WO2012114842A1 - 板ガラス製造装置および板ガラス製造方法 - Google Patents

板ガラス製造装置および板ガラス製造方法 Download PDF

Info

Publication number
WO2012114842A1
WO2012114842A1 PCT/JP2012/052367 JP2012052367W WO2012114842A1 WO 2012114842 A1 WO2012114842 A1 WO 2012114842A1 JP 2012052367 W JP2012052367 W JP 2012052367W WO 2012114842 A1 WO2012114842 A1 WO 2012114842A1
Authority
WO
WIPO (PCT)
Prior art keywords
molded body
overflow groove
molten glass
glass
metal film
Prior art date
Application number
PCT/JP2012/052367
Other languages
English (en)
French (fr)
Inventor
尚利 稲山
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Publication of WO2012114842A1 publication Critical patent/WO2012114842A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B17/00Forming molten glass by flowing-out, pushing-out, extruding or drawing downwardly or laterally from forming slits or by overflowing over lips
    • C03B17/06Forming glass sheets
    • C03B17/064Forming glass sheets by the overflow downdraw fusion process; Isopipes therefor

Definitions

  • the present invention relates to an improvement in technology for producing plate glass by the overflow downdraw method.
  • glass plates for flat panel displays such as liquid crystal displays, plasma displays, and organic EL displays
  • glass plates used in various fields as represented by glass substrates for organic EL lighting May require strict product quality against surface defects and waviness.
  • an overflow down draw method is used to obtain a smooth and defect-free glass surface.
  • molten glass is poured into the overflow groove on the top of the molded body, and the molten glass overflowing on both sides from the overflow groove is passed through the top flat portion of the molded body to the outer surface portion forming a substantially wedge shape.
  • the sheet is fused and integrated at the lower end of the molded body while flowing down along, and a single sheet glass is continuously formed.
  • the compact used in the overflow downdraw method is composed of a refractory such as an alumina refractory or a zirconia refractory.
  • a refractory such as an alumina refractory or a zirconia refractory.
  • the entire surface of the molded body is covered with a metal plate of platinum or a platinum alloy, and the molten glass contact portion of the metal plate is made thicker than other portions. ing.
  • This method aims to suppress the following phenomenon that occurs when the entire surface of the compact is covered with a platinum or platinum alloy metal plate. That is, this phenomenon is a phenomenon in which the molten glass contact portion in the metal plate is deformed in a direction away from the molded body due to thermal expansion of the metal plate from the molded body due to the heat of the molten glass.
  • This method can suppress this phenomenon for the following reasons.
  • the portion other than the molten glass contact portion in the metal plate is likely to be deformed in a direction away from the formed body because the plate thickness is thinner. Therefore, when thermal expansion of the metal plate occurs along the surface of the molded body due to the heat of the molten glass, deformation in a direction away from the molded body is preferentially generated at a portion other than the molten glass contact portion. Thereby, the thermal expansion along the surface of the molded body at the molten glass contact portion is absorbed, and deformation in the direction away from the molded body at the molten glass contact portion is suppressed.
  • a noble metal film such as platinum is formed by thermal spraying on the surface of the molded body that contacts the molten glass.
  • a metal plate of platinum or a platinum alloy is disposed at the lower end of the formed body.
  • the noble metal film is thermally expanded from the molded body by the heat of the molten glass, whereby the noble metal film is separated from the molded body. May be deformed or cracks may occur in the molded product.
  • the glass sheet manufacturing apparatus which was created to solve the above-mentioned problems, has a overflow groove at the top, a pair of outer surface parts formed on both sides of the overflow groove and connected to each other at the lower ends.
  • a molten glass is poured into the overflow groove, and the molten glass overflowing from the overflow groove is fused and integrated at the lower ends of the pair of outer surface parts while flowing down along the pair of outer surface parts,
  • a coating portion made of metal is provided only on the inner surface of the overflow groove in the surface of the molded body.
  • both the chemical composition and the time the two are in contact have a significant effect on the temperature of both. .
  • the mass transfer at the interface between them increases, and the elution of the molded body components into the molten glass increases.
  • the inner surface of the overflow groove is the highest temperature because it is the first contact area with the molten glass. Therefore, there is a high possibility that the molded body components are eluted from the inner surface into the molten glass.
  • the inner surface is coated with the coating portion made of metal, it is possible to efficiently suppress the elution of the molded body component into the molten glass.
  • the surface other than the inner surface of the overflow groove in the molded body is not covered with the coating portion made of metal, and the coating portion becomes a part on the molded body, and its surface area is small. Therefore, when the metal of the covering portion and the molded body are thermally expanded in the direction along the surface by the heat of the molten glass, the difference between the two is limited. For this reason, it is possible to suppress the deformation
  • the surface of the outer surface portion of the molded body is not covered with the coating portion made of metal, the surface is deformed in the direction away from the molded body of metal due to thermal expansion or the molded body. No cracking occurs. Therefore, the surface accuracy of the surface is better maintained when the glass sheet is formed than when the surface is coated with metal. Since this surface is a portion that flows down before the molten glass is fused and integrated, the surface accuracy of the formed sheet glass can be maintained well.
  • the covering portion is provided in a range of 80% or more of the inner surface of the overflow groove.
  • energization heating through the covering portion is not performed. If it does in this way, it will become easy to suppress elution to a molten glass of a forming object component in the surface of a forming object near a covering part.
  • the covering portion is preferably a metal film formed by thermal spraying.
  • the metal of the coating part is in the form of a metal film, it can be directly formed on the surface of the molded body, and the surface of the molded body can be easily covered compared to the case where a plate-shaped one is fixed to the surface of the molded body by welding or the like can do. Further, if the metal film is formed by thermal spraying, the film formation is fast and the influence of heat on the molded body is small, so that deformation and distortion of the molded body resulting from the film formation can be suppressed.
  • the kind of thermal spraying is not specifically limited, For example, flame spraying, plasma spraying, etc.
  • the covering portion is preferably formed of platinum or a platinum alloy.
  • the platinum alloy include a platinum-rhodium alloy and a platinum-iridium alloy.
  • the thickness of the metal film is preferably 50 to 1000 ⁇ m.
  • the thickness of the metal film that is the covering portion is 50 ⁇ m or more, it is possible to suppress peeling or cracking of the metal film that occurs during plate glass forming. If the thickness of the metal film which is a coating
  • the glass sheet manufacturing method according to the present invention which was created to solve the above problems, has an overflow groove on the top, a pair of outer surface portions formed on both sides of the overflow groove and connected to each other at the lower ends.
  • a molten glass is poured into the overflow groove, and the molten glass overflowing from the overflow groove is fused and integrated at the lower ends of the pair of outer surface portions while flowing down along the pair of outer surface portions,
  • the method for producing plate glass for forming plate glass it is characterized in that, as the formed body, a surface provided with a coating portion made of metal only on the inner surface of the overflow groove is used.
  • the molded body when the molded body is coated with metal in order to suppress the dissolution of the components of the molded body into the molten glass by the overflow down draw method, the situation where the coated metal is deformed or the molded body is cracked. While avoiding, the surface accuracy of the plate glass shape
  • FIG. 1A is a schematic front view showing a main part of a sheet glass manufacturing apparatus according to an embodiment of the present invention. As shown in the figure, the thin glass manufacturing apparatus includes a molded body 1 for executing the overflow down draw method.
  • the molded body 1 is long along a direction corresponding to the width direction of the thin glass to be produced, and an overflow groove 2 formed along the longitudinal direction at the top, and both upper ends
  • a main component is a top flat portion 3 of the molded body 1 extending outward from the opening edge and a pair of outer surface portions 4 gradually approaching each other downward in a wedge shape.
  • the lower end portion of the molded body 1 is referred to as a route 5 and is configured by connecting the lower ends of the outer surface portions 4 on both sides of the molded body 1 to each other.
  • the molded body 1 is formed of, for example, an alumina refractory, a zirconia refractory or the like having corrosion resistance against the molten glass g.
  • a guide 6 is provided in the molded body 1 of the present embodiment.
  • the guide 6 is made of platinum or an alloy thereof, and is disposed at both ends in the longitudinal direction of both outer side surface portions 4 and the route 5.
  • the guide 6 extends from the overflow groove 2 of the molded body 1 to the top flat portion 3, both outer side surface portions 4, and the route 5, and has an action of defining a width in which the molten glass g flows down.
  • a supply pipe 7 for supplying molten glass g is connected to one end side of the overflow groove 2 in the longitudinal direction.
  • the overflow groove 2 has a V-shaped cross section with the flow path floor 8 as a lower end.
  • the flow path floor 8 of the overflow groove 2 is inclined so as to gradually increase as it moves from the start end side to the end end side in the flow direction of the molten glass g.
  • the inner surface of the overflow groove 2 is covered with a metal film 9 as a covering portion formed by thermal spraying, while the surfaces of the top flat portion 3 and the outer surface portion 4 are all exposed.
  • the metal film 9 may be coated on at least a part of the inner surface of the overflow groove 2. In this embodiment, it is 80% of the inner surface of the overflow groove 2, but may be more than this.
  • the flow path floor 8 is included, and the overflow groove 2 is continuously covered with the metal film 9 from the flow path floor 8 toward the upper end. The distance between the upper end of the metal film 9 and the upper end of the overflow groove 2 is constant in the extending direction of the overflow groove 2.
  • the metal film 9 is made of platinum, but may be a platinum alloy.
  • flame spraying is used as a film forming method, but other spraying such as plasma spraying may be used.
  • the metal film 9 may be formed by a technique other than spraying, such as vapor deposition. The metal film 9 is shown to be thicker than the actual thickness for easy understanding.
  • the thickness of the metal film 9 is, for example, 50 to 1000 ⁇ m, preferably 100 to 500 ⁇ m, and is 250 ⁇ m in this embodiment. If the thickness of the metal film 9 is less than 50 ⁇ m, the metal film 9 may be peeled off or cracked during the glass sheet forming, or the metal film 9 may be eroded by the molten glass g. If the thickness of the metal film 9 exceeds 1000 ⁇ m, cracking or peeling may occur on the metal film 9 side during thermal spraying. On the other hand, when the thickness of the metal film 9 exceeds 1000 ⁇ m, the flow of the molten glass g is hindered by the metal film 9 at the time of forming the plate glass, which adversely affects the surface accuracy of the formed plate glass. In consideration of the surface accuracy of the plate glass to be formed, the thickness of the metal film 9 is preferably uniform in the plate width direction.
  • a glass raw material such as non-alkali glass (for example, OA-10G manufactured by Nippon Electric Glass Co., Ltd.) is melted in a glass melting furnace (not shown).
  • a glass melting furnace not shown.
  • the molten glass g is poured into the overflow groove 2 of the molded body 1 through the supply pipe 7.
  • the molten glass g flows down from the overflow groove 2 along both outer surface portions 4 via the top flat portions 3 on both sides thereof.
  • the molten glass g is fused and integrated by the route 5 of the molded body 1.
  • the integrated molten glass g is stretched by a pulling means (not shown) such as a roller disposed below and cooled, whereby the glass sheet is continuously formed.
  • the dissolution of the molded body component into the molten glass g can be efficiently suppressed.
  • the surfaces of the top flat portion 3 and the outer side surface portion 4 of the molded body 1 are not covered with the metal film 9, and the portion covered with the metal film 9 is a part on the molded body 1, and its surface area is small. Therefore, when the metal film 9 and the molded body 1 are thermally expanded in the direction along the surface by the heat of the molten glass g, the difference between the two is limited. For this reason, it is possible to suppress the deformation
  • the metal film 9 is thermally deformed and separated from the molded body 1 by the heat of the molten glass g on this surface. Moreover, the crack of the molded body 1 due to the thermal expansion of the metal film 9 from the molded body 1 does not occur. Therefore, compared with the case where this surface is covered with the metal film 9, the surface accuracy of this surface is maintained better during the sheet glass forming. Since this surface is a portion that flows down before the molten glass g is fused and integrated, the surface accuracy of the formed sheet glass can be maintained well.
  • each of the outer surface portions 4 of the molded body 1 is a single plane, but the present invention is not limited to this.
  • each of the outer surface portions 4 may be configured by vertically connecting a vertical surface portion 4a and an inclined surface portion 4b. That is, at least the lower part of the outer surface part 4 may gradually approach each other downward, and the lower ends thereof may be connected to each other to form the route 5 of the molded body 1.
  • the overflow groove 2 has a V-shaped cross section, but the present invention is not limited to this.
  • the cross section may be rectangular or U-shaped.
  • channel 2 is coat
  • this invention is not limited to this,
  • the metal film 9 is methods other than thermal spraying. May be formed.
  • the inner surface of the overflow groove 2 may be covered with a metal member such as a metal plate instead of the metal film 9.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

 オーバーフローダウンドロー法に使用される板ガラス製造装置において、成形体1の表面のうち、オーバーフロー溝2の内面にのみ金属膜9を設けた。

Description

板ガラス製造装置および板ガラス製造方法
 本発明は、オーバーフローダウンドロー法により板ガラスを製造するための技術の改良に関する。
 周知のように、液晶ディスプレイ、プラズマディスプレイ、有機ELディスプレイなどのフラットパネルディスプレイ(FPD)用のガラス基板や、有機EL照明用のガラス基板に代表されるように、各種分野に利用される板ガラスには、表面欠陥やうねりに対して厳しい製品品位が要求される場合がある。
 このような要求に応えるべく、平滑で欠陥のないガラス表面を得るために、オーバーフローダウンドロー法という製造方法が利用されている。
 この製造方法は、成形体の頂部のオーバーフロー溝に溶融ガラスを流し込み、このオーバーフロー溝から両側に溢れ出た溶融ガラスを成形体の頂部平面部を介して、成形体の略楔状をなす外側面部に沿って流下させながら前記成形体の下端部で融合一体化し、1枚の板ガラスを連続成形するというものである。
 ところで、このオーバーフローダウンドロー法で使用される成形体は、アルミナ耐火物、ジルコニア耐火物等の耐火物で構成されている。この成形体上を溶融ガラスが流下すると、成形体成分が溶融ガラス中に溶出し、この溶出した成形体成分が晶出することにより、成形されるガラス板の品質が低下する場合があった。
 このような問題に対して、成形体の溶融ガラスに接触する部位を、溶融ガラスに対して耐食性を有する金属で被覆することが考えられる。このように、成形体を耐食性金属で被覆することについては既にいくつかの提案がなされている。
 例えば、特許文献1に開示されたオーバーフローダウンドロー法では、成形体の全表面を覆う白金または白金合金の金属板で被覆し、金属板における溶融ガラス接触部位を他の部位より板厚を厚くしている。この方法は、成形体の全表面を覆う白金または白金合金の金属板で被覆した場合に発生する次のような現象を抑制することを目的としている。すなわち、この現象は、溶融ガラスの熱で金属板が成形体より熱膨張することにより、金属板における溶融ガラス接触部位が成形体から離隔する方向へ変形するという現象である。
 この方法では、次のような理由によって、この現象を抑制できるとしている。まず、金属板における溶融ガラス接触部位よりそれ以外の部位の方が、板厚が薄いので成形体から離隔する方向への変形を起こしやすい。従って、溶融ガラスの熱によって金属板の熱膨張が成形体表面に沿って生じた場合、溶融ガラス接触部位以外の部位で成形体から離隔する方向への変形が優先的に発生する。これによって溶融ガラス接触部位の成形体表面に沿った熱膨張が吸収され、溶融ガラス接触部位の成形体から離隔する方向への変形が抑制される。
 また、例えば、特許文献2に開示されたオーバーフローダウンドロー法でも、成形体における溶融ガラスと接触する面に、溶射によって白金等の貴金属膜が形成される。
 また、例えば、特許文献3に開示されたオーバーフローダウンドロー法では、成形体の下端部に白金または白金合金の金属板が配設されている。
特開平5-139766号公報 特開2008-69024号公報 特開2003-81653号公報
 しかしながら、特許文献1に開示された方法では、金属板が成形体全体を被覆していることから理解できるように、金属板における溶融ガラス接触部位が成形体上で連続している。このため、溶融ガラスの熱によって金属板の溶融ガラス接触部位が成形体表面に沿って熱膨張した場合、溶融ガラス接触部位が連続している方向では、その膨張は吸収されずに溶融ガラス接触部位が成形体から離隔する方向への変形を起こしてしまう可能性がある。
 一方、この方法では、溶融ガラスの熱で金属板が成形体より熱膨張した際に、成形体側に局所的あるいは全体的に応力が加わることによって、成形体に割れが発生する可能性もある。
 また、特許文献2に開示された方法でも、特許文献1に開示された方法と同様に、溶融ガラスの熱で貴金属膜が成形体より熱膨張することによって、貴金属膜が成形体から離隔する方向へ変形したり、成形体に割れが発生したりする可能性がある。
 また、特許文献3に開示された方法のように、成形体の下端部に成形体とは別体の金属板を配設した場合には、成形体の下端部は、溶融ガラスが融合一体化する部位であるため、成形される板ガラスの表面精度に悪影響を及ぼす恐れがある。
 本発明は、上記事情に鑑み、オーバーフローダウンドロー法で、成形体の成分の溶融ガラスへの溶出を抑制するために成形体を金属で被覆する場合に、被覆金属が変形する事態や成形体が割れる事態を回避すると共に、成形される板ガラスの表面精度を良好に維持することを技術的課題とする。
 上記課題を解決するために創案された本発明に係る板ガラス製造装置は、頂部にオーバーフロー溝を有し、該オーバーフロー溝の両側に形成され、相互に下端で接続される一対の外側面部を有する成形体を備え、前記オーバーフロー溝に溶融ガラスを流し込み、前記オーバーフロー溝から溢れ出た前記溶融ガラスを前記一対の外側面部に沿って流下させながら前記一対の外側面部の下端で融合一体化させ、板ガラスを成形する板ガラス製造装置において、前記成形体の表面のうち、前記オーバーフロー溝の内面にのみ金属から成る被覆部を設けたことに特徴づけられる。
 成形体と溶融ガラスが接触している場合において、溶融ガラスへの成形体成分の溶出を考えた場合、両者の化学組成、両者の接触している時間の他に両者の温度が大きな影響を与える。溶融ガラスと成形体とが共に温度が高くなるに従って、両者の界面における物質移動が盛んになり、溶融ガラスへの成形体成分の溶出が多くなる。成形体の表面では、オーバーフロー溝における内面が、最初に溶融ガラスが接触する部位であるため、最も高温である。従って、この内面から成形体成分が溶融ガラスに溶出する可能性が高い。上記の装置では、この内面が金属から成る被覆部で被覆されるので、成形体成分の溶融ガラスへの溶出を効率的に抑制することができる。
 一方、成形体におけるオーバーフロー溝の内面以外の表面は金属から成る被覆部に被覆されておらず、被覆部は成形体上の一部となり、その表面積は少ない。従って、溶融ガラスの熱により被覆部の金属と成形体とが表面に沿った方向に熱膨張する場合、その膨張する長さについて両者の差が限定される。このため、熱膨張に起因する被覆部の金属の成形体から離隔する方向への変形や成形体の割れを抑制することが可能である。
 また、上記の装置では、成形体の外側面部の表面は金属から成る被覆部で被覆されていないため、この表面では、熱膨張に起因する金属の成形体から離隔する方向への変形や成形体の割れが発生しない。従って、この表面は、金属で被覆された場合に比較して、板ガラス成形時に表面精度が良好に維持される。この表面は、溶融ガラスが融合一体化する前に流下する部位なので、成形される板ガラスの表面精度も良好に維持することができる。
 上記の装置において、前記被覆部が、前記オーバーフロー溝における内面の80%以上の範囲に設けられていることが好ましい。
 このようにすれば、成形体成分の溶融ガラスへの溶出を抑制する効果が十分に享受できる。
 何れかの装置において、前記被覆部を通じた通電加熱が行われていないことが好ましい。このようにすれば、被覆部近傍の成形体表面において、成形体成分の溶融ガラスへの溶出を抑制し易くなる。
 上記何れかの装置において、前記被覆部が、溶射により形成された金属膜であることが好ましい。
 被覆部の金属は金属膜の形態であれば、成形体表面に直接形成でき、板状の形態のものを成形体表面に溶接等で固定する場合と比較して、容易に成形体表面を被覆することができる。また、金属膜は溶射によって形成すれば、成膜が速く、また、成形体に与える熱の影響が少ないので、成膜に起因する成形体の変形や歪みを抑制できる。溶射の種類は、特に限定されることはなく、例えばフレーム溶射、プラズマ溶射等である。
 上記何れかの装置において、前記被覆部が、白金または白金合金で形成されていることが好ましい。
 このようにすれば、溶融ガラスの温度が1000℃を超える場合でも、被覆部の金属が溶解し難くなる。白金合金としては、例えば白金-ロジウム合金、白金-イリジウム合金等が挙げられる。
 上記何れかの装置において、この金属膜の厚さが、50~1000μmであることが好ましい。
 被覆部である金属膜の厚さが50μm以上であれば、板ガラス成形時に発生する金属膜のはがれや割れを抑制することが可能である。被覆部である金属膜の厚さが1000μm以下であれば、溶射時に金属膜側に発生する割れや剥離を抑制することが可能である。また、板ガラス成形時に、溶融ガラスの流れが金属膜に妨げられることによって板ガラスの表面精度が低下する事態を回避することが可能となる。
 また、上記課題を解決するために創案された本発明に係る板ガラス製造方法は、頂部にオーバーフロー溝を有し、該オーバーフロー溝の両側に形成され、相互に下端で接続される一対の外側面部を有する成形体を備え、前記オーバーフロー溝に溶融ガラスを流し込み、前記オーバーフロー溝から溢れ出た前記溶融ガラスを前記一対の外側面部に沿って流下させながら前記一対の外側面部の下端で融合一体化させ、板ガラスを成形する板ガラス製造方法において、前記成形体として、その表面のうち、前記オーバーフロー溝の内面にのみ金属から成る被覆部を設けたものを使用することに特徴づけられる。
 この方法の構成は、上述の本発明に係る板ガラス製造装置のうち冒頭で述べた装置の構成と実質的に同一であるので、その作用効果は、当該装置について既に述べたものと実質的に同一である。
 本発明によれば、オーバーフローダウンドロー法で、成形体の成分の溶融ガラスへの溶出を抑制するために成形体を金属で被覆する場合に、被覆金属が変形する事態や成形体が割れる事態を回避すると共に、成形される板ガラスの表面精度を良好に維持することができる。
本発明の実施形態に係る板ガラス製造装置の要部を示す図で、概略正面図である。 本発明の実施形態に係る板ガラス製造装置の要部を示す図で、図1AのX-X線矢視断面図である。 本発明の他の例を示す断面図である。
 以下、本発明を実施するための形態について図面に基づき説明する。
 図1Aは、本発明の実施形態に係る板ガラス製造装置の要部を示す概略正面図である。同図に示すように、この薄板ガラス製造装置は、オーバーフローダウンドロー法を実行するための成形体1を備えている。
 成形体1は、同図に示すように、製造される薄板ガラスの幅方向に対応する方向に沿って長尺であり、頂部にその長手方向に沿って形成されたオーバーフロー溝2と、両上端開口縁から外側方へと延在する成形体1の頂部平面部3と、楔状に下方に向かって互いに漸次接近する一対の外側面部4とを主要な構成要素とする。成形体1の下端部は、ルート5と称され、成形体1における両側の外側面部4の下端が相互に接続することによって構成されている。成形体1は、溶融ガラスgに対して耐食性を有する例えばアルミナ耐火物、ジルコニア耐火物等から形成される。
 本実施形態の成形体1にはガイド6が設けられている。ガイド6は、白金またはその合金からなり、両外側面部4およびルート5の長手方向両端に配設される。ガイド6は、成形体1のオーバーフロー溝2から、頂部平面部3、両外側面部4およびルート5まで延在し、溶融ガラスgの流下する幅を規定する作用を有している。
 オーバーフロー溝2の長手方向一端側には、溶融ガラスgを供給する供給パイプ7が連結されている。本実施形態では、オーバーフロー溝2は、流路床8を下端とする断面V字状である。オーバーフロー溝2の流路床8は、溶融ガラスgの流れ方向の始端部側から終端部側に移行するに従って漸次高くなるように勾配が付けられている。
 オーバーフロー溝2の内面は、溶射によって形成された被覆部としての金属膜9によって被覆される一方、頂部平面部3と外側面部4の表面は全て素地が露出されている。金属膜9に被膜されているのは、オーバーフロー溝2の内面の少なくとも一部であればよく、本実施形態では、オーバーフロー溝2の内面の80%であるが、これ以上であってもよい。また、図1Bに示すように、本実施形態では流路床8を含みオーバーフロー溝2の流路床8から上端に向かって連続して金属膜9で被覆されている。金属膜9の上端とオーバーフロー溝2の上端との間の距離は、オーバーフロー溝2の延在方向で一定である。また、この距離は、オーバーフロー溝2の一対の側面で同一である。本実施形態では、金属膜9の材質は白金であるが、白金合金でもよい。また、本実施形態では、成膜方法として、フレーム溶射を用いているが、例えばプラズマ溶射等の他の溶射を用いてもよい。また、金属膜9は、溶射以外の手法、例えば蒸着等で形成してもよい。なお、金属膜9は理解し易いように、実際より厚く図示されている。
 金属膜9の厚さは例えば50~1000μm、好ましくは100~500μmであり、本実施形態では250μmである。金属膜9の厚さが50μm未満であると、板ガラス成形時に、金属膜9の剥離や割れ、あるいは溶融ガラスgによる金属膜9の侵食が発生する可能性がある。金属膜9の厚さが1000μmを超えると、溶射時に金属膜9の側に割れや剥離が発生する可能性がある。また、金属膜9の厚さが1000μmを超えると、板ガラス成形時に、溶融ガラスgが金属膜9によって流れを妨げられ、成形される板ガラスの表面精度に悪影響を与える。また、成形される板ガラスの表面精度を考慮すれば、金属膜9の厚さは板幅方向で均一であることが好ましい。
 上記の装置を使用した板ガラスの製造方法を以下に説明する。
 まず、ガラス溶融窯(図示省略)で例えば無アルカリガラス(例えば、日本電気硝子株式会社製OA-10G)等のガラスの原料を溶融する。次に、この溶融ガラスgを、供給パイプ7を介して、成形体1のオーバーフロー溝2に流し込む。
 溶融ガラスgがオーバーフロー溝2に、所定量流し込まれると、溶融ガラスgはオーバーフロー溝2から、その両側の頂部平面部3を介して、両外側面部4に沿って流下する。
 この溶融ガラスgは、成形体1のルート5で融合一体化される。この一体化された溶融ガラスgが、下方に配設されたローラ等の牽引手段(図示省略)により引き伸ばされると共に冷却されることによって、板ガラスが連続的に成形される。
 上述のように構成された本実施形態の板ガラス製造装置では、以下のような効果が享受できる。
 成形体成分が溶融ガラスgに溶出する可能性が高いオーバーフロー溝2の内面が白金の金属膜9で被覆されるので、成形体成分の溶融ガラスgへの溶出を効率的に抑制することができる。一方、成形体1の頂部平面部3と外側面部4の表面は金属膜9に被覆されておらず、金属膜9が被覆する部位は成形体1上の一部となり、その表面積は少ない。従って、溶融ガラスgの熱により金属膜9と成形体1とが表面に沿った方向に熱膨張する場合、その膨張する長さについて両者の差が限定される。このため、熱膨張に起因する金属膜9の成形体1から離隔する方向への変形や成形体1の割れを抑制することが可能である。
 また、成形体1の外側面部4の表面は金属膜9に被覆されていないため、この表面では、溶融ガラスgの熱により、金属膜9が熱膨張して成形体1から離隔するような変形や、金属膜9が成形体1より熱膨張することに起因する成形体1の割れが発生しない。従って、この表面が金属膜9に被覆された場合と比較して、板ガラス成形時に、この表面の表面精度が良好に維持される。この表面は、溶融ガラスgが融合一体化する前に流下する部位なので、成形される板ガラスの表面精度も良好に維持することができる。
 なお、上記実施形態では、成形体1の外側面部4のそれぞれが単一の平面であるが、本発明はこれに限定されるものではない。例えば、図2に示すように、外側面部4のそれぞれが、垂直面部4aと、傾斜面部4bとを上下に連接して構成されていてもよい。すなわち、外側面部4の少なくとも下側部分が、下方に向かって相互に漸次接近し、その下端が相互に接続することによって成形体1のルート5を構成すればよい。
 また、上記実施形態では、オーバーフロー溝2は、断面がV字状であるが、本発明はこれに限定されるものではない。例えば、図2に示すように、断面が矩形状であってもよいし、U字状であってもよい。
 また、上記実施形態では、オーバーフロー溝2の内面は、溶射によって形成された金属膜9によって被覆されているが、本発明はこれに限定されるものでなく、金属膜9は、溶射以外の手法によって形成されてもよい。また、オーバーフロー溝2の内面は、金属膜9ではなく、金属板等の金属部材によって被覆されてもよい。
 本発明は以上の説明に限定されることなく、その技術的思想の範囲内であれば、様々な変形が可能である。
1   成形体
2   オーバーフロー溝
3   頂部平面部
4   外側面部
5   ルート
9   金属膜(被覆部)
g   溶融ガラス

Claims (6)

  1.  頂部にオーバーフロー溝を有し、該オーバーフロー溝の両側に形成され、相互に下端で接続される一対の外側面部を有する成形体を備え、前記オーバーフロー溝に溶融ガラスを流し込み、前記オーバーフロー溝から溢れ出た前記溶融ガラスを前記一対の外側面部に沿って流下させながら前記一対の外側面部の下端で融合一体化させ、板ガラスを成形する板ガラス製造装置において、
     前記成形体の表面のうち、前記オーバーフロー溝の内面にのみ金属から成る被覆部を設けたことを特徴とする板ガラス製造装置。
  2.  前記被覆部が、前記オーバーフロー溝における内面の80%以上の範囲に設けられていることを特徴とする請求項1に記載の板ガラス製造装置。
  3.  前記被覆部が、溶射により形成された金属膜であることを特徴とする請求項1又は2に記載の板ガラス製造装置。
  4.  前記被覆部が、白金または白金合金で形成されていることを特徴とする請求項1~3の何れか1項に記載の板ガラス製造装置。
  5.  前記被覆部の厚さが、50~1000μmであることを特徴とする請求項1~4の何れか1項に記載の板ガラス製造装置。
  6.  頂部にオーバーフロー溝を有し、該オーバーフロー溝の両側に形成され、相互に下端で接続される一対の外側面部を有する成形体を備え、前記オーバーフロー溝に溶融ガラスを流し込み、前記オーバーフロー溝から溢れ出た前記溶融ガラスを前記一対の外側面部に沿って流下させながら前記一対の外側面部の下端で融合一体化させ、板ガラスを成形する板ガラス製造方法において、
     前記成形体として、その表面のうち、前記オーバーフロー溝の内面にのみ金属から成る被覆部を設けたものを使用することを特徴とする板ガラス製造方法。
PCT/JP2012/052367 2011-02-22 2012-02-02 板ガラス製造装置および板ガラス製造方法 WO2012114842A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011035817A JP2012171836A (ja) 2011-02-22 2011-02-22 板ガラス製造装置および板ガラス製造方法
JP2011-035817 2011-02-22

Publications (1)

Publication Number Publication Date
WO2012114842A1 true WO2012114842A1 (ja) 2012-08-30

Family

ID=46720630

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/052367 WO2012114842A1 (ja) 2011-02-22 2012-02-02 板ガラス製造装置および板ガラス製造方法

Country Status (3)

Country Link
JP (1) JP2012171836A (ja)
TW (1) TW201236984A (ja)
WO (1) WO2012114842A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7574751B2 (ja) 2021-06-24 2024-10-29 Agc株式会社 成形装置
JP7574722B2 (ja) 2021-04-09 2024-10-29 Agc株式会社 成形装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020036045A1 (ja) * 2018-08-13 2020-02-20 Agc株式会社 板ガラスの製造装置、および板ガラスの製造装置に使用される成形部材

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05139766A (ja) * 1991-11-15 1993-06-08 Hoya Corp ガラス板製造用成形体
JP2008069024A (ja) * 2006-09-13 2008-03-27 Tanaka Kikinzoku Kogyo Kk フュージョンダウンドロー法による板ガラスの製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05139766A (ja) * 1991-11-15 1993-06-08 Hoya Corp ガラス板製造用成形体
JP2008069024A (ja) * 2006-09-13 2008-03-27 Tanaka Kikinzoku Kogyo Kk フュージョンダウンドロー法による板ガラスの製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7574722B2 (ja) 2021-04-09 2024-10-29 Agc株式会社 成形装置
JP7574751B2 (ja) 2021-06-24 2024-10-29 Agc株式会社 成形装置

Also Published As

Publication number Publication date
TW201236984A (en) 2012-09-16
JP2012171836A (ja) 2012-09-10

Similar Documents

Publication Publication Date Title
JP7510839B2 (ja) 厚み変動を抑制したガラス物品、その製造方法、及びそのための装置
JP5276446B2 (ja) 低液相線粘度ガラスを牽引する方法および装置
JP5724552B2 (ja) 薄板ガラス製造装置
TWI591026B (zh) 用於自連續移動之玻璃帶移除邊緣部分之設備及方法
JP6052624B2 (ja) 板ガラス製造装置および板ガラス製造方法
JP4673275B2 (ja) フュージョンダウンドロー法による板ガラスの製造方法
JP2009518275A5 (ja)
KR20100126227A (ko) 유리 성형 공정에서 성형체로 부터 복사열 손실을 감소시키는 장치
JP5075395B2 (ja) 平坦ガラス、特にガラスセラミックになり易いフロートガラスの製造方法
JP5045667B2 (ja) 溶融ガラスをフロートバス上に移送するための装置
TWI727124B (zh) 玻璃製造方法、及玻璃供應管的預熱方法
WO2012114842A1 (ja) 板ガラス製造装置および板ガラス製造方法
JP6034950B2 (ja) ガラス製造プロセスにおける成形本体の熱分離装置
JP4280977B2 (ja) 板ガラスの成形装置
JP2003081653A (ja) 薄板ガラスを製造する方法及びその製造装置
WO2016170757A1 (ja) 溶融金属めっき鋼帯の製造装置及び製造方法
JP5704505B2 (ja) 板ガラス製造装置および板ガラス製造方法
US11530152B2 (en) Method for manufacturing glass article, and melting furnace
TWI474987B (zh) A molten glass supply device
JP2013216533A (ja) ガラス板の製造方法およびガラス板製造装置
TWI802618B (zh) 包括熱屏蔽的玻璃製造裝置及方法
WO2011122195A1 (ja) 薄板ガラスおよびその製造方法
JP2007131523A (ja) 平板ガラス、特にフロートガラスの製造方法
JP2024033237A (ja) ガラス物品の製造装置及び製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12749690

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12749690

Country of ref document: EP

Kind code of ref document: A1