WO2012114817A1 - オートクレーブ及び成形材の加熱硬化方法 - Google Patents

オートクレーブ及び成形材の加熱硬化方法 Download PDF

Info

Publication number
WO2012114817A1
WO2012114817A1 PCT/JP2012/051572 JP2012051572W WO2012114817A1 WO 2012114817 A1 WO2012114817 A1 WO 2012114817A1 JP 2012051572 W JP2012051572 W JP 2012051572W WO 2012114817 A1 WO2012114817 A1 WO 2012114817A1
Authority
WO
WIPO (PCT)
Prior art keywords
molding material
holding jig
autoclave
cavity
hot gas
Prior art date
Application number
PCT/JP2012/051572
Other languages
English (en)
French (fr)
Inventor
近藤 喜之
谷本 浩一
幸生 武内
裕丞 ▲柳▼瀬
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to EP12749971.3A priority Critical patent/EP2679371B1/en
Priority to US13/982,864 priority patent/US9586345B2/en
Publication of WO2012114817A1 publication Critical patent/WO2012114817A1/ja
Priority to US15/375,768 priority patent/US10029397B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/0227Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould using pressure vessels, e.g. autoclaves, vulcanising pans
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/04Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould using liquids, gas or steam
    • B29C35/045Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould using liquids, gas or steam using gas or flames
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B17/00Furnaces of a kind not covered by any preceding group
    • F27B17/0016Chamber type furnaces
    • F27B17/0083Chamber type furnaces with means for circulating the atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B5/00Muffle furnaces; Retort furnaces; Other furnaces in which the charge is held completely isolated
    • F27B5/06Details, accessories, or equipment peculiar to furnaces of these types
    • F27B5/16Arrangements of air or gas supply devices
    • F27B2005/166Means to circulate the atmosphere
    • F27B2005/167Means to circulate the atmosphere the atmosphere being recirculated through the treatment chamber by a turbine

Definitions

  • the present invention relates to an autoclave in which a molding material of fiber reinforced plastic (FRP) as a component part of an aircraft, an industrial machine or the like is heat-cured and molded under pressure, and a heat-curing method of the molding material using the autoclave.
  • FRP fiber reinforced plastic
  • the high-pressure and high-temperature gas in the pressure vessel is heated and circulated in a state where the molding material is placed in the pressure vessel to which high-pressure and high-temperature gas is supplied from the outside.
  • the fiber reinforced plastics which are laminated in the form of a thin plate are heat-cured and bonded, and a composite material can be obtained.
  • a method of molding in a curing furnace having no pressure action, or a method of curing only the jig to cure the molding material is known as another thermoforming method of the molding material.
  • a holding jig for holding the shape of the molding material is indispensable when thermosetting a bent-type large stringer member used in the main wing of an aircraft. Therefore, it becomes difficult for the atmospheric temperature in the pressure vessel to be directly transmitted to the molding material, and the heating efficiency of the molding material is deteriorated. Further, in addition to the large size of the molding material, it has a special shape, so heating unevenness has occurred, and there has been concern about the occurrence of defective products due to uneven heat curing and heat generation inside the molding material.
  • the present invention has been made in view of such circumstances, and provides an autoclave and a molding material heat-curing method capable of shortening the heat-curing molding time of the molding material and suppressing the occurrence of defective products. Objective.
  • the autoclave according to the present invention is an autoclave that heats and cures a molding material to be heated with a high-temperature gas, and holds a shape of the pressure vessel in which the molding material is disposed, and the molding material.
  • the contact portion between the molding material and the holding jig which has been difficult to transmit the atmospheric temperature in the pressure vessel so far, by the high-temperature gas auxiliary supply means into the holding jig cavity.
  • the temperature rise rate of the molding material temperature can be increased.
  • shortening of the heat curing molding time can be achieved.
  • the uniform heating of the molding material, which has been difficult until now, becomes possible, and the occurrence of defective products can be suppressed.
  • the heat of the heating portion is reduced by the high-temperature gas supplied into the cavity of the holding jig. Can be removed. That is, since the heat radiation action of the heat generating portion can be obtained by the high temperature gas supplied by the high temperature gas auxiliary supply means, it is possible to suppress the generation of defective products due to the heat generation.
  • the high temperature gas auxiliary supply means into the holding jig cavity according to the present invention, a part of the high temperature gas supplied by the high temperature gas supply means into the pressure vessel of the autoclave is taken in, and the holding jig cavity It is preferable to have a guide pipe that guides it in.
  • the high-temperature gas in the pressure vessel can be more efficiently supplied into the holding jig cavity, and as a result, the molding material is further heat-cured and molded. Generation of defective products due to time reduction, uneven heating, and heat generation inside the molding material can be suppressed.
  • the guide pipe is provided at both ends of the cavity of the holding jig, the inside and outside of the cavity are communicated, and the high-temperature gas supplied into the cavity by the guide pipe flows out.
  • An outflow hole may be formed.
  • the autoclave having the guide pipes provided at both ends of the holding jig, more hot gas flows into the holding jig, and heat transfer between the holding jig inner surface and the molding material is performed. Further improve. As a result, it is possible to further reduce the time for heat curing and molding, to suppress uneven heating, and to prevent generation of defective products due to heat generation inside the molding material.
  • the autoclave according to the present invention preferably includes a first fin disposed on an inner surface forming the cavity of the holding jig.
  • This first fin increases the total heat transfer area on the inner surface that forms the cavity of the holding jig, and improves heat transfer between the hot gas flowing into the holding jig cavity and the molding material. As a result, it is possible to further reduce the time for heat-curing molding, to suppress generation of defective products due to uneven heating and heat generation inside the molding material.
  • the first fins are arranged in a spiral shape.
  • the high-temperature gas supplied into the holding jig cavity by the high-temperature gas auxiliary supply means becomes a swirling flow, and the heat transfer between the high-temperature gas and the molding material can be further improved.
  • the autoclave according to the present invention preferably includes a second fin arranged on the outer surface of the holding jig.
  • Such a second fin provided on the outer surface of the holding jig increases the total heat transfer area of the outer surface of the holding jig and improves heat transfer between the high-temperature gas in the pressure vessel and the molding material. As a result, it is possible to further reduce the time for heat-curing molding, to suppress generation of defective products due to heating unevenness and heat generation inside the molding material.
  • the autoclave according to the present invention preferably includes a flow guide for guiding the hot gas supplied by the hot gas supply means in the pressure vessel along the outer surface of the holding jig.
  • the high temperature gas is guided along the holding jig, heat transfer between the high temperature gas in the pressure vessel and the molding material is improved, and the ambient temperature in the pressure vessel is transmitted to the molding material. It becomes easy to do. As a result, it is possible to further reduce the time for heat-curing molding, to suppress generation of defective products due to heating unevenness and heat generation inside the molding material.
  • a black body paint is applied to the surface of the holding jig.
  • the molding material heat-curing method according to the present invention is a molding material heat-curing method in which a molding material to be heated is heat-cured with a high-temperature gas, and the molding material is held in a hollow space. The shape is held by a tool, the hot gas is supplied to the molding material disposed in the pressure vessel by the hot gas supply means, and the hot gas is supplied into the cavity of the holding jig by the hot gas auxiliary means. It is characterized by doing.
  • the autoclave and molding material heat curing method of the present invention by providing the high temperature gas auxiliary supply means into the holding jig cavity, the heat transfer to the bent type large molding material to be heated is performed. Increase and uniform heating can be achieved. Thereby, shortening of the heat-curing molding time of the molding material, generation of defective products due to heating unevenness and heat generation inside the molding material can be suppressed, and an increase in manufacturing cost can also be suppressed.
  • FIG. 4 is a longitudinal sectional view of the molding material and the molding material holding jig inside the autoclave according to the first embodiment of the present invention, as viewed from the side, showing the AA cross section of FIG. 3.
  • FIG. 7 is a longitudinal sectional view of a molding material and a molding material holding jig inside the autoclave according to the third embodiment of the present invention, as viewed from the side, and showing a BB section in FIG. 6. It is a longitudinal cross-sectional view when the autoclave which concerns on 4th embodiment of this invention is seen from the front. It is the longitudinal cross-sectional view at the time of enlarging the molding material and molding material holding jig inside an autoclave which concern on 4th embodiment of this invention, and seeing from the front.
  • the autoclave 1 is used when a molding material W formed by laminating sheets of a composite material such as fiber reinforced plastic (FRP) in which carbon fiber is impregnated with a resin is heat-cured and molded under pressure.
  • the autoclave 1 includes a pressure vessel 2, an inner vessel 3, a holding jig 4, a high-temperature gas supply unit 5, a high-temperature gas auxiliary supply unit 7, and a circulation unit 6.
  • the pressure vessel 2 has a structure in which both ends of a cylindrical shape extending in the horizontal direction are sealed, and high-pressure gas introduced by a gas introduction unit (not shown) is sealed in a sealed state inside the pressure vessel 2. .
  • the inner container 3 is a container disposed inside the pressure container 2 with a space from the inner wall surface of the pressure container 2, and like the pressure container 2, the inner container 3 has a cylindrical shape extending in the horizontal direction and has both ends. It has a sealed structure.
  • the pressure vessel 2 and the inner vessel 3 are arranged concentrically with the center line coincident, and at least one of the pressure vessel 2 and the inner vessel 3 at both ends in the extending direction can be opened and closed.
  • the door-like structure By opening this door, it is possible to introduce the holding jig 4 and the molding material W into the inner container 3.
  • a space between the pressure vessel 2 and the inner vessel 3 is a gas flow path R through which high-pressure gas introduced into the pressure vessel 2 and heated is circulated. Is formed so as to surround the entire outer peripheral surface of the inner container 3.
  • the extending direction of the pressure vessel 2 and the inner vessel 3 (left and right direction in FIG. 1 and depth direction in FIG. 2) is referred to as the depth direction, and the horizontal direction of the cross section perpendicular to the depth direction (paper surface in FIG. 1).
  • the depth direction (the left-right direction in FIG. 2) is referred to as the width direction.
  • the holding jig 4 is arranged inside the inner container 3 and has a role of holding the molding material W.
  • the molding material W held by the holding jig 4 has a large and special shape such as a vent-type stringer used in the main wing of an aircraft, for example.
  • the molding material W is a plate shape in which the depth direction is the longitudinal direction and the width direction is the short direction, and the center in the width direction is bent downward. is doing.
  • the center in the width direction of the lower surface of the molding material W has a shape projecting downward
  • the center in the width direction of the upper surface of the molding material W has a shape recessed in a concave shape downward. .
  • the holding jig 4 is composed of two upper and lower members in order to hold a bent stringer molding material W which is a molding target in the present embodiment. That is, the holding jig 4 includes a lower holding jig 4 a disposed on the lower side of the molding material W and an upper holding jig 4 b disposed on the upper side of the molding material W.
  • the lower holding jig 4a holds the molding material W from the lower side as shown in FIG. 3, and has a bent mold similar to the molding material W so as to be in close contact with the entire lower surface of the molding material W. Both ends in the width direction are supported by support columns 11 erected on a base plate 12 inside the inner container 3. Further, as shown in FIG. 3, the upper holding jig 4b holds the molding material W so as to sandwich the molding material W from the upper side, and has a cavity 15 extending in the depth direction and open at both ends. is doing. In this embodiment, it arrange
  • the high-temperature gas supply means 5 is disposed on both sides in the width direction of the inner container 3, a heater 8 for heating the gas circulating in the gas flow path R, and a lower part of the inner container 3.
  • the gas inlet 9 that communicates with the inside and outside of the inner container 3 and the gas outlet 10 that is formed at the top of the inner container 3 and communicates with the inside and outside of the inner container 3 are formed.
  • the circulation means 6 is a fan provided at the uppermost part of the gas flow path R outside the gas outlet 10 of the inner container 3, and extends from the uppermost part of the gas flow path R along the gas flow path R. It has a role of circulating the gas downward. As shown in FIG. 1, a plurality (four in this embodiment) of circulating means 6 are installed at intervals in the depth direction.
  • the hot gas auxiliary supply means 7 supplies the hot gas supplied to the inner container 3 through the gas inlet 9 by the hot gas supply means 5 into the cavity 15 of the upper holding jig 4b.
  • the high temperature gas auxiliary supply means 7 as shown in FIGS. 1 and 4, a part of the high temperature gas supplied into the inner container 3 is inside the cavity 15 of the upper holding jig 4b.
  • the guide pipe 13 to be introduced into the is adopted.
  • the guide pipe 13 is a pipe-like member supported in the inner container 3 by a support structure (not shown), for example.
  • One end side opening is inserted into the cavity 15 of the upper holding jig 4b, and the other end side opening is It arrange
  • the other end side of the guide pipe 13 is formed in a trumpet shape whose diameter increases as the inner peripheral surface and the outer peripheral surface approach the end.
  • the operation of the autoclave 1 having the above configuration will be described.
  • the upper holding jig is sandwiched from the upper side of the molding material W while the molding material W is placed on the lower holding jig 4a. 4b is arranged.
  • the high-temperature gas supply means 5 causes the high-temperature gas to flow into the inner container 3 from the gas inlet 9, and heats the molding material W from its periphery.
  • the hot gas auxiliary supply means 7 sends a part of the high temperature gas flowing into the inner container 3 into the cavity 15 of the upper holding jig 4b, and the molding material W from the inner surface of the upper holding jig 4b. Heat.
  • the high temperature gas auxiliary supply means 7 since the high temperature gas auxiliary supply means 7 is provided, the high temperature gas in the inner container 3 can be directly fed into the cavity 15 of the upper holding jig 4b.
  • the transmission efficiency is improved, that is, it leads to a shortening of the heat curing molding time of the molding material W.
  • the amount of heat supplied to the molding material W can be made uniform, that is, generation of defective products due to uneven heating and internal heating of the molding material W can be suppressed.
  • the guide pipe 13 is provided as the hot gas auxiliary supply means 7, the hot gas inside the inner container 3 can be easily taken into the cavity 15 of the upper holding jig 4b. That is, since the high-temperature gas can be smoothly fed into the cavity 15 of the upper holding jig 4b by the guide pipe 13, the heat transfer can be further improved and the amount of supplied heat can be made uniform. It is possible to realize a shortening of the product and suppression of the generation of defective products.
  • the opening on the one end side of the guide pipe 13 does not necessarily have to be inserted into the cavity 15, and the opening on the one end side may be arranged so as to face the inside of the cavity 15 from the outside of the cavity 15. Further, the opening on the other end side of the guide pipe 13 may be arranged not only downward in the inner container 3 but also in the horizontal direction or diagonally downward.
  • the guide pipe 13 of the present embodiment has a trumpet shape at the other end side, but may have a pipe shape with uniform inner and outer diameters throughout the extending direction.
  • a funnel-shaped device may be attached to the other end of the guide pipe 13.
  • the autoclave 1 of the second embodiment will be described with reference to FIG. 5.
  • the same components as those in the first embodiment are denoted by the same reference numerals, and details thereof are omitted.
  • the guide pipes 13 similar to those of the first embodiment are provided at both ends of the upper holding jig 4b, and the upper holding jig 4b is further provided.
  • An outflow hole 14 that communicates the inside and outside of the cavity 15 is provided in the middle portion of the depth direction.
  • the hot gas inside the inner container 3 flows into the inside of the cavity 15 of the upper holding jig 4b through the guide pipes 13 provided at both ends of the upper holding jig 4b. It flows out from the outflow hole 14 of the part. As a result, more hot gas flows into the cavity 15, and heat transfer between the inner surface of the upper holding jig 4 b and the molding material W can be promoted more efficiently.
  • outflow holes 14 may be provided. Further, the outflow hole 14 may be formed not only in the middle portion of the cavity 15 in the depth direction but also in other places.
  • the autoclave 1 of 3rd embodiment is demonstrated.
  • the same components as those in the first embodiment are denoted by the same reference numerals, and details thereof are omitted.
  • the autoclave 1 of the third embodiment is provided with first fins 16 that increase the total heat transfer area in the cavity 15 of the upper holding jig 4b.
  • the first fins 16 protrude from the inner peripheral surface of the cavity 15 and extend in the depth direction, and a plurality of the first fins 16 are provided at intervals in the circumferential direction of the inner peripheral surface.
  • a pair is provided so as to face in the width direction on the inner peripheral surface of the cavity 15 and a pair is provided so as to face in the vertical direction.
  • the heat transfer between the hot gas flowing into the cavity 15 of the upper holding jig 4b by the hot gas auxiliary supply means 7, and the upper holding jig 4b and the molding material W is further improved. be able to. Therefore, further shortening of the heat curing molding time of the molding material W can be achieved. It is also possible to make the amount of heat supplied to the molding material W uniform, that is, it is possible to suppress generation of defective products due to uneven heating and heat generation inside the molding material W.
  • the first fin protrudes from the inner peripheral surface of the cavity 15 and spirally twists gradually in the circumferential direction of the inner peripheral surface from one end side to the other end side of the cavity 15. It may be formed.
  • a swirl flow is generated by the high-temperature gas introduced into the cavity 15, so that the effect of further improving heat transfer and equalizing the amount of heat supplied to the molding material W can be obtained.
  • the autoclave 1 of 4th embodiment is demonstrated.
  • the same components as those in the first embodiment are denoted by the same reference numerals, and details thereof are omitted.
  • a plurality of second fins 17 projecting from the lower surface and extending in the depth direction are provided on the lower surface of the lower holding jig 4a of the present embodiment.
  • a plurality of (three in the present embodiment) second fins are vertically arranged on the bottom surface of the lower holding jig 4a that is convex downward and facing the widthwise outer side of the convex shape. It is provided at intervals in the direction.
  • the total heat transfer area increases, and the lower gas from the hot gas flowing into the inner vessel 3 through the gas inlet 9 by the hot gas supply means 5 is reduced.
  • Heat transfer to the holding jig 4a is increased, and further shortening of the heat-curing molding time of the molding material W can be achieved.
  • the amount of heat supplied to the molding material W can be made uniform, that is, generation of defective products due to uneven heating and heat generation inside the molding material W can be suppressed.
  • the second fins 17 may be provided along the inflow direction of the high-temperature gas. As a result, the second fin 17 does not hinder the flow of the high-temperature gas, so that the airflow resistance is reduced and the heat transfer can be further improved. Note that the installation position, dimensions, pitch, material, thickness, and the like of the second fin 17 can be changed as appropriate.
  • the autoclave 1 of the present embodiment is provided with a flow guide 18 in the inner container 3 around the lower holding jig 4a.
  • the flow guide 18 guides the hot gas taken into the inner container 3 by the hot gas supply means 5 so as to flow along the second fins 17 provided in the lower holding jig 4a. It acts to increase the heat transfer effect in 4a.
  • the flow guide 18 is provided with a pair corresponding to each holding jig 4. Each flow guide 18 has a plate shape extending in the depth direction, and has a shape curved outward in the width direction from the lower side to the upper side of the holding jig 4.
  • the high-temperature gas effectively flows through the flow guide 18 to improve the heat transfer, leading to further shortening of the heat-curing molding time of the molding material W.
  • the flow guide 18 is installed not only around the lower holding jig 4a but also around the upper holding jig 4b. Various installation locations that can improve heat transfer can be selected.
  • the black body paint 19 is applied to the lower surface of the lower holding jig 4 a in the autoclave 1 of the present embodiment.
  • the black body paint 19 increases the heat emissivity from the surface of the lower holding jig 4a, thereby improving heat transfer by radiant heat transfer.
  • the black body paint 19 need only be a black body thermally, and is not necessarily a black paint. Even ordinary white paint is effective.
  • the black body paint 19 may be applied not only on the lower surface of the lower holding jig 4a but also on the entire surface of the lower holding jig 4a or on the upper holding jig 4b. You can expect improved communication.
  • the heat curing molding time of the molding material W can be further shortened.
  • the lower holding jig 4a is disposed on the lower side and the upper holding jig 4b is disposed on the upper side, and the molding material W is heat-cured and molded.
  • the upper holding jig 4b is arranged on the right side with respect to the horizontal direction
  • the lower holding jig 4a is arranged on the left side with respect to the horizontal direction so as to hold the molding material W and perform thermosetting molding. Molding is possible even if the direction changes.
  • the upper holding jig 4b can hold the shape of the molding material W and can be used as an internal cavity for allowing high temperature gas to flow in and out. 15, and the lower holding jig 4 a only needs to hold the shape of the molding material W.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)
  • Muffle Furnaces And Rotary Kilns (AREA)

Abstract

 このオートクレーブは、加熱対象となる成形材(W)を、空洞(15)を内部に有する保持治具(4)で形状保持して高温ガスで加熱硬化させるオートクレーブ(1)であって、当該成形材(W)が内部に配置される圧力容器(2)と、高温ガスを圧力容器(2)内で成形材(W)に供給する高温ガス供給手段(5)と、高温ガスを空洞(15)の内部に供給する高温ガス補助供給手段(7)とを設ける。

Description

オートクレーブ及び成形材の加熱硬化方法
 本発明は、航空機、産業機械等の構成部品としての繊維強化プラスチック(FRP)の成形材を加圧下で加熱硬化成形するオートクレーブと、このオートクレーブを用いた成形材の加熱硬化方法に関する。
 本願は、2011年2月21日に、日本に出願された特願2011-034496号に基づき優先権を主張し、その内容をここに援用する。
 従来、繊維強化プラスチック(FRP)からなる成形材の成形方法として、多数積層された薄板状を成す繊維強化プラスチックを、高圧化で加熱するオートクレーブ成形が知られている(例えば特許文献1参照)。このオートクレーブ成形は、高圧の高温ガスが内部を循環するオートクレーブによって行われる。
 このオートクレーブにおいては、外部から高圧・高温のガスが供給された圧力容器内に成形材を配置した状態で、圧力容器内の高圧・高温ガスを加熱循環させる。これにより、多数積層された薄板状を成す繊維強化プラスチックが加熱硬化、接着され、複合材を得ることができる。
 なお、成形材の他の加熱成形方法としては、加圧作用のない硬化炉内にて成形する方法や、治具のみを加熱して成形材を硬化させる方法が知られている。
特許第4109660号公報
 上記オートクレーブにおいては、例えば航空機の主翼に用いられるようなベント型の大型ストリンガー部材の加熱硬化成形の際には、成形材の形状を保持するための保持治具が必要不可欠であった。そのため、圧力容器内の雰囲気温度が成形材に直接伝達し難くなり、成形材の加熱効率が悪くなる結果、硬化に時間を要していた。
 さらに成形材が大型であることに加え、特殊な形状でもあるために加熱ムラが発生し、不均一な加熱硬化や成形材内部の発熱による不良品の発生が懸念されていた。
 本発明はこのような事情を考慮してなされたもので、成形材の加熱硬化成形時間の短縮及び不良品発生の抑制を図ることができる、オートクレーブ及び成形材の加熱硬化方法を提供することを目的とする。
 上記課題を解決するために、本発明は以下の手段を採用している。
 即ち本発明に係るオートクレーブは、加熱対象となる成形材を、高温ガスにより加熱硬化させるオートクレーブであって、前記成形材が内部に配置される圧力容器と、前記成形材を形状保持し、内部が空洞に形成された保持治具と、前記高温ガスを前記圧力容器内で前記成形材に供給する高温ガス供給手段と、前記高温ガスを前記保持治具の前記空洞内に供給する高温ガス補助供給手段とを備えることを特徴とする。
 このような保持治具を備えるオートクレーブによれば、保持治具空洞内への高温ガス補助供給手段によって、これまで圧力容器内の雰囲気温度が伝達しにくかった成形材と保持治具との接触部分に、圧力容器内の雰囲気温度を直接伝達させることができるため、成形材温度の昇温速度が高くすることが可能となる。その結果、例えば従来は加熱硬化に時間を要していたベント型の大型ストリンガー部材において、加熱硬化成形時間の短縮を達成できる。さらにこれまで困難であった成形材の均等加熱が可能となり、不良品の発生を抑制できる。
 また、例えば成形材と保持治具との接触部分の一部に過度な発熱が生じてしまった場合であっても、保持治具の空洞内に供給される高温ガスによって当該発熱部分の熱を除去することができる。即ち、高温ガス補助供給手段により供給される高温ガスによって上記発熱部分の放熱作用を得ることができるため、当該発熱による不良品の発生を抑制できる。
 さらに、本発明に係る前記保持治具空洞内への高温ガス補助供給手段においては、オートクレーブの圧力容器内への高温ガス供給手段が供給する前記高温ガスの一部を取り込み、前記保持治具空洞内に案内するガイドパイプを有することが好ましい。
 このようなガイドパイプを有する保持治具を備えるオートクレーブによれば、圧力容器内の高温ガスをさらに効率的に保持治具空洞内へ供給することができ、この結果、成形材のさらなる加熱硬化成形時間短縮や加熱ムラや成形材内部の発熱による不良品の発生を抑制できる。
 また、本発明に係るオートクレーブは、前記ガイドパイプが前記保持治具の前記空洞の両端に備えられ、前記空洞内外を連通し、前記ガイドパイプによって前記空洞内に供給される前記高温ガスが流出する流出孔が形成されていてもよい。
 このような保持治具両端に備えられたガイドパイプを有するオートクレーブによれば、より多くの高温ガスが保持治具内へ流入することとなり、保持治具内面と成形材との間の熱伝達がさらに向上する。この結果、さらなる加熱硬化成形時間短縮や加熱ムラ及や成形材内部の発熱による不良品の発生を抑制できる。
 さらに、本発明に係るオートクレーブは、前記保持治具の前記空洞を形成する内面に配置された第一フィンを備えることが好ましい。
 この第一のフィンにより、保持治具の空洞を形成する内面の総伝熱面積が増し、保持治具空洞内へ流入した高温ガスと成形材との間の熱伝達を向上できる。この結果、さらなる加熱硬化成形時間短縮や加熱ムラや成形材内部の発熱よる不良品の発生を抑制することができる。
 また、本発明に係るオートクレーブは、前記第一のフィンがスパイラル状に配置されていることが好ましい。
 このようなスパイラル状のフィンにより、高温ガス補助供給手段により保持治具空洞内に供給された高温ガスが旋回流となり、高温ガスと成形材との間の熱伝達をさらに向上することができる。この結果、さらなる加熱硬化成形時間の短縮や加熱ムラや成形材内部の発熱による不良品発生を抑制することができる。
 さらに、本発明に係るオートクレーブは、前記保持治具の外面に配置された第二フィンを備えることが好ましい。
 このような保持治具外面に設けられた第二フィンにより、保持治具外面の総伝熱面積が増し、圧力容器内の高温ガスと成形材との間の熱伝達を向上できる。この結果、さらなる加熱硬化成形時間短縮や加熱ムラや成形材内部の発熱による不良品の発生を抑制することができる。
 また、本発明に係るオートクレーブは、記圧力容器内の高温ガス供給手段によって供給される前記高温ガスを、前記保持治具の外面に沿うように案内するフローガイドを備えることが好ましい。
 このようなフローガイドにより、高温ガスが保持治具に沿うように案内され、圧力容器内の高温ガスと成形材との間の熱伝達が向上し、圧力容器内の雰囲気温度が成形材へ伝達し易くなる。この結果、さらなる加熱硬化成形時間短縮や加熱ムラや成形材内部の発熱による不良品の発生を抑制することができる。
 さらに、本発明に係るオートクレーブにおいては、前記保持治具の表面に、黒体塗料が塗布されていることが好ましい。
 このような黒体塗料(例えば通常の白や黒のペイント等)を塗布することにより、圧力容器内の高温ガスと保持治具との間の輻射伝熱が促進され、成形材のさらなる加熱硬化成形時間短縮を達成できる。
 本発明に係る成形材の加熱硬化方法は、加熱対象となる成形材を、高温ガスにより加熱硬化させる成形材の加熱硬化方法であって、前記成形材を、内部が空洞に形成された保持治具で形状保持し、圧力容器内に配置される前記成形材に対して高温ガス供給手段により前記高温ガスを供給し、前記高温ガスを高温ガス補助手段によって前記保持治具の前記空洞内に供給することを特徴とする。
 これによって、上記同様、成形材の加熱硬化成形時間短縮と加熱ムラや成形材内部の発熱による不良品の発生とを抑制できる。
 本発明のオートクレーブ及び成形材の加熱硬化方法によれば、保持治具空洞内への高温ガス補助供給手段が設けられていることにより、加熱対象となるベント型の大型成形材への熱伝達の増大と均等加熱を達成することができる。これにより成形材の加熱硬化成形時間の短縮と、また加熱ムラや成形材内部の発熱による不良品発生を抑制することができ、製造コストの上昇についても抑制できる。
本発明の第一実施形態に係るオートクレーブを側面から見た際の縦断面図である。 本発明の第一実施形態に係るオートクレーブを正面から見た際の縦断面図である。 本発明の第一実施形態に係るオートクレーブ内部の成形材及び成形材保持治具を拡大し、正面から見た際の縦断面図である。 本発明の第一実施形態に係るオートクレーブ内部の成形材及び成形材保持治具を拡大し、側面から見た際の縦断面図であって、図3のA-A断面を示す図である。 本発明の第二実施形態に係るオートクレーブ内部の成形材及び成形材保持治具を拡大し、側面から見た際の縦断面図である。 本発明の第三実施形態に係るオートクレーブ内部の成形材及び成形材保持治具を拡大し、正面から見た際の縦断面図である。 本発明の第三実施形態に係るオートクレーブ内部の成形材及び成形材保持治具を拡大し、側面から見た際の縦断面図であって、図6のB-B断面を示す図である。 本発明の第四実施形態に係るオートクレーブを正面から見た際の縦断面図である。 本発明の第四実施形態に係るオートクレーブ内部の成形材及び成形材保持治具を拡大し、正面から見た際の縦断面図である。
 以下、図1から図4を参照し、本発明の第一実施形態のオートクレーブ1について説明する。
 オートクレーブ1は、例えば炭素繊維に樹脂を含浸させた繊維強化プラスチック(FRP)等の複合材のシートを積層してなる成形材Wを、加圧下で加熱硬化成形する際に用いられる。このオートクレーブ1は、圧力容器2と、内側容器3と、保持治具4と、高温ガス供給手段5と、高温ガス補助供給手段7と、循環手段6とを備えている。
 圧力容器2は、水平方向に延在する円筒形状の両端が密閉された構造となっており、その内部には、図示しないガス導入手段によって導入される高圧のガスが密閉状態で封止される。
 内側容器3は、上記圧力容器2の内側に当該圧力容器2の内壁面と間隔をあけて配置される容器であって、圧力容器2と同様に、水平方向に延在する円筒形状で両端が密閉された構造となっている。本実施形態においては、圧力容器2と内側容器3とは中心線を一致させた同心円状に配置されており、当該圧力容器2及び当該内側容器3の延在方向両端の少なくとも一方は、開閉可能な扉状の構造となっている。この扉を開放することにより、内側容器3の内部に保持治具4及び成形材Wを導入することが可能となっている。
 また、上記圧力容器2と上記内側容器3との間の空間は、当該圧力容器2の内部に導入されて加熱された高圧ガスが循環するガス流路Rとなっており、このガス流路Rは当該内側容器3の外周面全周に渡って取り囲むように形成されている。
 なお、以下では圧力容器2及び内側容器3の延在方向(図1の左右方向、図2の紙面奥行き方向)を奥行き方向と称し、当該奥行き方向に直行する断面の水平方向(図1の紙面奥行き方向、図2の左右方向)を幅方向と称する。
 保持治具4は、内側容器3の内部に配置され成形材Wを保持する役割を有している。
 ここで、この保持治具4に保持される成形材Wは、例えば航空機の主翼に用いられるベント型のストリンガーのような大型で特殊な形状をなしている。具体的には、図2及び図3に示すように、成形材Wは、奥行き方向を長手方向とするとともに幅方向を短手方向とした板状で、幅方向の中央が下方に向かって屈曲している。これによって、成形材Wの下面の幅方向中央が下方に向かって凸状に突出した形状をなし、当該成形材Wの上面の幅方向中央は下方に向かって凹状に窪んだ形状をなしている。
 保持治具4は、本実施形態での成形対象であるベント型のストリンガーの成形材Wを保持するため、上下二つの部材により構成されている。即ち、この保持治具4は、成形材Wの下側に配置される下部保持治具4aと、当該成形材Wの上側に配置される上部保持治具4bとから構成されている。
 上記下部保持治具4aは、図3に示すように成形材Wを下側から保持するものであって、成形材Wの下面全域に密着可能なように該成形材W同様のベント型をなしており、その幅方向の両端が、内側容器3の内部のベースプレート12上に立設された支柱11によって支持されている。
 また上記上部保持治具4bは、図3に示すように、上側から成形材Wを挟み込むように保持するものであって、その内部には奥行き方向に延在し両端が開口した空洞15を有している。本実施形態においては、成形材Wにおける上面の中央の凹部に当該上部保持治具4bが嵌り込むように配置されている。
 高温ガス供給手段5は、図2に示すように、上記内側容器3の幅方向両側に配置され、ガス流路Rを循環する当該ガスを加熱するためのヒーター8と、当該内側容器3の下部に形成され内側容器3の内外を連通するガス流入口9と、内側容器3の上部に形成され内側容器3内外を連通するガス流出口10とから形成されている。
 循環手段6は、内側容器3のガス流出口10の外側のガス流路Rの最上部に備えられたファンであって、このガス流路Rの最上部から当該ガス流路Rに沿って、ガスを下方に向けて循環させる役割を有している。この循環手段6は図1に示すように、奥行き方向に間隔をあけて複数(本実施形態では4つ)設置されている。
 高温ガス補助供給手段7は、上記高温ガス供給手段5によってガス流入口9を通過し内側容器3内へ供給された高温ガスを上部保持治具4bの空洞15内に供給するものである。
 本実施形態においては、高温ガス補助供給手段7として、図1及び図4に示すように、内側容器3内へ供給された高温ガスのうち一部を上記上部保持治具4bの空洞15の内部に導入するガイドパイプ13を採用している。このガイドパイプ13は、例えば図示しない支持構造によって内側容器3内に支持されたパイプ状の部材であって、一端側開口が上部保持治具4bの空洞15内に挿入され、他端側開口が内側容器3内において下方を向くように配置されている。また、ガイドパイプ13の他端側は、その内周面及び外周面が端部に向かうに従って拡径するラッパ状に形成されている。
 次に、上記構成のオートクレーブ1の作用について説明する。
 このオートクレーブ1を用いて、成形材Wにオートクレーブ成形を施す際には、下部保持治具4aに成形材Wを載置した状態で、当該成形材Wの上側から挟み込むように、上部保持治具4bを配置する。同時に、高温ガス供給手段5によって当該高温ガスがガス流入口9から内側容器3内に流入し、成形材Wをその周囲から加熱する。
 また高温ガス補助供給手段7は、内側容器3内へ流入した高温ガスのうちの一部を、上部保持治具4bの空洞15の内部に送り込み、当該上部保持治具4bの内面から成形材Wを加熱する。
 このようなオートクレーブ1においては、高温ガス補助供給手段7を備えることによって、上記内側容器3内の高温ガスを上記上部保持治具4bの空洞15の内部に直接送り込むことが可能となるため、熱伝達効率が向上し、即ち、成形材Wの加熱硬化成形時間の短縮につながる。また成形材Wへ供給される熱量の均一化を図ることも可能となり、即ち、加熱ムラや成形材Wの内部発熱による不良品発生を抑制することができる。
 特に、本実施形態では高温ガス補助供給手段7としてガイドパイプ13を備えているため、内側容器3の内部の高温ガスを上部保持治具4bの空洞15の内部へ容易に取り込むことができる。即ち、このガイドパイプ13によって高温ガスを上部保持治具4bの空洞15の内部へ円滑に送り込むことができるため、さらなる熱伝達の向上と供給熱量の均一化が図ることができ、加熱硬化成形時間の短縮と不良品発生の抑制を実現することができる。
 なお、ガイドパイプ13の一端側開口は、必ずしも空洞15内に挿入されてなくともよく、当該一端側開口が空洞15の外部から当該空洞15の内部を向くように配置されていてもよい。
 また、ガイドパイプ13の他端側開口は、内側容器3内において下方を向くのみならず水平方向や斜め下方を向くように配置されていてもよい。
 本実施形態のガイドパイプ13はその他端側開口がラッパ状をなしていたが、その延在方向全域にわたって内径及び外径が均一なパイプ状をなしていてもよい。このようなガイドパイプ13の他端側に漏斗状の装置を取り付けてもよい。これによって、より多くの高温ガスを収集し上部保持治具4bの空洞15の内部に流入させることができるため、上部保持治具4bの空洞15内における熱伝達を促進させることが可能となる。
 また、高温ガス補助供給手段7として、ガイドパイプ13への高温ガスの流入を容易にするファンをさらに設けてもよい。
 次に図5を参照して、第二実施形態のオートクレーブ1について説明する
 第二実施形態においては、第一実施形態と同様の構成要素には同一の符号を付して詳細は省略する。
 即ち、第二実施形態では、高温ガス補助供給手段7として、図5に示すように第一実施形態と同様のガイドパイプ13を上部保持治具4bの両端に備え、さらに当該上部保持治具4bの奥行き方向の中間部に空洞15の内外を連通する流出孔14を備えている。
 このようなオートクレーブ1においては、内側容器3の内部の高温ガスが、この上部保持治具4bの両端に備えられたガイドパイプ13を通じ当該上部保持治具4bの空洞15の内部へ流入し、中間部の流出孔14から流出する。その結果より多くの高温ガスが当該空洞15の内部へ流入することとなり、さらに効率的に上部保持治具4bの内面と成形材Wとの間の熱伝達を促進できる。
 従って、上部保持治具4b両端のガイドパイプ13と中間部の流出孔14を有することで、上部保持治具4b内面と成形材Wとの熱伝達を促進し、成形材Wの加熱硬化成形時間の短縮が達成できる。また成形材Wへ供給される熱量の均一化を図ることも可能となるので、即ち、加熱ムラや成形材W内部の発熱による不良品発生を抑制することができる。
 なお、上記流出孔14は複数設けてもよい。また、流出孔14を空洞15における奥行き方向の中間部のみならず、他の箇所に形成してもよい。
 次に図6と図7を参照して、第三実施形態のオートクレーブ1について説明する。
 第三実施形態においては、第一実施形態と同様の構成要素には同一の符号を付して詳細は省略する。
 第三実施形態のオートクレーブ1は、図6に示すように、上部保持治具4bの空洞15内に総伝熱面積を増大させる第一のフィン16が設けられている。
 この第一のフィン16は、空洞15の内周面から突出するとともに奥行き方向に延在しており、当該内周面の周方向に間隔をあけて複数が設けられている。本実施形態においては、空洞15の内周面における幅方向に対向するように一対が設けられるとともに上下方向に対向するように一対が設けられている。
 本実施形態においては、高温ガス補助供給手段7によって上記上部保持治具4bの空洞15の内部へ流入した高温ガスと、当該上部保持治具4bと、成形材Wとの熱伝達をさらに向上させることができる。従って、成形材Wの加熱硬化成形時間のさらなる短縮が達成できる。また成形材Wへ供給される熱量の均一化を図ることも可能となり、即ち、加熱ムラや成形材W内部の発熱による不良品発生を抑制することができる。
 なお、例えば第一フィンは、図7に示すように、空洞15の内周面から突出するとともに、空洞15の一端側から他端側に向かうに従って内周面の周方向に漸次捩れるスパイラル状に形成されていてもよい。これによって、当該空洞15内に導入される高温ガスによる旋回流が生成されるため、さらなる熱伝達向上と成形材Wへの供給熱量の均一化の効果が得られる。
 次に図8及び図9を参照して、第四実施形態のオートクレーブ1について説明する。
 第四実施形態では、第一実施形態と同様の構成要素には同一の符号を付して詳細は省略する。
 図8及び図9に示すように、本実施形態の下部保持治具4aの下面には、当該下面から突出するとともに奥行き方向に延在する第二のフィン17が複数設けられている。本実施形態においては、下方に向かって凸状をなす下部保持治具4aの下面における当該凸状の幅方向外側を向く面に、複数(本実施形態ではそれぞれ3つ)の第二フィンが上下方向に間隔をあけて設けられている。
 上記下部保持治具4aに備えられた第二のフィン17の存在によって、総伝熱面積が増大し、高温ガス供給手段5によってガス流入口9を通じて内側容器3に流入した高温ガスから、当該下部保持治具4aへの熱伝達が増大し、さらなる成形材Wの加熱硬化成形時間の短縮が達成できる。また成形材Wへ供給される熱量の均一化を図ることも可能となり、即ち、加熱ムラや成形材W内部の発熱による不良品発生の抑制もできる。
 なお、第二のフィン17は高温ガスの流入方向に沿うように設けられてもよい。これによって第二のフィン17が高温ガスの流れの妨げにならなることはないため、気流抵抗が減少し、熱伝達をさらに向上させることができる。なお、この第二のフィン17の設置位置、寸法、ピッチ、材質及び肉厚等を適宜変更することが可能である。
 また、本実施形態のオートクレーブ1には、図8及び図9に示すように、下部保持治具4aの周辺の内側容器3内にはフローガイド18が備えられている。
 フローガイド18は、高温ガス供給手段5によって内側容器3内へ取り込まれた高温ガスを、下部保持治具4aに備えられた第二のフィン17に沿って流れるよう案内し、当該下部保持治具4aにおける熱伝達効果を増大させるように作用するものである。このフローガイド18は、各保持治具4に対応して一対が設けられている。各フローガイド18は、奥行き方向に延在する板状をなしており、それぞれ保持治具4の下方から上方に向かうに従って幅方向外側に湾曲した形状をなしている。
 このフローガイド18によって高温ガスが効果的に流れることで熱伝達が向上し、さらなる成形材Wの加熱硬化成形時間の短縮につながる。また成形材Wへ供給される熱量のさらなる均一化を図ることも可能となり、加熱ムラや成形材W内部の発熱による不良品発生の抑制が達成できる。
 上記フローガイド18については、図8及び図9に示すように下部保持治具4aの周辺だけでなく、上部保持治具4bの周辺にも設置する等、内側容器3の内部の高温ガスからの熱伝達を向上できる設置場所を、様々に選択することが可能である。
 さらに本実施形態のオートクレーブ1には、図8及び図9に示すように、黒体塗料19が下部保持治具4aの下面に塗布されている。
 上記黒体塗料19の塗布によって下部保持治具4a表面からの熱放射率が増大することで、輻射伝熱による熱伝達が向上する。
 なお、この黒体塗料19は熱的に黒体であれば足り、必ずしも黒色の塗料である必要はない。一般的な白色ペイントであっても効果がある。また、この黒体塗料19は下部保持治具4aの下面だけでなく、当該下部保持治具4aの全面に塗布することや、上部保持治具4bに塗布してもよく、この場合はさらなる熱伝達向上を期待できる。
 上記黒体塗料19の塗布による輻射熱伝達の向上で、さらに成形材Wの加熱硬化成形時間を短縮できる。
 以上、本発明の実施形態について詳細を説明したが、本発明の技術的思想を逸脱しない範囲で、必ずしもこれらに限定されることはなく、多少の設計変更も可能である。
 例えば本発明の実施形態においては下部保持治具4aを下側に、上部保持治具4bを上側に配置し、成形材Wの加熱硬化成形を行うこととしている。しかし上部保持治具4bを水平方向に対して右側に、下部保持治具4aを水平方向に対して左側に配置して成形材Wを保持し加熱硬化成形を行う等、成形材Wを保持する方向が変化しても成形可能である。
 さらに、本発明の実施形態における大型のベント型ストリンガー成形材を成形するという目的によれば、上部保持治具4bは成形材Wの形状を保持でき、かつ高温ガスを流出入させるための内部空洞15を持っていればよく、また下部保持治具4aについては、成形材Wの形状を保持できればよい。
1…オートクレーブ、2…圧力容器、3…内側容器、4…保持治具、
4a…下部保持治具、4b…上部保持治具、5…高温ガス供給手段、
6…循環手段、7…高温ガス補助供給手段、8…ヒーター、9…ガス流入口、
10…ガス流出口、11…支柱、12…ベースプレート、13…ガイドパイプ、
14…流出孔、15…空洞、16…第一のフィン、17…第二のフィン、
18…フローガイド、19…黒体塗料、W…成形材、R…ガス流路
 

Claims (9)

  1.  加熱対象となる成形材を、高温ガスにより加熱硬化させるオートクレーブであって、
     前記成形材が内部に配置される圧力容器と、
     前記成形材を形状保持し、内部が空洞に形成された保持治具と、
     前記高温ガスを前記圧力容器内で前記成形材に供給する高温ガス供給手段と、
     前記高温ガスを前記保持治具の前記空洞内に供給する高温ガス補助供給手段とを備えることを特徴とするオートクレーブ。
  2.  前記高温ガス補助供給手段が、前記圧力容器内への高温ガス供給手段が供給する前記高温ガスの一部を取り込み、前記保持治具の前記空洞内に案内するガイドパイプを有する請求項1に記載のオートクレーブ。
  3.  前記ガイドパイプが前記保持治具の前記空洞の両端に備えられ、
     前記保持治具に、前記空洞内外を連通し、前記ガイドパイプによって前記空洞内に供給される前記高温ガスを流出させる流出孔が形成されている請求項2に記載のオートクレーブ
  4.  前記保持治具の前記空洞を形成する内面に配置された第一フィンを備える請求項1から3のいずれか一項に記載のオートクレーブ。
  5.  前記第一フィンがスパイラル状に配置されている請求項4に記載のオートクレーブ。
  6.  前記保持治具の外面に配置された第二フィンを備える請求項1から5のいずれか一項に記載のオートクレーブ。
  7.  前記圧力容器内の高温ガス供給手段によって供給される前記高温ガスを、前記保持治具の外面に沿うように案内するフローガイドを備える請求項1から6のいずれか一項に記載のオートクレーブ。
  8.  前記保持治具の表面に黒体塗料が塗布されている請求項1から7のいずれか一項に記載のオートクレーブ。
  9.  加熱対象となる成形材を、高温ガスにより加熱硬化させる成形材の加熱硬化方法であって、
     前記成形材を、内部が空洞に形成された保持治具で形状保持し、
     圧力容器内に配置される前記成形材に対して高温ガス供給手段により前記高温ガスを供給し、
     前記高温ガスを高温ガス補助手段によって前記保持治具の前記空洞内に供給することを特徴とする成形材の加熱硬化方法。
     
PCT/JP2012/051572 2011-02-21 2012-01-25 オートクレーブ及び成形材の加熱硬化方法 WO2012114817A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP12749971.3A EP2679371B1 (en) 2011-02-21 2012-01-25 Autoclave and method for heat curing molded material
US13/982,864 US9586345B2 (en) 2011-02-21 2012-01-25 Autoclave and method for heat curing molded material
US15/375,768 US10029397B2 (en) 2011-02-21 2016-12-12 Autoclave and method for heat curing molded material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-034496 2011-02-21
JP2011034496A JP5737995B2 (ja) 2011-02-21 2011-02-21 オートクレーブ及び成形材の加熱硬化方法

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/982,864 A-371-Of-International US9586345B2 (en) 2011-02-21 2012-01-25 Autoclave and method for heat curing molded material
US15/375,768 Division US10029397B2 (en) 2011-02-21 2016-12-12 Autoclave and method for heat curing molded material

Publications (1)

Publication Number Publication Date
WO2012114817A1 true WO2012114817A1 (ja) 2012-08-30

Family

ID=46720605

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/051572 WO2012114817A1 (ja) 2011-02-21 2012-01-25 オートクレーブ及び成形材の加熱硬化方法

Country Status (4)

Country Link
US (2) US9586345B2 (ja)
EP (1) EP2679371B1 (ja)
JP (1) JP5737995B2 (ja)
WO (1) WO2012114817A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY166317A (en) * 2011-07-08 2018-06-25 Xtek Ltd Process for the manufacture of multilayer articles
US10315341B2 (en) * 2014-09-23 2019-06-11 The Boeing Company Systems and methods for curing composite structures
DE102016122536A1 (de) * 2016-11-22 2018-05-24 Airbus Operations Gmbh Vorrichtung zum Tragen eines Faserverbund-Harzsystems in einer Wärmeübertragungseinrichtung
CN107214891B (zh) * 2017-07-28 2019-06-25 安徽卓尔航空科技有限公司 一种受热均匀的复合材料螺旋桨固化炉
CN110228205B (zh) * 2019-06-11 2020-11-06 浙江鸣春纺织股份有限公司 一种汽车部件胶体粘合用的烘烤装置
US11338479B2 (en) * 2020-01-03 2022-05-24 The Boeing Company Autoclave, autoclave system, and method for curing a part
JP7264075B2 (ja) 2020-01-30 2023-04-25 トヨタ自動車株式会社 高圧タンク製造装置
CN113878970B (zh) * 2021-10-12 2023-05-26 天津北玻玻璃工业技术有限公司 超大夹胶玻璃高压釜
JP2023090030A (ja) * 2021-12-17 2023-06-29 川崎重工業株式会社 成形補助装置、成形装置及び成形方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02162019A (ja) * 1988-12-16 1990-06-21 Fuji Heavy Ind Ltd Frp成形治具
JPH10632A (ja) * 1996-06-14 1998-01-06 Mitsubishi Electric Corp 注型絶縁物の矯正治具
JP2005178077A (ja) * 2003-12-17 2005-07-07 Nippon Yakin Kogyo Co Ltd 樹脂成形用治具
JP2009051074A (ja) * 2007-08-27 2009-03-12 Kawasaki Heavy Ind Ltd 複合材料の大型成形装置
JP2011012945A (ja) * 2009-07-04 2011-01-20 Ashida Mfg Co Ltd オートクレーブの熱風循環方法とオートクレーブの熱風循環装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB190120972A (en) * 1901-10-19 1901-12-31 James Howden Improvements in Apparatus Employed for Increasing the Efficiency of Fire Tubes in Steam Boilers and other Vessels in which Heating Tubes are Used.
US2837769A (en) * 1953-09-01 1958-06-10 Dayton Rubber Company Method for manufacturing closures
GB795610A (en) * 1955-01-26 1958-05-28 Karl Maria Biehl A method of and apparatus for vulcanizing a rubber layer on a printing cylinder
US3111397A (en) * 1960-12-12 1963-11-19 Arbed Method of producing dense refractory blocks having large dimensions
US4469721A (en) * 1983-06-06 1984-09-04 Kiyohiko Shioya High emissivity refractory coating, process for manufacturing the same, and coating composition therefor
US4564486A (en) * 1984-03-19 1986-01-14 Owens-Corning Fiberglas Corporation Curing fibrous mineral material
JPH04135810A (ja) 1990-09-28 1992-05-11 Mitsubishi Heavy Ind Ltd 多品種少量生産用オートクレーブ
JP2799633B2 (ja) 1990-10-06 1998-09-21 株式会社芦田製作所 オートクレーブ成形における物温制御方法
JP2733869B2 (ja) 1990-10-06 1998-03-30 三菱重工業株式会社 オートクレーブ成形における局部加熱制御方法及び装置
US5302411A (en) * 1991-01-22 1994-04-12 Endre Toth Process for vulcanizing insulated wire
GB2381764A (en) 2001-11-08 2003-05-14 Farleydene Ltd Autoclave suitable for heat treating parts
JP4109660B2 (ja) 2004-09-24 2008-07-02 株式会社 芦田製作所 オートクレーブの熱風循環方法・装置
JP4665713B2 (ja) * 2005-10-25 2011-04-06 日立電線株式会社 内面溝付伝熱管
EP2110633A1 (en) * 2007-01-31 2009-10-21 Shi Mechanical & Equipment Inc. Spiral fin tube type heat exchanger
US8876999B2 (en) 2007-06-12 2014-11-04 The Boeing Company Flexible shape low volume autoclave
US9127888B2 (en) * 2010-07-02 2015-09-08 Asc Process Systems Industrial oven for curing composite material structures

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02162019A (ja) * 1988-12-16 1990-06-21 Fuji Heavy Ind Ltd Frp成形治具
JPH10632A (ja) * 1996-06-14 1998-01-06 Mitsubishi Electric Corp 注型絶縁物の矯正治具
JP2005178077A (ja) * 2003-12-17 2005-07-07 Nippon Yakin Kogyo Co Ltd 樹脂成形用治具
JP2009051074A (ja) * 2007-08-27 2009-03-12 Kawasaki Heavy Ind Ltd 複合材料の大型成形装置
JP2011012945A (ja) * 2009-07-04 2011-01-20 Ashida Mfg Co Ltd オートクレーブの熱風循環方法とオートクレーブの熱風循環装置

Also Published As

Publication number Publication date
JP5737995B2 (ja) 2015-06-17
JP2012171173A (ja) 2012-09-10
US20130313760A1 (en) 2013-11-28
US9586345B2 (en) 2017-03-07
EP2679371A1 (en) 2014-01-01
EP2679371A4 (en) 2018-01-10
US20170087746A1 (en) 2017-03-30
EP2679371B1 (en) 2020-09-09
US10029397B2 (en) 2018-07-24

Similar Documents

Publication Publication Date Title
JP5737995B2 (ja) オートクレーブ及び成形材の加熱硬化方法
JP4982519B2 (ja) 冷却水路と伝熱コイルの同軸式構造、及びその冷却水路と伝熱コイルの同軸式構造を備える金型
CN105122539B (zh) 热交换组件
US10405729B2 (en) Heat pump and dishwasher comprising the same
JP2015174247A (ja) 複合構造体及びその製造方法
CN105990946B (zh) 具双重冷却流道的电机外壳组件
US20180093398A1 (en) Fiber reinforced composite member molding apparatus
JP2021518295A (ja) 熱伝導性フランジ付きの型
CN108215036A (zh) 高温热压成型机
US20150180311A1 (en) Motor controller with cooling function and cooling method for cooling a motor controller
KR20110067669A (ko) 사출성형 금형 가열 장치
JP5705560B2 (ja) 複合材硬化用支持治具
KR101623030B1 (ko) 급속 열확산 사출금형
CN215359744U (zh) 一种abc柱注塑用恒温加热装置
EP3205468B1 (en) Air impingement device, system and method for thermal processing and consolidation
ES2669550T3 (es) Fabricación de una pala de rotor de una turbina eólica con calefacción bilateral
CN202095111U (zh) 一种ptc散热器正压管固定结构
US20220193960A1 (en) Modular cover for a moulding tool
KR101239958B1 (ko) 금형장치
CN211005744U (zh) 一种抽屉式组件预热炉
CN202540898U (zh) 油加热镜面辊
ITAN20140072U1 (it) Gruppo ugello per stampaggio ad iniezione e diffusore termico.
CN106079329A (zh) 小型化玻璃钢模具保温箱
KR20230083814A (ko) 물 가열기용 연소실, 이를 포함하는 물 가열기 및 연소실 제조 방법
KR101405519B1 (ko) 온수탱크

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12749971

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13982864

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012749971

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE