procesado previo que podría realizarse en una línea de compounding, en un mezclador interno, en equipos para mezclado en frió (dry blending), etc. La alimentación de los moldes puede realizarse con la materia prima a temperaturas por encima de la de reblandecimiento o con las materias primas en estado sólido.
Se entiende por densidad relativa, la densidad de la pieza final obtenida dividida por la densidad del material de partida en el proceso. Es una medida de la porosidad de la pieza fabricada y por tanto es también una medida de la reducción de peso lograda frente a una pieza compacta.
Se entiende por molde autoportante al sistema acoplado de molde y sistema de cierre del mismo. El molde y su sistema de cierre se diseñan de forma que son capaces de soportar las presiones internas y las temperaturas a la que les somete durante todo el proceso de fabricación. Los moldes autoportantes usados en esta invención pueden transitar por los distintos módulos del proceso, en ios que tiene lugar las distintas etapas de fabricación, siendo estos moldes estancos al polímero fundido. El molde de esta invención tiene una cavidad interna en la cual se va a fabricar la pieza.
En algunas de las variantes de esta invención el molde autoportante tiene una cavidad previa a la cavidad interna del molde que denominaremos colector. Ambos, molde autoportante y colector, mediante un sistema de cierre adecuado forman una unidad autoportante que pueden transitar por las distintas etapas del proceso de fabricación siendo estancos al polímero fundido. La finalidad del colector es facilitar el llenado del molde. '
Todas las piezas obtenidas de manera simultánea se han de clasificar por tipos, siendo posible una vez realizado este proceso su adecuado embalado y almacenamiento.
.Opcionalmente el sistema puede comprender:
- un módulo de almacenamiento de moldes,
como punto de partida de! proceso, en el que los moldes se encuentran almacenados en esta estación ya cerrados y listos para comenzar el proceso,
- un módulo de acondicionado del molde o vacío:
En algunas variantes de la invención puede ser necesario hacer vacío en el molde, antes de la fase de alimentación, durante dicha fase o tras la misma,
- un módulo para el recubrimiento interno del molde.
En algunas variantes de esta invención puede ser necesario el recubrimiento interno del molde con materiales con capacidad para absorber gases (compuestos siliconados, polisulfonas, poiitetrafluoroetileno (PTFE), entre otros), este proceso podría llevarse a cabo en una fase anterior a la de alimentación del molde o bien el molde podría haber sido fabricado incorporando dichos recubrimientos.
El procedimiento moldeo de piezas con moldes autoportantes que utiliza el sistema anteriormente descrito comprende:
- una etapa de llenado de un molde autoportante que comprende alimentación del molde con material de moldeo de la pieza y calentamiento del molde autoportante, pudiéndose realizar primero el calentamiento del molde y luego la alimentación o primero la alimentación y luego el calentamiento del mo!de,
- una etapa de enfriamiento del molde autoportante lleno y
- una etapa de desmoldeo de la pieza moldeada en el molde autoportante, una vez alcanzada la temperatura de desmoldeo,
realizándose cada etapa en módulos independientes por los que transita el molde autoportante.
El llenado del interior del molde autoportante se puede realizar mediante la alimentación en el molde de un material polimérico mezclado con un agente espumante químico capaz de generar una fase gaseosa, y el calentamiento se realiza por elevación de la temperatura por encima de la temperatura de descomposición de dicho agente espumante, que expande el material que rellena el molde.
Opcionalmente se puede utilizar un molde autoportante con colector, de manera que en !a etapa de llenado la alimentación puede realizarse por introducción de materia! polimérico en el molde autoportante y posterior aplicación de presión en el interior del molde autoportante a través del colector mediante un agente espumante que expande al elevar su temperatura, o mediante otros medios como con pistones hidráulicos o introduciendo vapor, aceite u agua.
Las familias de piezas obtenidas mediante la presente invención pueden clasificarse en tres categorías principales en función de su densidad (p) y estructura interna:
Piezas compactas (p pieza= p material de partida) con densidad relativa 1. Piezas estructurales de densidad reducida (p pieza < p material de partida) con densidades relativas entre 0.02 y 0.99 y en ías que el material es compacto (denso) en las superficies y poroso en las zonas internas formando lo que se suele denominar una estructura piel sólida - núcleo espumado.
Piezas de densidad reducida (p pieza « p material de partida) con densidades relativas entre 0.02 y 0.99
. Con este novedoso sistema se consiguen solucionar los problemas anteriormente expuestos, permitiendo así:
- Fabricar piezas de cualquier forma, tamaño y composición, con la posibilidad de lograr piezas de densidad reducida.
- Lograr piezas con excelentes calidades superficiales y con tensiones internas reducidas.
- Reducir los costes en moldes y maquinaria
- Hacer la rentabilidad del proceso menos dependiente del tiempo de ciclo. - Lograr un proceso de fabricación más versátil y que permita la fabricación de varios tipos de piezas de forma simultanea.
El sistema fabricación de piezas por etapas mediante moldes autoportantes, supone un proceso versátil para la fabricación de piezas de muy diferentes tamaños, formas, y composiciones químicas con excelente calidad superficial, bajas tensiones internas, con la posibilidad de fabricar piezas de densidad reducida usando moldes y maquinaría de bajo coste. La tecnología permite fabricar varios tipos de piezas de forma simultánea y elimina la necesidad de montaje de molde y calibración del mismo inherente a los procesos de moldeo por inyección tradicionales.
Una descripción más detallada de los aspectos más destacados de esta tecnología es !a siguiente:
Desde el punto de vista de la maquinaria utilizada:
El sistema objeto de la invención es sostenible, no es predecible el fin de su vida útil pues los elementos formadores son independientes y reemplazables,
Permite una elevada reducción de costes, comparado con cualquier sistema de inyección, tanto en maquinaria como en los moldes utilizados.
El proceso es automatizado, estando los moldes codificados de forma que la lectura del código de cada uno permita la aplicación directa de los parámetros de proceso y la fabricación autónoma de cada una de las piezas.
Los moldes son autónomos, sencillos y autoportantes, suponiendo una menor inversión en el proceso y un acceso a mayor número de piezas a fabricar.
La producción de diferentes piezas en distintos' moldes es simultánea, de modo que el proceso global pueda ser considerado continuo, para unas mismas o diferentes piezas. Esta característica proporciona versatilidad a todo el sistema, pudiendo coincidir varios moldes a lo largo de todo el proceso en las distintas estaciones.
El sistema requiere de presiones de trabajo muy inferiores a las de la inyección convencional. Las presiones de llenado de los moldes autoportantes están siempre por debajo de los 160 bares siendo típicamente inferiores a los 50 bares.
Es posible trabajar con varios materiales plásticos simultáneamente
■ Desde el punto de vista de las características de la pieza:
La pieza obtenida presenta ausencia de rechupes y de líneas de soldadura
Tiene un acabado superficial mejorado
El material que compone la pieza sufre menor estrés térmico, las presiones de trabajo son menores que las del proceso tradicional y las contracciones térmicas están mejor controladas. Se reduce la densidad de la pieza fabricada hasta el 98% en peso.
No existen limitaciones en cuanto a la composición química de las piezas, es decir se pueden usar todo tipo de polímeros (de alta y baja viscosidad) y todo tipo de aditivos incluidos, cargas, nanocárgas, refuerzos, ayudantes de proceso, ignifugantes, etc. Estos aditivos se pueden incorporar en las formulaciones en proporciones muy elevadas (hasta un 80% en peso) y superiores a las que se pueden usar en el moldeo por inyección.
Las piezas pueden tener regiones macroscópicas (de varias decenas de cm3 en volumen) con diferentes composiciones químicas y densidades. Es decir, por ejemplo, una misma pieza podría estar constituida por dos o más zonas fabricadas en distintos polímeros , o distintas formulaciones y además con densidades claramente diferentes en dos o más zonas de la pieza.
Se pueden fabricar piezas con estructura piel sólida-núcleo espumado.
Desde el punto de vista del sistema global:
El sistema global se encuentra dividido en diferentes estaciones para realizar cada una de las etapas, el tránsito entre ellas se puede realizar por medio de un autómata.
Permite la fabricación de tiradas de piezas sin importar la cantidad a fabricar para amortizar la puesta a punto del molde y máquina. El sistema es muy versátil y el parámetro amortización del molde no es restrictivo.
Las condiciones de fabricación son reproducibles.
Permite fabricar en función de las necesidades diarias generadas (metodología Just in time), sin necesidad de previsión y es adaptable a la producción.
Es posible fabricar piezas de gran tamaño.
Breve descripción de los dibujos
A continuación se pasa a describir de manera muy breve una serie de dibujos que ayudan a comprender mejor la invención y que se relacionan expresamente con una realización de dicha invención que se presenta como un ejemplo no limitativo de ésta.
La Figura 1 muestra esquema del sistema de la invención.
La Figura 2 muestra una vista en perspectiva de un molde autoportante con colector.
La figura 3 muestra un esquema de una opción del sistema en la que el procedimiento es cíclico.
En las figuras anteriormente citadas se identifican una serie de referencias que corresponden a los elementos indicados a continuación, sin que ello suponga carácter limitativo alguno: ' ■,
1. - Equipo de alimentación
2. - Equipo accionador del elemento calentador
3.- Equipo de enfriamiento
4. - Equipo de desmoldeo
5. - Molde autoportante
6. - Cavidad interior del molde autoportante
7. - Colector del molde autoportante
8.- Entrada de alimentación
9.- Sistema de cierre
, 10.- módulo de alimentación
11.-Módulo de calentamiento
12.- ódulo de enfriamiento
13.- ódulo de desmoldeo
14.- Elemento calefactor
Descripción detallada de un modo de realización
El sistema de la invención de una realización preferida, tal y como se muestra en la figura 1 comprende:
- un módulo de alimentación (10) que comprende un equipo de alimentación
(1) de material de moldeo en un molde autoportante, que comprende al menos una estación de alimentación con medios de alimentación de diferentes compuestos para su introducción en los moldes autoportantes,
- un módulo de calentamiento (11) que comprende un equipo calentador (14) y un equipo accionador (2) de un elemento calefactor (14) del molde autoportante,
- un módulo de-enfriamiento (12) que comprende un equipo de enfriamiento (3) del molde autoportante lleno de material, y
- un módulo de desmoideo (13) que comprende un equipo de desmoldeo (4) de la pieza moldeada en el molde autoportante,
por los que transita el molde autoportante (5).
La fase de llenado del molde autoportante del procedimiento de moldeo de la invención y el tipo de molde autoportante a utilizar varía según el tipo de pieza a fabricar. Determinadas piezas, como las piezas compactas y las piezas estructurales de densidad reducida, se fabrican utilizando moldes autoportantes que comprenden varias piezas que dan lugar a una cavidad en su interior (6), un colector (7) y un sistema de cierre (9) que asegura la estanqueidad al polímero durante el proceso de llenado del molde. En la fabricación de las piezas de densidad reducida el colector (7) no es necesario estando el molde formado por un conjunto de piezas que dan lugar a una cavidad interior (6) y un sistema de cierre (9) que asegura que el molde es estando ai polímero durante todo el proceso.
La figura 3 muestra una alternativa a la Figura 1 , que muestra dos posibles caminos para el molde en la que el circuito completo del procedimiento se cierra permitiendo que sea un proceso cíclico.
A continuación se describe en detalle la forma de fabricar piezas compactas, piezas estructurales de densidad reducida y piezas de densidad reducida utilizando el sistema y procedimiento de la invención:
Como nota aclaratoria al término "agente espumante" utilizado a continuación, indicar que se entiende por material espumante aquel material que cuando alcanza una temperatura crítica, que denominaremos temperatura de descomposición, genera una fase gaseosa. Dicha fase gaseosa puede permitir la expansión de un segundo material en el que se haya introducido previamente el agente espumante.
1 ) Piezas Compactas
El proceso de fabricación de. piezas compactas mediante el sistema de fabricación de la invención utiliza un molde autoportante (5) con sistema colector que es sometido al siguiente proceso:
- Una primera etapa de llenado de un molde autoportante (5), que comprende un sistema colector (7), que comprende el calentamiento del molde autoportante, y la alimentación, pudiéndose realizar a la inversa, primero alimentar el molde y luego calentarlo,
El llenado del molde se realiza por introducción en el molde autoportante de un material polimérico a temperaturas por encima de la de reblandecimiento del material o en estado sólido y la aplicación de presión en el interior del molde autoportante a través del colector (7) de manera que el material polimérico introducido en el molde, en la primera etapa, sea capaz de rellenar el volumen interno del mismo, por alguno de los siguiente métodos: ■ Mediante la introducción en el colector (7) de un material que se ha mezclado o se mezcla con un agente espumante que, una vez es calentado por encima de la temperatura de descomposición de dicho agente, genera la presión necesaria para rellenar el molde. La cantidad (volumen) de material que contiene agente espumante y la . cantidad (volumen) de espumante se seleccionan de forma que el material celular queda en el interior del colector.
■ Mediante pistones hidráulicos o mecánicos con accionamiento mecánico. Los pistones son externos al colector y se introducen en este para hacer la presión. Preferentemente habiéndose calentado el molde previamente aunque se puede calentar con posterioridad a la aplicación de la presión.
■ Mediante vapor, aire comprimido, agua, aceite o cualquier otro fluido que pueda utilizarse a tal fin, calentándose el molde previamente o posteriormente.
- Una segunda etapa de enfriamiento
- Una tercera etapa de desmoldeo de la pieza interior al molde
De forma adicional puede ser necesaria !a extracción de gases internos al molde mediante un proceso de vacío utilizando un equipo generador de vacío. Dicho proceso se realizaría previo a la fase de alimentación del molde, durante dicha fase o una vez que el molde haya sido alimentado.
Las piezas obtenidas mediante este proceso son compactas y por tanto no presentan porosidad. Su densidad relativa es igual a 1.
2) Piezas estructurales de densidad reducida.
El proceso de fabricación de piezas estructurales de densidad reducida mediante el sistema de fabricación de la invención, utiliza un molde autoportante con sistema colector que es sometido al siguiente proceso:
- Una primera etapa de llenado de un molde autoportante que comprende un colector, que comprende el calentamiento del molde autoportante y la alimentación del mismo, pudiéndose realizar primero la alimentación del molde y luego el calentamiento o a la inversa,
El llenado se consigue por alimentación en el molde de un material polimérico a temperaturas por encima de la de reblandecimiento del material o en estado sólido y mediante la alimentación a través del colector de un material mezclado con un agente espumante o de un agente espumante.
El agente espumante permite que, una vez es calentado por encima de su temperatura de descomposición, genere la presión necesaria para rellenar el molde.
La aplicación de presión en el interior dei molde autoportante a través del colector permite que el material polimérico introducido en el molde sea capaz de rellenar el volumen interno del mismo.. La cantidad de material que contiene agente espumante y la cantidad de espumante se seleccionan de forma que el material celular generado en el colector sea capaz de introducirse en la pieza dando lugar a una pieza con estructura celular interna y por tanto con una porosidad controlable. Estas piezas presentan densidades relativas en el rango 0.02 a 0.99.
- una segunda etapa de enfriamiento
- una tercera etapa dé desmoldeo de la pieza interior al molde
De forma adicional puede ser necesaria la extracción de gases internos al molde mediante un proceso de vacío. Dicho proceso se realizaría previo a la fase de alimentación del molde con un generador de vacio, durante dicha fase o una vez que el molde haya sido alimentado
3) Piezas de densidad réducida
El proceso de fabricación de piezas de densidad reducida mediante el sistema de fabricación de la invención, utiliza un molde autoportante sin sistema colector que es sometido al siguiente proceso:
- Una primera etapa de llenado del molde por calentamiento del molde y alimentación pudiéndose realizar a la inversa, primero alimentar el molde y luego calentarlo.
El llenado del molde se realiza por introducción de un material polimérico a temperaturas por encima de la de reblandecimiento del material o en estado sólido en el molde y de un agente espumante químico que es capaz de generar una fase gaseosa cuando la temperatura se eleva por encima de la temperatura de descomposición de dicho agente. Dicho gas expande el material que rellena el molde. Las piezas obtenidas mediante este proceso son celulares y por tanto presentan porosidad. El rango de densidad relativa alcanzable mediante este proceso está entre 0.02 y 0.99.
- Una segunda etapa de enfriamiento, y
- Una etapa final de desmoldeo de la pieza interior al molde
De forma adicional puede ser necesaria la extracción de gases internos al molde mediante un proceso de vacío. Dicho proceso se realizaría previo a la fase de alimentación del molde, durante dicha fase o una vez que el molde haya sido alimentado.
Dentro del campo de la fabricación de piezas de densidad reducida existen aspectos que permitan lograr estructuras específicas en ias piezas como por ejemplo calidades superficiales mejoradas o pieles internas. Así por ejemplo si se desea obtener una estructura piel-núcleo se pueden recubrir la zonas internas de la cavidad del molde en las que se desea Obtener dicha estructura con un material capaz de disolver gas y estable térmicamente a temperaturas superiores a la de espumación. Algunos ejemplos de estos materiales son siliconas, polisulfonas o poitetrafluoroetileno (PTFE). Mediante este procedimiento se fabrican piezas celulares con estructura piel- núcleo y densidades relativas en el rango 0.02-0.99.
Si además se desean lograr zonas sólidas no espumadas en el interior del núcleo interno espumado, esto se puede lograr introduciendo partículas sólidas de un material capaz de disolver gas y estables a temperaturas superiores a la de descomposición del agente espumante en la mezcla de materias primas usadas para alimentar el molde.
Para los tres tipos de piezas mencionadas previamente {compactas, estructurales de densidad reducida y de densidad reducida) existe la posibilidad de fabricar piezas con composiciones químicas y/o densidades variables a lo largo de la pieza. Para ello en la fase de alimentación el molde se alimentaría con diversos materiales cada uno de ellos con distintas composiciones químicas y/ o cantidades o tipo de agentes espumantes. Durante la fase de llenado la pieza quedaría constituida por regiones macroscópicas de composiciones químicas diversas y/o densidades que podrían variar de forma significativa de unas zonas a otras.
Una aplicación práctica de la invención sería la fabricación de piezas estructurales con pieles densas y cores celulares para lo que en la etapa de llenado del molde se realiza una alimentación del molde autoportante en el módulo de alimentación, en tres subetapas:
- inicialmente se introduce material que no incorpora agente espumante que se sitúa en ia parte inferior del molde,
- a continuación se introduce material que incorpora un agente espumante o que se mezcla con un agente espumante, de manera que este material se sitúa en la zona intermedia del molde.
- finalmente se vuelve a incorporar un material que no incorpore agente espumante y que se sitúa en la parte superior del molde. Una vez que el molde ha pasado por los módulos de alimentación, calentamiento y enfriamiento, para lograr el llenado del mismo y la conformación de la pieza, se obtiene una pieza con pieles densas y cores celulares dado que la estructura celular se genera fundamentalmente en las zonas en las que se incorporó un agente espumante.

Claims

REIVINDICACIONES
1. - Sistema de moldeo de piezas con moldes autoportantes (5) caracterizado por que comprende:
- un equipo alimentador (1 ) de material de moldeo en un molde autoportante, que comprende una pluralidad de medios de alimentación de diferentes compuestos,
- un equipo accionador (2) de un elemento calefactor (14) del molde autoportante,
- un equipo enfriador (3) del molde autoportante lleno de material, y
- un equipo desmoldeador (4) de la pieza moldeada en el molde autoportante, siendo todos ellos equipos independientes instalados en módulos de trabajo por los que transita el molde autoportante (5).
2. - Sistema de moldeo según reivindicación 1 caracterizado por que comprende un equipo generador de vacío en el molde.
3.- Sistema de moldeo según reivindicaciones 1-2 caracterizado por que comprende un equipo generador de presión seleccionado entre pistones hidráulicos o mecánicos.
4.- Sistema de moldeo de piezas con moldes autoportantes según reivindicación 1 caracterizado por que comprende:
- un módulo de alimentación (10) que comprende el equipo alimentador (1), - un módulo de calentamiento (1 1) que comprende el equipo accionador (2) de un elemento calefactor (14),
- un módulo de enfriamiento (12) que comprende un equipo de enfriamiento (3) y
- un módulo de desmoldeo (13) que comprende un equipo de desmoldeo (4).
5.- Sistema de moldeo de piezas con moldes autoportantes según reivindicación 1 caracterizado por que comprende:
- un módulo de calentamiento y alimentación que comprende el equipo alimentador (1 ) y el equipo accionador (2) de un elemento calefactor (14),
- un módulo de enfriamiento (12) que comprende un equipo de enfriamiento (3) y
- un módulo de desmoideo (13) que comprende un equipo de desmoldeo (4).
6.- Sistema de moldeo según reivindicaciones 4 y 5 caracterizado por que comprende un módulo de acondicionamiento dei molde autoportante que comprende un equipo generador de vacío que se utiliza para hacer vacío en ei interior del molde.
7.- Sistema de moldeo según reivindicaciones anteriores caracterizado por que comprende medios de desplazamiento automáticos que conectan los módulos (10, 11 , 12, 3) por los que transita el molde autoportante (5).
8. - Sistema de moldeo de piezas con moldes autoportantes según reivindicaciones 1- 7 caracterizado por que el elemento calefactor (14) es al menos un horno fijo accionable por el equipo accionador (2) junto al que se sitúa.
9. - Sistema de moldeo de piezas con moldes autoportantes según reivindicaciones 1- 7 caracterizado por que el elemento calefactor (14) accionable por el equipo accionador (2) está situado en el propio molde autoportante (5).
10. - Sistema de moldeo de piezas con moldes autoportantes según reivindicación 1 caracterizado por que el molde autoportante (5) comprende un conjunto de piezas con una cavidad en su cara interior (6), un sistema de cierre (9) y un colector (7)
11 - Sistema de moldeo de piezas con moldes autoportantes según reivindicación 2 caracterizado por que el módulo de calentamiento ( 1) comprende al menos un pistón seleccionado entre hidráulico o mecánico de aplicación de presión en ei interior del molde autoportante (5)
12. - Procedimiento de moldeo de piezas con moldes autoportantes (5) caracterizado por comprender:
- una etapa de llenado de un molde autoportante que comprende alimentación del molde y calentamiento del molde autoportante (5),
- una etapa de enfriamiento del molde autoportante (5) lleno y
- una etapa de desmoldeo de la pieza moldeada en el molde autoportante (5), una vez alcanzada la temperatura de desmoldeo,
realizándose cada etapa en módulos independientes (10, 1 , 12, 13) por los que transita el molde autoportante (5).
13. - Procedimiento de moldeo de piezas según reivindicación 12 caracterizado por que el llenado del molde autoportante se realiza por alimentación del molde y posterior calentamiento del molde autoportante.
14. - Procedimiento de moldeo de piezas según reivindicación 12 caracterizado por que el llenado del molde autoportante se realiza por calentamiento previo del molde autoportante y posterior alimentación del molde.
15. - Procedimiento de moldeo de piezas según reivindicación 12-14 caracterizado por que el llenado del interior del molde autoportante se realiza mediante la introducción en el molde (5) de un material polimérico mezclado con un agente espumante químico capaz de generar una fase gaseosa, y el calentamiento se realiza por elevación de la temperatura del molde por encima de la temperatura de descomposición de dicho agente espumante, que expande el material que rellena el molde.
16. - Procedimiento de moldeo de piezas según reivindicaciones 12-14 caracterizado por que se utiliza un molde autoportante (5) que comprende un colector (7), de manera que en la etapa de llenado del molde autoportante (5), la alimentación del molde (5) se realiza por alimentación del molde autoportante (5) con material polimérico (7) y posterior aplicación de presión en el interior de! molde autoportante (5) a través del colector (7).
17. - Procedimiento de moldeo según reivindicación 16 caracterizado por que la presión se aplica mediante la introducción en el colector (7) de un material mezclado con agente espumante o de un agente espumante.
18. - Procedimiento de moldeo según reivindicación 17 caracterizado por que el volumen de material que contiene agente espumante y el volumen de espumante se seleccionan de forma que el material celular generado en el colector (7) limita su volumen a dicho colector (7).
19.- Procedimiento de moldeo por inyección según reivindicación 1 caracterizado por que el volumen de material que contiene agente espumante y el volumen de espumante se seleccionan de forma que el material celular generado en ei colector (7) se introduce en la cavidad interior (6) del molde autoportante (5)
20. - Procedimiento de moldeo según reivindicación 16 caracterizado por que la presión se aplica mediante pistones hidráulicos o mecánicos con accionamiento mecánico.
21. - Procedimiento de moldeo según reivindicación 16 caracterizado por que la presión se aplica mediante la introducción en el colector de un fluido seleccionado entre vapor, aire comprimido, agua y aceite.
22. - Procedimiento de moldeo según reivindicaciones 12-21 caracterizado por que comprende una etapa adicional de extracción de gases internos al molde autoportante mediante un proceso de vacío.
23. - Procedimiento de moldeo según reivindicaciones 12-21 caracterizado por que comprende una' etapa inicial de recubrimiento interno del molde autoportante con materiales con capacidad para absorber gases.
24. Procedimiento de moldeo según reivindicaciones 12 a 23 caracterizado porque en la etapa de llenado, se realiza una alimentación del molde autoportante en tres subetapas:
- inicialmente se introduce material que no incorpora agente espumante que se sitúa en la parte inferior del molde,
- a continuación se introduce material que incorpora un agente espumante o que se mezcla con un agente espumante, de manera que este material se sitúa en la zona intermedia del molde.
- finalmente se vueive a incorporar un material que no incorpore agente espumante y que se sitúa en la parte superior del molde.
PCT/ES2012/070128 2011-03-01 2012-02-29 Sistema y procedimiento de moldeo de piezas con moldes autoportantes WO2012117143A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP201130271 2011-03-01
ES201130271A ES2364263B2 (es) 2011-03-01 2011-03-01 Sistema y procedimiento de moldeo de piezas con moldes autoportantes.

Publications (1)

Publication Number Publication Date
WO2012117143A1 true WO2012117143A1 (es) 2012-09-07

Family

ID=44370706

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2012/070128 WO2012117143A1 (es) 2011-03-01 2012-02-29 Sistema y procedimiento de moldeo de piezas con moldes autoportantes

Country Status (2)

Country Link
ES (1) ES2364263B2 (es)
WO (1) WO2012117143A1 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11117301B2 (en) 2015-09-15 2021-09-14 Comercial Nicem Exinte, S.A. Mould for injecting thermoplastics and method for using said mould

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2388083B1 (es) * 2012-07-12 2013-09-02 Univ Valladolid Procedimiento de fabricación materiales celulares de matriz termoplástica

Citations (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3730665A (en) * 1969-11-19 1973-05-01 Fortin Latchford Ltd Molding apparatus
US3732051A (en) * 1970-08-27 1973-05-08 Mitsubishi Petrochemical Co Molding apparatus for producing resinous thermoplastic articles
US3907482A (en) * 1972-12-29 1975-09-23 Seikisui Chemical Co Ltd Rotational molding apparatus
US4352651A (en) * 1979-10-13 1982-10-05 Toyo Rubber Chemical Industrial Corp. Mold equipment
US4439123A (en) * 1981-06-09 1984-03-27 Kabushiki Kaisha Kobe Seiko Sho Injection molding machine
JPS59150310A (ja) * 1983-10-01 1984-08-28 Takumi Okada プラスチツク製測量杭の製造方法
JPS60111335A (ja) 1983-11-22 1985-06-17 Denki Kagaku Kogyo Kk 磁気記憶媒体
US4573902A (en) * 1983-06-24 1986-03-04 Interblock Partners, Ltd. Machine for manufacturing foam building blocks
JPH0286416A (ja) * 1988-09-24 1990-03-27 Toyota Motor Corp 粉体スラッシュ成形品の成形方法
US4963312A (en) 1988-03-31 1990-10-16 Mueller Fritz Injection molding method for plastic materials
JPH05253963A (ja) * 1992-03-10 1993-10-05 Ricoh Co Ltd ロータリー成形システム
US5387095A (en) * 1993-04-07 1995-02-07 The United States Of America As Represented By The Secretary Of The Navy Apparatus for injection molding high-viscosity materials
JPH07205189A (ja) * 1993-11-30 1995-08-08 Ricoh Co Ltd 射出成形方法および射出成形装置
DE4435012C1 (de) 1994-10-02 1995-10-12 Battenfeld Gmbh Verfahren und Vorrichtung zum Herstellen von Kunststoffgegenständen aus thermoplastischem Material
JPH0839600A (ja) * 1995-08-28 1996-02-13 Canon Inc 複数の金型を用いる成形装置
DE19518963A1 (de) 1995-05-23 1996-11-28 Eldra Kunststofftechnik Gmbh Verfahren und Vorrichtung zum Spritzgießen hohlgeblasener Kunststoffkörper
US6169122B1 (en) 1997-12-19 2001-01-02 Trexel, Inc. Microcellular articles and methods of their production
US6231942B1 (en) 1998-01-21 2001-05-15 Trexel, Inc. Method and apparatus for microcellular polypropylene extrusion, and polypropylene articles produced thereby
US6235380B1 (en) 1997-07-24 2001-05-22 Trexel, Inc. Lamination of microcellular articles
US20020017742A1 (en) * 2000-08-03 2002-02-14 Masanori Kikuchi Method and apparatus for manufacturing molded products
US6451403B1 (en) 1997-11-07 2002-09-17 Rohm And Haas Company Process and apparatus for forming plastic sheet
US20030001283A1 (en) 2001-06-29 2003-01-02 Takashi Kumamoto Multi-purpose planarizing/back-grind/pre-underfill arrangements for bumped wafers and dies
US20030166819A1 (en) * 1998-02-04 2003-09-04 Pijush K. Dewanjee Polyurethane material for two and three piece golf balls and method
WO2003091007A1 (en) 2002-04-23 2003-11-06 Bulk Molding Compounds, Inc. Gas-assisted injection molding of thermosetting polymers
US6655939B1 (en) * 1997-01-17 2003-12-02 Biotex Production S.A. Facility for producing latex objects such as pillows
US6896844B2 (en) 1999-07-01 2005-05-24 Cinpres Gas Injection, Ltd. Process for gas assisted and water assisted injection molding
ES2253281T3 (es) 1999-12-24 2006-06-01 Huntsman International Llc Moldeo por inyeccion asistido por gas.
WO2007036037A1 (en) 2005-09-30 2007-04-05 Magna International Inc. Water-assist injection molded structural members
US20090152768A1 (en) 2004-06-30 2009-06-18 Husky Injection Molding Systems Ltd. Control system for dynamic feed coinjection process
DE102008022245A1 (de) * 2008-05-02 2009-11-05 Ckt Kunststoffverarbeitungstechnik Gmbh Chemnitz Verfahren und Vorrichtung zum Spritzgießen von Formteilen aus Kunststoffen

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5075051A (en) * 1988-07-28 1991-12-24 Canon Kabushiki Kaisha Molding process and apparatus for transferring plural molds to plural stations
DE102005003074B4 (de) * 2005-01-22 2007-11-22 Zahoransky Gmbh Formen-Und Werkzeugbau Spritzgießmaschine
SM200700008B (it) * 2007-03-01 2009-11-06 Ipotenusa S R L Impianto perfezionato per la produzione per iniezione di prodotti in materiale plastico espanso, quale eva, in particolare suole oppure prodotti in generale con caratteristiche di leggerezza e comfort

Patent Citations (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3730665A (en) * 1969-11-19 1973-05-01 Fortin Latchford Ltd Molding apparatus
US3732051A (en) * 1970-08-27 1973-05-08 Mitsubishi Petrochemical Co Molding apparatus for producing resinous thermoplastic articles
US3907482A (en) * 1972-12-29 1975-09-23 Seikisui Chemical Co Ltd Rotational molding apparatus
US4352651A (en) * 1979-10-13 1982-10-05 Toyo Rubber Chemical Industrial Corp. Mold equipment
US4439123A (en) * 1981-06-09 1984-03-27 Kabushiki Kaisha Kobe Seiko Sho Injection molding machine
US4573902A (en) * 1983-06-24 1986-03-04 Interblock Partners, Ltd. Machine for manufacturing foam building blocks
JPS59150310A (ja) * 1983-10-01 1984-08-28 Takumi Okada プラスチツク製測量杭の製造方法
JPS60111335A (ja) 1983-11-22 1985-06-17 Denki Kagaku Kogyo Kk 磁気記憶媒体
US4963312A (en) 1988-03-31 1990-10-16 Mueller Fritz Injection molding method for plastic materials
JPH0286416A (ja) * 1988-09-24 1990-03-27 Toyota Motor Corp 粉体スラッシュ成形品の成形方法
JPH05253963A (ja) * 1992-03-10 1993-10-05 Ricoh Co Ltd ロータリー成形システム
US5387095A (en) * 1993-04-07 1995-02-07 The United States Of America As Represented By The Secretary Of The Navy Apparatus for injection molding high-viscosity materials
JPH07205189A (ja) * 1993-11-30 1995-08-08 Ricoh Co Ltd 射出成形方法および射出成形装置
DE4435012C1 (de) 1994-10-02 1995-10-12 Battenfeld Gmbh Verfahren und Vorrichtung zum Herstellen von Kunststoffgegenständen aus thermoplastischem Material
DE19518963A1 (de) 1995-05-23 1996-11-28 Eldra Kunststofftechnik Gmbh Verfahren und Vorrichtung zum Spritzgießen hohlgeblasener Kunststoffkörper
JPH0839600A (ja) * 1995-08-28 1996-02-13 Canon Inc 複数の金型を用いる成形装置
US6655939B1 (en) * 1997-01-17 2003-12-02 Biotex Production S.A. Facility for producing latex objects such as pillows
US6235380B1 (en) 1997-07-24 2001-05-22 Trexel, Inc. Lamination of microcellular articles
US6451403B1 (en) 1997-11-07 2002-09-17 Rohm And Haas Company Process and apparatus for forming plastic sheet
US6169122B1 (en) 1997-12-19 2001-01-02 Trexel, Inc. Microcellular articles and methods of their production
US6231942B1 (en) 1998-01-21 2001-05-15 Trexel, Inc. Method and apparatus for microcellular polypropylene extrusion, and polypropylene articles produced thereby
US20030166819A1 (en) * 1998-02-04 2003-09-04 Pijush K. Dewanjee Polyurethane material for two and three piece golf balls and method
US6896844B2 (en) 1999-07-01 2005-05-24 Cinpres Gas Injection, Ltd. Process for gas assisted and water assisted injection molding
ES2253281T3 (es) 1999-12-24 2006-06-01 Huntsman International Llc Moldeo por inyeccion asistido por gas.
US20020017742A1 (en) * 2000-08-03 2002-02-14 Masanori Kikuchi Method and apparatus for manufacturing molded products
US20030001283A1 (en) 2001-06-29 2003-01-02 Takashi Kumamoto Multi-purpose planarizing/back-grind/pre-underfill arrangements for bumped wafers and dies
WO2003091007A1 (en) 2002-04-23 2003-11-06 Bulk Molding Compounds, Inc. Gas-assisted injection molding of thermosetting polymers
US20090152768A1 (en) 2004-06-30 2009-06-18 Husky Injection Molding Systems Ltd. Control system for dynamic feed coinjection process
WO2007036037A1 (en) 2005-09-30 2007-04-05 Magna International Inc. Water-assist injection molded structural members
DE102008022245A1 (de) * 2008-05-02 2009-11-05 Ckt Kunststoffverarbeitungstechnik Gmbh Chemnitz Verfahren und Vorrichtung zum Spritzgießen von Formteilen aus Kunststoffen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Week 199344, Derwent World Patents Index; AN 1993-347928, XP002679404 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11117301B2 (en) 2015-09-15 2021-09-14 Comercial Nicem Exinte, S.A. Mould for injecting thermoplastics and method for using said mould

Also Published As

Publication number Publication date
ES2364263A1 (es) 2011-08-30
ES2364263B2 (es) 2012-03-15

Similar Documents

Publication Publication Date Title
ES2963132T3 (es) Instalación para la fabricación aditiva de piezas metálicas
CN105835299B (zh) 一种高表面光泽高气泡致密度的微孔发泡注塑工艺与模具
CN109109352A (zh) 一种橡胶制品一次性注射、中空以及硫化成型生产方法
TWI673156B (zh) 單相溶液模製方法
KR20110033843A (ko) 발포체 층을 가지는 오버몰딩된 용기
CN103260854A (zh) 用于容器的单步成形和充填的过程
CN105835292A (zh) 一种发泡倍率高、表面无泡痕的微孔发泡注塑工艺
CN104476698A (zh) 一种废弃汽车塑料微孔发泡回收再利用方法
CN110142911B (zh) 一种聚合物微孔发泡材料的注塑成型装置和工艺及其应用
KR101149412B1 (ko) 경량화 소재의 표면 글레이징 성형방법
CN103660251A (zh) 一种热水器水箱的制备方法
WO2010008264A1 (es) Proceso para producir artículos de plástico moldeados, con paredes reforzadas por la inyección de termoplasticos espumados
WO2012117143A1 (es) Sistema y procedimiento de moldeo de piezas con moldes autoportantes
CN104507880B (zh) 用于制造具有特定内部玻璃分布的中空玻璃物品的方法和设备
CN103464752A (zh) 一种防止产生冷料的注射成型喷嘴
CN102173027B (zh) 注塑成型设备及使用该设备注塑金属感高光注塑件的工艺
JP2006281698A (ja) 発泡成形品の成形方法及び発泡成形品の成形装置
CN104385623A (zh) 一种大型风电叶片整体成型方法
CN203495225U (zh) 一种防止产生冷料的注射成型喷嘴
CN105835293B (zh) 一种用于微孔发泡注塑的叠层模具及工艺方法
CN107791451A (zh) 一种设有输送装置的注塑模具
CN105382991A (zh) 一种pp/ldpe超延展制品的水发泡注射成型方法
CN103386733A (zh) 单射成型的车辆结构主体组件及其制造方法
CN103963209A (zh) 一种制作汽车车轮盖精密注塑模具的方法
WO2022107851A1 (ja) 樹脂製容器の製造方法および製造装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12719014

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12719014

Country of ref document: EP

Kind code of ref document: A1