WO2012113343A1 - Il-17抑制剂在制备治疗和/或预防肺损伤的药物中的用途 - Google Patents

Il-17抑制剂在制备治疗和/或预防肺损伤的药物中的用途 Download PDF

Info

Publication number
WO2012113343A1
WO2012113343A1 PCT/CN2012/071568 CN2012071568W WO2012113343A1 WO 2012113343 A1 WO2012113343 A1 WO 2012113343A1 CN 2012071568 W CN2012071568 W CN 2012071568W WO 2012113343 A1 WO2012113343 A1 WO 2012113343A1
Authority
WO
WIPO (PCT)
Prior art keywords
inhibitor
human
mammal
lung injury
medicament
Prior art date
Application number
PCT/CN2012/071568
Other languages
English (en)
French (fr)
Inventor
蒋澄宇
王希良
李承刚
闫毅武
杨鹏辉
赵妍
王伟
孙阳
邹镇
Original Assignee
中国医学科学院基础医学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国医学科学院基础医学研究所 filed Critical 中国医学科学院基础医学研究所
Publication of WO2012113343A1 publication Critical patent/WO2012113343A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/24Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against cytokines, lymphokines or interferons
    • C07K16/244Interleukins [IL]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/16Antivirals for RNA viruses for influenza or rhinoviruses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/76Antagonist effect on antigen, e.g. neutralization or inhibition of binding

Definitions

  • the present invention relates to the use of IL-17 in the manufacture of a medicament for the treatment and/or prevention of lung injury in a mammal, including a human. Background technique
  • IL17 (interleukin 17, IL-1, GenelD: 3605; Nucleotide: NM 002190.2; Protein: NP_002181.1) is an important cytokine, whether human or murine T lymphocytes, microorganisms (eg, spirochetes, mycobacteria, etc.) It can induce its expression of IL-17. Microbial-induced long-term expression of IL-17 is an important mediator of infection-induced pathological immunity. By mediated IL-17 gene transfer and high expression of IL-17, lung TNF-a, IL- ⁇ ,
  • G-CSF The expression of G-CSF is increased, polymorphonuclear cells are recruited, and bacterial clearance rate is increased.
  • IL-17 acts as an important mediator of T cells and neutrophils, and stimulates the synthesis and release of biological factors such as IL-8, GCP-2, MIP-2 and adhesion factors by bronchial epithelial cells, vascular endothelial cells and fibroblasts. Participation in the recruitment of neutrophils in the airways in an inflammatory state.
  • IL-17(+) cells in BALF were significantly more than normal population, except for extracellular eosinophils, which also expressed IL-17; eosinophils in peripheral blood also expressed IL-17; plasma The IL-17 concentration was higher than the normal population.
  • hIL-17 significantly increased the number of neutrophils in BALF in a dose-dependent manner and persisted until 8 h after instillation; neutralizing antibodies to hIL-17 blocked this effect.
  • the IL-17 gene is transferred into the airway of the mouse to overexpress it, and selective granulocytes can also be selectively recruited.
  • IL-17 also stimulates the synthesis of bronchial epithelial cells and fibroblasts, releases the neutrophil activating factor IL-6, and enhances MPO and elastase activity.
  • Acute lung injury is an injury of alveolar epithelial cells and capillary endothelial cells caused by various direct and indirect injury factors, resulting in diffuse pulmonary interstitial and alveolar edema, leading to acute hypoxic respiratory insufficiency.
  • Acute lung injury with pulmonary volume reduction, decreased lung compliance, ventilatory/blood flow imbalance is a pathophysiological feature, clinical manifestations of progressive hypoxemia and respiratory distress, pulmonary imaging showed heterogeneous infiltration Outbreaks, which progress to a severe stage (oxygenation index ⁇ 200), are called acute respiratory distress syndrome.
  • Direct lung injury factors include severe lung infections such as viruses, bacteria and fungi, stomach contents aspiration, lung contusion, oxygen poisoning, etc.;
  • Injury factors include, for example, sepsis, shock, massive blood transfusion, extracorporeal circulation, and disseminated intravascular coagulation.
  • lung injury The clinical manifestations of lung injury are: (1) acute onset, 12-48 hours after direct or indirect lung injury; (2) hypoxemia after conventional oxygen inhalation is difficult to correct; (3) lung The signs are not specific. In the acute phase, the lungs can be smelled and the wet rales or breath sounds are reduced. (4) The early lesions are mainly interstitial, and the chest X-rays often have no obvious changes, and the lungs can be found after the disease progresses. Change, the performance of the double lung field generally increased density, decreased brightness, lung texture increased + thickening, visible scattered patch density increased shadow; (5) diffuse lung infiltration, no heart dysfunction evidence.
  • the clinical diagnostic criteria for lung injury are: (1) acute onset; (2) oxygenation index (Pa0 2 / Fi0 2 ) 200 mm
  • Influenza is a common and frequently-occurring disease affecting the population.
  • the cross-species infection of influenza virus is severe, and the clinical symptoms caused by the infection of influenza A (H1N1) virus are mild, and most of them are typical flu-like symptoms. Can be restored naturally.
  • the most common symptoms include cough, fever, sore throat, headache, and other discomfort.
  • multiple lesions can be seen on chest X-ray, which can rapidly progress to ARDS, renal or multiple organ failure.
  • the incidence of influenza A and ARDS is 100 times that of normal flu, and lung damage is mainly caused by uncontrolled systemic immune response. Consistent with ARDS secondary to viral pneumonia, including diffuse alveolar damage, bronchioles and perivascular lymphocyte infiltration, hyperplastic airway changes, and obstructive bronchiolitis.
  • H1N1 influenza virus The basic lesions of lung tissue damage caused by H1N1 influenza virus are similar to those of other types of influenza, SARS and severe cases of human avian influenza, all of which are diffuse lung tissue lesions of varying severity.
  • Lipopolysaccharide is a water-soluble glycosylated lipid complex, which is an important component in the outer membrane of Gram-negative bacteria. It consists of lipid A, core polysaccharide and 0 antigen.
  • Gram-negative bacteria include, but are not limited to, Helicobacter, Campylobacter, Helicobacter, Pseudomonas, Legionella, Neisseria, Moraxella, Alcaligenes, Bruce , Rocca genus, B., Francis, Escherichia, Shigella, Salmonella, Klebsiella Proteus, Providencia, Yersinia, Vibrio, Pasteurella, Haemophilus, Bacteroides, Fusobacterium, Vesococcus, Rickettsia, Cox, Chlamydia, Treponema Gram-negative bacteria such as genus, Borrelia, and Leptospira.
  • the lipopolysaccharide has a molecular weight of more than 10,000 Daltons and has a complicated structure.
  • Lipid A is a glycolipid which constitutes endotoxin activity and is covalently bonded to the heteropolysaccharide chain.
  • the human body is extremely sensitive to bacterial endotoxin. A very small amount (1-5 ng/kg body weight) of endotoxin can cause an increase in body temperature, and the fever reaction gradually subsides after about 4 hours. In the case of natural infection, Gram-negative bacteria continue to grow and multiply, accompanied by successive deaths and release of endotoxin, so the fever reaction will continue until the pathogens in the body are completely eliminated.
  • Endotoxin causes a fever reaction because endotoxin acts on macrophages in the body to produce interleukin-1, 6 and tumor necrosis factor (X-like cytokines), which act on the hypothalamic thermoregulatory center of the host. It promotes fever and fever.
  • X-like cytokines tumor necrosis factor
  • the clinical symptoms of endotoxemia mainly depend on the host's resistance to endotoxin. Symptoms and signs are: fever, white blood cell count, bleeding tendency, heart failure, renal dysfunction, liver damage, nervous system Symptoms, shock, etc.
  • Endotoxin can cause the release of histamine, serotonin, prostaglandins, kinins, etc., resulting in microcirculation dilatation, decreased venous return, decreased blood pressure, insufficient tissue perfusion, hypoxia and acidosis.
  • Fungi can also infect lung tissue and cause lung damage, mainly as fungal inflammation or related lesions of the lungs and bronchi, and may include the pleura or even mediastinum.
  • Pathogenic fungi are primary pathogenic bacteria, often leading to primary exogenous infections in patients with normal immune function, mainly histoplasma, coccidioides, paraspora, spores and so on.
  • Conditional pathogenic fungi, or opportunistic fungi which are pathogenic and cause deep fungal infections in susceptible hosts, such as Helicobacter, Aspergillus, Cryptococcus, Mucor and Penicillium, Rhizopus, Fusarium and Pneumocystis.
  • Zymosan is a macromolecular polysaccharide complex extracted from the yeast cell wall and consists of proteins and carbohydrates.
  • the yeast is a fungus, and the fungi in the present invention include, but are not limited to, ascomycetes, basidiomycetes, chytrids, bacillus, tuberculosis, and the like.
  • Yeast polysaccharides can be used to induce inflammation in experiments.
  • the induced responses mainly include the expression of inflammatory cytokines, up-regulation of arachidonic acid, phosphorylation of some proteins, and formation of inositol phospholipids.
  • the yeast polysaccharide can also up-regulate the expression of cyclin D2, indicating that it also plays a role in the process of macrophage activation and proliferation.
  • Septicemia refers to an acute systemic infection in which pathogenic bacteria or conditional pathogens invade the blood circulation and grow in the blood to produce toxins. Sepsis is one of the prone factors of acute lung injury.
  • One of the characteristics of septic lung injury is the aggregation and activation of polymorphonuclear neutrophils (PMN) in the pulmonary microvasculature, causing a series of inflammatory processes and vascular damage.
  • PMN polymorphonuclear neutrophils
  • Bacterial infections, especially Gram-negative infections may be a key factor in the initial inflammatory response during this process.
  • LBP lipopolysaccharide-binding protein
  • LBP lipopolysaccharide-binding protein
  • monocytes a major inflammatory factor
  • macrophages a major inflammatory factor
  • CD14 receptor binding on major neutrophils promotes translation of genes encoding specific inflammatory factors (such as TNF-a, IL-1, IL-6).
  • Secretion of cytokines into the circulation is an important biochemical feature in a series of inflammatory processes leading to sepsis and lung injury, such as IL-1, IL-6, IL-8, IL-10, IL-12, etc. These cytokines cause A series of cascade reactions involved in the process of lung injury. Therefore, the combination of lipopolysaccharide and zymosan can mimic septic lung injury.
  • SRBC sheep red blood cells
  • Monoclonal antibodies are characterized by a high degree of physicochemical traits, a single biological activity, a high specificity for binding to antigens, easy handling and quality control, and easy source. These advantages have made it highly regarded as soon as it is published, and are widely used in the fields of biology and medical research. Drugs and the like can be directly cross-linked with monoclonal antibodies, and their targeting can be used to localize drugs to specific therapeutic targets, which not only improves the therapeutic effect, but also reduces the toxicity to normal cells.
  • R Ai RA interference
  • dsR A double-stranded RNA
  • siRNA Small interfering RNA
  • Dicer an enzyme specific for double-stranded RNA in the R Aase III family.
  • siRNA is a major member of siRISC, which stimulates the silencing of the target mR A complementary to it.
  • RA interference RNAi
  • dsRNA homologous double-stranded RNA
  • siRNA plays a central role in the RA silencing pathway and is a guiding element for the degradation of specific messenger RA (mRNA).
  • siRNA is an intermediate in the RNAi pathway and is a factor required for RNAi to exert its effects.
  • the maximal and final effect of RNAi is a significant change in phenotypic parameters such as cellular metabolic processes, physiological and biochemical coefficients.
  • RNAi has been successfully used to construct transgenic animal models are also increasing, indicating that RNAi will become an indispensable tool for studying gene function. Not only that, but RNAi technology will also be a new way to study cell signaling pathways and gene therapy.
  • the technical object of the present invention is to investigate the role of IL-17 in the development of lung injury and to explore the use of an inhibitor of IL-17 in the preparation of a medicament for preventing and/or treating lung injury.
  • a first aspect of the invention provides the use of an inhibitor of IL-17 for the preparation of a medicament for the treatment and/or prevention of lung injury in a mammal, including a human, wherein IL-17 is an IL-17 protein or a nucleotide thereof
  • the coding sequence preferably, the mammal, including human lung injury, is caused by an influenza virus infection, a bacterial infection and/or a fungal infection, sepsis, preferably, the mammal including human lung injury including, pulmonary edema, acute lung injury, and Severe respiratory distress syndrome.
  • the influenza virus is an influenza A virus; the bacterium is a Gram-negative bacterium; and the fungus is selected from the group consisting of yeast.
  • the influenza virus is a strain of HI, H3, H5, H7 or H9 subtype A. More preferably, the influenza virus is a subtype A HI strain. More preferably, the influenza virus is an influenza A H1N1 influenza virus. Most preferably, the influenza virus is an influenza A H1N1 influenza virus BJ501 strain or PR8 strain.
  • the bacterium is selected from the group consisting of Helicobacter, Campylobacter, Helicobacter, Pseudomonas, Legionella, Neisseria, Moraxella, Alcaligenes, Bruce, Rocca Lima, B., Francis, Escherichia, Shigella, Salmonella, Klebsiella Proteus, Providencia, Yersin Genus, Vibrio, Pasteurella, Haemophilus, Bacteroides, Fusobacterium, Vesococcus, Rickettsia, Cox, Chlamydia, Treponema, sparse One or more of Gram-negative bacteria such as the genus Spirulina and Leptospira. More preferably, the bacterium is selected from the group consisting of Escherichia coli. Most preferably, the bacterium is selected from the group consisting of Escherichia coli 0111 : B4.
  • the fungus is Saccharomyces cerevisiae.
  • the IL-17 is derived from a mammal, including a human. More preferably, the IL-17 has a GeneBank number of GenelD: 3605, a nucleotide coding sequence such as NM_002190.2, and a protein coding sequence such as NP_002181.1.
  • the inhibitor of IL-17 is selected from an antibody specific for IL-17, siRNA or a chemical biological substance which specifically inhibits the expression of human IL-17, including human IL-17.
  • the antibody specific for IL-17 is selected from the group consisting of a polyclonal antibody specific for anti-IL-17, a monoclonal antibody, a chimeric antibody, a surface remodeling antibody, a reconstituted antibody, a fully human antibody or an antigen thereof Combine parts. More preferably, the antibody specific for IL-17 is a monoclonal antibody specific for IL-17.
  • the inhibitor of IL-17 is selected from the group consisting of siR A. More preferably, the sense sequence of the siRNA is as SEQ.
  • the pharmaceutical dosage form is an injection, a spray, a nasal drop, an inhalant, or an oral preparation.
  • a second aspect of the invention relates to an inhibitor of IL-17 for use as a medicament for the treatment and/or prevention of lung injury in a mammal, including human lung, wherein IL-17 is an IL-17 protein or a nucleotide coding sequence thereof.
  • the mammal, including human lung injury is caused by an influenza virus infection, a bacterial infection and/or a fungal infection, sepsis.
  • the influenza virus, bacterium, fungus, the IL-17 or the inhibitor of IL-17 is as described in the first aspect of the invention.
  • a third aspect of the invention relates to the use of a composition comprising an inhibitor of IL-17 for the manufacture of a medicament for the treatment and/or prevention of lung injury in a mammal, including a human, wherein the inhibitor of IL-17 is said composition
  • the mammal, including human lung injury is caused by an influenza virus infection, a bacterial infection and/or a fungal infection, sepsis.
  • the influenza virus, bacterium, fungus, the IL-17 or the inhibitor of IL-17 is as described in the first aspect of the invention.
  • a fourth invention of the present invention relates to a method for treating and/or preventing lung injury in a mammal, including a human, comprising administering to a mammal, including a human, a therapeutically effective amount of an inhibitor of IL-17, wherein IL-17 is an IL-17 protein Or its nucleotide coding sequence.
  • the mammal, including human lung injury is caused by influenza virus infection, bacterial infection and/or fungal infection, sepsis.
  • the influenza virus, bacteria, fungus, the IL-17 or the inhibitor of IL-17 is as described in the first aspect of the invention.
  • the present invention utilizes the IL-17 knockout mouse model and attacks the mouse with the H1N1 influenza virus to demonstrate that the acute lung tissue pathological damage of the mouse caused by infection of the IL-17 influenza A virus HJN1 strain BJ501 strain or PR8 strain, It plays an important role in the process of death.
  • the intervention of IL-17 molecule may play an important role in the treatment of lung injury, especially the damage caused by infection of influenza A H1N1 virus BJ501 strain or PR8 strain.
  • the present invention immunizes a wild type mouse with a monoclonal antibody specific for anti-IL-17, and then attacks the mouse with an influenza A H1N1 influenza virus, and the result shows that the anti-IL-17A antibody is infected with the influenza A H1N1 virus in mice.
  • the present invention demonstrates for the first time that IL-17 plays an important role in the pathogenesis of influenza A and that treatment specifically inhibiting IL-17 can prevent or slow the serious consequences of influenza A infection.
  • the present invention also utilizes a combination of a lipopolysaccharide of a Gram-negative bacterium and a zymosan A derived from a yeast to infect a mouse, and finds that the intervention against the IL-17 molecule is in the treatment of lipopolysaccharide from Gram-negative bacteria and yeast from Saccharomyces cerevisiae.
  • Polysaccharide A may play an important role in the damage caused by joint infection.
  • the present invention immunizes wild-type mice with a monoclonal antibody specific for anti-IL-17, and then co-infects the mice with lipopolysaccharide from Escherichia coli 0111:B4 and zymosan A from Saccharomyces cerevisiae.
  • the -17A antibody plays an important protective role in acute pathological damage of mice caused by infection with a composition of lipopolysaccharide from Escherichia coli 0111:B4 and zymosan A from Saccharomyces cerevisiae. Therefore, the present invention demonstrates for the first time that the treatment specifically inhibiting IL-17 can prevent or slow down the serious consequences caused by the co-infection of lipopolysaccharide from Escherichia coli 0111:B4 and zymosan A from Saccharomyces cerevisiae.
  • IL-17 plays an important role in promoting pathological damage, death, and the like caused by influenza virus infection, especially in the case of neutralizing the test with a specific anti-IL-17 antibody.
  • IL-17 protects the subject, other technical means to eliminate or reduce the effects of IL-17 can also have the same or similar effects.
  • such techniques include other antibodies that specifically neutralize IL-17, RNAi technology that specifically silences IL-17 expression, and other chemistry known in the art to reduce or eliminate IL-17 expression. And / or biological matter.
  • the antibody that specifically neutralizes IL-17 may be a polyclonal antibody obtained by immunizing a mammal with IL-17, a monoclonal antibody obtained by hybridoma technology, a chimeric antibody, a surface remodeling antibody, a reconstituted antibody, or a whole person.
  • the source antibody or antigen-binding portion thereof as long as such antibody or portion thereof retains antigen binding ability and is capable of neutralizing the activity of the antigen.
  • the design of siRNAs for a particular target gene is an operation known to those skilled in the art, such sequences may differ in length and position of the target sequence targeted, but necessarily silence the expression of the IL-17 gene.
  • those skilled in the art can also utilize other chemicals known in the art to reduce or silence IL-17 expression or other chemicals that are screened by techniques known in the art to reduce or silence IL-17 expression. Reduce or silence the expression of IL-17, thereby achieving the purpose of treating lung damage, especially a stream, more particularly the H1N1 flu.
  • compositions comprising an IL-17 inhibitor of the invention can also be used to treat influenza A, particularly influenza A H1N1.
  • the active ingredient of the composition is an IL-17 inhibitor and may also include other active ingredients which may act synergistically with the IL-17 inhibitor.
  • the composition of the present invention may further comprise a medicinal substance such as a preservative, a stabilizer, a buffer, or the like.
  • Figure 1 Expression of IL-17A protein in lung tissue of C57BL/6 mice infected with influenza A H1N1 influenza virus BJ501 strain with virus titer of 10 5 ⁇ 5 TCID50 and the same dose of chicken embryo allantoic fluid.
  • Figure 2 wild-type C57 BL / 6 mice and IL-17 knockout mice infected mortality curve addition of 10 5.5 TCID50 of H1N1 influenza virus strains BJ501.
  • Figure 3 wild-type C57 BL / 6 mice and IL-17 knockout weight change curve after the mice were infected 10 5.5 TCID50 of H1N1 influenza virus strains BJ501 other.
  • FIG 4 AC wild type C57 BL / 6 mice and IL-17 knockout pathological examination of lung tissue of mice infected with influenza A H1N1 mice 5 ⁇ 105 TCID50 of influenza virus strains BJ501 other tissue results.
  • Figure 5 wild type C57 BL / 6 mice and IL-17 knockout mice lung wet to dry after the mice were infected with influenza A H1N1 5.5 105 TCID50 of influenza virus strains BJ501 than the detection results.
  • Figure 6 IL-17 protein expression in mouse lung lavage fluid after infection of wild type C57 BL/6 mice and IL-17 knockout mice with influenza A H1N1 influenza virus BJ501 strain with TCID50 of 10 5 ⁇ 5 Test results.
  • Figure 7 wild-type C57 BL / 6 mice infected with TCID50 of H1N1 influenza virus strains BJ501 105 ⁇ 5, the intravenous administration of anti-IL-17 antibody or the control antibody mortality curves.
  • Figure 8 wild-type C57 BL / 6 mice infected with TCID50 of H1N1 influenza virus strains BJ501 1055, the intravenous administration of anti-IL-17 antibody or control antibody after weight change curve.
  • FIG 9 AC wild-type C57 BL / 6 mice infected with TCID50 of H1N1 influenza virus strains BJ501 105 ⁇ 5, the results of the pathological examination intravenous anti IL-17 antibody or the control antibody mouse lung tissue.
  • Figure 10 After wild type C57 BL/6 mice were infected with influenza A H1N1 influenza virus BJ501 strain with TCID50 of 10 5 ⁇ 5 The results of wet-to-dry ratio test of mouse lung tissue after intravenous administration of anti-IL-17 antibody or control antibody.
  • Figure 11 IL-17 expression in mouse lung lavage fluid after administration of anti-IL-17 antibody or control antibody in wild-type C57 BL/6 mice infected with influenza A H1N1 influenza virus BJ501 strain with TCID50 of 10 5 ⁇ 5 Test results.
  • Figure 12 wildtype C57 BL / 6 mice infected with 5 * 10 5 TCID50 of H1N1 influenza virus strains BJ501 after intravenous administration of anti-TNF ct R II mortality curve antibody or control antibody.
  • Figure 13 wildtype C57 BL / 6 mice infected with 5 * 10 5 TCID50 of H1N1 influenza virus strains BJ501 after intravenous administration of anti-TNF a RII antibody or control antibody weight change curve.
  • Figure 14 wildtype C57 BL / 6 mice infected with 5 * 10 5 TCID50 of H1N1 influenza virus strains BJ501 after intravenous administration of anti-TNF a RII antibody or control antibody mouse after wet-dry lung ratio detection result.
  • Figure 15 A: Wild-type C57 BL/6 mice were infected with influenza A H1N1 influenza virus BJ501 strain with TCID50 of 10 5 ⁇ 5 or the same dose of chicken embryo allantoic fluid control. At 0 hours, 3 hours, 6 hours, 12 hours, 24 hours, 36 hours, 48 hours, 72 hours, 96 hours, 120 hours, 144 hours and 168 hours after infection, the mouse lung lavage fluid was taken for IL -17A detection over time. 5 mice per time point; B: Wild-type C57 BL/6 mice were infected with influenza A H1N1 influenza virus BJ501 strain with TCID50 of 10 5 ⁇ 5 or the same dose of chicken embryo allantoic fluid control. At 0 hours, 3 hours, 6 hours, 12 hours, 24 hours, 36 hours, 48 hours and 72 hours after infection, mouse lung lavage fluid was taken for detection of IL-17F over time. 5 mice per time point.
  • Figure 16 Mortality curve of wild-type C57BL/6 mice after intravenous injection of PBS, antibody control or anti-IL-17A monoclonal antibody with a virus titer of 1.33xl 4 TCID50 of influenza A H1N1 influenza virus PR8 strain.
  • Figure 17 Results of wet-to-dry ratio determination of lung tissue of mice infected with influenza A H1N1 influenza virus PR8 strain in wild-type C57 BL/6 mice after intravenous injection of AF, PBS, antibody control, and anti-IL-17A monoclonal antibodies .
  • Figure 18 AD Pathological detection of lung tissue in mice after intravenous injection of PBS, antibody control, AF and anti-IL-17 antibodies after infection with a titer of 1.33xl0 4 TCID50 of influenza A H1N1 influenza virus PR8 strain.
  • FIG. 19 Wild-type C57 BL/6 mice were infected with lipopolysaccharide from E. coli 0111:B4 and re-infected with Saccharomyces cerevisiae A from Saccharomyces cerevisiae after 1 hour or at the same time point after solvent control, respectively, 12 hours prior to infection 1 hour before infection, a control antibody was administered intravenously 8 hours after infection. After the 24th hour of infection, the mouse lung tissue was taken for real-time quantitative PCR to detect the expression of IL-17A. 4 mice per group.
  • Figure 20 Wild-type C57 BL/6 mice were infected with lipopolysaccharide from E. coli 0111:B4 and re-infected with Saccharomyces cerevisiae A from Saccharomyces cerevisiae after 1 hour or at the same time point after solvent control, respectively, 12 hours before infection
  • an anti-IL-17 antibody or a control antibody was administered intravenously 8 hours after infection.
  • the lung tissue of the mice was taken for lung tissue wet-to-dry ratio detection. 4 mice per group.
  • Figure 21 AE Wild-type C57 BL/6 mice were infected with lipopolysaccharide from E. coli 0111:B4 and re-infected with Saccharomyces cerevisiae A from Saccharomyces cerevisiae 1 hour later or at the same time point after solvent control, respectively, before infection 12 Hours, 1 hour before infection, intravenous anti-IL-17 antibody or control antibody 8 hours after infection. After the 24th hour of infection, the lung tissue of the mice was taken for pathological examination of lung tissue. 4 mice per group. detailed description The invention will be further clarified by the following non-limiting examples, which are known to those skilled in the art, and many modifications may be made to the invention without departing from the spirit of the invention.
  • Example 1 Influenza A H1N1 Influenza Virus BJ501 strain caused an increase in IL-17A protein expression in mouse lung tissue.
  • Main experimental instruments Level 3 biosafety laboratory, tertiary biological safety cabinet, animal support cabinet, mouse support cage, small animal surgical instruments, sterile syringe, pipette, pipette, Bio-Plex Mouse Cytokine 23-Plex Array kits, etc.
  • Grouping chicken embryo allantoic fluid control group, BJ501 virus experimental group;
  • mice were safely fixed and anesthetized with a 1 mL (W/V) sodium pentobarbital solution by intraperitoneal injection with a lmL sterile syringe;
  • infection virus titer 10 5 TCID50 / only, each group infected 4 mice;
  • mice Keep the mouse in this position for 15 seconds to allow the virus to enter the respiratory tract.
  • the mice are placed in a squirrel cage, and after they are awake, water and food are given;
  • mice that died within 24 hours were non-specific deaths and were not counted in the mortality statistics;
  • Lung lavage fluid inflammatory factor assay was performed 24 hours after virus infection, and the mice were killed by intraperitoneal injection of excess anesthetic;
  • IL-17A plays an important role in the death of mice caused by the infection of influenza A H1N1 influenza virus BJ501 strain, and the intervention of IL-17 molecule in the treatment of infection caused by infection of influenza A H1N1 influenza virus BJ501 strain, It is possible to play an important role.
  • Example 2 In acute IL-17-deficient mice, acute lung injury caused by infection with influenza A H1N1 virus BJ501 strain was alleviated
  • Main experimental instruments Level 3 biosafety laboratory, tertiary biological safety cabinet, animal support cabinet, mouse servo cage, small animal surgical instruments, sterile syringes, pipettes, pipettes, etc.
  • mice 1) Safely immobilize the mice, inject 1% (W/V) sodium pentobarbital solution into the abdominal cavity with a lmL sterile syringe; 3) Keep the head of the anesthetized mouse tilted up and down to make the nasal cavity upward, which is convenient for the virus. Stable into the respiratory tract. Infected with 10 strains of influenza A H1N1 influenza virus BJ501 strain (titer 10 5 TCID50), and the infected virus titer was 10 5 TCID50/only, and each group was infected with 10 mice;
  • mice Keep the mouse in this position for 15 seconds to allow the virus to enter the respiratory tract.
  • the mice are placed in a squirrel cage, and after they are awake, water and food are given;
  • mice that died within 24 h were non-specific deaths and were not counted in the mortality statistics;
  • the fixed sample is treated by pathology laboratory for embedding, sectioning, HE staining, etc.;
  • the lungs were placed in a 55 °C high temperature tissue dryer for dry roasting, and taken out after 24 h. The lungs were weighed and recorded after the temperature was lowered to room temperature;
  • Lung lavage fluid inflammatory factor assay was performed 24 hours after virus infection, and the mice were killed by intraperitoneal injection of excess anesthetic;
  • Fig. 4 ( ⁇ 200-fold, HE staining) pathological photographs showed that severe pathological damage occurred in the lung tissue of wild-type C57 BL/6 mice after infection with the influenza A(H1N1) influenza virus BJ501 strain with a titer of 10 5 TCID50.
  • the normal structure of the lung tissue is destroyed, the texture of the lung tissue is disordered, accompanied by hemorrhage, inflammatory exudation and pathological damage such as a large number of red blood cells and inflammatory cell infiltration.
  • the lung tissue of IL-17 knockout mice infected with the same titer virus showed no significant pathological damage, no significant pathological changes such as hemorrhage, exudation or inflammatory cell infiltration, and the lung tissue was clear and structurally intact.
  • IL-17 plays an important role in the pathological damage of acute lung tissue caused by infection of the H1N1 influenza virus BJ501 strain in mice.
  • Detection of lung wet-to-dry ratio in mice can reflect the extent of acute pulmonary edema in mice.
  • 4 weeks old wild-type mice were infected with the H1N1 influenza virus BJ501, and their lungs were compared to IL-17 knockout mice.
  • Significantly decreased indicating that IL-17 knockdown can significantly alleviate lung edema in mice infected with influenza A H1N1 influenza virus BJ501 strain.
  • IL-17 protein expression levels were also significantly reduced in IL-17 gene-deficient mice compared to wild-type mice (Fig. 6), and IL-17 molecules were also demonstrated on the other hand. It plays an important role in the pathological process of acute lung injury caused by infection of influenza A H1N1 influenza virus BJ501 strain.
  • Example 3 Anti-IL-17 antibody can reduce the death of mice infected with influenza A H1N1 influenza virus BJ501 strain.
  • the experimental materials and experimental methods are basically the same as in the second embodiment. The experimental method differs in that one more mouse is given to the vein after grouping.
  • the step of injecting an antibody control or an anti-IL-17A monoclonal antibody wherein each mouse is intravenously injected with 50 ⁇ g each time for a total of 3 injections, one day before infection and the first day after infection, and the third day after infection.
  • the experimental material differed in that anti-IL-17A monoclonal antibody was used, and the mice used were only wild-type C57BL/6 mice.
  • IL-17 plays an important role in the death of mice caused by the infection of influenza A H1N1 influenza virus BJ501 strain, and the intervention of IL-17 molecule is involved in the injury caused by infection of influenza A H1N1 influenza virus BJ501 strain. It is possible to play an important role.
  • Fig. 9 ( ⁇ 200-fold, HE staining) pathological photographs: Intravenous injection of antibody-controlled 4 weeks old wild-type C57 BL/6 mouse lung tissue after infection with a titer of 10 5 TCID50 of influenza A H1N1 influenza virus BJ501 strain Serious pathological damage occurred.
  • the normal structure of the lung tissue is destroyed, the texture of the lung tissue is disordered, accompanied by hemorrhage, inflammatory exudation and pathological damage such as a large number of red blood cells and inflammatory cell infiltration.
  • the lung tissue of mice infected with the same titer virus and intravenous anti-IL-17A monoclonal antibody showed no significant pathological damage, no significant pathological changes such as hemorrhage, exudation or inflammatory cell infiltration, and the lung tissue was clear and structurally intact. .
  • the anti-IL-17A antibody plays an important protective role in the acute lung tissue pathological damage caused by the infection of the influenza A H1N1 influenza virus BJ501 strain.
  • Measuring the lung wet-to-dry ratio of mice can reflect the extent of acute pulmonary edema in mice.
  • 4 weeks old wild-type C57 BL/6 mice were infected with influenza A H1N1 influenza virus BJ501 after intravenous injection of anti-IL-17A monoclonal antibody, and their lung wet-dry ratio was smaller than that of the antibody control group.
  • the rats were significantly reduced, indicating that anti-IL-17A antibody can significantly alleviate lung edema in mice infected with influenza A H1N1 influenza virus BJ501 strain. * ⁇ ⁇ 0.05.
  • IL-17A protein was significantly decreased in mice injected with anti-IL-17A antibody compared to wild-type C57 BL/6 mice. 11), and on the other hand, it is proved that IL-17 plays an important role in the pathogenesis of acute lung injury caused by infection of influenza A H1N1 influenza virus BJ501 strain and anti-IL-17A antibody can be used for the treatment of H1N1 Acute lung injury in mice infected with influenza virus BJ501 strain.
  • Example 4 Effect of anti-TNF-aR lI antibody on death of mice infected with influenza A H 1N1 influenza virus BJ 501 strain
  • the experimental materials and experimental methods of the present example are identical to the steps 1) - 8 of the second embodiment.
  • the difference in material is that it contains anti-TNF-aR lI monoclonal antibody and does not contain anti-IL-17A monoclonal antibody.
  • the experimental method differs in that anti-TNF-aR lI monoclonal antibody is used instead of anti-IL-17A monoclonal antibody for treatment. Mortality outcomes and weight changes.
  • Mortality H1N1 influenza virus strains BJ501 result of changes in body weight and the results of wild-type C57BL / 6 mice were injected control antibody or anti-TNF-aR lI antibody, virus titer 10 5 TCID50 of FIG. 12, FIG. 13 is shown.
  • TNF-aR lI did not exert a significant therapeutic effect during the death of mice caused by infection with the H1N1 influenza virus BJ501 strain.
  • Example 5 Effect of anti-TNF-aR lI antibody on lung edema in mice infected with influenza A H 1N1 virus BJ 501 strain
  • the experimental materials and experimental methods in this example are basically the same as in the second embodiment.
  • the experimental materials are different in that they contain the anti-TNF-aR lI monoclonal antibody and do not contain the anti-IL-17A monoclonal antibody.
  • the experimental method differs in that the anti-TNF-aR lI single is used.
  • the cloned antibody was treated in place of the anti-IL-17A monoclonal antibody, and only the wet tissue ratio of the lung tissue of the mouse was determined.
  • mice Measuring the lung wet-to-dry ratio of mice can reflect the extent of acute pulmonary edema in mice.
  • Figure 14 4 weeks old wild-type C57 BL/6 mice were infected with the H1N1 influenza virus BJ501 after injection of antibody control or anti-TNF-aR II antibody, and there was no significant difference in lung wet and dry, indicating that anti-TNF -aR lI antibody did not significantly attenuate lung edema in mice infected with influenza A B1501 strain.
  • Example 6 Determination of IL-17 Kinetics in Mice Lovary Fluid of Mice Infected with BJ 501 Strain of Influenza A H1N1 Influenza Virus
  • the experimental materials and experimental methods in this embodiment are basically the same as in the second embodiment, and the experimental materials are different in that they do not contain anti-
  • the experimental method differs in that no anti-IL-17A monoclonal antibody is used for treatment, and only the lung is taken.
  • the lavage fluid was used to measure the expression levels of IL-17A and IL-17F.
  • the experimental materials and the experimental methods in this embodiment are basically the same as in the second embodiment, and the experimental materials are different in that they contain the type A.
  • the H1N1 influenza virus PR8 strain does not contain the anti-A H1N1 influenza virus BJ501 strain.
  • the experimental method differs in that the influenza A (H1N1) virus PR8 strain is used instead of the influenza A H1N1 influenza virus BJ501 strain, and only the mortality result is measured.
  • IL-17 plays an important role in the death of mice caused by the infection of the influenza A(H1N1) virus PR8 strain, and the intervention of IL-17 molecule is in the treatment of the injury caused by the infection of the influenza A(H1N1) virus PR8 strain. It is possible to play an important role.
  • Anti-IL-17A monoclonal antibody attenuates type A H1N1 influenza virus Lung edema of mice infected with PR8 strain
  • the experimental materials and the experimental methods in this embodiment are basically the same as in the second embodiment, and the experimental materials are different in that they contain the type A.
  • the H1N1 influenza virus PR8 strain does not contain the anti-A H1N1 influenza virus BJ501 strain.
  • the experimental method differs in that the influenza A (H1N1) virus PR8 strain is used instead of the influenza A H1N1 influenza virus BJ501 strain, and only the wet tissue ratio of the lung tissue is measured.
  • mice Measuring the lung wet-to-dry ratio of mice can reflect the extent of acute pulmonary edema in mice.
  • Fig. 17 4-week-old wild-type C57 BL/6 mice were infected with the anti-IL-17A monoclonal antibody and infected with the influenza A H1N1 influenza virus PR8 strain, and the lung wet-dry ratio was compared with the antibody control treatment group. The mice were significantly reduced, indicating that anti-IL-17A antibody can significantly alleviate lung edema in mice infected with influenza A H1N1 influenza virus PR8 strain. * ⁇ ⁇ 0.05.
  • the experimental materials and experimental methods in this example are basically the same as in the second embodiment.
  • the experimental materials are different in that they contain the influenza A H1N1 influenza virus PR8 strain and do not contain the anti-H1N1 influenza virus BJ501 strain.
  • the experimental method differs in the use of the influenza A H1N1 influenza virus PR8. The strain was infected in place of the H1N1 influenza virus BJ501 strain, and only the pathological damage results of the lung tissue were measured.
  • Figure 18A-D (x200x, HE staining) pathological photograph showing: 4 weeks old wild type after intravenous injection of PBS and intravenous antibody control after infection with a titer of 1.33x10 4 TCID50 of influenza A H1N1 influenza virus PR8 strain Severe pathological damage occurred in the lung tissue of C57 BL/6 mice.
  • the normal structure of the lung tissue is destroyed, the texture of the lung tissue is disordered, accompanied by hemorrhage, inflammatory exudation and pathological damage such as a large number of red blood cells and inflammatory cell infiltration.
  • the lung tissue of mice infected with the same titer virus intravenous anti-IL-17A monoclonal antibody showed no significant pathological damage, no significant pathological changes such as hemorrhage, exudation or inflammatory cell infiltration, and the lung tissue was clear and structurally intact. There was no significant pathological damage in the lung tissue of the AF group.
  • Example 10 Co-infection of lipopolysaccharide from Escherichia coli 0111:B4 and zymosan A from Saccharomyces cerevisiae The expression of IL-17A protein in lung tissue is increased in mice.
  • Main experimental instruments SPF animal room, SPF biological safety cabinet, SPF animal animal feeding cabinet, SPF mouse cage, small animal surgical instruments, sterile syringe, pipette, pipette, etc.
  • LPS Lipopolysaccharide
  • lipopolysaccharide and zymosan solvent group Grouping: lipopolysaccharide and zymosan solvent group; lipopolysaccharide and zymosan solvent + isotype antibody control group, lipopolysaccharide and zymosan group + isotype antibody control group;
  • mice were safely fixed, and anesthetized with 1% (w/v) sodium pentobarbital solution by intraperitoneal injection with a lmL sterile syringe; 4) Keep the head of the anesthetized mouse tilted up and down to make the nasal cavity upward.
  • the neck was disinfected with alcohol, the neck skin was cut with scissors, the trachea was separated, and 50 ⁇ l of PBS buffer containing 100 ⁇ g of lipopolysaccharide was injected with a syringe, and each group was infected with 4 mice;
  • mice Keep the mouse in this position for 5 minutes to allow lipopolysaccharide to enter the respiratory tract.
  • the mice are placed in a squirrel cage, and after they are awake, water and food are given;
  • mice were anesthetized according to the method of Operation 3, and the head of the anesthetized mouse was kept tilted upward and backward to make the nasal cavity upward. Disinfect the neck with alcohol, separate the trachea, and inject 50 ⁇ l of PBS buffer containing 60 ⁇ g of zymosan in a syringe, infecting 4 mice in each group;
  • mice Keep the mouse in this position for 5 minutes to allow lipopolysaccharide to enter the respiratory tract.
  • the mice are placed in a squirrel cage, and after they are awake, water and food are given;
  • mice 24 hours after infection, the mice were killed by intraperitoneal injection of excess anesthetic;
  • FIGS 21 A and B show that lipopolysaccharide from Escherichia coli 0111:B4 and zymosan from Saccharomyces cerevisiae were compared to the lipopolysaccharide and zymosan solvent blank control group and the lipopolysaccharide and zymosan solvent + isotropic antibody control group.
  • the expression of IL-17A in lung tissue of A co-infected mice was significantly increased, indicating a significant inflammatory response in lung tissue. *P ⁇ 0.05.
  • A solvent blank control solvent + homologous antibody solvent + anti-IL-17A antibody
  • B lipopolysaccharide + zymosan
  • the results showed that the mice developed a significant inflammatory response in the lung tissue after co-infection with lipopolysaccharide from E. coli 0111 : B4 and zymosan A from Saccharomyces cerevisiae.
  • Example 11 Anti-IL-17A antibody relieves lung edema in mice after co-infection with lipopolysaccharide from Escherichia coli 0111:B4 and zymosan A from Saccharomyces cerevisiae
  • Lipopolysaccharide and zymosan solvent blank control group Lipopolysaccharide and zymosan solvent blank control group, lipopolysaccharide and zymosan solvent + isotype antibody control group, lipopolysaccharide and zymosan solvent + anti-IL-17A monoclonal antibody group, lipopolysaccharide and zymosan group + isotype Antibody control group, lipopolysaccharide and zymosan + anti-IL-17A monoclonal antibody group;
  • mice were safely fixed, and anesthetized with 1% (w/v) sodium pentobarbital solution by intraperitoneal injection with a lmL sterile syringe;
  • mice Keep the mouse in this position for 5 minutes to allow lipopolysaccharide to enter the respiratory tract.
  • the mice are placed in a squirrel cage, and after they are awake, water and food are given;
  • mice were anesthetized according to the method of Operation 3, and the head of the anesthetized mouse was kept tilted upward and backward to make the nasal cavity upward. Disinfect the neck with alcohol, separate the trachea, and inject 50 ⁇ l of PBS buffer containing 60 ⁇ g of zymosan in a syringe, infecting 4 mice in each group;
  • mice Keep the mouse in this position for 5 minutes to allow lipopolysaccharide to enter the respiratory tract.
  • the mice are placed in a squirrel cage, and after they are awake, water and food are given;
  • mice 24 hours after infection, the mice were killed by intraperitoneal injection of excess anesthetic;
  • the lungs were placed in a 55 ° C high temperature tissue desiccator for dry roasting, and taken out after 48 h. The lungs were weighed and recorded after the temperature was lowered to room temperature;
  • Measuring the lung wet-to-dry ratio of mice can reflect the extent of acute pulmonary edema in mice.
  • 4-week-old wild-type BALB/c mice were infected with lipopolysaccharide from E. coli 0111:B4 and zymosan A from Saccharomyces cerevisiae after intravenous injection of anti-IL-17A monoclonal antibody.
  • the wet-to-dry ratio was significantly lower than that in the antibody-treated group, indicating that the anti-IL-17A antibody significantly attenuated lung edema in mice after infection with E. coli 0111: B4 and S. cerevisiae. * * ⁇ 0.01.
  • Anti-IL-17 antibody can alleviate lung tissue disease caused by infection of influenza A H1N1 influenza virus BJ501 strain Damage
  • the experimental materials and experimental methods in this example are basically the same as in the eleventh embodiment.
  • the experimental method differs in that the operation of the experimental mice after excessive anesthesia is to fix the mice on the small animal operating table, remove the chest skin and bones, and expose the chest cavity.
  • the lungs of the mice were taken out together with the heart, and the surface blood was washed away with sterile PBS, and fixed in a formaldehyde fixative for 48 hours at room temperature; the immobilized samples were embedded, sliced, HE stained, etc. by pathological laboratory; Observe under the microscope and record.
  • Figure 20 (X 100-fold, HE staining) Pathological photographs showing: Infected antibody-controlled 4-week-old wild-type C57 BL/6 after infection with lipopolysaccharide from E. coli 0111:B4 and zymosan A from Saccharomyces cerevisiae Severe pathological damage occurred in the lung tissue of mice.
  • the normal structure of the lung tissue is destroyed, the texture of the lung tissue is disordered, accompanied by hemorrhage, inflammatory exudation, and pathological damage such as a large number of red blood cells and inflammatory cell infiltration.
  • the lung tissue of mice infected with the same titer virus intravenous anti-IL-17A monoclonal antibody showed no significant pathological damage, no significant pathological changes such as hemorrhage, exudation or inflammatory cell infiltration, and the lung tissue was clear and structurally intact.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Virology (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Pulmonology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Genetics & Genomics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Description

IL-17抑制剂在制备治疗和 /或预防肺损伤的药物中的用途
技术领域
本发明涉及 IL-17在制备治疗和 /或预防哺乳动物包括人肺损伤的药物中的用途。 背景技术
IL17 (interleukin 17 , 白介素 17, GenelD: 3605; Nucleotide: NM 002190.2; Protein: NP_002181.1 )是一种重要的细胞因子, 无论人还是鼠类 T淋巴细胞, 微生物 (如螺旋体、 分枝杆菌等)均可诱导其表达 IL-17。 微生物诱导的 IL-17的长期表达是感染诱导病理免疫 的重要介质。 通过病毒介导 IL-17 基因转移并高表达 IL-17, 导致肺脏 TNF-a, IL-Ιβ,
G-CSF的表达增高, 多形核细胞募集, 细菌清除率增高。
IL-17作为联系 T细胞与中性粒细胞的重要介质, 通过刺激支气管上皮细胞、 血管内 皮细胞和成纤维细胞合成、 释放 IL-8、 GCP-2、 MIP-2与粘附因子等生物因子参与炎症状 态下中性粒细胞在气道的募集。 支气管哮喘患者的痰及 BALF中 IL-17(+)的细胞显著多于 正常人群, 除 T细胞外嗜酸性粒细胞亦表达 IL-17; 外周血中嗜酸性粒细胞也表达 IL-17; 血浆 IL-17浓度高于正常人群。 实验表明, 大鼠气管内滴入 hIL-17可显著增加 BALF中中 性粒细胞数量, 呈剂量依赖性并可持续至滴入后 8 h; hIL-17的中和抗体可阻断此效应。 将 IL-17基因转入小鼠气道, 使其过量表达, 亦可选择性地募集中性粒细胞。 另一方面, IL-17还刺激支气管上皮细胞和成纤维细胞合成、 释放中性粒细胞活化因子 IL-6, 并增强 MPO和弹性蛋白酶活性。
急性肺损伤 (acute lung injury, ALI)是各种直接和间接致伤因素导致的肺泡上皮细胞 及毛细血管内皮细胞损伤, 造成弥漫性肺间质及肺泡水肿, 导致急性低氧性呼吸功能不 全。 急性肺损伤以肺容积减少、 肺顺应性降低、 通气 /血流比例失调为病理生理特征, 临 床上表现为进行性低氧血症和呼吸窘迫, 肺部影像学上表现为非均一性的渗出性病变, 其发展至严重阶段 (氧合指数 <200) 被称为急性呼吸窘迫综合征。
常见的导致急性肺损伤的因素分直接和间接肺损伤因素, 直接肺损伤因素包括例如 病毒、 细菌和真菌导致的严重的肺部感染、 胃内容物误吸、 肺挫伤、 氧中毒等; 间接肺 损伤因素包括例如脓毒症、 休克、 大量输血、 体外循环及弥漫性血管内凝血等。
肺损伤在临床上的表现为: (1 ) 急性起病, 在直接或间接肺损伤后 12---48小时内发 病; (2)常规吸氧后低氧血症难以纠正; (3 )肺部体征无特异性, 急性期双肺可闻及湿 罗音或呼吸音减低; (4)早期病变以间质性为主, X线胸片常无明显改变, 病情进展后可 出肺内实变, 表现为双肺野普遍密度增高, 透亮度减低, 肺纹理增多 +增粗, 可见散在斑 片状密度增高阴影; (5 ) 弥漫性肺浸润影, 无心功能不全证据。
肺损伤的临床诊断标准为: (1 ) 急性起病; (2)氧合指数(Pa02 / Fi02) 200 mm
Hg ( ( 1 mm Hg=0.133kPa, 不管呼气末正压 (PEEP)水平) ; (3) 正位 X线胸片显示双 肺均有斑片状阴影; (4) 肺动脉嵌顿压 18 mm Hg, 或无左心房压力增高的临床证据, 如 (PaO2 / FiO2 300 mm Hg且满足上述其他标准, 可诊断急性肺损伤。
流感是一种影响人群及其广泛的常见病、 多发病, 目前流感病毒跨物种感染形势严 峻, 甲型 H1N1流感病毒感染所导致的临床症状, 多数患者较轻, 表现为典型的流感样症 状, 可自然恢复。 最常见症状包括咳嗽、 发热、 咽喉痛、 头痛及其他不适感。 严重肺炎 患者 X线胸片可见多发性病灶浸润, 可快速进展为 ARDS、 肾或多器官功能衰竭。 甲型流 感合并 ARDS的发生率是普通流感的 100倍, 肺部损坏主要来源于失控的全身免疫反应。 与继发于病毒性肺炎的 ARDS —致, 包括弥漫性肺泡损伤、 细支气管和血管周围淋巴细 胞浸润、 增生的气道改变和梗阻性细支气管炎。
临床和病理学检查均提示重症患者病变主要在呼吸系统。 病理学检查可见重症患者 的肺部出现实变, 常伴有出血、 渗出、 脓肿等病理改变。 肺泡腔内可见浆液性或纤维素 性渗出, 伴有不同程度的透明膜形成, 提示有弥漫性的肺组织损伤。 目前认为, 甲型
H1N1流感病毒所致肺组织损伤基本病变和其他类型的流感、 SARS和人禽流感重症病例 的肺基本病变相似, 均为轻重不等的弥漫性肺组织损伤。
脂多糖 (lipopolysaccharide, LPS ) 是一种水溶性的糖基化的脂质复合物, 是革兰氏 阴性菌外膜中的重要成分, 由脂质 A、 核心多糖和 0抗原三部分组成。 其中, 革兰氏阴 性菌包括但不限于螺菌属、 弯菌属、 螺杆菌属, 假单胞菌属、 军团菌属、 奈瑟菌属、 莫 拉菌属产碱杆菌属、 布鲁斯菌属、 罗卡利马体属、 鲍特菌属、 弗郎西斯菌属, 埃希菌 属、 志贺菌属、 沙门菌属、 克雷伯菌属变形杆菌属、 普罗威登斯菌属、 耶尔森菌属、 弧 菌属、 巴氏杆菌属、 嗜血杆菌属, 类杆菌属、 梭杆菌属, 韦荣球菌属, 立克次体属、 考 克斯体属、 衣原体属, 密螺旋体属、 疏螺旋体属、 钩端螺旋体属等革兰氏阴性细菌。 脂 多糖分子量大于 10000道尔顿, 结构复杂, 脂质 A (Lipid A)为构成内毒素活性的糖脂, 以共价键连接到杂多糖链。 人体对细菌内毒素极为敏感, 极微量(1-5纳克 /公斤体重) 内 毒素就能引起体温上升, 发热反应持续约 4 小时后逐渐消退。 自然感染时, 因革兰氏阴 性菌不断生长繁殖, 同时伴有陆续死亡、 释出内毒素, 故发热反应将持续至体内病原菌 完全消灭为止。 内毒素引起发热反应的原因是内毒素作用于体内的巨噬细胞等, 使之产 生白细胞介素 1、 6和肿瘤坏死因子(X等细胞因子, 这些细胞因子作用于宿主下丘脑的体 温调节中枢, 促使体温升高发热。 内毒素血症临床症状主要取决于宿主对内毒素的抵抗 力, 症状和体征有: 发热、 白细胞数变化、 出血倾向、 心力衰竭、 肾功能减退、 肝脏损 伤、 神经系统症状以及休克等。 内毒素可引起组胺、 5-羟色胺、 前列腺素、 激肽等的释 放, 导致微循环扩张, 静脉回流血量减少, 血压下降, 组织灌流不足, 缺氧及酸中毒 等。
真菌也同样可以感染肺组织并导致肺损伤, 其主要表现为肺和支气管的真菌性炎症 或相关病变, 也可包括胸膜甚至纵膈。 致病性真菌属原发性病原菌, 常导致免疫功能正 常者的原发性外源性感染, 主要有组织胞浆菌、 球孢子菌、 副球孢子菌、 孢子丝菌等。 条件致病性真菌或称机会性真菌, 其病原性弱, 多在易感宿主引起深部真菌感染, 如念 珠菌属、 曲霉属、 隐球菌属、 毛霉和青霉属、 根霉属、 镰刀霉属及肺孢子菌等。
酵母多糖 (zymosan) 是从酵母细胞壁提取的大分子多糖复合物, 由蛋白质和碳水化 合物组成。 酵母属于真菌, 本发明中所述真菌包括但不限于子囊菌、 担子菌、 壶菌、 球 囊菌、 结核菌等。 酵母多糖在实验中可用来诱导炎症发生, 其诱导的反应主要包括炎症 细胞因子的表达, 花生四烯酸的上调, 部分蛋白的磷酸化和肌醇磷脂的形成。 同时, 酵 母多糖还可以上调细胞周期蛋白 D2的表达量, 表明其在巨噬细胞活化和增殖的过程中也 起到了作用。
脂多糖和酵母多糖联合感染可以模拟体内由于败血症引起的急性肺损伤。 败血症 (septicemia) 系指致病菌或条件致病菌侵入血循环, 并在血中生长繁殖, 产生毒素而发 生的急性全身性感染。败血症为急性肺损伤的易发因素之一, 败血症性肺损伤的一个特征 就是多形核中性粒细胞 (PMN)在肺微血管内的聚集和激活, 引起一系列炎症反应过程和血 管损伤。在这一过程中细菌感染, 尤其是革兰氏阴性菌感染可能是最初炎症反应的关键因 素。 革兰氏阴性菌和脂多糖 (LPS)进入循环后产生脂多糖结合蛋白 (LBP), LBP与 LPS的 磷脂 -A—部分结合, 血浆中 LPS-LBP复合物与单核细胞、 巨噬细胞和主要的中性粒细胞 上的 CD14受体结合, 促使特定的炎性因子 (如 TNF-a、 IL-1、 IL-6) 的编码基因翻译。 细 胞因子分泌到循环中是导致败血症和肺损伤的一系列炎症反应过程中重要的生化特征,如 IL-1、 IL-6、 IL-8、 IL-10、 IL-12等, 这些细胞因子引起一系列的级联反应, 参与肺损伤的 过程。 因此, 使用脂多糖和酵母多糖联合感染可以模拟败血症性肺损伤。
1975年 Kohler和 Milstein首先报道, 用细胞杂交技术, 使经绵羊红细胞 (; SRBC)免疫 的小鼠的脾细胞与小鼠的骨髓瘤细胞融合, 并由此创建了第一个 B 细胞杂交瘤细胞株, 获得了抗 SRBC的单克隆抗体。
单克隆抗体的特点在于理化性状高度均一、 生物活性单一、 与抗原结合的特异性 强、 便于人为处理和质量控制, 并且来源容易。 这些优点使它一问世就受到高度重视, 并广泛应用于生物学和医学研究领域。 可将药物等与单克隆抗体直接交联, 利用其导向 作用, 使药物等定位于特异治疗靶位, 这不仅提高了疗效, 还可降低对正常细胞的毒性 反应。
R Ai (R A interference) 即 RNA干涉, 是近年来发现的在生物体内普遍存在的一种 古老的生物学现象, 是由双链 RNA (dsR A) 介导的、 由特定酶参与的特异性基因沉默 现象, 它在转录水平、 转录后水平和翻译水平上阻断基因的表达。
Small interfering RNA (siR A, 小干扰 RNA)是一种小 RNA分子(〜21 -25核苷酸) , 由 Dicer (R Aase III家族中对双链 RNA具有特异性的酶) 加工而成。 siRNA是 siRISC 的主要成员, 激发与之互补的目标 mR A的沉默。 R A干涉(RNAi)在实验室中是一种 强大的实验工具, 利用具有同源性的双链 RNA (dsRNA) 诱导序列特异的目标基因的沉 寂, 迅速阻断基因活性。 siRNA在 R A沉寂通道中起中心作用, 是对特定信使 R A (mRNA) 进行降解的指导要素。 siRNA是 RNAi途径中的中间产物, 是 RNAi发挥效应 所必需的因子。 RNAi最大以及最终的效果是细胞的代谢过程、 生理生化系数等表型参数发生明显的 变化。 近来 RNAi成功用于构建转基因动物模型的报道也日益增多, 标志着 RNAi将成为 研究基因功能不可或缺的工具。 不仅如此, RNAi技术还将可能成为研究细胞信号传导通 路与基因治疗的新途径。
虽然截至目前已经具有肺损伤特别是流感导致的肺损伤的治疗药物, 但仍然存在对 新类型的肺损伤特别是流感导致的肺损伤的治疗药物的需求。 发明内容
因此, 本发明的技术目的在于探究 IL-17在肺损伤发生发展中的作用并探究 IL-17的 抑制剂在制备预防和 /或治疗肺损伤的药物中的用途。
因此, 本发明的第一方面提供一种 IL-17的抑制剂在制备治疗和 /或预防哺乳动物包括 人肺损伤的药物中的用途, 其中 IL-17为 IL-17蛋白或其核苷酸编码序列, 优选地, 所述哺 乳动物包括人肺损伤由流感病毒感染、 细菌感染和 /或真菌感染、 败血症导致, 优选地, 所述哺乳动物包括人肺损伤包括、 肺水肿、 急性肺损伤和严重呼吸系统窘迫综合症。
优选地, 所述流感病毒为甲型流感病毒; 所述细菌为革兰氏阴性菌; 所述真菌选自 酵母菌。 优选地, 所述流感病毒为甲型 HI、 H3、 H5、 H7或 H9亚型毒株。 更优选地, 所 述流感病毒为甲型 HI亚型毒株。 更优选地, 所述流感病毒为甲型 H1N1流感病毒。 最优 选地, 所述流感病毒为甲型 H1N1流感病毒 BJ501株或 PR8株。
优选地, 所述细菌选自螺菌属、 弯菌属、 螺杆菌属, 假单胞菌属、 军团菌属、 奈瑟 菌属、 莫拉菌属产碱杆菌属、 布鲁斯菌属、 罗卡利马体属、 鲍特菌属、 弗郎西斯菌属, 埃希菌属、 志贺菌属、 沙门菌属、 克雷伯菌属变形杆菌属、 普罗威登斯菌属、 耶尔森菌 属、 弧菌属、 巴氏杆菌属、 嗜血杆菌属, 类杆菌属、 梭杆菌属, 韦荣球菌属, 立克次体 属、 考克斯体属、 衣原体属, 密螺旋体属、 疏螺旋体属、 钩端螺旋体属等革兰氏阴性细 菌的一种或多种。 更优选地, 所述细菌选自大肠埃希氏菌。 最优选地, 所述细菌选自大 肠杆菌 0111 : B4。
优选地, 所述真菌为酿酒酵母。
优选地, 所述 IL-17来源于哺乳动物包括人。 更优选地, 所述 IL-17的 GeneBank编 号为 GenelD: 3605 , 核苷酸编码序列如 NM_002190.2 所示, 蛋白质编码序列如 NP_002181.1所示。
优选地, 所述 IL-17的抑制剂选自特异性抗 IL-17的抗体、 siRNA或特异性抑制哺乳 动物包括人 IL-17表达的化学生物物质。
优选地, 所述特异性抗 IL-17 的抗体选自特异性抗 IL-17 的多克隆抗体、 单克隆抗 体、 嵌合抗体、 表面重塑抗体、 重构抗体、 全人源抗体或其抗原结合部分。 更优选地, 所述特异性抗 IL-17的抗体为特异性抗 IL-17的单克隆抗体。
优选地, 所述 IL-17的抑制剂选自 siR A。 更优选地, 所述 siRNA的正义序列如 SEQ.
ID. NO. 1 : gaccucauuggugucacugUU 所示 , 反义序列如 SEQ. ID. NO. 2: UUcuggaguaaccacagugac所
优选地, 所述药物的剂型为注射剂、 喷雾剂、 滴鼻剂、 吸入剂、 口服剂。
本发明的第二方面涉及一种 IL-17 的抑制剂, 其用做治疗和 /或预防哺乳动物包括人 肺损伤的药物, 其中 IL-17为 IL-17蛋白或其核苷酸编码序列。 优选地, 所述哺乳动物包 括人肺损伤由流感病毒感染、 细菌感染和 /或真菌感染、 败血症导致。 优选地, 所述流感 病毒、 细菌、 真菌、 所述 IL-17或所述 IL-17的抑制剂如本发明第一方面所述。
本发明的第三方面涉及一种含有 IL-17 的抑制剂的组合物在制备治疗和 /或预防哺乳 动物包括人肺损伤的药物中的用途, 其中 IL-17的抑制剂是所述组合物的活性成分, 其中 IL-17为 IL-17蛋白或其核苷酸编码序列。 优选地, 所述哺乳动物包括人肺损伤由流感病 毒感染、 细菌感染和 /或真菌感染、 败血症导致。 优选地, 所述流感病毒、 细菌、 真菌、 所述 IL-17或所述 IL-17的抑制剂如本发明第一方面所述。
本发明的第四发明涉及一种治疗和 /或预防哺乳动物包括人肺损伤的方法, 其包括给 予哺乳动物包括人治疗有效量的 IL-17的抑制剂, 其中 IL-17为 IL-17蛋白或其核苷酸编 码序列。 优选地, 所述哺乳动物包括人肺损伤由流感病毒感染、 细菌感染和 /或真菌感 染、 败血症导致。 优选地, 所述流感病毒、 细菌、 真菌、 所述 IL-17或所述 IL-17的抑制 剂如本发明第一方面所述。
换言之, 本发明利用 IL-17基因敲除小鼠模型以及利用甲型 H1N1流感病毒攻击小鼠 证明 IL-17在甲型 H1N1流感病毒 BJ501株或 PR8株感染导致的小鼠急性肺组织病理损 伤、 死亡的过程中发挥重要作用, 针对 IL-17 分子的干预在治疗肺损伤, 特别是甲型 H1N1流感病毒 BJ501株或 PR8株感染所导致的损伤中, 有可能发挥重要作用。 本发明利 用特异性抗 IL-17 的单克隆抗体免疫野生型小鼠后再用甲型 H1N1 流感病毒攻击所述小 鼠, 结果表明, 抗 IL-17A抗体对小鼠在感染甲型 H1N1流感病毒 BJ501株或 PR8株导致 的急性肺组织病理损伤中发挥了重要保护作用, 而抗体 TNF-aRlI在甲型 H1N1流感病毒 BJ501 株感染导致小鼠死亡的过程中未发挥显著治疗作用。 因此, 本发明第一次证明了 IL-17在甲型流感病理过程中发挥重要作用且特异性抑制 IL-17的治疗可以阻止或减缓甲 型流感病毒感染所造成的严重后果。
本发明还利用革兰氏阴性菌的脂多糖和来自酵母菌的酵母多糖 A联合感染小鼠, 发 现针对 IL-17分子的干预在治疗来自革兰氏阴性菌的脂多糖和来自酿酒酵母的酵母多糖 A 联合感染所导致的损伤中有可能发挥重要作用。 本发明利用特异性抗 IL-17的单克隆抗体 免疫野生型小鼠后再用来自大肠杆菌 0111 : B4的脂多糖和来自酿酒酵母的酵母多糖 A联 合感染所述小鼠, 结果表明, 抗 IL-17A抗体对小鼠在感染来自大肠杆菌 0111 : B4的脂 多糖和来自酿酒酵母的酵母多糖 A 的组合物导致的急性肺组织病理损伤中发挥了重要保 护作用。 因此, 本发明第一次证明了特异性抑制 IL-17的治疗可以阻止或减缓由来自大肠 杆菌 0111 : B4的脂多糖和来自酿酒酵母的酵母多糖 A联合感染所造成的严重后果。
同时, 本领域技术人员熟知, 当证实 IL-17在流感病毒感染导致的病理损伤、 死亡等 过程中发挥重要的促进作用时, 尤其是在用特异性抗 IL-17 的抗体中和掉受试者体内的 IL-17能保护受治者时, 针对 IL-17 以消除或降低其影响的其他技术手段也能起到相同或 类似的作用。 本领域技术人员熟知, 这样的技术手段包括其他的特异性中和 IL-17 的抗 体、 特异性沉默 IL-17表达的 RNAi技术和本领域已知的其他能降低或消除 IL-17表达的 化学和 /或生物物质。 特异性中和 IL-17的抗体可以是利用 IL-17免疫哺乳动物后获得的多 克隆抗体、 利用杂交瘤技术获得的单克隆抗体、 嵌合抗体、 表面重塑抗体、 重构抗体、 全人源抗体或其抗原结合部分, 只要这样的抗体或其部分保留了抗原结合能力并能中和 所述抗原的活性。 针对特定靶基因的 siRNA 的设计是本领域技术人员已知的操作, 这样 的序列可能在长度和针对的靶序列的位置上各不相同, 但必然能沉默掉 IL-17 基因的表 达。 同时, 本领域技术人员也能利用本领域已知的能降低或沉默 IL-17表达的其他化学物 质或利用本领域已知的技术筛选到的能降低或沉默 IL-17表达的其他化学物质来降低或沉 默 IL-17的表达, 从而实现治疗肺损伤, 特别是甲流, 更特别是甲型 H1N1流感的目的。
同样地, 包含本发明所述的 IL-17 抑制剂的组合物也能用于治疗甲流, 特别是甲型 H1N1流感。 所述组合物的活性成分是 IL-17抑制剂, 同时也可以包括其他的可以与所述 的 IL-17抑制剂起协同作用的活性成分。 本发明的组合物还可以包括防腐剂、 稳定剂、 缓 冲剂等药用物质。 附图说明
图 1 : C57BL/6小鼠分别感染病毒滴度为 105·5 TCID50的甲型 H1N1流感病毒 BJ501 株和相同剂量的鸡胚尿囊液后的 IL-17A蛋白在肺组织中的表达量。
图 2: 野生型 C57 BL/6小鼠和 IL-17基因敲除小鼠感染 TCID50为 105·5的甲型 H1N1 流感病毒 BJ501株后的死亡率曲线。
图 3: 野生型 C57 BL/6小鼠和 IL-17基因敲除小鼠感染 TCID50为 105·5的甲型 H1N1 流感病毒 BJ501株后的体重变化曲线。
图 4 A-C: 野生型 C57 BL/6小鼠和 IL-17基因敲除小鼠感染 TCID50为 105·5的甲型 H1N1流感病毒 BJ501株后小鼠肺组织的组织病理检测结果。
图 5: 野生型 C57 BL/6小鼠和 IL-17基因敲除小鼠感染 TCID50为 105·5的甲型 H1N1 流感病毒 BJ501株后小鼠肺组织的湿干比检测结果。
图 6: 野生型 C57 BL/6小鼠和 IL-17基因敲除小鼠感染 TCID50为 105·5的甲型 H1N1 流感病毒 BJ501株后小鼠肺灌洗液中 IL-17蛋白表达量的检测结果。
图 7: 野生型 C57 BL/6小鼠感染 TCID50为 105·5的甲型 H1N1流感病毒 BJ501株后, 静脉给予抗 IL-17抗体或对照抗体后的死亡率曲线。
图 8: 野生型 C57 BL/6小鼠感染 TCID50为 105.5的甲型 H1N1流感病毒 BJ501株后, 静脉给予抗 IL-17抗体或对照抗体后的体重变化曲线。
图 9 A-C: 野生型 C57 BL/6小鼠感染 TCID50为 105·5的甲型 H1N1流感病毒 BJ501 株后, 静脉给予抗 IL-17抗体或对照抗体后的小鼠肺组织的病理检测结果。
图 10: 野生型 C57 BL/6小鼠感染 TCID50为 105·5的甲型 H1N1流感病毒 BJ501株后, 静脉给予抗 IL-17抗体或对照抗体后的小鼠肺组织湿干比检测结果。
图 11 : 野生型 C57 BL/6小鼠感染 TCID50为 105·5的甲型 H1N1流感病毒 BJ501株后 给予抗 IL-17抗体或对照抗体后, 小鼠肺灌洗液中 IL-17表达量的检测结果。
图 12: 野生型 C57 BL/6小鼠感染 TCID50为 105·5的甲型 H1N1流感病毒 BJ501株后 静脉给予抗 TNF ct R II抗体或对照抗体后的死亡率曲线。
图 13: 野生型 C57 BL/6小鼠感染 TCID50为 105·5的甲型 H1N1流感病毒 BJ501株后 静脉给予抗 TNF a RII抗体或对照抗体后的体重变化曲线。
图 14: 野生型 C57 BL/6小鼠感染 TCID50为 105·5的甲型 H1N1流感病毒 BJ501株后 静脉给予抗 TNF a RII抗体或对照抗体后小鼠肺组织的湿干比检测结果。
图 15: A: 野生型 C57 BL/6小鼠感染 TCID50为 105·5的甲型 H1N1流感病毒 BJ501 株或相同剂量的鸡胚尿囊液对照。 在感染后 0小时, 3小时, 6小时, 12小时, 24小时, 36小时, 48小时, 72小时, 96小时, 120小时, 144小时和 168小时时间点, 取小鼠肺 灌洗液进行 IL-17A随时间变化的检测。 每个时间点 5只小鼠; B: 野生型 C57 BL/6小鼠 感染 TCID50为 105·5的甲型 H1N1流感病毒 BJ501株或相同剂量的鸡胚尿囊液对照。 在感 染后 0小时, 3小时, 6小时, 12小时, 24小时, 36小时, 48小时和 72小时时间点, 取 小鼠肺灌洗液进行 IL-17F随时间变化的检测。 每个时间点 5只小鼠。
图 16: 野生型 C57BL/6小鼠经静脉注射 PBS、 抗体对照或抗 IL-17A单克隆抗体后, 感染病毒滴度为 1.33xl04 TCID50的甲型 H1N1流感病毒 PR8株后的死亡率曲线。
图 17: 野生型 C57 BL/6小鼠在静脉注射了 AF、 PBS、 抗体对照、 抗 IL-17A单克隆 抗体后, 感染甲型 H1N1流感病毒 PR8株后小鼠肺组织的湿干比测定结果。
图 18 A-D: 感染滴度为 1.33xl04 TCID50的甲型 H1N1流感病毒 PR8株后, 静脉注射 PBS、 抗体对照、 AF和抗 IL-17抗体后小鼠的肺组织病理检测结果。
图 19: 野生型 C57 BL/6小鼠感染来自大肠杆菌 0111 : B4的脂多糖并于 1小时后再 次感染来自酿酒酵母的酵母多糖 A或相同时间点给予溶剂对照后, 分别在感染前 12 小 时, 感染前 1小时, 感染后 8小时静脉给予对照抗体。 在感染第 24小时后, 取小鼠肺组 织进行实时定量 PCR检测 IL-17A的表达量。 每组 4只小鼠。
图 20: 野生型 C57 BL/6小鼠感染来自大肠杆菌 0111 : B4的脂多糖并于 1小时后再 次感染来自酿酒酵母的酵母多糖 A或相同时间点给予溶剂对照后, 分别在感染前 12 小 时, 感染前 1小时, 感染后 8小时静脉给予抗 IL-17抗体或对照抗体。 在感染第 24小时 后, 取小鼠肺组织进行肺组织湿干比检测。 每组 4只小鼠。
图 21 A-E: 野生型 C57 BL/6小鼠感染来自大肠杆菌 0111 : B4的脂多糖并于 1小时 后再次感染来自酿酒酵母的酵母多糖 A或相同时间点给予溶剂对照后, 分别在感染前 12 小时, 感染前 1小时, 感染后 8小时静脉给予抗 IL-17抗体或对照抗体。 在感染第 24小 时后, 取小鼠肺组织进行肺组织病理检测。 每组 4只小鼠。 具体实施方式 下面将通过下述非限制性实施例进一步说明本发明, 本领域技术人员公知, 在不背 离本发明精神的情况下, 可以对本发明做出许多修改, 这样的修改也落入本发明的范 围。
下述实验方法如无特别说明, 均为常规方法, 所使用的实验材料如无特别说明, 均 可容易地从商业公司获取。 实施例
实施例 1 甲型 H1N1流感病毒 BJ501株感染引起小鼠肺组织 IL-17A蛋白表达升高 实验材料:
1) 主要实验仪器: 三级生物安全实验室、 三级生物安全柜、 动物伺养柜、 小鼠伺养 笼、小动物手术器械、无菌注射器、移液器、移液管、 Bio-Plex Mouse Cytokine 23-Plex Array 试剂盒等。
2) 主要实验试剂: 1% (W/V) 戊巴比妥钠溶液、 病毒稀释液、 消毒剂 (2.5%碘酒 和 75%酒精) 等。
3) 病毒: 甲型 H1N1流感病毒 BJ501株 keep= 1 &srchmode= 1 & nlock&lm=s。
4) 实验动物:
SPF级野生型 (WT) C57 BL/6小鼠 (4周龄) : 购于军科院动物所, IL-17基因敲除小 鼠 (B6背景) 。
实验方法:
1) 分组: 鸡胚尿囊液对照组、 BJ501病毒实验组;
2) 安全固定小鼠, 用 lmL无菌注射器腹腔注射 1% (W/V) 戊巴比妥钠溶液麻醉;
3) 保持麻醉小鼠头部向上向后倾斜姿势, 使其鼻腔向上, 便于病毒稳定进入呼吸道。 用移液管每侧鼻孔各滴入 10 甲型 H1N1 流感病毒 BJ501 株病毒液 (滴度为 105
TCID50) 感染, 感染病毒滴度为 105 TCID50/只, 每组感染 4只小鼠;
4) 保持小鼠此体位 15秒,使病毒进入呼吸道。将小鼠置于鼠笼内,待其恢复清醒后, 给予水及食物;
5) 感染后观察, 24 h内发生死亡的小鼠为非特异性死亡, 在进行死亡率统计时不予 计算在内;
6) 肺灌洗液炎症因子测定实验于染病毒后 24小时后进行,用腹腔注射过量麻醉剂的 方法使小鼠死亡;
7) 将小鼠固定于小动物手术台, 移除胸部皮肤及骨骼, 将气管剪一小口, 利用 1毫 升移液枪从开口处向小鼠注射 800微升 PBS缓冲液, 反复吸取三次后将肺灌洗液吸出; 8) 利用 Bio-Plex Mouse Cytokine 23-Plex试剂盒对肺灌洗液进行 IL-17A蛋白表达量 的测定; 9) 利用 GraphPad Prism 5 软件对数据进行分析处理。
实验结果:
如图 1所示, 感染滴度为 105 TCID50/只的 BJ501株甲型 H1N1流感病毒的小鼠肺组 织 IL-17A蛋白的表达量显著高于对照组。 * P<0.05。
此结果说明, IL-17A在甲型 H1N1流感病毒 BJ501株感染导致小鼠死亡的过程中发 挥重要作用, 针对 IL-17分子的干预在治疗甲型 H1N1流感病毒 BJ501株感染所导致的损 伤中, 有可能发挥重要作用。 实施例 2 IL-17-缺陷小鼠中甲型 H1N1流感病毒 BJ501株感染引起的急性肺损伤得以 减轻
实验材料:
1)主要实验仪器: 三级生物安全实验室、 三级生物安全柜、 动物伺养柜、 小鼠伺养 笼、 小动物手术器械、 无菌注射器、 移液器、 移液管等。
2)主要实验试剂: 1% (W/V) 戊巴比妥钠溶液、 病毒稀释液、 消毒剂 (2.5%碘酒 和 75%酒精) 等。
3)病毒: 甲型 H1N1流感病毒 BJ501株
htjp:〃 www-ticbi-nlmjiitLgov/Taxonomy/Brows r/wwwt x-c^mode^Info&id^^ggS &M^S & ■keep::: 1 &srchmode:=: 1 &unlock&lur=s。
4)实验动物:
SPF级野生型 VT) C57 BL/6小鼠 (4周龄): 购于军科院动物所, IL-17基因敲除小 鼠 (B6背景)。
实验方法:
1)分组: 野生型对照组、 IL-17基因敲出小鼠实验组;
2)安全固定小鼠, 用 lmL无菌注射器腹腔注射 1% (W/V) 戊巴比妥钠溶液麻醉; 3)保持麻醉小鼠头部向上向后倾斜姿势, 使其鼻腔向上, 便于病毒稳定进入呼吸道。 用移液管每侧鼻孔各滴入 10 甲型 H1N1 流感病毒 BJ501 株病毒液 (滴度为 105 TCID50) 感染, 感染病毒滴度为 105 TCID50/只, 每组感染 10只小鼠;
4)保持小鼠此体位 15秒,使病毒进入呼吸道。将小鼠置于鼠笼内,待其恢复清醒后, 给予水及食物;
5)感染后观察, 24 h内发生死亡的小鼠为非特异性死亡, 在进行死亡率统计时不予 计算在内;
6)存活率和体重变化实验连续观察 14 d, 每天记录每组小鼠死亡 /存活只数以及体重 变化情况;
7)用 GraphPad Prism 5 软件统计小鼠死亡率及体重变化情况;
8)肺组织病理切片和浸润细胞计数实验于感染病毒后第 5 d进行, 用腹腔注射过量 麻醉剂的方法使小鼠死亡; 9)将小鼠固定于小动物手术台, 移除胸部皮肤及骨骼, 暴露胸腔, 将小鼠肺脏连同 心脏同时取出, 用无菌 PBS洗去表面血液, 置于多聚甲醛固定液中室温固定 48h;
10) 固定后的样品由病理实验室进行包埋、 切片、 HE染色等处理;
1 1) 病理切片置于显微镜下观察, 并记录;
12) 肺组织湿干比实验于感染病毒后第 5 d进行,用腹腔注射过量麻醉剂的方法使 小鼠死亡;
13) 将小鼠固定于小动物手术台, 移除胸部皮肤及骨骼, 暴露胸腔, 将小鼠完整 肺脏取出, 去除表面血液及多余结缔组织, 称量并记录肺脏湿重;
14) 肺脏置于 55 °C高温组织干燥器中干烤, 24 h后取出, 待温度降至室温进行肺 脏干重的称量并记录;
15) 计算小鼠肺脏湿重 /干重比值 (Wet/dry ratio), 进行统计分析;
16) 肺灌洗液炎症因子测定实验于染病毒后 24小时后进行, 用腹腔注射过量麻醉 剂的方法使小鼠死亡;
17) 将小鼠固定于小动物手术台, 移除胸部皮肤及骨骼, 将气管剪一小口, 利用 1 毫升移液枪从开口处向小鼠注射 800 μ mS缓冲液, 反复吸取三次后将肺灌洗液吸出;
18) 利用 Bio-Plex Mouse Cytokine 23-Plex试剂盒对肺灌洗液进行相关炎症因子 的测定;
19) 利用 GraphPad Prism 5 软件对数据进行分析处理。
实验结果:
野生型 C57BL/6 小鼠对照或 IL-17 基因敲除小鼠 (B6 背景) 感染病毒滴度为 105
TCID50的甲型 H1N1流感病毒 BJ501株后的死亡率结果以及体重变化结果如图 2、 图 3 所示。感染相同滴度的 BJ501株甲型 H1N1流感病毒后, 野生型对照的小鼠死亡率明显高 于 IL-17基因敲除的小鼠(图 2)。体重变化(降低)结果与死亡率结果一致(图 3 )。* Ρ<0.05 此结果说明, IL-17在甲型 H1N1流感病毒 BJ501株感染导致小鼠死亡的过程中发挥 重要作用, 针对 IL-17分子的干预在治疗甲型 H1N1流感病毒 BJ501株感染所导致的损伤 中有可能发挥重要作用。
图 4中 ( Χ 200倍, HE染色) 病理照片显示: 感染滴度为 105 TCID50的甲型 H1N1 流感病毒 BJ501株后, 野生型 C57 BL/6小鼠肺组织中出现严重的病理损伤。 肺组织正常 结构被破坏, 肺组织纹理紊乱, 伴随出血、 炎性渗出及大量红细胞、 炎症细胞浸润等病理 损伤。
但是, 感染相同滴度病毒的 IL-17基因敲除小鼠肺组织未见显著病理损伤, 无显著的 出血、 渗出或者炎症细胞浸润等病理变化, 肺组织纹理清晰, 结构完整。
上述结果说明, IL-17对小鼠在感染甲型 H1N1流感病毒 BJ501株导致的急性肺组织 病理损伤中发挥了重要作用。
检测小鼠肺脏湿干比可以反映小鼠发生急性肺水肿的程度。 从图 5中也可见, 4周龄 野生型小鼠在感染甲型 H1N1流感病毒 BJ501后, 其肺脏湿干比相比 IL-17基因敲除小鼠 显著降低, 说明 IL-17的敲除可以显著缓解甲型 H1N1流感病毒 BJ501株感染后小鼠的肺 脏水肿。 * Ρ<0.05 。
此结果进一步说明, IL-17分子在甲型 H1N1流感病毒 BJ501株感染导致小鼠发生急 性肺组织损伤的病理过程中发挥了重要作用。
检测相关炎症因子发现, 相对于野生型小鼠, IL-17 基因缺陷小鼠中, IL-17 蛋白的 表达水平也均有明显的减少 (图 6) , 又从另一方面证明 IL-17分子在甲型 H1N1流感病 毒 BJ501株感染导致小鼠发生急性肺组织损伤的病理过程中发挥了重要作用。 实施例 3抗 IL-17抗体可以降低甲型 H1N1流感病毒 BJ501株感染致小鼠死亡 本实施例实验材料和实验方法等同实施例 2基本相同,实验方法区别在于多一个在分 组后给小鼠静脉注射抗体对照或抗 IL-17A单克隆抗体的步骤, 其中每只小鼠每次静脉注 射 50微克, 共注射 3次, 分别为感染前 1天和感染后第 1天, 感染后第 3天, 实验材料 区别在于使用了抗 IL-17A单克隆抗体, 所使用小鼠仅为野生型 C57BL/6小鼠。
实验结果:
野生型 C57BL/6小鼠经静脉注射抗体对照或抗 IL-17A单克隆抗体后, 感染病毒滴度 为 105 TCID50的甲型 H1N1流感病毒 BJ501株后的死亡率结果以及体重变化结果如图 7、 图 8所示。
感染相同滴度的 BJ501株甲型 H1N1流感病毒后,静脉注射抗体对照的小鼠死亡率明 显高于静脉注射抗 IL-17A单克隆抗体的小鼠 (图 7)。 体重变化(降低)结果与死亡率结 果一致 (图 8)。 * Ρ<0.05。
此结果说明, IL-17在甲型 H1N1流感病毒 BJ501株感染导致小鼠死亡的过程中发挥 重要作用, 针对 IL-17分子的干预在治疗甲型 H1N1流感病毒 BJ501株感染所导致的损伤 中, 有可能发挥重要作用。
图 9中 ( Χ200倍, HE染色) 病理照片显示: 感染滴度为 105 TCID50的甲型 H1N1 流感病毒 BJ501株后, 静脉注射抗体对照的 4周龄的野生型 C57 BL/6小鼠肺组织中出现 严重的病理损伤。 肺组织正常结构被破坏, 肺组织纹理紊乱, 伴随出血、 炎性渗出及大量 红细胞、 炎症细胞浸润等病理损伤。
但是, 感染相同滴度病毒并静脉注射抗 IL-17A单克隆抗体的小鼠肺组织未见显著病 理损伤,无显著的出血、渗出或者炎症细胞浸润等病理变化,肺组织纹理清晰, 结构完整。
上述结果表明, 抗 IL-17A抗体对小鼠在感染甲型 H1N1流感病毒 BJ501株导致的急 性肺组织病理损伤中发挥了重要保护作用。
检测小鼠肺脏湿干比, 可以反映小鼠发生急性肺水肿的程度。 从图 10中可见, 4周 龄野生型 C57 BL/6小鼠在静脉注射了抗 IL-17A单克隆抗体后, 感染甲型 H1N1流感病毒 BJ501 , 其肺脏湿干比相比抗体对照治疗组小鼠显著降低, 说明抗 IL-17A抗体可以显著缓 解甲型 H1N1流感病毒 BJ501株感染后小鼠的肺脏水肿。 * Ρ<0.05 。
此结果进一步说明, IL-17分子在甲型 H1N1流感病毒 BJ501株感染导致小鼠发生急 性肺组织损伤的病理过程中发挥了重要作用。
检测相关炎症因子发现, 相对于野生型 C57 BL/6小鼠在静脉注射抗体对照的小鼠, 在注射抗 IL-17A抗体的小鼠中, IL-17A蛋白的表达量有明显的降低(图 11 ), 又从另一 方面证明 IL-17分子在甲型 H1N1流感病毒 BJ501株感染导致小鼠发生急性肺组织损伤的 病理过程中发挥了重要作用且抗 IL-17A抗体可用于治疗甲型 H1N1流感病毒 BJ501株感 染后小鼠的急性肺损伤。 实施例 4抗 TNF-aR lI抗体对甲型 H 1N1流感病毒 BJ 501株感染致小鼠死亡的影响 本实施例实验材料和实验方法等同实施例 2的步骤 1 ) -步骤 8 )基本相同, 实验材料 区别在于含有抗 TNF-aR lI单克隆抗体,不含抗 IL-17A单克隆抗体, 实验方法区别在于使 用抗 TNF-aR lI单克隆抗体代替抗 IL-17A单克隆抗体进行治疗, 且只测定死亡率结果和 体重变化。
实验结果:
野生型 C57BL/6 小鼠注射抗体对照或抗 TNF-aR lI抗体后, 感染病毒滴度为 105 TCID50的甲型 H1N1流感病毒 BJ501株后的死亡率结果以及体重变化结果, 如图 12、 图 13所示。
感染相同滴度的 BJ501株甲型 H1N1流感病毒后, 注射抗体对照同抗 TNF-aR lI抗体 的小鼠死亡率 (图 12 ) 和体重变化 (降低) (图 13 ) 没有显著差异。
此结果说明, TNF-aR lI在甲型 H1N1流感病毒 BJ501株感染导致小鼠死亡的过程中 未发挥显著治疗作用。 实施例 5抗 TNF-aR lI抗体对甲型 H 1N1流感病毒 BJ 501株感染后小鼠的肺脏水肿 的影响
本实施例实验材料和实验方法等同实施例 2 基本相同, 实验材料区别在于含有抗 TNF-aR lI单克隆抗体, 不含抗 IL-17A单克隆抗体, 实验方法区别在于使用抗 TNF-aR lI 单克隆抗体代替抗 IL-17A单克隆抗体进行治疗, 且只测定小鼠肺组织湿干比。
实验结果:
检测小鼠肺脏湿干比, 可以反映小鼠发生急性肺水肿的程度。 从图 14中可见, 4周 龄野生型 C57 BL/6小鼠在注射了抗体对照或抗 TNF-aR II抗体后, 感染甲型 H1N1流感病 毒 BJ501 , 其肺脏湿干没有显著差异, 说明抗 TNF-aR lI抗体对甲型 Η1Ν 流感病毒 BJ501 株感染后小鼠的肺脏水肿没有显著缓解作用。 实施例 6甲型 H1N1流感病毒 BJ 501株感染后小鼠肺灌洗液中 IL-17动力学变化测 定
本实施例实验材料和实验方法等同实施例 2 基本相同, 实验材料区别在于不含抗
IL-17A单克隆抗体, 实验方法区别在于不使用抗 IL-17A单克隆抗体进行治疗, 且只取肺 灌洗液进行 IL-17A和 IL-17F表达量的测定。
实验结果:
通过对小鼠感染 BJ501流感病毒后肺灌洗液中细胞因子的测定分析发现, 在感染 12h 后 IL-17A和 IL-17F表达均出现升高, 由于时间较短, 这就暗示其来源应该为固有免疫细 胞, 则 gamma delta T细胞可能是分泌 IL-17 并导致其表达量升高的主要来源细胞 (图 15 ) 。 实施例 7抗 IL-17A单克隆抗体可降低甲型 H1N1流感病毒 PR8株感染致小鼠死亡 率
本实施例实验材料和实验方法等同实施例 2基本相同, 实验材料区别在于含有甲型
H1N1流感病毒 PR8株, 不含抗甲型 H1N1流感病毒 BJ501株, 实验方法区别在于使用甲 型 H1N1流感病毒 PR8株代替甲型 H1N1流感病毒 BJ501株进行感染,且只测定死亡率结 果。
实验结果:
野生型 C57BL/6小鼠经静脉注射 PBS、 抗体对照或抗 IL-17A单克隆抗体后, 感染病 毒滴度为 1.33xl04 TCID50的甲型 H1N1流感病毒 PR8株后的死亡率结果, 如图 16所示。
感染相同滴度的 PR8株甲型 H1N1流感病毒后, 静脉注射 PBS和静脉注射抗体对照 的小鼠死亡率都明显高于静脉注射抗 IL-17A单克隆抗体的小鼠 (图 16)。 ** Ρ<0.01。
此结果说明, IL-17在甲型 H1N1流感病毒 PR8株感染导致小鼠死亡的过程中发挥重 要作用, 针对 IL-17分子的干预在治疗甲型 H1N1流感病毒 PR8株感染所导致的损伤中, 有可能发挥重要作用。 实施例 8抗 IL-17A单克隆抗体缓解甲型 H1N1流感病毒 PR8株感染后小鼠的肺脏 水肿
本实施例实验材料和实验方法等同实施例 2基本相同, 实验材料区别在于含有甲型
H1N1流感病毒 PR8株, 不含抗甲型 H1N1流感病毒 BJ501株, 实验方法区别在于使用甲 型 H1N1流感病毒 PR8株代替甲型 H1N1流感病毒 BJ501株进行感染,且只测定肺组织湿 干比结果。
实验结果:
检测小鼠肺脏湿干比, 可以反映小鼠发生急性肺水肿的程度。 从图 17中可见, 4周 龄野生型 C57 BL/6小鼠在静脉注射了抗 IL-17A单克隆抗体后, 感染甲型 H1N1流感病毒 PR8株, 其肺脏湿干比相比抗体对照治疗组小鼠显著降低, 说明抗 IL-17A抗体可以显著 缓解甲型 H1N1流感病毒 PR8株感染后小鼠的肺脏水肿。 * Ρ<0.05 。
此结果进一步说明, IL-17分子在甲型 H1N1流感病毒 PR8株感染导致小鼠发生急性 肺组织损伤的病理过程中发挥了重要作用。 实施例 9抗 IL-17A单克隆抗体缓解甲型 HlNl流感病毒 PR8株感染后小鼠肺组织 病理损伤
本实施例实验材料和实验方法等同实施例 2基本相同, 实验材料区别在于含有甲型 H1N1流感病毒 PR8株, 不含抗甲型 H1N1流感病毒 BJ501株, 实验方法区别在于使用甲 型 H1N1流感病毒 PR8株代替甲型 H1N1流感病毒 BJ501株进行感染,且只测定肺组织病 理损伤结果。
实验结果:
图 18A-D中 (x200倍, HE染色)病理照片显示: 感染滴度为 1.33x l04 TCID50的甲 型 H1N1流感病毒 PR8株后, 静脉注射 PBS和静脉注射抗体对照的 4周龄的野生型 C57 BL/6 小鼠肺组织中出现严重的病理损伤。 肺组织正常结构被破坏, 肺组织纹理紊乱, 伴 随出血、 炎性渗出及大量红细胞、 炎症细胞浸润等病理损伤。
感染相同滴度病毒静脉注射抗 IL-17A单克隆抗体的小鼠肺组织未见显著病理损伤, 无显著的出血、 渗出或者炎症细胞浸润等病理变化, 肺组织纹理清晰, 结构完整。 AF组 小鼠肺组织也未见显著病理损伤。
结果说明, 抗 IL-17A抗体对小鼠在感染甲型 H1N1流感病毒 PR8株导致的急性肺组 织病理损伤中发挥了重要保护作用。 实施例 10来自大肠杆菌 0111 : B4的脂多糖和来自酿酒酵母的酵母多糖 A联合感染 小鼠可导致肺组织 IL-17A蛋白的表达量升高
实验材料:
1) 主要实验仪器: SPF级动物房、 SPF级生物安全柜、 SPF级动物伺养柜、 SPF级 小鼠伺养笼、 小动物手术器械、 无菌注射器、 移液器、 移液管等。
2) 主要实验试剂: 抗 IL-17A单克隆抗体(AbM50016-l-PU, 购自北京华大蛋白质研 发中心有限公司) 、 抗体对照 (AbM59547-48-PU, 购自北京华大蛋白质研发中心有限公 司) 、 Trisol, 1% (W/V) 戊巴比妥钠溶液、 病毒稀释液、 无菌 PBS、 氯仿、 异丙醇、 逆 转录 PCR试剂盒 (invitrogen) 、 实时定量 PCR试剂盒 (Roche) , 消毒剂 (2.5%碘酒和 75%酒精) 等。
3) 脂多糖 (LPS):L2630, 购于 Sigma; 酵母多糖 (Zymosan A): Z4250, 购于 Sigma。
4) 实验动物:
SPF级野生型 BALB/c小鼠 (4周龄): 购于维通利华实验动物技术有限公司。
实验方法:
1) 分组: 脂多糖和酵母多糖溶剂组; 脂多糖和酵母多糖溶剂 +同型抗体对照组、脂多 糖和酵母多糖组 +同型抗体对照组;
2) 小鼠静脉注射抗体对照或抗 IL-17A单克隆抗体,每只小鼠每次静脉注射 50微克, 共注射 3次, 分别为感染前 12小时, 1小时和感染后 8小时;
3) 安全固定小鼠, 用 lmL无菌注射器腹腔注射 1% (W/V) 戊巴比妥钠溶液麻醉; 4) 保持麻醉小鼠头部向上向后倾斜姿势, 使其鼻腔向上。 用酒精消毒颈部, 用剪刀 剪开颈部皮肤, 分离气管, 用注射器注入 50微升含 100微克脂多糖的 PBS缓冲液, 每组 感染 4只小鼠;
5) 保持小鼠此体位 5分钟, 使脂多糖进入呼吸道。 将小鼠置于鼠笼内, 待其恢复清 醒后, 给予水及食物;
6) 给予脂多糖 1小时后, 按照操作 3中方法麻醉小鼠, 保持麻醉小鼠头部向上向后 倾斜姿势, 使其鼻腔向上。 用酒精消毒颈部, 分离气管, 用注射器注入 50微升含 60微克 酵母多糖的 PBS缓冲液, 每组感染 4只小鼠;
7) 保持小鼠此体位 5分钟, 使脂多糖进入呼吸道。 将小鼠置于鼠笼内, 待其恢复清 醒后, 给予水及食物;
8) 感染病毒后 24小时, 用腹腔注射过量麻醉剂的方法使小鼠死亡;
9) 将小鼠固定于小动物手术台, 移除胸部皮肤及骨骼, 暴露胸腔, 将小鼠完整肺脏 取出, 立即放入液氮中冷冻保存;
10)将冷冻保存的肺组织取出, 加入 1.5毫升 Trisol, 并利用匀浆器最大转速研磨 20 秒;
11)提取肺组织 R A, 通过逆转录 PCR和实时定量 PCR测定肺组织中 IL-17A蛋白 表达量的变化;
12)利用 Graphpad Prism5作图进行数据分析。
实验结果:
图 21 A和 B中的结果显示, 相对于脂多糖和酵母多糖溶剂空白对照组和脂多糖和酵 母多糖溶剂 +同性抗体对照组, 来自大肠杆菌 0111 : B4 的脂多糖和来自酿酒酵母的酵母 多糖 A联合感染的小鼠肺组织中 IL-17A的表达量有显著升高, 表明肺组织出现明显炎症 反应。 * P<0.05 。其中, A: 溶剂空白对照组溶剂 +同型抗体溶剂 +抗 IL-17A抗体; B: (脂 多糖 +酵母多糖) (脂多糖 +酵母多糖) +同型抗体 +抗 IL-17A抗体。 结果说明, 小鼠在来 自大肠杆菌 0111 : B4的脂多糖和来自酿酒酵母的酵母多糖 A联合感染后肺组织出现明显 炎症反应。 实施例 11抗 IL-17A抗体缓解由来自大肠杆菌 0111 : B4的脂多糖和来自酿酒酵母 的酵母多糖 A联合感染后小鼠的肺脏水肿
实验材料:
1) 主要实验仪器: SPF级动物房、 SPF级生物安全柜、 SPF级动物伺养柜、 SPF级 小鼠伺养笼、 小动物手术器械、 高温组织干燥器、 无菌注射器、 移液器、 移液管等。
2) 主要实验试剂: 抗 IL-17A单克隆抗体 (AbM50016-l-PU,购自北京华大蛋白质研 发中心有限公司)、 抗体对照 (AbM59547-48-PU, 购自北京华大蛋白质研发中心有限公 司)、 1% (W/V) 戊巴比妥钠溶液、 病毒稀释液、 无菌 PBS、 消毒剂 (2.5%碘酒和 75%酒 精) 等。 3) 脂多糖 (LPS):L2630, 购于 Sigma; 酵母多糖 (Zymosan A): Z4250, 购于 Sigma。
4) 实验动物:
SPF级野生型 BALB/c小鼠 (4周龄): 购于维通利华实验动物技术有限公司。
实验方法:
1) 分组: 脂多糖和酵母多糖溶剂空白对照组、脂多糖和酵母多糖溶剂 +同型抗体对照 组、 脂多糖和酵母多糖溶剂 +抗 IL-17A单克隆抗体组、 脂多糖和酵母多糖组 +同型抗体对 照组、 脂多糖和酵母多糖 +抗 IL-17A单克隆抗体组;
2) 小鼠静脉注射抗体对照或抗 IL-17A单克隆抗体,每只小鼠每次静脉注射 50微克, 共注射 3次, 分别为感染前 12小时, 1小时和感染后 8小时;
3) 安全固定小鼠, 用 lmL无菌注射器腹腔注射 1% (W/V) 戊巴比妥钠溶液麻醉;
4) 保持麻醉小鼠头部向上向后倾斜姿势, 使其鼻腔向上。 用酒精消毒颈部, 用剪刀 剪开颈部皮肤, 分离气管, 用注射器注入 50微升含 100微克脂多糖的 PBS缓冲液, 每组 感染 4只小鼠;
5) 保持小鼠此体位 5分钟, 使脂多糖进入呼吸道。 将小鼠置于鼠笼内, 待其恢复清 醒后, 给予水及食物;
6) 给予脂多糖 1小时后, 按照操作 3中方法麻醉小鼠, 保持麻醉小鼠头部向上向后 倾斜姿势, 使其鼻腔向上。 用酒精消毒颈部, 分离气管, 用注射器注入 50微升含 60微克 酵母多糖的 PBS缓冲液, 每组感染 4只小鼠;
7) 保持小鼠此体位 5分钟, 使脂多糖进入呼吸道。 将小鼠置于鼠笼内, 待其恢复清 醒后, 给予水及食物;
8) 感染病毒后 24小时, 用腹腔注射过量麻醉剂的方法使小鼠死亡;
9) 将小鼠固定于小动物手术台, 移除胸部皮肤及骨骼, 暴露胸腔, 将小鼠完整肺脏 取出, 去除表面血液及多余结缔组织, 称量并记录肺脏湿重;
10)肺脏置于 55°C高温组织干燥器中干烤, 48h后取出, 待温度降至室温进行肺脏干 重的称量并记录;
11)计算小鼠肺脏湿重 /干重比值 (Wet/dry ratio), 进行统计分析。
实验结果:
检测小鼠肺脏湿干比, 可以反映小鼠发生急性肺水肿的程度。 从图 19中可见, 4周 龄野生型 BALB/c小鼠在静脉注射了抗 IL-17A单克隆抗体后, 感染来自大肠杆菌 0111 : B4的脂多糖和来自酿酒酵母的酵母多糖 A, 其肺脏湿干比相比抗体对照治疗组小鼠显著 降低, 说明抗 IL-17A抗体可以显著缓解大肠杆菌 0111 : B4和酿酒酵母组合感染后小鼠 的肺脏水肿。 * *Ρ<0.01 。
此结果进一步说明, IL-17分子在来自大肠杆菌 0111 : Β4的脂多糖和来自酿酒酵母 的酵母多糖 Α联合感染导致小鼠发生急性肺组织损伤的病理过程中发挥了重要作用。 实施例 12抗 IL-17抗体可以缓解甲型 H1N1流感病毒 BJ501株感染致小鼠肺组织病 理损伤
本实施例实验材料和实验方法等同实施例 11基本相同, 实验方法区别在于将实验小 鼠过量麻醉致死后的操作为将小鼠固定于小动物手术台,移除胸部皮肤及骨骼,暴露胸腔, 将小鼠肺脏连同心脏同时取出, 用无菌 PBS洗去表面血液, 置于甲醛固定液中室温固定 48h; 固定后的样品由病理实验室进行包埋、 切片、 HE染色等处理; 病理切片置于显微镜 下观察, 并记录。
实验结果:
图 20中 (X 100倍, HE染色) 病理照片显示: 感染来自大肠杆菌 0111 : B4的脂多 糖和来自酿酒酵母的酵母多糖 A后, 静脉注射抗体对照的 4周龄的野生型 C57 BL/6小鼠 肺组织中出现严重的病理损伤。 肺组织正常结构被破坏, 肺组织纹理紊乱, 伴随出血、 炎 性渗出及大量红细胞、 炎症细胞浸润等病理损伤。
感染相同滴度病毒静脉注射抗 IL-17A单克隆抗体的小鼠肺组织未见显著病理损伤, 无显著的出血、 渗出或者炎症细胞浸润等病理变化, 肺组织纹理清晰, 结构完整。
结果说明, 抗 IL-17A抗体对小鼠在感染来自大肠杆菌 0111 : B4的脂多糖和来自酿 酒酵母的酵母多糖 A联合导致的急性肺组织病理损伤中发挥了重要保护作用。

Claims

权利要求书
1、 一种 IL-17的抑制剂在制备治疗和 /或预防哺乳动物包括人肺损伤的药物中 的用途, 其中 IL-17为 IL-17蛋白或其核苷酸编码序列。
2、 根据权利要求 1所述的 IL-17的抑制剂在制备治疗和 /或预防哺乳动物包括 人肺损伤的药物中的用途, 其中所述哺乳动物包括人肺损伤由流感病毒感染、 细 菌感染和 /或真菌感染、 败血症导致。
3、 根据权利要求 1或 2所述的 IL-17的抑制剂在制备治疗和 /或预防哺乳动物 包括人肺损伤的药物中的用途, 其中所述哺乳动物包括人肺损伤包括肺水肿、 急 性肺损伤和严重呼吸窘迫综合症。
4、 根据权利要求 2或 3所述的 IL-17的抑制剂在制备治疗和 /或预防哺乳动物 包括人肺损伤的药物中的用途, 其特征在于所述流感病毒为甲型流感病毒; 所述 细菌为革兰氏阴性菌; 所述真菌选自酵母菌。
5、 根据权利要求 2至 4任一项所述的 IL-17的抑制剂在制备治疗和 /或预防哺 乳动物包括人肺损伤的药物中的用途, 其特征在于所述流感病毒为甲型 Hl、 H3、 H5、 H7或 H9亚型毒株。
6、 根据权利要求 2至 5任一项所述的 IL-17的抑制剂在制备治疗和 /或预防哺 乳动物包括人肺损伤的药物中的用途, 其特征在于所述流感病毒为甲型 HI 亚型 毒株。
7、 根据权利要求 2至 6任一项所述的 IL-17的抑制剂在制备治疗和 /或预防哺 乳动物包括人肺损伤的药物中的用途, 其特征在于所述流感病毒为甲型 H1N1 流 感病毒。
8、 根据权利要求 2至 7任一项所述的 IL-17的抑制剂在制备治疗和 /或预防哺 乳动物包括人肺损伤的药物中的用途, 其特征在于所述流感病毒为甲型 H1N1 流 感病毒 BJ501株或 PR8株。
9、 根据权利要求 2至 8任一项所述的 IL-17的抑制剂在制备治疗和 /或预防哺 乳动物包括人肺损伤的药物中的用途, 其特征在于所述细菌选自大肠埃希氏菌。
10、 根据权利要求 2至 9任一项所述的 IL-17的抑制剂在制备治疗和 /或预防 哺乳动物包括人肺损伤的药物中的用途, 其特征在于所述细菌选自大肠杆菌 0111: B4。
11、 根据权利要求 2至 10任一项所述的 IL-17的抑制剂在制备治疗和 /或预防 哺乳动物包括人肺损伤的药物中的用途, 其特征在于所述真菌为酿酒酵母。
12、 根据权利要求 1至 11任一项所述的 IL-17的抑制剂在制备治疗和 /或预防 哺乳动物包括人肺损伤的药物中的用途, 其特征在于所述 IL-17 来源于哺乳动物 包括人。
13、 根据权利要求 1至 12任一项所述的 IL-17的抑制剂在制备治疗和 /或预防 哺乳动物包括人肺损伤的药物中的用途, 其特征在于所述 IL-17的 GeneBank编号 为 GenelD: 3605, 核苷酸编码序列如 NM_002190.2 所示, 蛋白质编码序列如 NP_002181.1所示。
14、 根据权利要求 1至 13任一项所述的 IL-17的抑制剂在制备治疗和 /或预防 哺乳动物包括人肺损伤的药物中的用途, 其特征在于所述 IL-17 的抑制剂选自特 异性抗 IL-17的抗体、 siRNA或特异性抑制哺乳动物包括人 IL-17表达的化学生物 物质。
15、 根据权利要求 14所述的 IL-17的抑制剂在制备治疗和 /或预防哺乳动物包 括人肺损伤的药物中的用途, 其特征在于所述特异性抗 IL-17 的抗体选自特异性 抗 IL-17 的多克隆抗体、 单克隆抗体、 嵌合抗体、 表面重塑抗体、 重构抗体、 全 人源抗体或其抗原结合部分。
16、 根据权利要求 14或 15所述的 IL-17的抑制剂在制备治疗和 /或预防哺乳 动物包括人肺损伤的药物中的用途, 其特征在于所述特异性抗 IL-17 的抗体为特 异性抗 IL-17的单克隆抗体。
17、 根据权利要求 14至 16任一项所述的 IL-17的抑制剂在制备治疗和 /或预 防哺乳动物包括人肺损伤的药物中的用途, 其特征在于所述 IL-17 的抑制剂选自 siRNA。
18、 根据权利要求 14至 17任一项所述的 IL-17的抑制剂在制备治疗和 /或预 防哺乳动物包括人肺损伤的药物中的用途, 其特征在于所述 siRNA的正义序列如 SEQ. ID. NO. 1 : gaccucauuggugucacugUU 所示, 反义序列如 SEQ. ID. NO. 2: UUcuggaguaaccacagugac所 7 。
19、 根据权利要求 1至 18任一项所述的 IL-17的抑制剂在制备治疗和 /或预防 哺乳动物包括人肺损伤的药物中的用途, 其特征在于所述药物的剂型为注射剂、 喷雾剂、 滴鼻剂、 吸入剂、 口服剂。
20、 一种 IL-17 的抑制剂, 其用做治疗和 /或预防哺乳动物包括人肺损伤的药 物, 其中 IL-17为 IL-17蛋白或其核苷酸编码序列。
21、 根据权利要求 20所述的 IL-17的抑制剂, 其特征在于所述哺乳动物包括 人肺损伤由流感病毒感染、 细菌感染和 /或真菌感染、 败血症导致。
22、 根据权利要求 20或 21所述的 IL-17的抑制剂, 其特征在于所述流感病 毒、 细菌和真菌如权利要求 4-11任一项所述, 所述 IL-17如权利要求 12或 13所 述, 或所述 IL-17的抑制剂如权利要求 14至 18任一项所述。
23、 一种含有 IL-17 的抑制剂的组合物在制备治疗和 /或预防哺乳动物包括人 肺损伤的药物中的用途, 其中 IL-17 的抑制剂是所述组合物的活性成分, 其中 IL-17为 IL-17蛋白或其核苷酸编码序列。
24、 根据权利要求 24所述的含有 IL-17的抑制剂的组合物在制备治疗和 /或预 防哺乳动物包括人肺损伤的药物中的用途, 其特征在于所述哺乳动物包括人肺损 伤由流感病毒感染、 细菌感染和 /或真菌感染、 败血症导致。
25、 根据权利要求 23或 24所述的含有 IL-17的抑制剂的组合物在制备治疗和 /或预防哺乳动物包括人肺损伤的药物中的用途, 其特征在于所述流感病毒、 细菌 和真菌如权利要求 4-11任一项所述, 所述 IL-17如权利要求 12或 13所述, 或所 述 IL-17的抑制剂如权利要求 14至 18任一项所述。
26、 一种治疗和 /或预防哺乳动物包括人肺损伤的方法, 其包括给予哺乳动物 包括人治疗有效量的 IL-17的抑制剂, 其中 IL-17为 IL-17蛋白或其核苷酸编码序 列。
27、 根据权利要求 26 所述的治疗和 /或预防哺乳动物包括人肺损伤的方法, 其特征在于所述哺乳动物包括人肺损伤由流感病毒感染、 细菌感染和 /或真菌感 染、 败血症导致。
28、 根据权利要求 26或 27所述的治疗和 /或预防哺乳动物包括人肺损伤的方 法, 其特征在于所述流感病毒、 细菌和真菌如权利要求 4-11 任一项所述, 所述 IL-17如权利要求 12或 13所述, 或所述 IL-17的抑制剂如权利要求 14至 18任一 项所述。
PCT/CN2012/071568 2011-02-25 2012-02-24 Il-17抑制剂在制备治疗和/或预防肺损伤的药物中的用途 WO2012113343A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110045935.8 2011-02-25
CN201110045935.8A CN102188707B (zh) 2011-02-25 2011-02-25 Il-17抑制剂在制备治疗流感的药物中的用途

Publications (1)

Publication Number Publication Date
WO2012113343A1 true WO2012113343A1 (zh) 2012-08-30

Family

ID=44598139

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/071568 WO2012113343A1 (zh) 2011-02-25 2012-02-24 Il-17抑制剂在制备治疗和/或预防肺损伤的药物中的用途

Country Status (2)

Country Link
CN (1) CN102188707B (zh)
WO (1) WO2012113343A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102188707B (zh) * 2011-02-25 2015-08-05 中国医学科学院基础医学研究所 Il-17抑制剂在制备治疗流感的药物中的用途
CN106535922A (zh) * 2014-02-11 2017-03-22 北京艾棣维欣生物技术有限公司 免疫治疗组合物、治疗方法和诊断方法
CN105420238A (zh) * 2015-09-08 2016-03-23 中国农业科学院兰州兽医研究所 靶向抑制小鼠白细胞介素17A基因的序列siRNA-136
CN105420237A (zh) * 2015-09-08 2016-03-23 中国农业科学院兰州兽医研究所 靶向抑制小鼠白细胞介素17A基因的序列siRNA-180
CN106729634A (zh) * 2017-01-05 2017-05-31 中国科学院微生物研究所 白介素17在抵御流感病毒侵染中的应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101001871A (zh) * 2004-06-10 2007-07-18 津莫吉尼蒂克斯公司 可溶性ZcytoR14、抗ZcytoR14抗体和结合伴侣以及在炎症中的使用方法
WO2009136976A2 (en) * 2008-02-21 2009-11-12 Amgen Inc Il-17ra-il-17rb antagonists and uses thereof
CN102188707A (zh) * 2011-02-25 2011-09-21 中国医学科学院基础医学研究所 Il-17抑制剂在制备治疗流感的药物中的用途

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007024715A2 (en) * 2005-08-19 2007-03-01 Abbott Laboratories Dual variable domain immunoglobin and uses thereof
AU2009296299A1 (en) * 2008-09-29 2010-04-01 Roche Glycart Ag Antibodies against human IL 17 and uses thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101001871A (zh) * 2004-06-10 2007-07-18 津莫吉尼蒂克斯公司 可溶性ZcytoR14、抗ZcytoR14抗体和结合伴侣以及在炎症中的使用方法
WO2009136976A2 (en) * 2008-02-21 2009-11-12 Amgen Inc Il-17ra-il-17rb antagonists and uses thereof
CN102188707A (zh) * 2011-02-25 2011-09-21 中国医学科学院基础医学研究所 Il-17抑制剂在制备治疗流感的药物中的用途

Also Published As

Publication number Publication date
CN102188707A (zh) 2011-09-21
CN102188707B (zh) 2015-08-05

Similar Documents

Publication Publication Date Title
Chen et al. Galectin-3 enhances avian H5N1 influenza a virus–induced pulmonary inflammation by promoting NLRP3 inflammasome activation
Nie et al. AKT2 regulates pulmonary inflammation and fibrosis via modulating macrophage activation
De Albuquerque et al. MurineHepatitis virus strain 1 produces a clinically relevant model of severe acute respiratory syndrome in A/J mice
Wu et al. Innate immune response to H3N2 and H1N1 influenza virus infection in a human lung organ culture model
JP6775424B2 (ja) リポ多糖を欠損する細胞構成要素をベースとしたアシネトバクター・バウマニワクチン
CN115605508A (zh) 用于治疗冠状病毒感染和所产生的炎症诱导的肺损伤的方法
Lai et al. ATF3 protects against LPS‐induced inflammation in mice via inhibiting HMGB1 expression
Dai et al. Mechanical ventilation modulates Toll-like receptors 2, 4, and 9 on alveolar macrophages in a ventilator-induced lung injury model
WO2012113343A1 (zh) Il-17抑制剂在制备治疗和/或预防肺损伤的药物中的用途
Liu et al. Gut-derived lipopolysaccharide promotes alcoholic hepatosteatosis and subsequent hepatocellular carcinoma by stimulating neutrophil extracellular traps through toll-like receptor 4
Barreno et al. Endogenous osteopontin promotes ozone-induced neutrophil recruitment to the lungs and airway hyperresponsiveness to methacholine
Wan et al. Diet‐induced obese mice exhibit altered immune responses to acute lung injury induced by Escherichia coli
EP2830657A1 (en) Treatment of acute inflammation in the respiratory tract
Yang et al. Liver kinase B1/AMP-activated protein kinase pathway activation attenuated the progression of endotoxemia in the diabetic mice
Streblow et al. Aerosol delivery of SARS-CoV-2 human monoclonal antibodies in macaques limits viral replication and lung pathology
CN113475463B (zh) 一种新型冠状病毒致肺损伤动物模型的建立方法及其小鼠模型
WO2013170735A1 (zh) 治疗和/或预防肺损伤的方法
van den Berg et al. Role of the Fas/FasL system in a model of RSV infection in mechanically ventilated mice
Hu et al. Administration of nonviral gene vector encoding rat β‐defensin‐2 ameliorates chronic Pseudomonas aeruginosa lung infection in rats
CN113577242A (zh) Nlrp12在制备治疗冠状病毒感染或相关的炎症性疾病的药物中的应用
Piao et al. Recombinant pyrin domain protein attenuates allergic inflammation by suppressing NF‐κB pathway in asthmatic mice
Wunderink et al. Update in sepsis and pulmonary infections 2013
Balis et al. Community-acquired pneumonia and bacteremia due to methicillin-resistant Staphylococcus aureus carrying Panton-Valentine-leukocidin gene in Greece: two case reports and literature review
US20220257614A1 (en) Use of 12-lipoxygenase inhibitors in the treatment of covid-19
WO2023146425A1 (en) Recombinant human cd5l protein, active fragments or peptides derived thereof and pharmaceutical composition comprising the recombinant human cd5l protein, active fragments or peptides derived thereof for the treatment of acute infectious diseases, inflammatory diseases and sepsis

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12749213

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12749213

Country of ref document: EP

Kind code of ref document: A1