WO2013170735A1 - 治疗和/或预防肺损伤的方法 - Google Patents

治疗和/或预防肺损伤的方法 Download PDF

Info

Publication number
WO2013170735A1
WO2013170735A1 PCT/CN2013/075548 CN2013075548W WO2013170735A1 WO 2013170735 A1 WO2013170735 A1 WO 2013170735A1 CN 2013075548 W CN2013075548 W CN 2013075548W WO 2013170735 A1 WO2013170735 A1 WO 2013170735A1
Authority
WO
WIPO (PCT)
Prior art keywords
cxcl
mice
influenza virus
infection
pi3k
Prior art date
Application number
PCT/CN2013/075548
Other languages
English (en)
French (fr)
Inventor
蒋澄宇
王希良
王伟
杨鹏辉
赵妍
Original Assignee
中国医学科学院基础医学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国医学科学院基础医学研究所 filed Critical 中国医学科学院基础医学研究所
Publication of WO2013170735A1 publication Critical patent/WO2013170735A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • C12N15/1136Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against growth factors, growth regulators, cytokines, lymphokines or hormones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/10Antimycotics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/16Antivirals for RNA viruses for influenza or rhinoviruses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/24Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against cytokines, lymphokines or interferons
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • C12N15/1137Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/14Type of nucleic acid interfering N.A.
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/01Phosphotransferases with an alcohol group as acceptor (2.7.1)
    • C12Y207/01151-Phosphatidylinositol-3-phosphate 5-kinase (2.7.1.150)

Definitions

  • the present invention relates to methods of treating and/or preventing lung damage, particularly acute lung injury.
  • the invention also relates to methods of treating and/or preventing influenza. Background technique
  • CXCL-10 CXC motif chemokine 10, CXC chemokine 10, GenelD: 3627; Nucleotide: NM-001565.2; Protein: NP_001556.2
  • CXCL-10 and IP10 are used without distinction in the present invention
  • microorganisms such as SARS coronavirus, influenza virus, etc.
  • Microorganisms also induce up-regulation of CXCR3 expression on the surface of NK cells, neutrophils and monocyte-macrophages, whereas binding of CXCL-10 to its receptor CXCR3 produces strong chemotaxis, recruiting these cells to the lungs.
  • Infected parts kill infected cells, prevent virus spread, and synthesize and interpret IFN- ⁇ TNF-0U GM-CSF, activate and recruit more inflammatory cells, produce more pro-inflammatory factors and inflammatory mediators. , mediates the inflammatory response of the lungs. Therefore, microbial-induced long-term expression of CXCL-10 is an important mediator of infection-induced pathological immunity. Fabio Marra et al. demonstrated that the PI3K-Akt-p38 signaling pathway plays an important role in CXCL-10- insist chemotaxis of astrocytes.
  • the plasma CXCL-10 concentration in patients with SARS coronavirus infection is significantly elevated within one week after the patient begins to develop fever symptoms, and the elevated CXCL-10 concentration is also closely related to the patient's poor prognosis; in a mouse model of asthma Overexpression of CXCL-10 in the lungs leads to an increase in the number of eosinophils in the respiratory tract, an increase in IL-4 levels, an increase in the recruitment of CD8+ T cells, and an increase in inflammation; CXCR3 in the airway smooth muscle of asthma patients The surface of lung mast cells is the most abundant chemokine receptor, and the expression of CXCL-10 in bronchial smooth muscle cells of these patients is also significantly up-regulated, thereby recruiting mast cells to reach the lungs.
  • Acute lung injury is an injury of alveolar epithelial cells and capillary endothelial cells caused by various direct and indirect injury factors, resulting in diffuse pulmonary interstitial and alveolar edema, leading to acute hypoxic respiratory insufficiency.
  • Acute lung injury with pulmonary volume reduction, lung compliance decreased, ventilation / blood flow imbalance is a pathophysiological feature, clinical manifestations of progressive hypoxemia and respiratory distress, pulmonary imaging showed heterogeneous infiltration Out The lesion, which develops to a severe stage (oxygenation index ⁇ 200), is called acute respiratory distress syndrome.
  • Direct lung injury factors include severe lung infections such as viruses, bacteria and fungi, stomach contents aspiration, lung contusion, oxygen poisoning, etc.;
  • Injury factors include, for example, sepsis, shock, massive blood transfusion, extracorporeal circulation, and disseminated intravascular coagulation.
  • lung injury The clinical manifestations of lung injury are: (1) acute onset, 12-48 hours after direct or indirect lung injury; (2) hypoxemia after conventional oxygen inhalation is difficult to correct; (3) lung The signs are not specific. In the acute phase, the lungs can be smelled and the wet rales or breath sounds are reduced. (4) The early lesions are mainly interstitial, and the chest X-rays often have no obvious changes, and the lungs can be found after the disease progresses. Change, the performance of the double lung field generally increased density, decreased brightness, increased lung texture + thickening, visible scattered patch density increased shadow; (5) diffuse lung infiltration, no evidence of cardiac insufficiency.
  • Influenza is a common and frequently-occurring disease that affects a wide range of people. At present, the cross-species infection of influenza virus is severe. The clinical symptoms caused by the infection of the H1N1 influenza virus are mild, and most patients have typical flu-like symptoms. Natural recovery. The most common symptoms include cough, fever, sore throat, headache, and other discomfort. In patients with severe pneumonia, multiple lesions can be seen in the chest X-ray, which can rapidly progress to ARDS, renal or multiple organ failure. Influenza-type influenza combined with ARDS is 100 times more common than normal flu, and lung damage is mainly due to uncontrolled systemic immune responses. Associated with ARDS secondary to viral pneumonia, including diffuse alveolar damage, bronchioles and perivascular lymphocytic infiltration, hyperplastic airway changes, and obstructive bronchiolitis.
  • Lipopolysaccharide is a water-soluble glycosylated lipid complex that is an important component of the outer membrane of Gram-negative bacteria. It consists of lipid A and core polysaccharide. And o antigen consists of three parts.
  • Gram-negative bacteria include, but are not limited to, Helicobacter, Campylobacter, Helicobacter, Pseudomonas, Legionella, Neisseria, Moraxella, Alcaligenes, Bruce , Rocca genus, B., Francis, Escherichia, Shigella, Salmonella, Klebsiella Proteus, Providencia, Yersinia, Vibrio, Pasteurella, Haemophilus, Bacteroides, Fusobacterium, Vesococcus, Rickettsia, Cox, Chlamydia, Treponema Gram-negative bacteria such as genus, Borrelia, and Leptospira.
  • the molecular weight of lipopolysaccharide is more than 10,000 Daltons, and the structure is complicated.
  • Lipid A is a glycolipid which constitutes endotoxin activity and is covalently bonded to the heteropolysaccharide chain.
  • the human body is extremely sensitive to bacterial endotoxin. A very small amount (1-5 ng/kg body weight) of endotoxin can cause an increase in body temperature, and the fever reaction gradually subsides after about 4 hours. In the case of natural infection, Gram-negative bacteria continue to grow and multiply, accompanied by successive deaths and release of endotoxin, so the fever reaction will continue until the pathogens in the body are completely eliminated.
  • Endotoxin causes a fever reaction because endotoxin acts on macrophages in the body to produce cytokines such as interleukin 1, interleukin-6 and tumor necrosis factor alpha. These cytokines act on the hypothalamus of the host. Adjust the center to promote fever and fever.
  • the clinical symptoms of endotoxemia mainly depend on the host's resistance to endotoxin 4, symptoms and signs are: fever, white blood cell count changes, bleeding tendency, heart failure, renal dysfunction, liver damage, nervous system symptoms and shock.
  • Endotoxin can cause the release of histamine, serotonin, prostaglandin, kinin, etc., resulting in microcirculation expansion, decreased venous return, decreased blood pressure, insufficient tissue perfusion, hypoxia and acidosis.
  • Fungi can also infect lung tissue and cause lung damage, mainly as fungal inflammation or related lesions of the lungs and bronchus, and may include the pleura or even mediastinum.
  • Pathogenic fungi are primary pathogenic bacteria, often leading to primary exogenous infections in patients with normal immune function, mainly histoplasma, coccidioides, paraspora, spores and so on.
  • Conditional pathogenic fungi, or opportunistic fungi are pathogenicly weak and cause deep fungal infections in susceptible hosts such as Candida, Aspergillus, Cryptococcus, Mucor and Penicillium, Rhizopus, Scythe Mildew and Pneumocystis.
  • Zymosan is a macromolecular polysaccharide complex extracted from the yeast cell wall and consists of proteins and carbohydrates.
  • the yeast is a fungus, and the fungi in the present invention include, but are not limited to, Trichoderma, Basidiomycetes, Chytrid, Coccidioides, Mycobacterium tuberculosis and the like.
  • Yeast polysaccharides can be used to induce inflammation in an experiment, and the induced responses mainly include expression of inflammatory cytokines, upregulation of arachidonic acid, phosphorylation of some proteins, and formation of inositol phospholipids.
  • zymosan can also up-regulate the expression of cyclin D2, indicating that it also plays a role in the process of macrophage activation and proliferation.
  • Septicemia refers to an acute systemic infection in which pathogenic bacteria or conditional pathogens invade the blood circulation and grow in the blood to produce toxins. Sepsis is one of the prone factors of acute lung injury.
  • One characteristic of septic lung injury is the aggregation and activation of polymorphonuclear neutrophils (PMN) in the pulmonary microvasculature, a series of inflammatory processes and vascular injury.
  • PMN polymorphonuclear neutrophils
  • Bacterial infections, especially Gram-negative infections may be a key factor in the initial inflammatory response during this process.
  • LBP lipopolysaccharide-binding protein
  • LBP lipopolysaccharide-binding protein
  • monocytes a cell encoding a specific inflammatory factor (such as TNF-a, IL-1, IL-6).
  • IL-6 a specific inflammatory factor
  • IL-6 a specific inflammatory factor
  • Secretion of cytokines into the circulation is an important biochemical feature in a series of inflammatory processes leading to sepsis and lung injury, such as IL-1, IL-6, IL-8, IL-10, IL-12, etc. These cytokines cause A series of cascade reactions involved in the process of lung injury. Therefore, the combination of lipopolysaccharide and zymosan can mimic septic lung injury.
  • SRBC sheep red blood cells
  • Monoclonal antibodies are characterized by high homogeneity of physicochemical properties, single biological activity, strong specificity for binding to antigens, ease of handling and quality control, and easy source. These advantages have made it highly regarded as soon as it is published, and are widely used in the fields of biology and medical research.
  • the drug can be directly cross-linked with the monoclonal antibody, and the targeting effect can be used to locate the drug at a specific therapeutic target, which not only improves the therapeutic effect, but also reduces the toxic reaction to normal cells.
  • RNA interference is an ancient biological phenomenon commonly found in organisms in recent years. It is a double-stranded RNA (dsRNA)-mediated specific gene silencing phenomenon involving specific enzymes. It blocks gene expression at the transcriptional, post-transcriptional and translational levels.
  • dsRNA double-stranded RNA
  • siRNA small interfering RNA
  • Dicer an enzyme specific for double-stranded RNA in the RNAase III family.
  • siRNA is a major member of siRISC, which stimulates the silencing of target mRNAs complementary to it.
  • RNA interference is a powerful experimental tool in the laboratory, using homologous double-stranded RNA (dsRNA) to induce sequence-specific silence of target genes and rapidly block gene activity.
  • dsRNA homologous double-stranded RNA
  • siRNA plays a central role in the RNA silencing pathway and is a guiding element for the degradation of specific messenger RNA (mRNA).
  • siRNA is an intermediate in the RNAi pathway and is a factor required for RNAi to exert its effects.
  • the maximal and final effect of RNAi is a significant change in phenotypic parameters such as cellular metabolic processes, physiological and biochemical coefficients.
  • RNAi has been successfully used to construct transgenic animal models are also increasing, indicating that RNAi will become an indispensable tool for studying gene function. Not only that, but RNAi technology will also be a new way to study cell signaling pathways and gene therapy.
  • the invention relates to a method of treating and/or preventing lung damage in a subject by inhibiting CXCL-10 activity, decreasing CXCL-10 expression, and/or decreasing CXCL-10 levels in a subject.
  • the methods of the invention comprise administering to the subject a therapeutically effective amount of a substance, such as CXCL-, for inhibiting CXCL-10 activity, decreasing CXCL-10 expression, and/or decreasing CXCL-10 levels, eg, CXCL- 10 inhibitors.
  • the lung injury is caused by a viral infection, a bacterial infection, a fungal infection, and/or sepsis.
  • the virus is an influenza virus
  • the bacterium is a Gram-negative bacterium and/or the fungus is a yeast.
  • the influenza virus is a sputum influenza virus (for example, an influenza virus selected from the group consisting of sputum H1, H3, H5, H7 and H9 subtype strains), the bacteria being Escherichia coli and / Or the fungus is Saccharomyces Cerevisiae.
  • the influenza virus is a sputum type H1N1 influenza virus (e.g., strain BJ501 or PR8) and/or the bacterium is Escherichia coli 0111:B4.
  • the bacterium is selected from the group consisting of Helicobacter, Campylobacter, Helicobacter, Pseudomonas, Legionella, Neisseria, Moraxella, Alcaligenes, Bruce, Rocca Lima, B., Francis, Escherichia, Shigella, Salmonella, Klebsiella Proteus, Providencia, Yersin Genus, Vibrio, Pasteurella, Haemophilus, Bacteroides, Fusobacterium, Vesococcus, Rickettsia, Cox, Chlamydia, Treponema, sparse One or more of Gram-negative bacteria such as the genus Spirulina and Leptospira. More preferably, the bacterium is selected from the group consisting of Escherichia coli. Most preferably, the bacterium is selected from the group consisting of E. coli 0111 : B4.
  • the lung injury is selected from the group consisting of: pulmonary edema, acute lung injury, and severe respiratory distress syndrome.
  • the CXCL-10 inhibitor is selected from the group consisting of: an anti-CXCL-10 antibody and a functional fragment thereof (preferably, which is selected from a polyclonal antibody, monoclonal antibody specific for anti-CXCL-10) , chimeric antibodies, surface remodeling antibodies, reconstituted antibodies, Fully human antibodies and functional fragments thereof, interfering RNA against CXCL-10 (preferably, selected from short stem 4 RNA ( miRNA ), double stranded RNA ( dsRNA ) and hairpin RNA ( shRNA ) or other compounds (eg, small molecule compounds) that specifically inhibit the expression of CXCL-10.
  • an anti-CXCL-10 antibody and a functional fragment thereof preferably, which is selected from a polyclonal antibody, monoclonal antibody specific for anti-CXCL-10)
  • chimeric antibodies preferably, which is selected from a polyclonal antibody, monoclonal antibody specific for anti-CXCL-10)
  • surface remodeling antibodies reconstituted antibodies
  • Fully human antibodies and functional fragments thereof
  • the sense sequence of the siRNA is as SEQ. ID.
  • the CXCL-10 inhibitor is administered as an injection, spray, nasal drop, inhalation or oral.
  • the invention relates to a method of treating and/or preventing lung damage in a subject by modulating a PI3K-Akt-p38 pathway in a subject.
  • modulating the PI3K-Akt-p38 pathway comprises down-regulating signal transduction of the pathway, e.g., by inhibiting PI3K activity, decreasing PI3K levels, and/or decreasing PI3K expression.
  • modulating the PI3K-Akt-p38 pathway further comprises inhibiting CXCL-10 activity, decreasing CXCL-10 expression, and/or decreasing CXCL-10 levels.
  • the invention in another aspect, relates to a method of treating and/or preventing influenza (eg, influenza A) in a subject by inhibiting CXCL-10 activity, decreasing CXCL-10 expression, and/or decreasing CXCL-10 levels in a subject .
  • influenza eg, influenza A
  • the methods of the invention comprise administering to the subject a therapeutically effective amount of a substance, such as a CXCL-10 inhibitor, for inhibiting CXCL-10 activity, decreasing CXCL-10 expression, and/or decreasing CXCL-10 levels. .
  • the invention relates to a method of treating and/or preventing influenza (e.g., flu type) in a subject by modulating a PI3K-Akt-p38 pathway in a subject.
  • modulating the PI3K-Akt-p38 pathway comprises down-regulating signal transduction of the pathway, e.g., by inhibiting PI3K activity, decreasing PI3K levels, and/or decreasing PI3K expression.
  • the present invention relates to a substance for inhibiting CXCL-10 activity, decreasing CXCL-10 expression, and/or decreasing CXCL-10 level in a subject, in the preparation of a medicament for treating and/or preventing lung injury in said subject the use of.
  • a substance that inhibits CXCL-10 activity, decreases CXCL-10 expression, and/or decreases CXCL-10 levels in a subject includes a CXCL-10 inhibitor.
  • the invention relates to the use of a substance that modulates the PI3K-Akt-p38 pathway in a subject for the manufacture of a medicament for the treatment and/or prevention of lung injury in said subject.
  • the substance that regulates the PI3K-Akt-p38 pathway comprises a substance that down-regulates the signaling of the pathway, such as a substance that inhibits PI3K activity, decreases PI3K levels, and/or decreases PI3K expression.
  • the substance that regulates the PI3K-Akt-p38 pathway Administration in combination with a substance that inhibits CXCL-10 activity, decreases CXCL-10 expression, and/or decreases CXCL-10 levels.
  • the invention relates to a medicament for the treatment and/or prevention of a substance (eg, a CXCL-10 inhibitor) that inhibits CXCL-10 activity, decreases CXCL-10 expression, and/or decreases CXCL-10 levels in a subject.
  • a substance eg, a CXCL-10 inhibitor
  • the invention relates to the use of a substance for modulating a PI3K-Akt-p38 pathway in a subject for the manufacture of a medicament for the treatment and/or prophylaxis of influenza (e.g., flu) in said subject.
  • modulating the PI3K-Akt-p38 pathway comprises down-regulating signal transduction of said pathway, e.g., by inhibiting PI3K activity, decreasing PI3K levels, and/or decreasing PI3K expression.
  • the invention relates to a substance which inhibits CXCL-10 activity, decreases CXCL-10 expression and/or decreases CXCL-10 levels in a subject, and is useful for treating and/or preventing lung damage in said subject.
  • the present invention also relates to a substance which inhibits CXCL-10 activity, decreases CXCL-10 expression and/or lowers CXCL-10 levels in a subject, and is useful for treating and/or preventing influenza (e.g., flu type) in the subject.
  • a substance that inhibits CXCL-10 activity, decreases CXCL-10 expression, and/or decreases CXCL-10 levels in a subject includes a CXCL-10 inhibitor.
  • the invention relates to a substance that modulates the PI3K-Akt-p38 pathway in a subject for use in the treatment and/or prevention of lung injury in said subject.
  • the invention also relates to a substance that modulates the PI3K-Akt-p38 pathway in a subject for use in the treatment and/or prevention of influenza in the subject (e.g., influenza A).
  • influenza A e.g., influenza A
  • the substance that regulates the PI3K-Akt-p38 pathway comprises a substance that down-regulates the signaling of the pathway, such as a substance that inhibits PI3K activity, decreases PI3K levels, and/or decreases PI3K expression.
  • the substance that modulates the PI3K-Akt-p38 pathway is administered in combination with a substance that inhibits CXCL-10 activity, decreases CXCL-10 expression, and/or decreases CXCL-10 levels.
  • the present invention relates to a pharmaceutical composition
  • a pharmaceutical composition comprising: a substance that inhibits CXCL-10 activity, decreases CXCL-10 expression, and/or decreases CXCL-10 levels in a subject, and/or modulates PI3K-Akt in a subject a substance of the -p38 pathway, and a pharmaceutically acceptable carrier.
  • it is used to treat and/or prevent lung damage in the subject, and/or to treat and/or prevent influenza (e.g., flu type) in the subject.
  • influenza e.g., flu type
  • the present invention relates to a kit comprising a pharmaceutical composition according to the present invention, and instructions for use in the treatment and/or prevention of lung damage in said subject, and/or for treatment and/or prevention Influenza in the subject (eg, flu type).
  • CXCL-10 knockout mice and CXCL-10 Downstream PI3K knockout mouse model and mice infected with sputum H1N1 influenza virus demonstrated that CXCL-10 plays an important role in the pathological damage and death of acute lung tissue in mice, and the intervention of CXCL-10 molecule in treatment Lung injury, especially in the damage caused by infection with the H1N1 influenza virus BJ501 strain and PR8 strain, plays an important role.
  • the present invention immunizes a wild type mouse with a monoclonal antibody specific for anti-CXCL-10 and then infects the mouse with a sputum H1N1 influenza virus, and the result shows that the anti-CXCL-10 antibody is infected with a sputum H1N1 influenza virus in mice.
  • the pathological damage of acute lung tissue caused by BJ501 strain and PR8 strain played an important protective role.
  • CXCL-10 plays an important role in the pathogenesis of sputum influenza and that specifically inhibiting the treatment of CXCL-10 can prevent or slow the serious consequences of influenza virus infection.
  • the present invention also utilizes a combination of a lipopolysaccharide of a Gram-negative bacterium and a zymosan A derived from a yeast to infect a mouse, and finds that the intervention against the CXCL-10 molecule is in the treatment of lipopolysaccharide from Gram-negative bacteria and yeast from Saccharomyces cerevisiae. It is possible that the damage caused by the combined infection of polysaccharide A may play an important role.
  • the present invention immunizes wild-type mice with a monoclonal antibody specific for anti-CXCL-10, and then co-infects the mice with lipopolysaccharide from Escherichia coli 0111:B4 and zymosan A from Saccharomyces cerevisiae, and the results show that anti-CXCL
  • the -10 antibody plays an important protective role in the acute lung tissue pathological damage caused by the combination of lipopolysaccharide from Escherichia coli 0111:B4 and zymosan A from Saccharomyces cerevisiae.
  • the present invention demonstrates for the first time that treatment with specific inhibition of CXCL-10 can prevent or slow the severe consequences of co-infection by lipopolysaccharide from E. coli 0111 : B4 and zymosan A from Saccharomyces cerevisiae.
  • CXCL-10 when CXCL-10 is confirmed to play an important role in promoting pathological damage, death, and the like caused by influenza virus infection, especially in the case of neutralizing the test with an antibody specific for CXCL-10.
  • CXCL-10 protects the subject, other technical means to eliminate or reduce the effects of CXCL-10 can also have the same or similar effects.
  • such techniques include other antibodies that specifically neutralize CXCL-10, RNAi technology that specifically silences CXCL-10 expression, and other chemistry known in the art to reduce or eliminate CXCL-10 expression. And / or biological matter.
  • the antibody that specifically neutralizes CXCL-10 may be a polyclonal antibody obtained by immunizing a mammal with CXCL-10, a monoclonal antibody obtained by hybridoma technology, a chimeric antibody, a surface remodeling antibody, a reconstituted antibody, or a whole person.
  • the source antibody or antigen-binding portion thereof as long as such antibody or portion thereof retains antigen binding ability and is capable of neutralizing the activity of the antigen.
  • the design of siRNAs for a particular target gene is an operation known to those skilled in the art, such sequences may differ in length and position of the target sequence targeted, but necessarily Silencing the expression of the CXCL-10 gene, an example of such an siRNA is a SEQ ID NO.
  • the skilled person or skilled person can also utilize other chemicals known in the art to reduce or silence CXCL-10 expression or other chemicals that are screened by techniques known in the art to reduce or silence CXCL-10 expression. To reduce or silence the expression of CXCL-10, thereby achieving the purpose of treating lung damage, especially turbulence, more particularly sputum H1N1 flu.
  • compositions comprising a therapeutically effective amount of a CXCL-10 inhibitor of the invention can also be used to treat turbulence, particularly sputum H1N1 flu.
  • the active ingredient of the composition is a CXCL-10 inhibitor and may also include other active ingredients which may act synergistically with the CXCL-10 inhibitor.
  • the compositions of the present invention may also include pharmaceutical materials such as preservatives, stabilizers, buffers and the like.
  • FIG. 1 C57BL/6 mice infected with a virus with a titer of 10 5 ⁇ 5 TCID50
  • CXCL-10 protein The expression level of CXCL-10 protein in lung tissue after H1N1 influenza virus BJ501 strain and the same dose of chicken embryo urinary sputum.
  • FIG. 1 Wild-type C57 BL/6 mice and CXCL-10 knockout mice infected
  • FIG. 3 Wild-type C57 BL/6 mice and CXCL-10 knockout mice infected
  • mice after TCID50 was 10 5 ⁇ 5 ⁇ H1N1 influenza virus BJ501 strain.
  • Figure 4 Tissues of mouse lung tissue after infection of wild type C57 BL/6 mice (panel A) and CXCL-10 knockout mice (panel B) with sputum H1N1 influenza virus BJ501 strain with TCID50 of 10 5 ⁇ 5 Pathological test results.
  • Figure 5 wild type C57 BL / 6 mice and CXCL-10 knockout mice lung wet to dry after infection Yue TCID50 of influenza virus type A H1N1 strain BJ501 5 ⁇ 105 ratio detection result.
  • Figure 6 Mortality curves of mice infected with wild type C57 BL/6 mice and CXCL-10 knockout mice after infection with the sputum H1N1 influenza virus PR8 strain with a TCID50 of 1.33 ⁇ 10 4 .
  • Figure 7 Body weight change curves of wild type C57 BL/6 mice and CXCL-10 knockout mice infected with sputum H1N1 influenza virus PR8 strain with TCID50 of 1.33 ⁇ 10 4 .
  • Figure 8 Wild-type C57 BL/6 mice (panel A) and CXCL-10 knockout mice (B panel) infected mice TCID50 of lung pathology detection result PR8 influenza virus type A H1N1 strain Yue 1.33x l0 4 in.
  • Fig. 9 shows the results of wet-to-dry ratio measurement of mouse lung tissues after infection of wild type C57 BL/6 mice and CXCL-10 knockout mice with sputum H1N1 influenza virus PR8 strain with TCID50 of 1.33 ⁇ 10 4 .
  • Figure 10 wildtype C57 BL / 6 mice and mortality curves PI3K knockout mice infected with TCID50 Yue type of H1N1 influenza virus strains BJ501 10 5.5 In addition to mice.
  • Figure 11 wildtype C57 BL / 6 mice, and weight change curve PI3K knockout mice infected with addition of 10 5.5 TCID50 Yue type of H1N1 influenza virus strains BJ501 mice.
  • Figure 12 wildtype C57 BL / 6 mice and PI3K knockout mice infected with TCID50 of influenza virus type A H1N1 Yue pathological examination of lung tissue of mice results strain BJ501 105 ⁇ 5.
  • Figure 13 wildtype C57 BL / 6 mice and PI3K knockout mice infected with 5 * 10 5 TCID50 of influenza virus type A H1N1 Yue wet to dry ratio of lung tissue of mice strains BJ501 detection result.
  • Figure 14 Mortality curves of mice infected with wild type C57 BL/6 mice and PI3K knockout mice after infection with the sputum H1N1 influenza virus PR8 strain with a TCID50 of 1.33 ⁇ 10 4 .
  • Figure 15 Body weight change curves of wild type C57 BL/6 mice and PI3K knockout mice after infection with a sputum H1N1 influenza virus PR8 strain with a TCID50 of 1.33 ⁇ 10 4 .
  • Figure 16 Results of histopathological examination of mouse lung tissue after infection of wild type C57 BL/6 mice and PI3K knockout mice with sputum H1N1 influenza virus PR8 strain with TCID50 of 1.33 ⁇ 10 4 .
  • Fig. 17 shows the results of wet-to-dry ratio measurement of mouse lung tissues after infection of wild type C57 BL/6 mice and PI3K knockout mice with sputum H1N1 influenza virus PR8 strain with TCID50 of 1.33 ⁇ 10 4 .
  • Figure 18 Mortality curve of wild-type C57 BL/6 mice after intravenous injection of PBS, antibody control or anti-CXCL-10 monoclonal antibody with a virus titer of l ( 5 TCID50 of H1N1 influenza BJ501 strain) .
  • Figure 19 Mouse lungs in wild-type C57 BL/6 mice after intravenous injection of PBS, antibody control or anti-CXCL-10 monoclonal antibody with a virus titer of 10 5 ⁇ 5 TCID50 of H1N1 influenza BJ501 strain The wet-to-dry ratio of the tissue was measured.
  • Figure 20A-C Mice of mice after intravenous injection of PBS, antibody control and anti-CXCL-10 monoclonal antibody in wild type C57 BL/6 mice infected with a sputum H1N1 influenza virus PR8 strain with a titer of 10 5 5 TCID50 Histopathological findings.
  • Figure: 21 Wild type C57 BL/6 mice were injected intravenously with PBS, antibody control or anti-antibody Mortality curve after infection with the CXCL-10 monoclonal antibody against the sputum H1N1 influenza virus PR8 strain with a virus titer of 1.33xl0 4 TCID50.
  • Figure 22 Results of wet-to-dry ratio measurement of mouse lung tissue after infection with sputum H1N1 influenza virus PR8 strain in wild-type C57 BL/6 mice after intravenous injection of PBS, antibody control, and anti-CXCL-10 monoclonal antibody.
  • Figure 23A-C Mice of mice after intravenous injection of PBS, antibody control and anti-CXCL-10 monoclonal antibody in wild-type C57 BL/6 mice infected with a titer of H3N1 influenza virus PR8 with a titer of 1.33 ⁇ 10 4 TCID50 Histopathological findings.
  • Figure 24A-E Wild-type C57 BL/6 mice were infected with lipopolysaccharide from E. coli 0111:B4 and re-infected with Saccharomyces cerevisiae A from Saccharomyces cerevisiae 1 hour later or at the same time point after solvent control, respectively before infection 12 hours, 1 hour before infection, anti-CXCL-10 antibody or control antibody was administered intravenously 8 hours after infection. After the 24th hour of infection, the lung tissue of the mice was taken for pathological examination of lung tissue. 4 mice per group. detailed description
  • CXCL-10 denotes CXC chemokine 10, also known as interferon gamma-induced protein lOkDa (interferon ⁇ -induced protein lOkDa, abbreviated as IP10).
  • the CXCL-10 represents CXCL-10 derived from a mammal (e.g., a human). More preferably, the CXCL-10 has a GeneBank number of Gene1D: 3627, a nucleotide coding sequence such as NM-001565.2, and a protein coding sequence as shown in NP-001556.2.
  • lung injury refers to damage to alveolar epithelial cells and/or capillary endothelial cells caused by a variety of factors, including acute lung injury and chronic lung injury. In certain embodiments, the "lung injury” does not include lung damage caused by trauma.
  • acute lung injury refers to alveolar epithelial cells and capillary endothelial cell damage caused by various direct and indirect injury factors. In particular, it causes diffuse pulmonary interstitial and alveolar edema, resulting in acute hypoxic respiratory insufficiency.
  • Acute lung injury with pulmonary volume reduction, decreased lung compliance, ventilatory/blood flow imbalance is a pathophysiological feature, clinical manifestations of progressive hypoxemia and respiratory distress, pulmonary imaging showed heterogeneous infiltration Outbreaks, which progress to a severe stage (oxygenation index ⁇ 200), are called acute respiratory distress syndrome.
  • influenza refers to influenza, an acute respiratory infection caused by an RNA virus of the mucinous family. Common symptoms are tremors, fever, sore throat, muscle pain, headache, cough, weakness, and so on.
  • influenza includes influenza flu, Influenza B and C.
  • the influenza comprises H1N1, H1N2, H2N2, H2N3, H3N1, H3N2, H3N8, H5N1, H5N2, H5N3, H5N8, H5N9, H7N1, H7N2, H7N3, H7N4, H7N7, H7N9, H9N2, H10N7 and the like.
  • subject refers to a mammal, such as a human, but may also be other animals, such as wild animals (such as herons, donkeys, cranes, etc.), livestock (such as ducks, geese, etc.) or experimental animals (such as Orangutans, monkeys, rats, mice, rabbits, guinea pigs, groundhogs, ground squirrels, etc.).
  • wild animals such as herons, donkeys, cranes, etc.
  • livestock such as ducks, geese, etc.
  • experimental animals such as Orangutans, monkeys, rats, mice, rabbits, guinea pigs, groundhogs, ground squirrels, etc.
  • the term "functional fragment” as used herein especially refers to antibody fragments such as Fv, scFv (sc refers to single strand), Fab, F(ab, ) 2, Fab', scFv-Fc fragment or diabo (diabody), or Any fragment of half-life should be able to be increased by chemical modification or by incorporation into liposomes, for example by the addition of poly(alkylene) glycols such as polyethylene glycol (“PEGylated, PEGylated”) (called a PEGylated fragment of Fv-PEG, scFv-PEG, Fab-PEG, F(ab')2-PEG or Fab'-PEG) (“PEG” is polyethylene glycol), Fragments have the activity according to the invention.
  • PEGylated, PEGylated polyethylene glycol
  • Fragments have the activity according to the invention.
  • the functional fragment consists of or comprises a partial sequence of a heavy chain variable region or a light chain variable region from which the antibody is derived, the partial sequence being sufficient to retain the same binding specificity and sufficient affinity as the antibody from which it is derived, It is preferably at least equal to 1/100 of the affinity of the antibody from which it is derived, and in a more preferred manner at least equal to 1/10.
  • This functional fragment contains a minimum of 5 amino acids, preferably 10, 15, 25, 50 and 100 contiguous amino acids of the antibody sequence from which it is derived.
  • pharmaceutically acceptable carrier may be water, aqueous buffer solution, isotonic saline solution such as PBS (phosphate buffer), dextrose, mannitol, dextrose, lactose, starch, magnesium stearate, Cellulose, magnesium carbonate, 0.3% glycerol, hyaluronic acid, ethanol or polyalkylene glycol such as polypropylene glycol, triglyceride and the like.
  • the type of pharmaceutically acceptable carrier employed depends inter alia on whether the composition according to the invention is formulated for oral, nasal, intradermal, subcutaneous, intramuscular or intravenous administration.
  • the composition according to the invention may comprise a wetting agent, an emulsifier or a buffer substance as an additive.
  • composition or pharmaceutical preparation according to the present invention can be administered by any suitable route, for example, orally, nasally, intradermally, subcutaneously, intramuscularly or intravenously.
  • terapéuticaally effective amount refers to a dose sufficient to demonstrate its benefit to the subject to which it is administered.
  • the actual amount administered, as well as the rate and time course of administration, will depend on the condition and severity of the subject being treated.
  • the prescription for treatment eg, the determination of the dose, etc.
  • the prescription for treatment is ultimately the responsibility of the GP and other physicians and relies on them to make decisions, usually considering the disease being treated, the condition of the individual patient, the site of delivery, the method of administration, and the Other factors of knowledge.
  • all technical and scientific terms used herein have the same meaning as understood by one of ordinary skill in the art.
  • Example 1 Indica type H1N1 influenza virus BJ501 strain infection caused mouse lung tissue
  • Main experimental instruments Level 3 biosafety laboratory, tertiary biosafety rejection, animal feeding rejection, mouse breeding cage, small animal surgical instruments, sterile syringe, pipette, pipette, Bio-Plex Mouse Cytokine 23-Plex Array kit, etc.
  • Grouping chicken embryo urinary sputum control group, BJ501 virus experimental group;
  • mice were safely fixed, and anesthetized with a 1 mL (w/v) sodium pentobarbital solution by intraperitoneal injection with a lmL sterile syringe;
  • mice Keep the mouse in this position for 15 seconds to allow the virus to enter the respiratory tract.
  • the mice are placed in a squirrel cage, and after they are awake, water and food are given;
  • CXCL-10 plays an important role in the death of mice caused by infection with the B1501 strain of H1N1 influenza virus.
  • the intervention of CXCL-10 molecule is used to treat the damage caused by the infection of the B1501 strain of H1N1 influenza virus. It is possible to play an important role.
  • Example 2 In the CXCL-10-deficient mice, the acute lung injury caused by the infection of the H1N1 influenza virus BJ501 strain was alleviated.
  • mice were safely fixed, and anesthetized with a 1 mL (w/v) sodium pentobarbital solution by intraperitoneal injection with a lmL sterile syringe;
  • mice Keep the mouse in this position for 15 seconds to allow the virus to enter the respiratory tract.
  • the mice were placed in a squirrel cage, and after they were awake, water and food were given.
  • the number of death/survival and weight changes of each group were recorded before and after infection, and observed continuously for 10 days, within 24 hours.
  • the mice that died were non-specific deaths, and were not counted in the mortality statistics.
  • the mortality and weight changes of the mice were counted using GraphPad Prism 5 software.
  • the fixed sample is embedded, sliced, HE stained, etc. by the pathology laboratory; 8) The pathological section is observed under a microscope and recorded;
  • the H1N1 influenza virus BJ501 strain severe pathological damage occurred in the lung tissue of wild-type C57 BL/6 mice (Fig. 4, panel A).
  • the normal structure of the lung tissue is destroyed, the texture of the lung tissue is disordered, accompanied by hemorrhage, inflammatory exudation and pathological damage such as infiltration of red blood cells and inflammatory cells.
  • CXCL-10 plays an important role in acute lung histopathological damage caused by infection with the H1N1 influenza virus BJ501 strain in mice.
  • the experimental materials and experimental methods in this example are basically the same as in the second embodiment.
  • the experimental materials are different in that they contain the sputum-type H1N1 influenza virus PR8 strain and do not contain the sputum-type H1N1 influenza virus BJ501 strain.
  • the experimental method differs in that the sputum-type H1N1 influenza virus PR8 strain is used. The infection was carried out in place of the sputum-type H1N1 influenza virus BJ501 strain.
  • CXCL-10 plays an important role in the death of mice caused by infection with the serotype H1N1 influenza virus PR8 strain, and the intervention of CXCL-10 molecule in the treatment of infection caused by infection with the serotype H1N1 influenza virus PR8 strain, It is possible to play an important role.
  • the H1N1 influenza virus PR8 strain severe pathological damage occurred in the lung tissue of wild-type C57 BL/6 mice (Fig. 8 A).
  • the normal structure of the lung tissue is destroyed, the texture of the lung tissue is disordered, accompanied by hemorrhage, inflammatory exudation and pathological damage such as infiltration of red blood cells and inflammatory cells.
  • Example 4 In acute PI1K-deficient mice, the acute lung injury caused by infection with the H1N1 influenza virus BJ501 strain was alleviated.
  • the experimental materials and experimental methods in this example are basically the same as in the second embodiment.
  • the experimental materials are different in that they contain PI3K-deficient mice (obtained from the Institute of Molecular Biotechnology of the Austrian Academy of Sciences), In the case of CXCL-10-deficient mice, the experimental method differed in that PI3K-deficient mice were infected with the sputum H1N1 influenza virus BJ501 strain.
  • Wild-type C57BL/6 mice and PI3K knockout mice have a virus titer of 10 5 ⁇ 5
  • the mortality results and body weight change results of the TCID50 sputum H1N1 influenza virus BJ501 strain are shown in Fig. 10 and Fig. 11 .
  • Figure 12 (x200x, HE staining) Pathological photographs showed severe pathological damage in the lung tissue of wild-type C57 BL/6 mice after infection with the B1501 strain of the H1N1 influenza virus with a titer of 10 5 ⁇ 5 TCID50 ( Figure A of Figure 12).
  • the normal structure of the lung tissue is destroyed, the texture of the lung tissue is disordered, accompanied by hemorrhage, inflammatory exudation and pathological damage such as a large number of red blood cells and inflammatory cell infiltration.
  • the lung tissue of PI3K knockout mice infected with the same titer virus showed no significant pathological damage, no significant pathological changes such as hemorrhage, exudation or inflammatory cell infiltration, and the lung tissue was clear and structurally intact (Fig. 12, panel B). ).
  • Detection of lung wet-to-dry ratio in mice can reflect the extent of acute pulmonary edema in mice. It can also be seen from Fig. 13 that the 4-week-old wild-type mice showed a significant decrease in lung wet-dry ratio compared with PI3K knockout mice after infection with the B1501 strain of H1N1 influenza virus, indicating that knockdown of PI3K can significantly alleviate the sputum type. Lung edema in mice infected with H1N1 influenza virus BJ501 strain. * ⁇ 0.05.
  • the PI3K-Akt-p38 pathway has been shown to be located downstream of CXCL-10 and plays an important role in CXCL-10-induced chemotaxis. This result further demonstrates that CXCL-10 molecules are induced in mice infected with the sputum H1N1 influenza virus BJ501 strain. It plays an important role in the pathological process of acute lung injury.
  • Example 5 Inflammatory acute lung injury caused by infection of the H1N1 influenza virus PR8 strain in PI3K-deficient mice
  • the experimental materials and experimental methods in this example are basically the same as in the fourth embodiment.
  • the experimental materials are different in that they contain the sputum-type H1N1 influenza virus PR8 strain and do not contain the sputum-type H1N1 influenza virus BJ501 strain.
  • the experimental method differs in that the sputum-type H1N1 influenza virus PR8 strain is used. The infection was carried out in place of the sputum-type H1N1 influenza virus BJ501 strain.
  • Fig. 14 and Fig. 15 The mortality results and the results of changes in body weight of wild type C57BL/6 mice and PI3K knockout mice infected with the sputum H1N1 influenza virus PR8 strain having a virus titer of 1.33 ⁇ 10 4 are shown in Fig. 14 and Fig. 15 .
  • the mortality of wild-type C57BL/6 mice was significantly higher than that of PI3K knockout mice after infection with the same titer of the PR8 strain of the H1N1 influenza virus (Fig. 14). ** P ⁇ 0.01.
  • the change in body weight (decrease) was consistent with the mortality outcome (Figure 15). **P ⁇ 0.01.
  • FIG. 16 ( ⁇ 200-fold, sputum staining) pathological photograph showed that severe pathological damage occurred in the lung tissue of wild-type C57 BL/6 mice after infection with a titer of 1.33 ⁇ 10 4 TCID50 of the sputum H1N1 influenza virus PR8 strain ( Figure 16 is a diagram).
  • the normal structure of the lung tissue is destroyed, the texture of the lung tissue is disordered, accompanied by hemorrhage, inflammatory exudation and pathological damage such as a large number of red blood cells and inflammatory cell infiltration.
  • Detection of lung wet-to-dry ratio in mice can reflect the extent of acute pulmonary edema in mice. It can also be seen from Fig. 17 that the 4-week-old wild-type mice showed a significant decrease in lung wet-dry ratio compared with PI3K knockout mice after infection with the sputum-type H1N1 influenza virus PR8, indicating that knockdown of PI3K can significantly alleviate sputum type. Lung edema in mice infected with H1N1 influenza virus PR8 strain. * ⁇ 0.05.
  • the PI3K-Akt-p38 pathway has been shown to be located downstream of CXCL-10 and plays an important role in CXCL-10-induced chemotaxis. This result further demonstrates that CXCL-10 molecules are produced in mice infected with the sputum H1N1 influenza virus PR8 strain. It plays an important role in the pathological process of acute lung injury.
  • Anti-CXCL-10 monoclonal antibody can alleviate acute lung injury caused by infection with sputum H1N1 influenza virus BJ501 strain
  • mice in the anti-CXCL-10 monoclonal antibody treatment group were intravenously injected with 0.5 mg/ml anti-CXCL-10 monoclonal antibody lOOul, and the same dose was administered to the same antibody control group and the antibody solvent control group. Isotype control antibody and PBS.
  • mice were safely fixed and anesthetized with a 1 mL (w/v) sodium pentobarbital solution by intraperitoneal injection with a lmL sterile syringe;
  • the infection virus titer is 10 5 ⁇ 5
  • mice Keep the mouse in this position for 15 seconds to allow the virus to enter the respiratory tract.
  • the mice are placed in a squirrel cage, and after they are awake, water and food are given;
  • mice that died within 24 h were non-specific deaths and were not counted in the mortality statistics;
  • the fixed sample is treated by pathology laboratory for embedding, sectioning, HE staining, etc.;
  • the lungs are placed in a 55 ° C high temperature tissue dryer for dry roasting, taken out after 24 h, until the temperature Weighed and recorded the dry weight of the lungs at room temperature;
  • CXCL-10 plays an important role in the death of mice caused by infection with the serotype H1N1 influenza virus PR8 strain.
  • the intervention of CXCL-10 molecule is used to treat the damage caused by the infection of the sputum H1N1 influenza virus BJ501 strain. It is possible to play an important role.
  • Measuring the lung wet-to-dry ratio of mice can reflect the extent of acute pulmonary edema in mice.
  • Figure 19 4 weeks old wild-type C57 BL/6 mice were infected with the anti-CXCL-10 monoclonal antibody and infected with the H1N1 influenza virus BJ501 strain, and the lung wet-dry ratio was compared with the antibody control group. The mice were significantly reduced, indicating that anti-CXCL-10 antibody can significantly alleviate lung edema in mice infected with the H1N1 influenza virus BJ501 strain. * Corpse ⁇ 0.05.
  • Figure 20A-C (x200x, HE staining) Pathological photograph showing: Infected antibody (PBS) and 4 weeks old wild-type control antibody after infection with a titer of H5N1 influenza BJ501 strain with a titer of 10 5 5 TCID50 Severe pathological damage occurred in lung tissue of type C57 BL/6 mice (as shown in Figures 20A and 20B, respectively).
  • the normal structure of the lung tissue is destroyed, the texture of the lung tissue is disordered, accompanied by hemorrhage, inflammatory exudation and pathological damage such as a large number of red blood cells and inflammatory cell infiltration.
  • BJ501 strain plays an important protective role in acute lung tissue pathological damage.
  • Example 7 Anti-CXCL-10 monoclonal antibody can alleviate acute lung injury caused by infection with the H1N1 influenza virus PR8 strain
  • the experimental materials and experimental methods in this embodiment are basically the same as in the second embodiment, and the experimental materials are The difference is that it contains the sputum-type H1N1 influenza virus PR8 strain and does not contain the sputum-type H1N1 influenza virus BJ501 strain.
  • the experimental method differs in that the sputum-type H1N1 influenza virus PR8 strain is used instead of the sputum-type H1N1 influenza virus BJ501 strain for infection.
  • Wild type C57BL/6 mice were injected intravenously with PBS, antibody control (anti-Hly antibody, purchased from Beijing Huada Protein Research and Development Center Co., Ltd., article number: AbM59538-10-PU) or anti-CXCL-10 monoclonal antibody (AbM50009-l) -PU, purchased from Beijing Huada Protein Research and Development Center Co., Ltd.), the mortality rate after infection with the virus titer of 1.33xl0 4 TCID50 of the sputum H1N1 influenza virus PR8 strain, as shown in Figure 21.
  • CXCL-10 plays an important role in the death of mice caused by infection with the serotype H1N1 influenza virus PR8 strain, and the intervention of CXCL-10 molecule in the treatment of infection caused by infection with the serotype H1N1 influenza virus PR8 strain, It is possible to play an important role.
  • mice Measuring the lung wet-to-dry ratio of mice can reflect the extent of acute pulmonary edema in mice.
  • Fig. 22 4 weeks old wild-type C57 BL/6 mice were infected with the anti-CXCL-10 monoclonal antibody and infected with the sputum H1N1 influenza virus PR8 strain, and the lung wet-dry ratio was compared with the antibody control treatment group. The mice were significantly reduced, indicating that anti-CXCL-10 antibody can significantly alleviate lung edema in mice infected with the H1N1 influenza virus PR8 strain. * Corpse ⁇ 0.05.
  • FIG 23A-C (x200x, HE staining) Pathological photographs showing: Infected with a titer of 1.33 lO 4 TCID50 of the sputum H1N1 influenza virus PR8 strain, intravenously injected with antibody solvent (PBS) and control antibody at 4 weeks old in the wild Severe pathological damage occurred in the lung tissue of type C57 BL/6 mice (as shown in Figures 23A and 23B, respectively).
  • the normal structure of the lung tissue is destroyed, the texture of the lung tissue is disordered, accompanied by hemorrhage, inflammatory exudation and pathological damage such as a large number of red blood cells and inflammatory cell infiltration.
  • Anti-CXCL-10 monoclonal antibody can alleviate lung tissue pathological damage in mice infected by lipopolysaccharide from E. coli Oll: B4 and zymosan A from Saccharomyces cerevisiae
  • LPS Lipopolysaccharide
  • lipopolysaccharide and zymosan solvent blank control group lipopolysaccharide and zymosan solvent + isotype antibody control group, lipopolysaccharide and zymosan solvent + anti-CXCL-10 monoclonal antibody group, lipopolysaccharide and zymosan group + isotype Antibody control group, lipopolysaccharide and zymosan + anti-CXCL-10 monoclonal antibody group;
  • mice were safely fixed and anesthetized with a 1 mL (w/v) sodium pentobarbital solution by intraperitoneal injection with a lmL sterile syringe;
  • mice Keep the mouse in this position for 5 minutes to allow lipopolysaccharide to enter the respiratory tract.
  • the mice were placed in a rat cage and given water and food after they were awake;
  • mice After administration of lipopolysaccharide for 1 hour, the mice were anesthetized according to the method of Operation 3, and the head of the anesthetized mouse was kept tilted upward and backward to make the nasal cavity upward. The neck was sterilized with alcohol, the trachea was separated, and 50 ⁇ l of PBS buffer containing 60 ⁇ g of zymosan was injected with a syringe, and each group was infected with 4 mice; 7) Keep the mouse in this position for 5 minutes to allow lipopolysaccharide to enter the respiratory tract. The mice are placed in a squirrel cage, and after they are awake, water and food are given;
  • mice 24 hours after infection, the mice were killed by intraperitoneal injection of excess anesthetic;
  • the fixed sample is treated by pathology laboratory for embedding, sectioning, HE staining, etc.;
  • FIG 14A-E (x200 times, HE staining) pathological photographs showing: lipopolysaccharide and zymosan solvent blank control group, lipopolysaccharide and zymosan solvent + isotype antibody control group, lipopolysaccharide and zymosan solvent + anti-CXCL-10 single
  • the lung tissue of the cloned antibody group showed no significant pathological damage, no significant pathological changes such as hemorrhage, exudation or inflammatory cell infiltration, and the lung tissue was clear and structurally intact (as shown in Figures 14A, 14B and 14C, respectively). After infection with lipopolysaccharide from E.
  • coli 0111:B4 and zymosan A from Saccharomyces cerevisiae severe pathological damage occurred in the lung tissue of 4 weeks old wild-type C57 BL/6 mice injected with antibody control (Fig. 14D).
  • the normal structure of the lung tissue is destroyed, the texture of the lung tissue is disordered, accompanied by hemorrhage, inflammatory exudation and pathological damage such as a large number of red blood cells and inflammatory cell infiltration.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Biotechnology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Zoology (AREA)
  • Virology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • Oncology (AREA)
  • Biochemistry (AREA)
  • Communicable Diseases (AREA)
  • Biophysics (AREA)
  • Pulmonology (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Endocrinology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

本发明提供了CXCL-10抑制剂在制备治疗和/或预防肺损伤的药物中的用途。具体地,本发明提供了CXCL-10抑制剂在制备治疗和/或预防哺乳动物包括人肺损伤的药物中的用途,所述肺损伤由流感病毒感染、细菌感染、真菌感染、和/或败血症导致。所述CXCL-10抑制剂可以降低或敲除CXCL-10在哺乳动物中的表达。所述CXCL-10抑制剂选自特异性抗CXCL-10的抗体、siRNA或其他任何可以降低和/或敲除CXCL-10表达的化学生物物质。

Description

治疗和 /或预防肺损伤的方法 技术领域
本发明涉及治疗和 /或预防肺损伤特别是急性肺损伤的方法。 另 夕卜, 本发明还涉及治疗和 /或预防流感的方法。 背景技术
CXCL- 10( C-X-C motif chemokine 10 , CXC趋化因子 10 , GenelD: 3627; Nucleotide: NM— 001565.2; Protein: NP_001556.2 )是一种重要的 细胞趋化因子, 又名干扰素 γ诱导的蛋白 10kDa ( Interferon γ-induced protein lOkDa, 缩写为 IP10 ) (术语 CXCL-10和 IP10在本发明中无 差别的使用),微生物 (如 SARS冠状病毒、流感病毒等)均可诱导肺泡 巨噬细胞、 中性粒细胞和支气管上皮细胞等表达 CXCL-10。 微生物 同时还可以诱导 NK细胞、中性粒细胞和单核巨噬细胞表面的 CXCR3 的表达量上调, 而 CXCL-10与其受体 CXCR3的结合会产生强烈的 趋化性, 将这些细胞招募到肺部感染部位, 杀伤被感染的细胞, 防止 病毒扩散, 同时合成和译放 IFN-γ TNF-0U GM-CSF等, 活化和募 集更多的炎症细胞, 产生更多的促炎因子和炎性介质, 介导肺部的炎 症反应。 所以, 微生物诱导的 CXCL-10的长期表达是感染诱导病理 免疫的重要介质。 Fabio Marra等人证明 PI3K-Akt-p38 信号通路在 CXCL-10诱导的星形细胞的趋化作用中发挥重要作用。
SARS冠状病毒感染患者的血浆 CXCL-10浓度在病人开始出现 发热症状后的一个星期内会明显升高, 而 CXCL-10浓度的升高也与 病人不良的预后密切相关; 在哮喘的小鼠模型中, 在其肺部过表达 CXCL-10会导致呼吸道中嗜酸性粒细胞数目的增加, IL-4 的含量升 高, CD8+T细胞的招募增多, 炎症加重; CXCR3在哮喘病人呼吸道 平滑肌当中的肺肥大细胞表面是表达最丰富的趋化因子受体,而这些 病人的支气管平滑肌细胞中 CXCL-10的表达量也明显上调, 从而招 募肥大细胞到达肺部。
急性肺损伤(acute lung injury, ALI)是各种直接和间接致伤因素导 致的肺泡上皮细胞及毛细血管内皮细胞损伤,造成弥漫性肺间质及肺 泡水肿, 导致急性低氧性呼吸功能不全。 急性肺损伤以肺容积减少、 肺顺应性降低、 通气 /血流比例失调为病理生理特征, 临床上表现为 进行性低氧血症和呼吸窘迫,肺部影像学上表现为非均一性的渗出性 病变, 其发展至严重阶段 (氧合指数<200 )被称为急性呼吸窘迫综合 征。
常见的导致急性肺损伤的因素分直接和间接肺损伤因素,直接肺 损伤因素包括例如病毒、 细菌和真菌导致的严重的肺部感染、 胃内容 物误吸、肺挫伤、氧中毒等; 间接肺损伤因素包括例如脓毒症、休克、 大量输血、 体外循环及弥漫性血管内凝血等。
肺损伤在临床上的表现为: (1 )急性起病, 在直接或间接肺损伤 后 12---48小时内发病; (2 ) 常规吸氧后低氧血症难以纠正; (3 )肺 部体征无特异性, 急性期双肺可闻及湿罗音或呼吸音减低; (4 )早期 病变以间质性为主, X线胸片常无明显改变, 病情进展后可出肺内实 变, 表现为双肺野普遍密度增高, 透亮度减低, 肺纹理增多 +增粗, 可见散在斑片状密度增高阴影; (5 )弥漫性肺浸润影, 无心功能不全 证据。
肺损伤的临床诊断标准为: ( 1 )急性起病; (2 )氧合指数(Pa02 I Fi02 ) <200 mm Hg ( ( 1 mm Hg=0.133kPa, 不管呼气末正压( PEEP ) 水平); (3 )正位 X线胸片显示双肺均有斑片状阴影; (4 )肺动脉嵌 顿压≤18 mm Hg , 或无左心房压力增高的临床证据, 如 ( Pa02 I FiO2<300 mm Hg且满足上述其他标准, 可诊断急性肺损伤。
流感是一种影响人群极其广泛的常见病、 多发病, 目前流感病毒 跨物种感染形势严峻, 曱型 H1N1流感病毒感染所导致的临床症状, 多数患者较轻, 表现为典型的流感样症状, 可自然恢复。 最常见症状 包括咳嗽、 发热、 咽喉痛、 头痛及其他不适感。 严重肺炎患者 X线胸 片可见多发性病灶浸润,可快速进展为 ARDS、肾或多器官功能衰竭。 曱型流感合并 ARDS的发生率是普通流感的 100倍,肺部损坏主要来 源于失控的全身免疫反应。与继发于病毒性肺炎的 ARDS—致, 包括 弥漫性肺泡损伤、 细支气管和血管周围淋巴细胞浸润、增生的气道改 变和梗阻性细支气管炎。
临床和病理学检查均提示重症患者病变主要在呼吸系统。病理学 检查可见重症患者的肺部出现实变, 常伴有出血、 渗出、 脓肿等病理 改变。肺泡腔内可见浆液性或纤维素性渗出, 伴有不同程度的透明膜 形成, 提示有弥漫性的肺组织损伤。 目前认为, 曱型 H1N1流感病毒 所致肺组织损伤基本病变和其他类型的流感、 SARS和人禽流感重症 病例的肺基本病变相似, 均为轻重不等的弥漫性肺组织损伤。
月旨多糖( lipopolysaccharide , LPS )是一种水溶性的糖基化的脂 质复合物, 是革兰氏阴性菌外膜中的重要成分, 由脂质 A、 核心多糖 和 o抗原三部分组成。 其中, 革兰氏阴性菌包括但不限于螺菌属、 弯菌属、 螺杆菌属, 假单胞菌属、 军团菌属、 奈瑟菌属、 莫拉菌属产 碱杆菌属、 布鲁斯菌属、 罗卡利马体属、 鲍特菌属、 弗郎西斯菌属, 埃希菌属、 志贺菌属、 沙门菌属、 克雷伯菌属变形杆菌属、 普罗威登 斯菌属、 耶尔森菌属、 弧菌属、 巴氏杆菌属、 嗜血杆菌属, 类杆菌属、 梭杆菌属, 韦荣球菌属, 立克次体属、 考克斯体属、 衣原体属, 密螺 旋体属、 疏螺旋体属、 钩端螺旋体属等革兰氏阴性细菌。 脂多糖分子 量大于 10000道尔顿, 结构复杂, 脂质 A ( Lipid A )为构成内毒素活 性的糖脂, 以共价键连接到杂多糖链。 人体对细菌内毒素极为敏感, 极微量 ( 1-5纳克 /公斤体重 ) 内毒素就能引起体温上升, 发热反应持 续约 4小时后逐渐消退。自然感染时,因革兰氏阴性菌不断生长繁殖, 同时伴有陆续死亡、释出内毒素, 故发热反应将持续至体内病原菌完 全消灭为止。内毒素引起发热反应的原因是内毒素作用于体内的巨噬 细胞等, 使之产生白细胞介素 1、 白细胞介素 6和肿瘤坏死因子 α等 细胞因子, 这些细胞因子作用于宿主下丘脑的体温调节中枢, 促使体 温升高发热。 内毒素血症临床症状主要取决于宿主对内毒素的 4氏抗 力, 症状和体征有: 发热、 白细胞数变化、 出血倾向、 心力衰竭、 肾 功能减退、肝脏损伤、神经系统症状以及休克等。 内毒素可引起组胺、 5-羟色胺、 前列腺素、 激肽等的译放, 导致微循环扩张, 静脉回流血 量减少, 血压下降, 组织灌流不足, 缺氧及酸中毒等。
真菌也同样可以感染肺组织并导致肺损伤,其主要表现为肺和支 气管的真菌性炎症或相关病变, 也可包括胸膜甚至纵膈。 致病性真菌 属原发性病原菌, 常导致免疫功能正常者的原发性外源性感染, 主要 有组织胞浆菌、 球孢子菌、 副球孢子菌、 孢子丝菌等。 条件致病性真 菌或称机会性真菌, 其病原性弱, 多在易感宿主引起深部真菌感染, 如念珠菌属、 曲霉属、 隐球菌属、 毛霉和青霉属、 根霉属、 镰刀霉属 及肺孢子菌等。
酵母多糖( zymosan )是从酵母细胞壁提取的大分子多糖复合物, 由蛋白质和碳水化合物组成。 酵母属于真菌, 本发明中所述真菌包括 但不限于子嚢菌、 担子菌、 壶菌、 球嚢菌、 结核菌等。 酵母多糖在实 验中可用来诱导炎症发生,其诱导的反应主要包括炎症细胞因子的表 达,花生四烯酸的上调,部分蛋白的磷酸化和肌醇磷脂的形成。 同时, 酵母多糖还可以上调细胞周期蛋白 D2的表达量, 表明其在巨噬细胞 活化和增殖的过程中也起到了作用。
脂多糖和酵母多糖联合感染可以模拟体内由于败血症引起的急 性肺损伤。 败血症(septicemia ) 系指致病菌或条件致病菌侵入血循 环, 并在血中生长繁殖, 产生毒素而发生的急性全身性感染。 败血症 为急性肺损伤的易发因素之一,败血症性肺损伤的一个特征就是多形 核中性粒细胞 (PMN)在肺微血管内的聚集和激活, 1起一系列炎症反 应过程和血管损伤。 在这一过程中细菌感染, 尤其是革兰氏阴性菌感 染可能是最初炎症反应的关键因素。 革兰氏阴性菌和脂多糖 (LPS)进 入循环后产生脂多糖结合蛋白 (LBP), LBP与 LPS的磷脂 -A—部分结 合, 血浆中 LPS-LBP复合物与单核细胞、 巨噬细胞和主要的中性粒 细胞上的 CD14受体结合,促使特定的炎性因子 (;如 TNF-a、IL-l、IL-6 ) 的编码基因翻译。细胞因子分泌到循环中是导致败血症和肺损伤的一 系列炎症反应过程中重要的生化特征, 如 IL-1、 IL-6、 IL-8、 IL-10、 IL-12等, 这些细胞因子引起一系列的级联反应, 参与肺损伤的过程。 因此, 使用脂多糖和酵母多糖联合感染可以模拟败血症性肺损伤。
1975年 Kohler和 Milstein首先报道, 用细胞杂交技术, 使经绵 羊红细胞 (SRBC)免疫的小鼠的脾细胞与小鼠的骨髓瘤细胞融合, 并 由此创建了第一个 B细胞杂交瘤细胞株, 获得了抗 SRBC的单克隆 抗体。
单克隆抗体的特点在于理化性状高度均一、 生物活性单一、 与抗 原结合的特异性强、 便于人为处理和质量控制, 并且来源容易。 这些 优点使它一问世就受到高度重视,并广泛应用于生物学和医学研究领 域。 可将药物等与单克隆抗体直接交联, 利用其导向作用, 使药物等 定位于特异治疗靶位, 这不仅提高了疗效, 还可降低对正常细胞的毒 性反应。
RNAi (RNA interference) 即 RNA干涉, 是近年来发现的在生物 体内普遍存在的一种古老的生物学现象, 是由双链 RNA ( dsRNA ) 介导的、 由特定酶参与的特异性基因沉默现象, 它在转录水平、 转录 后水平和翻译水平上阻断基因的表达。
Small interfering RNA (siRNA, 小干扰 RNA)是一种小 RNA分子 ( -21-25核苷酸), 由 Dicer ( RNAase III家族中对双链 RNA具有特 异性的酶)加工而成。 siRNA是 siRISC的主要成员, 激发与之互补 的目标 mRNA的沉默。 RNA干涉 ( RNAi )在实验室中是一种强大的 实验工具, 利用具有同源性的双链 RNA ( dsRNA )诱导序列特异的 目标基因的沉寂, 迅速阻断基因活性。 siRNA在 RNA沉寂通道中起 中心作用,是对特定信使 RNA( mRNA )进行降解的指导要素。 siRNA 是 RNAi途径中的中间产物, 是 RNAi发挥效应所必需的因子。 RNAi最大以及最终的效果是细胞的代谢过程、 生理生化系数等 表型参数发生明显的变化。近来 RNAi成功用于构建转基因动物模型 的报道也日益增多, 标志着 RNAi将成为研究基因功能不可或缺的工 具。 不仅如此, RNAi技术还将可能成为研究细胞信号传导通路与基 因治疗的新途径。
虽然截至目前已经具有肺损伤特别是流感导致的肺损伤的治疗 药物,但仍然存在对新类型的肺损伤特别是流感导致的肺损伤的治疗 药物的需求。 发明内容
在一个方面, 本发明涉及通过在对象中抑制 CXCL-10活性、 降 低 CXCL-10表达和 /或降低 CXCL-10水平来治疗和 /或预防所述对象 中肺损伤的方法。 在本发明的一些实施方案中, 本发明的方法包括向 所述对象施用治疗有效量的用于抑制 CXCL-10活性、 降低 CXCL-10 表达和 /或降低 CXCL- 10水平的物质, 例如 CXCL- 10抑制剂。
在本发明的一些实施方案中,所述肺损伤由病毒感染、细菌感染、 真菌感染、 和 /或败血症导致。 优选地, 所述病毒为流感病毒, 所述 细菌为革兰氏阴性菌和 /或所述真菌为酵母菌。 更优选地, 所述流感 病毒为曱型流感病毒(例如选自曱型 Hl、 H3、 H5、 H7和 H9亚型毒 株的曱型流感病毒), 所述细菌为大肠埃希氏菌和 /或所述真菌为酿酒 酵母。 特别地, 所述流感病毒为曱型 H1N1流感病毒 (例如 BJ501株 或 PR8株)和 /或所述细菌为大肠杆菌 0111 : B4。
优选地, 所述细菌选自螺菌属、 弯菌属、螺杆菌属,假单胞菌属、 军团菌属、 奈瑟菌属、 莫拉菌属产碱杆菌属、 布鲁斯菌属、 罗卡利马 体属、 鲍特菌属、 弗郎西斯菌属, 埃希菌属、 志贺菌属、 沙门菌属、 克雷伯菌属变形杆菌属、 普罗威登斯菌属、 耶尔森菌属、 弧菌属、 巴 氏杆菌属、 嗜血杆菌属, 类杆菌属、 梭杆菌属, 韦荣球菌属, 立克次 体属、 考克斯体属、 衣原体属, 密螺旋体属、 疏螺旋体属、 钩端螺旋 体属等革兰氏阴性细菌的一种或多种。 更优选地, 所述细菌选自大肠 埃希氏菌。 最优选地, 所述细菌选自大肠杆菌 0111 : B4。
在本发明的一些实施方案中, 所述肺损伤选自: 肺水肿、 急性肺 损伤和严重呼吸窘迫综合症。
在本发明的一些实施方案中, 所述 CXCL-10 抑制剂选自: 抗 CXCL-10抗体及其功能性片段(优选地, 其选自特异性抗 CXCL-10 的多克隆抗体、 单克隆抗体、 嵌合抗体、 表面重塑抗体、 重构抗体、 全人源抗体及其功能性片段)、 针对 CXCL-10的干扰 RNA (优选地, 其选自短干 4尤 RNA( siRNA 小 RNA( miRNA )、双链 RNA( dsRNA ) 和发夹 RNA ( shRNA ) )或特异性抑制 CXCL-10表达的其他化合物 (例如小分子化合物)。
在本发明的一些实施方案中,所述 siRNA的正义序列如 SEQ. ID.
NO. 1: gauggccuucgauucuggaUU所示, 反义序列如 SEQ. ID. NO. 2: UUguccagaaucgaaggccauc所示。
在本发明的一些实施方案中, 所述 CXCL-10抑制剂以注射剂、 喷雾剂、 滴鼻剂、 吸入剂或口服剂的形式施用。
在另一个方面, 本发明涉及通过在对象中调控 PI3K-Akt-p38通 路来治疗和 /或预防所述对象中肺损伤的方法。 优选地, 调控 PI3K-Akt-p38通路包括下调所述通路的信号转导,例如通过抑制 PI3K 活性、 降低 PI3K水平和 /或降低 PI3K表达。
在本发明的一些实施方案中, 调控 PI3K-Akt-p38通路还包括抑 制 CXCL- 10活性、 降低 CXCL- 10表达和 /或降低 CXCL- 10水平。
在另一个方面, 本发明涉及通过在对象中抑制 CXCL-10活性、 降低 CXCL-10表达和 /或降低 CXCL-10水平来治疗和 /或预防所述对 象中流感(例如曱型流感)的方法。 在一些实施方案中, 本发明的方 法包括向所述对象施用治疗有效量的用于抑制 CXCL-10活性、 降低 CXCL- 10表达和 /或降低 CXCL- 10水平的物质, 例如 CXCL- 10抑制 剂。
在另一个方面, 本发明涉及通过在对象中调控 PI3K-Akt-p38通 路来治疗和 /或预防所述对象中流感 (例如曱型流感) 的方法。 优选 地, 调控 PI3K-Akt-p38通路包括下调所述通路的信号转导, 例如通 过抑制 PI3K活性、 降低 PI3K水平和 /或降低 PI3K表达。
在又一个方面, 本发明涉及在对象中抑制 CXCL-10活性、 降低 CXCL-10表达和 /或降低 CXCL-10水平的物质在制备用于治疗和 /或 预防所述对象中肺损伤的药物中的用途。 在一些实施方案中, 在对象 中抑制 CXCL- 10活性、 降低 CXCL- 10表达和 /或降低 CXCL- 10水平 的物质包括 CXCL- 10抑制剂。
在另一个方面, 本发明涉及在对象中调控 PI3K-Akt-p38通路的 物质在制备用于治疗和 /或预防所述对象中肺损伤的药物中的用途。 优选地, 所述调控 PI3K-Akt-p38通路的物质包括下调所述通路信号 转导的物质,例如抑制 PI3K活性、 降低 PI3K水平和 /或降低 PI3K表 达的物质。 在一些实施方案中, 所述调控 PI3K-Akt-p38通路的物质 与抑制 CXCL- 10活性、 降低 CXCL- 10表达和 /或降低 CXCL- 10水平 的物质联合施用。
在另一个方面, 本发明涉及通过在对象中抑制 CXCL-10活性、 降低 CXCL-10表达和 /或降低 CXCL-10水平的物质 (例如 CXCL-10 抑制剂 )在制备用于治疗和 /或预防所述对象中流感(例如曱型流感) 的药物中的用途。
在另一个方面, 本发明涉及通过在对象中调控 PI3K-Akt-p38通 路的物质在制备用于治疗和 /或预防所述对象中流感 (例如曱型流感 ) 的药物中的用途。 优选地, 调控 PI3K-Akt-p38通路包括下调所述通 路的信号转导, 例如通过抑制 PI3K活性、 降低 PI3K水平和 /或降低 PI3K表达。
在又一个方面, 本发明涉及在对象中抑制 CXCL-10活性、 降低 CXCL-10表达和 /或降低 CXCL-10水平的物质, 其用于治疗和 /或预 防所述对象中的肺损伤。本发明还涉及在对象中抑制 CXCL-10活性、 降低 CXCL- 10表达和 /或降低 CXCL- 10水平的物质, 其用于治疗和 / 或预防所述对象中的流感 (例如曱型流感)。 在本发明的一些实施方 案中, 在对象中抑制 CXCL-10活性、 降低 CXCL- 10表达和 /或降低 CXCL- 10水平的物质包括 CXCL- 10抑制剂。
在另一个方面, 本发明涉及在对象中调控 PI3K-Akt-p38通路的 物质, 其用于治疗和 /或预防所述对象中的肺损伤。 本发明还涉及在 对象中调控 PI3K-Akt-p38通路的物质, 其用于治疗和 /或预防所述对 象中的流感(例如曱型流感)。 优选地, 所述调控 PI3K-Akt-p38通路 的物质包括下调所述通路信号转导的物质, 例如抑制 PI3K活性、 降 低 PI3K水平和 /或降低 PI3K表达的物质。 在本发明的一些实施方案 中, 所述调控 PI3K-Akt-p38通路的物质与抑制 CXCL-10活性、 降低 CXCL- 10表达和 /或降低 CXCL- 10水平的物质联合施用。
在又一个方面, 本发明涉及药物组合物, 其包含: 在对象中抑制 CXCL- 10活性、降低 CXCL- 10表达和 /或降低 CXCL- 10水平的物质, 和 /或在对象中调控 PI3K-Akt-p38通路的物质, 以及可药用载体。 优 选地, 其用于治疗和 /或预防所述对象中肺损伤, 和 /或用于治疗和 / 或预防所述对象中流感 (例如曱型流感)。
在又一个方面, 本发明涉及药盒, 其包含根据本发明的药物组合 物, 以及使用说明, 其用于治疗和 /或预防所述对象中肺损伤, 和 /或 用于治疗和 /或预防所述对象中流感 (例如曱型流感)。
出人意料地, 本发明人利用 CXCL-10基因敲除小鼠和 CXCL-10 下游的 PI3K基因敲除小鼠模型以及利用曱型 H1N1流感病毒感染小 鼠证明 CXCL-10在小鼠急性肺组织病理损伤、 死亡的过程中发挥重 要作用, 以及对 CXCL-10 分子的干预在治疗肺损伤, 特别是曱型 H1N1 流感病毒 BJ501株和 PR8株感染所导致的损伤中发挥重要作 用。 本发明利用特异性抗 CXCL-10的单克隆抗体免疫野生型小鼠后 再用曱型 H1N1流感病毒感染所述小鼠, 结果表明, 抗 CXCL-10抗 体对小鼠在感染曱型 H1N1流感病毒 BJ501株和 PR8株导致的急性 肺组织病理损伤中发挥了重要保护作用。 因此, 本发明出人意料地发 现 CXCL-10 在曱型流感病理过程中发挥重要作用且特异性抑制 CXCL-10 的治疗可以阻止或减緩曱型流感病毒感染所造成的严重后 果。
本发明还利用革兰氏阴性菌的脂多糖和来自酵母菌的酵母多糖 A联合感染小鼠, 发现针对 CXCL-10分子的干预在治疗来自革兰氏 阴性菌的脂多糖和来自酿酒酵母的酵母多糖 A联合感染所导致的损 伤中有可能发挥重要作用。 本发明利用特异性抗 CXCL-10的单克隆 抗体免疫野生型小鼠后再用来自大肠杆菌 0111 : B4的脂多糖和来自 酿酒酵母的酵母多糖 A联合感染所述小鼠, 结果表明, 抗 CXCL-10 抗体对小鼠在感染来自大肠杆菌 0111 : B4的脂多糖和来自酿酒酵母 的酵母多糖 A 的组合物导致的急性肺组织病理损伤中发挥了重要保 护作用。 因此, 本发明第一次证明了特异性抑制 CXCL-10的治疗可 以阻止或减緩由来自大肠杆菌 0111 : B4的脂多糖和来自酿酒酵母的 酵母多糖 A联合感染所造成的严重后果。
同时, 本领域技术人员熟知, 当证实 CXCL-10在流感病毒感染 导致的病理损伤、 死亡等过程中发挥重要的促进作用时, 尤其是在用 特异性抗 CXCL-10的抗体中和掉受试者体内的 CXCL-10能保护受治 者时, 针对 CXCL-10以消除或降低其影响的其他技术手段也能起到 相同或类似的作用。 本领域技术人员熟知, 这样的技术手段包括其他 的特异性中和 CXCL-10的抗体、 特异性沉默 CXCL-10表达的 RNAi 技术和本领域已知的其他能降低或消除 CXCL- 10表达的化学和 /或生 物物质。特异性中和 CXCL-10的抗体可以是利用 CXCL-10免疫哺乳 动物后获得的多克隆抗体、 利用杂交瘤技术获得的单克隆抗体、嵌合 抗体、 表面重塑抗体、 重构抗体、 全人源抗体或其抗原结合部分, 只 要这样的抗体或其部分保留了抗原结合能力并能中和所述抗原的活 性。 针对特定靶基因的 siRNA的设计是本领域技术人员已知的操作, 这样的序列可能在长度和针对的靶序列的位置上各不相同,但必然能 沉默掉 CXCL-10基因的表达, 这样的 siRNA的一个范例是正义序列 如 SEQ. ID. NO. 1 : gauggccuucgauucuggaUU所示, 反义序列如 SEQ. ID. NO. 2: UUguccagaaucgaaggccauc所示的 siRNA。 同时, 本领 i或技 术人员也能利用本领域已知的能降低或沉默 CXCL-10表达的其他化 学物质或利用本领域已知的技术筛选到的能降低或沉默 CXCL-10表 达的其他化学物质来降低或沉默 CXCL-10的表达, 从而实现治疗肺 损伤, 特别是曱流, 更特别是曱型 H1N1流感的目的。
同样地, 包含治疗有效量的本发明所述的 CXCL-10抑制剂的组 合物也能用于治疗曱流, 特别是曱型 H1N1流感。 所述组合物的活性 成分是 CXCL-10 抑制剂, 同时也可以包括其他的可以与所述的 CXCL-10抑制剂起协同作用的活性成分。 本发明的组合物还可以包 括防腐剂、 稳定剂、 緩冲剂等药用物质。 附图说明
图 1 : C57BL/6 小鼠分别感染病毒滴度为 105·5 TCID50 的曱型
H1N1流感病毒 BJ501株和相同剂量的鸡胚尿嚢液后的 CXCL-10蛋 白在肺组织中的表达量。
图 2: 野生型 C57 BL/6 小鼠和 CXCL-10基因敲除小鼠感染
TCID50为 105·5的曱型 H1N1流感病毒 BJ501株后小鼠的死亡率曲线。
图 3 : 野生型 C57 BL/6 小鼠和 CXCL-10基因敲除小鼠感染
TCID50为 105·5的曱型 H1N1流感病毒 BJ501株后小鼠的体重变化曲 线。
图 4: 野生型 C57 BL/6小鼠 ( A图)和 CXCL-10基因敲除小鼠 ( B图)感染 TCID50为 105·5的曱型 H1N1流感病毒 BJ501株后小鼠 肺组织的组织病理检测结果。
图 5 : 野生型 C57 BL/6 小鼠和 CXCL-10基因敲除小鼠感染 TCID50为 105·5的曱型 H1N1流感病毒 BJ501株后小鼠肺组织的湿干 比检测结果。
图 6: 野生型 C57 BL/6 小鼠和 CXCL-10基因敲除小鼠感染 TCID50为 1.33χ 104的曱型 H1N1流感病毒 PR8株后小鼠的死亡率曲 线。
图 7: 野生型 C57 BL/6 小鼠和 CXCL-10基因敲除小鼠感染 TCID50为 1.33χ 104的曱型 H1N1流感病毒 PR8株后小鼠的体重变化 曲线。
图 8: 野生型 C57 BL/6小鼠 (A图)和 CXCL-10基因敲除小鼠 ( B图)感染 TCID50为 1.33x l04的曱型 H1N1流感病毒 PR8株后小 鼠肺组织的组织病理检测结果。
图 9: 野生型 C57 BL/6 小鼠和 CXCL-10基因敲除小鼠感染 TCID50为 1.33χ 104的曱型 H1N1流感病毒 PR8株后小鼠肺组织的湿 干比检测结果。
图 10: 野生型 C57 BL/6小鼠和 PI3K基因敲除小鼠感染 TCID50 为 105·5的曱型 H1N1流感病毒 BJ501株后小鼠的死亡率曲线。
图 11 : 野生型 C57 BL/6小鼠和 PI3K基因敲除小鼠感染 TCID50 为 105·5的曱型 H1N1流感病毒 BJ501株后小鼠的体重变化曲线。
图 12: 野生型 C57 BL/6小鼠和 PI3K基因敲除小鼠感染 TCID50 为 105·5的曱型 H1N1流感病毒 BJ501株后小鼠肺组织的组织病理检 测结果。
图 13: 野生型 C57 BL/6小鼠和 PI3K基因敲除小鼠感染 TCID50 为 105·5的曱型 H1N1流感病毒 BJ501株后小鼠肺组织的湿干比检测 结果。
图 14: 野生型 C57 BL/6小鼠和 PI3K基因敲除小鼠感染 TCID50 为 1.33χ 104的曱型 H1N1流感病毒 PR8株后小鼠的死亡率曲线。
图 15: 野生型 C57 BL/6小鼠和 PI3K基因敲除小鼠感染 TCID50 为 1.33χ 104的曱型 H1N1流感病毒 PR8株后小鼠的体重变化曲线。
图 16: 野生型 C57 BL/6小鼠和 PI3K基因敲除小鼠感染 TCID50 为 1.33χ 104的曱型 H1N1流感病毒 PR8株后小鼠肺组织的组织病理 检测结果。
图 17: 野生型 C57 BL/6小鼠和 PI3K基因敲除小鼠感染 TCID50 为 1.33χ 104的曱型 H1N1流感病毒 PR8株后小鼠肺组织的湿干比检 测结果。
图 18: 野生型 C57 BL/6小鼠经静脉注射 PBS、 抗体对照或抗 CXCL-10单克隆抗体后, 感染病毒滴度为 l( 5 TCID50的曱型 H1N1 流感病毒 BJ501株后的死亡率曲线。
图 19: 野生型 C57 BL/6小鼠经静脉注射 PBS、 抗体对照或抗 CXCL-10单克隆抗体后, 感染病毒滴度为 105·5 TCID50的曱型 H1N1 流感病毒 BJ501株后小鼠肺组织的湿干比测定结果。
图 20A-C: 野生型 C57 BL/6小鼠感染滴度为 105 5 TCID50的曱 型 H1N1流感病毒 PR8株后,静脉注射 PBS、抗体对照和抗 CXCL-10 单克隆抗体后小鼠的肺组织病理检测结果。
图: 21 : 野生型 C57 BL/6 小鼠经静脉注射 PBS、 抗体对照或抗 CXCL-10单克隆抗体后, 感染病毒滴度为 1.33xl04 TCID50的曱型 H1N1流感病毒 PR8株后的死亡率曲线。
图 22: 野生型 C57 BL/6小鼠在静脉注射了 PBS、 抗体对照、 抗 CXCL-10单克隆抗体后, 感染曱型 H1N1流感病毒 PR8株后小鼠肺 组织的湿干比测定结果。
图 23A-C: 野生型 C57 BL/6小鼠感染滴度为 1.33xl04 TCID50 的曱型 H1N1 流感病毒 PR8株后, 静脉注射 PBS、 抗体对照和抗 CXCL-10单克隆抗体后小鼠的肺组织病理检测结果。
图 24A-E: 野生型 C57 BL/6小鼠感染来自大肠杆菌 0111 : B4 的脂多糖并于 1 小时后再次感染来自酿酒酵母的酵母多糖 A或相同 时间点给予溶剂对照后, 分别在感染前 12小时, 感染前 1小时, 感 染后 8小时静脉给予抗 CXCL-10抗体或对照抗体。在感染第 24小时 后, 取小鼠肺组织进行肺组织病理检测。 每组 4只小鼠。 具体实施方式
定义
本文使用的术语 "CXCL-10" 表示 CXC趋化因子 10, 又名干扰 素 γ秀导的蛋白 lOkDa ( Interferon γ- induced protein lOkDa, 缩写为 IP10 )。 优选地, 所述 CXCL-10表示来源于哺乳动物 (例如人) 的 CXCL-10。 更优选地, 所述 CXCL-10的 GeneBank编号为 GenelD: 3627, 核苷酸编码序列如 NM— 001565.2 所示, 蛋白质编码序列如 NP— 001556.2所示。
本文使用的术语 "肺损伤"表示由多种因素导致的肺泡上皮细胞 和 /或毛细血管内皮细胞的损伤, 其包括急性肺损伤和慢性肺损伤。 在某些实施方案中, 所述 "肺损伤" 不包括由外伤导致的肺部损伤。
本文使用的术语 "急性肺损伤(acute lung injury, ALI)"是指各种 直接和间接致伤因素导致的肺泡上皮细胞及毛细血管内皮细胞损伤。 特别地, 造成弥漫性肺间质及肺泡水肿, 导致急性低氧性呼吸功能不 全。 急性肺损伤以肺容积减少、 肺顺应性降低、 通气 /血流比例失调 为病理生理特征, 临床上表现为进行性低氧血症和呼吸窘迫, 肺部影 像学上表现为非均一性的渗出性病变, 其发展至严重阶段 (氧合指数 <200 )被称为急性呼吸窘迫综合征。
本文使用的术语 "流感"表示流行性感冒, 它是由黏液病毒科的 RNA病毒引起的急性呼吸道感染。 常见症状为战栗、 发热、 喉咙痛、 肌肉疼、 头疼、 咳嗽、虚弱无力等。 特别地, 所述流感包括曱型流感、 乙型流感和丙型流感。 优选地, 所述流感包括 H1N1、 H1N2、 H2N2、 H2N3、 H3N1、 H3N2、 H3N8、 H5N1、 H5N2、 H5N3、 H5N8、 H5N9、 H7N1、 H7N2、 H7N3、 H7N4、 H7N7、 H7N9、 H9N2、 H10N7 等亚 型。
本文所使用的术语 "对象"是指哺乳动物, 如人, 但也可以是其 它动物, 如野生动物 (如苍鹭、 鹳、 鹤等), 家畜 (如鸭、 鹅等)或 实验动物(如猩猩、 猴子、 大鼠、 小鼠、 兔子、 豚鼠、 土拨鼠、 地松 鼠等)。
本文所使用的术语 "功能性片段"尤其是指抗体片段如 Fv、 scFv ( sc指单链)、 Fab、 F(ab, ) 2, Fab' 、 scFv-Fc片段或者双抗体( diabody )、 或者通过化学修饰或通过掺入脂质体中应能够增加半寿期的任何片 段, 所述化学修饰例如添加聚(亚烷基)二醇如聚乙二醇("聚乙二 醇化, PEG化")(被称为 Fv-PEG、 scFv-PEG, Fab-PEG、 F(ab')2-PEG 或 Fab'-PEG的聚乙二醇化片段)("PEG" 为聚乙二醇), 所述片段具 有根据本发明的活性。优选地, 所述功能片段由其来源抗体的重链可 变区或轻链可变区的部分序列构成或者包含它们,所述部分序列足以 保留与其来源抗体相同的结合特异性和充分的亲和力,优选至少等于 其来源抗体亲和力的 1/100, 在更优选方式中至少等于 1/10。 这种功 能片段包含最少 5个氨基酸, 优选其来源的抗体序列的 10、 15、 25、 50和 100个连续氨基酸。
本文使用的术语 "可药用载体 "可以是水、 緩冲水溶液、 等渗盐 溶液如 PBS (磷酸盐緩冲液)、 葡萄糖、 甘露醇、 右旋葡萄糖、 乳糖、 淀粉、 硬脂酸镁、 纤维素、 碳酸镁、 0.3%甘油、 透明质酸、 乙醇或聚 亚烷基二醇如聚丙二醇、甘油三酯等。 所用可药用载体的类型尤其依 赖于根据本发明的组合物是否配制为用于口服、 鼻、 皮内、 皮下、 肌 内或静脉施用。 根据本发明的组合物可包含润湿剂、 乳化剂或緩冲液 物质作为添加剂。
根据本发明的药物组合物或者药物制剂可通过任何适宜的途径 施用, 例如可口服、 鼻、 皮内、 皮下、 肌内或静脉内施用。
本文使用的 "治疗有效量" 或 "有效量"是指足以显示其对于所 施用对象益处的剂量。施用的实际量, 以及施用的速率和时间过程会 取决于所治疗者的自身情况和严重程度。 治疗的处方(例如对剂量的 决定等)最终是全科医生及其他医生的责任并依赖其做决定, 通常考 虑所治疗的疾病、 患者个体的情况、 递送部位、 施用方法以及对于医 生来说已知的其他因素。 除非另有定义,本文使用的所有科技术语具有本领域普通技术人 员所理解的相同含义。 关于本领域的定义及术语, 专业人员具体可参 考 Current Protocols in Molecular Biology( Ausubel ) John Wiley & Sons Inc, 2005。 氨基酸残基的缩写是本领域中所用的指代 20个常用 L-氨 基酸之一的标准 3字母和 /或 1字母代码。
尽管本发明的广义范围所示的数字范围和参数近似值,但是具体 实施例中所示的数值尽可能准确的进行记载。 然而, 任何数值本来就 必然含有一定的误差, 其是由它们各自的测量中存在的标准偏差所 致。 另外, 本文公开的所有范围应理解为涵盖其中包含的任何和所有 子范围。 例如记载的 " 1至 10" 的范围应认为包含最小值 1和最大值 10之间 (包含端点) 的任何和所有子范围; 也就是说, 所有以最小 值 1或更大起始的子范围, 例如 1至 6.1 , 以及以最大值 10或更小终 止的子范围, 例如 5.5至 10。 另外, 任何称为 "并入本文" 的参考文 献应理解为以其整体并入。
另外应注意, 如本说明书中所使用的, 单数形式包括其所指对象 的复数形式, 除非清楚且明确的限于一个所指对象。 术语 "或" 可与 术语 "和 /或" 互换使用, 除非上下文另有清楚指明。
下面将通过下述非限制性实施例进一步说明本发明 ,本领域技术 人员公知, 在不背离本发明精神的情况下, 可以对本发明做出许多修 改, 这样的修改也落入本发明的范围。
下述实验方法如无特别说明, 均为常规方法, 所使用的实验材料 如无特别说明, 均可容易地从商业公司获取。 实施例
实施例 1 曱型 H1N1 流感病毒 BJ501株感染引起小鼠肺组织
CXCL-10蛋白表达升高
实验材料:
1)主要实验仪器: 三级生物安全实验室、 三级生物安全拒、 动物 饲养拒、 小鼠饲养笼、 小动物手术器械、 无菌注射器、 移液器、 移液 管、 Bio-Plex Mouse Cytokine 23-Plex Array试剂盒等。
2)主要实验试剂: 1% ( W/V ) 戊巴比妥钠溶液、 病毒稀译液、 消毒剂 (2.5%破酒和 75%酒精)等。
3)病毒: 曱型 H1N1流感病毒 BJ501株
http: /Vww .ncbi, nlm.nih , gov/Tax onomv/Browser/wwwta , cgi?mode^Inf o&id=648856&M=3 &keep= 1 &srchmode= 1 &iml ock&lin=s。 4)实验动物:
SPF级野生型 (WT) C57 BL/6小鼠(4周龄) : 购于军科院动物 所, CXCL-10基因敲除小鼠( B6背景, 购自美国 Jackson Laboratory, 货号是 006087 ) 。
实验方法:
1)分组: 鸡胚尿嚢液对照组、 BJ501病毒实验组;
2)安全固定小鼠, 用 lmL无菌注射器腹腔注射 1% ( W/V )戊巴 比妥钠溶液麻醉;
3)保持麻醉小鼠头部向上向后倾斜姿势, 使其鼻腔向上,便于病 毒稳定进入呼吸道。 用移液管每侧鼻孔各滴入 10 曱型 H1N1流感 病毒 BJ501株病毒液(滴度为 105 TCID50 )感染, 感染病毒滴度为 105 5 TCID50/只, 每组感染 4只小鼠;
4)保持小鼠此体位 15秒, 使病毒进入呼吸道。 将小鼠置于鼠笼 内, 待其恢复清醒后, 给予水及食物;
5)肺灌洗液炎症因子测定实验于染病毒后 24小时后进行, 用腹 腔注射过量麻醉剂的方法使小鼠死亡;
6)将小鼠固定于小动物手术台, 移除胸部皮肤及骨骼, 将气管剪 一小口, 利用 1毫升移液枪从开口处向小鼠注射 800微升 PBS緩冲 液, 反复吸取三次后将肺灌洗液吸出;
7)利用 Bio-Plex Mouse Cytokine 23-Plex 试剂盒对肺灌洗液进行
CXCL-10蛋白表达量的测定;
8)利用 GraphPad Prism 5 软件对数据进行分析处理。
实验结果:
如图 1所示, 感染滴度为 105 5 TCID50/只的 BJ501株曱型 H1N1 流感病毒的小鼠肺组织 CXCL-10 蛋白的表达量显著高于对照组。 * P<0.05„
此结果说明, CXCL-10在曱型 H1N1流感病毒 BJ501株感染导 致小鼠死亡的过程中发挥重要作用, 针对 CXCL-10分子的干预在治 疗曱型 H1N1流感病毒 BJ501株感染所导致的损伤中,有可能发挥重 要作用。 实施例 2 CXCL-10-缺陷小鼠中曱型 H1N1流感病毒 BJ501株感 染引起的急性肺损伤得以减轻
实验材料:
1) 主要实验仪器: 三级生物安全实验室、 三级生物安全拒、 动 物饲养拒、 小鼠饲养笼、 小动物手术器械、 无菌注射器、 移液器、 移 液管等。
2) 主要实验试剂: 1 % ( W/V )戊巴比妥钠溶液、 病毒稀释液、 消毒剂 (2.5%破酒和 75%酒精)等。
3) 病毒: 曱型 H1N1流感病毒 BJ501株
http:〃www.ncbi,n Imjiih-gov Taxcmomy/Browser/wwwtax-cgi iiiode I— nf ¾)&kl=648856&M=3 &keep= 1 &srchmode= 1 &unlock&lin=s。
4) 实验动物:
SPF级野生型 (WT) C57 BL/6小鼠( 4周龄):购于军科院动物所, CXCL-10基因敲除小鼠( B6背景, 购自美国 Jackson Laboratory, 货 号是 006087 )。
实验方法:
1)分组: 野生型对照组、 CXCL-10基因敲出小鼠实验组;
2)安全固定小鼠, 用 lmL无菌注射器腹腔注射 1% ( W/V )戊巴 比妥钠溶液麻醉;
3)保持麻醉小鼠头部向上向后倾斜姿势, 使其鼻腔向上,便于病 毒稳定进入呼吸道。 用移液管每侧鼻孔各滴入 10 μ 曱型 H1N1流感 病毒 BJ501株病毒液(滴度为 105 TCID50 )感染, 感染病毒滴度为 105 5 TCID50/只, 每组感染 10只小鼠;
4)保持小鼠此体位 15秒, 使病毒进入呼吸道。 将小鼠置于鼠笼 内, 待其恢复清醒后, 给予水及食物; 感染前和感染后每天都记录每 组小鼠死亡 /存活只数以及体重变化情况, 连续观察 10 d, 24 h内发 生死亡的小鼠为非特异性死亡, 在进行死亡率统计时不予计算在内, 用 GraphPad Prism 5 软件统计小鼠死亡率及体重变化情况;
5)肺组织病理切片实验于感染病毒后第 5 d进行, 用腹腔注射过 量麻醉剂的方法使小鼠死亡;
6)将小鼠固定于小动物手术台,移除胸部皮肤及骨骼,暴露胸腔, 将小鼠肺脏连同心脏同时取出, 用无菌 PBS 洗去表面血液, 置于多 聚曱醛固定液中室温固定 48h;
7)固定后的样品由病理实验室进行包埋、切片、 HE染色等处理; 8)病理切片置于显微镜下观察, 并记录;
9)肺组织湿干比实验于感染病毒后第 5 d进行, 用腹腔注射过量 麻醉剂的方法使小鼠死亡;
10) 将小鼠固定于小动物手术台, 移除胸部皮肤及骨骼, 暴露 胸腔, 将小鼠完整肺脏取出, 去除表面血液及多余结締组织, 称量并 记录肺脏湿重;
11) 肺脏置于 55 °C高温组织干燥器中干烤, 24 h后取出, 待温 度降至室温进行肺脏干重的称量并记录; 12) 计算小鼠肺脏湿重 /干重比值 (Wet/dry ratio), 进行统计分 实验结果:
野生型 C57BL/6小鼠和 CXCL-10基因敲除小鼠感染病毒滴度为 105 5 TCID50的曱型 H1N1流感病毒 BJ501株后的死亡率结果以及体 重变化结果, 如图 2、 图 3所示。
感染相同滴度的 BJ501 株曱型 H1N1 流感病毒后, 野生型 C57BL/6 小鼠死亡率明显高于 CXCL-10基因敲除小鼠 (图 2 )。 * P<0.05„ 体重变化(降低)结果与死亡率结果一致(图 3 )。 **P<0.01 图 4 中 (χ200倍, HE染色) 病理照片显示: 感染滴度为 105·5
TCID50的曱型 H1N1流感病毒 BJ501株后,野生型 C57 BL/6小鼠肺 组织中出现严重的病理损伤(图 4的 A图)。肺组织正常结构被破坏, 肺组织纹理紊乱, 伴随出血、 炎性渗出及大量红细胞、 炎症细胞浸润 等病理损伤。
但是, 感染相同滴度病毒的 CXCL-10基因敲除小鼠肺组织未见 显著病理损伤, 无显著的出血、 渗出或者炎症细胞浸润等病理变化, 肺组织纹理清晰, 结构完整(图 4的 B图)。
上述结果说明, CXCL-10 对小鼠在感染曱型 H1N1 流感病毒 BJ501株导致的急性肺组织病理损伤中发挥了重要作用。
检测小鼠肺脏湿干比可以反映小鼠发生急性肺水肿的程度。从图
5中也可见, 4周龄野生型小鼠在感染曱型 H1N1流感病毒 BJ501后, 其肺脏湿干比相比 CXCL-10基因敲除小鼠显著降低, 说明 CXCL-10 的敲除可以显著緩解曱型 H1N1流感病毒 BJ501株感染后小鼠的肺脏 水肿。 *尸 <0.05 。
此结果进一步说明, CXCL-10分子在曱型 H1N1流感病毒 BJ501 株感染导致小鼠发生急性肺组织损伤的病理过程中发挥了重要作用。 实施例 3 CXCL-10-缺陷小鼠中曱型 H1N1流感病毒 PR8株感染 引起的急性肺损伤得以减轻
本实施例实验材料和实验方法等同实施例 2基本相同,实验材料 区别在于含有曱型 H1N1流感病毒 PR8株,不含有曱型 H1N1流感病 毒 BJ501株, 实验方法区别在于使用曱型 H1N1流感病毒 PR8株代 替曱型 H1N1流感病毒 BJ501株进行感染。
实验结果:
野生型 C57BL/6小鼠和 CXCL-10基因敲除小鼠感染病毒滴度为 1.33x l04 TCID50的曱型 HlNl流感病毒 PR8株后的死亡率结果以及 体重变化结果, 如图 6、 图 7所示。
感染相同滴度的 PR8株曱型 H1N1流感病毒后,野生型 C57BL/6 小鼠死亡率明显高于 CXCL-10基因敲除小鼠(图 4 )。 * P<0.05。 体 重变化(降低) 结果与死亡率结果一致(图 5 )。 **P<0.01
此结果说明, CXCL-10在曱型 H1N1流感病毒 PR8株感染导致 小鼠死亡的过程中发挥重要作用, 针对 CXCL-10分子的干预在治疗 曱型 H1N1流感病毒 PR8株感染所导致的损伤中,有可能发挥重要作 用。
图 8中(χ200倍, HE染色)病理照片显示:感染滴度为 1.33x l04
TCID50的曱型 H1N1流感病毒 PR8株后, 野生型 C57 BL/6小鼠肺 组织中出现严重的病理损伤(图 8的 A图)。肺组织正常结构被破坏, 肺组织纹理紊乱, 伴随出血、 炎性渗出及大量红细胞、 炎症细胞浸润 等病理损伤。
但是, 感染相同滴度病毒的 CXCL-10基因敲除小鼠肺组织未见 显著病理损伤, 无显著的出血、 渗出或者炎症细胞浸润等病理变化, 肺组织纹理清晰, 结构完整(图 8的 B图)。
上述结果说明, CXCL-10对小鼠在感染曱型 H1N1流感病毒 PR8 株导致的急性肺组织病理损伤中发挥了重要作用。
检测小鼠肺脏湿干比可以反映小鼠发生急性肺水肿的程度。从图
9中也可见, 4周龄野生型小鼠在感染曱型 H1N1流感病毒 PR8后, 其肺脏湿干比相比 CXCL-10基因敲除小鼠显著降低, 说明 CXCL-10 的敲除可以极显著緩解曱型 H IN 1流感病毒 PR8株感染后小鼠的肺脏 水肿。 **尸 O.001 。
此结果进一步说明, CXCL-10分子在曱型 H1N1 流感病毒 PR8 株感染导致小鼠发生急性肺组织损伤的病理过程中发挥了重要作用。 实施例 4 PI3K-缺陷小鼠中曱型 H1N1流感病毒 BJ501株感染引 起的急性肺损伤得以减轻
本实施例实验材料和实验方法等同实施例 2基本相同,实验材料 区别在于含有 PI3K-缺陷小鼠(获自奥地利科学院分子生物技术研究 所 ( Institute of Molecular Biotechnology of the Austrian Academy of Sciences ) ), 不含有 CXCL-10-缺陷小鼠, 实验方法区别在于使用曱型 H1N1流感病毒 BJ501株感染 PI3K-缺陷小鼠。
野生型 C57BL/6小鼠和 PI3K基因敲除小鼠感染病毒滴度为 105·5 TCID50的曱型 HlNl流感病毒 BJ501株后的死亡率结果以及体重变 化结果, 如图 10、 图 11所示。
感染相同滴度的 BJ501 株曱型 H1N1 流感病毒后, 野生型 C57BL/6 小鼠死亡率明显高于 PI3K基因敲除小鼠 (图 10 )。 ** P<0.01„体重变化(降低)结果与死亡率结果一致(图 11 )。 **P<0.01。
此结果说明, PI3K在曱型 H1N1流感病毒 BJ501株感染导致小 鼠死亡的过程中发挥重要作用。
图 12中 (x200倍, HE染色) 病理照片显示: 感染滴度为 105·5 TCID50的曱型 H1N1流感病毒 BJ501株后,野生型 C57 BL/6小鼠肺 组织中出现严重的病理损伤 (图 12的 A图)。 肺组织正常结构被破 坏, 肺组织纹理紊乱, 伴随出血、 炎性渗出及大量红细胞、 炎症细胞 浸润等病理损伤。
但是, 感染相同滴度病毒的 PI3K基因敲除小鼠肺组织未见显著 病理损伤, 无显著的出血、 渗出或者炎症细胞浸润等病理变化, 肺组 织纹理清晰, 结构完整(图 12的 B图)。
上述结果说明, PI3K对小鼠在感染曱型 H1N1 流感病毒 BJ501 株导致的急性肺组织病理损伤中发挥了重要作用。
检测小鼠肺脏湿干比可以反映小鼠发生急性肺水肿的程度。从图 13中也可见, 4周龄野生型小鼠在感染曱型 H1N1流感病毒 BJ501后, 其肺脏湿干比相比 PI3K基因敲除小鼠显著降低, 说明 PI3K的敲除 可以显著緩解曱型 H1N1流感病毒 BJ501株感染后小鼠的肺脏水肿。 * <0.05 。
PI3K-Akt-p38通路已被证实位于 CXCL-10下游,在 CXCL-10诱 导的趋化性中发挥重要作用, 此结果进一步证明 CXCL-10分子在曱 型 H1N1流感病毒 BJ501株感染导致小鼠发生急性肺组织损伤的病理 过程中发挥了重要作用。
实施例 5 PI3K-缺陷小鼠中曱型 H1N1流感病毒 PR8株感染引 起的急性肺损伤得以减轻
本实施例实验材料和实验方法等同实施例 4基本相同,实验材料 区别在于含有曱型 H1N1流感病毒 PR8株,不含有曱型 H1N1流感病 毒 BJ501株, 实验方法区别在于使用曱型 H1N1流感病毒 PR8株代 替曱型 H1N1流感病毒 BJ501株进行感染。
野生型 C57BL/6 小鼠和 PI3K基因敲除小鼠感染病毒滴度为 1.33χ104的曱型 H1N1流感病毒 PR8株后的死亡率结果以及体重变化 结果, 如图 14、 图 15所示。 感染相同滴度的 PR8株曱型 H1N1流感病毒后,野生型 C57BL/6 小鼠死亡率明显高于 PI3K基因敲除小鼠(图 14 )。 ** P<0.01。 体重 变化(降低)结果与死亡率结果一致(图 15 )。 **P<0.01。
此结果说明, PI3K在曱型 H1N1流感病毒 PR8株感染导致小鼠 死亡的过程中发挥重要作用。
图 16中( χ200倍,ΗΕ染色)病理照片显示:感染滴度为 1.33x l04 TCID50的曱型 H1N1流感病毒 PR8株后, 野生型 C57 BL/6小鼠肺 组织中出现严重的病理损伤 (图 16的 Α图)。 肺组织正常结构被破 坏, 肺组织纹理紊乱, 伴随出血、 炎性渗出及大量红细胞、 炎症细胞 浸润等病理损伤。
但是, 感染相同滴度病毒的 PI3K基因敲除小鼠肺组织未见显著 病理损伤, 无显著的出血、 渗出或者炎症细胞浸润等病理变化, 肺组 织纹理清晰, 结构完整(图 16的 B图)。
上述结果说明, PI3K对小鼠在感染曱型 H1N1流感病毒 PR8株 导致的急性肺组织病理损伤中发挥了重要作用。
检测小鼠肺脏湿干比可以反映小鼠发生急性肺水肿的程度。从图 17中也可见, 4周龄野生型小鼠在感染曱型 H1N1流感病毒 PR8后, 其肺脏湿干比相比 PI3K基因敲除小鼠显著降低, 说明 PI3K的敲除 可以显著緩解曱型 H1N1 流感病毒 PR8株感染后小鼠的肺脏水肿。 * <0.05 。
PI3K-Akt-p38通路已被证实位于 CXCL-10下游,在 CXCL-10诱 导的趋化性中发挥重要作用, 此结果进一步证明 CXCL-10分子在曱 型 H1N1流感病毒 PR8株感染导致小鼠发生急性肺组织损伤的病理过 程中发挥了重要作用。 实施例 6抗 CXCL-10单克隆抗体可以使曱型 H1N1流感病毒 BJ501株感染引起的急性肺损伤得以减轻
实验材料:
1)主要实验仪器: 三级生物安全实验室、 三级生物安全拒、 动物 饲养拒、 小鼠饲养笼、 小动物手术器械、 无菌注射器、 移液器、 移液 管等。
2)主要实验试剂: 1 % ( W/V ) 戊巴比妥钠溶液、 病毒稀释液、 消毒剂 (2.5%破酒和 75%酒精)等。
3)实验动物:
SPF级野生型 (WT) C57 BL/6小鼠(4周龄):购于军科院动物所。 实验方法:
1)分组: 抗体溶剂 (PBS )对照组、 同型抗体(抗 Hly抗体, 购 自 北京华大蛋白质研发中 心有限公司 , 货号: AbM59538-10-PU ) 对照组和抗 CXCL-10 单克隆抗体 ( AbM50009-l-PU,购自北京华大蛋白质研发中心有限公司) 治疗组;
2)感染前 1天, 给抗 CXCL-10单克隆抗体治疗组的小鼠静脉注 射 0.5mg/ml的抗 CXCL-10单克隆抗体 lOOul,给同型抗体对 照组和抗体溶剂对照组分别注射相同剂量的同型对照抗体和 PBS。
3)安全固定小鼠, 用 lmL无菌注射器腹腔注射 1% ( W/V )戊巴 比妥钠溶液麻醉;
4)保持麻醉小鼠头部向上向后倾斜姿势, 使其鼻腔向上,便于病 毒稳定进入呼吸道。 用移液管每侧鼻孔各滴入 10 μ 曱型 H1N1流感病毒 BJ501株病毒液感染, 感染病毒滴度为 105·5
TCID50/只, 每组感染 10只小鼠;
5)保持小鼠此体位 15秒, 使病毒进入呼吸道。 将小鼠置于鼠笼 内, 待其恢复清醒后, 给予水及食物;
6)感染后 1天和 3天, 各重复步骤 2—次。
7)感染后观察, 24 h内发生死亡的小鼠为非特异性死亡, 在进行 死亡率统计时不予计算在内;
8)存活率实验连续观察 10 d, 每天记录每组小鼠死亡 /存活只数 变化情况;
9)用 GraphPad Prism 5 软件统计小鼠死亡率;
10)肺组织病理切片实验于感染病毒后第 5 d进行, 用腹腔注射 过量麻醉剂的方法使小鼠死亡;
11)将小鼠固定于小动物手术台, 移除胸部皮肤及骨骼, 暴露胸 腔, 将小鼠肺脏连同心脏同时取出, 用无菌 PBS洗去表面血 液, 置于多聚曱醛固定液中室温固定 48h;
12)固定后的样品由病理实验室进行包埋、切片、 HE染色等处理;
13)病理切片置于显微镜下观察, 并记录;
14)肺组织湿干比实验于感染病毒后第 5 d进行, 用腹腔注射过 量麻醉剂的方法使小鼠死亡;
15)将小鼠固定于小动物手术台, 移除胸部皮肤及骨骼, 暴露胸 腔, 将小鼠完整肺脏取出, 去除表面血液及多余结締组织, 称量并记录肺脏湿重;
16)肺脏置于 55°C高温组织干燥器中干烤, 24 h后取出, 待温度 降至室温进行肺脏干重的称量并记录;
17)计算小鼠肺脏湿重 /干重比值 (Wet/dry ratio), 进行统计分析; 实验结果:
野生型 C57BL/6小鼠经静脉注射 PBS、 抗体对照或抗 CXCL-10 单克隆抗体后, 感染病毒滴度为 105'5 TCID50的曱型 H1N1流感病毒 BJ501株后的死亡率结果, 如图 18所示。
感染相同滴度的 BJ501株曱型 H1N1流感病毒后,静脉注射 PBS 和静脉注射抗体对照的小鼠死亡率都明显高于静脉注射抗 CXCL-10 单克隆抗体的小鼠(图 18 )。 *尸<0.05。
此结果说明, CXCL-10在曱型 H1N1流感病毒 PR8株感染导致 小鼠死亡的过程中发挥重要作用, 针对 CXCL-10分子的干预在治疗 曱型 H1N1流感病毒 BJ501株感染所导致的损伤中,有可能发挥重要 作用。
检测小鼠肺脏湿干比, 可以反映小鼠发生急性肺水肿的程度。 从 图 19中可见, 4周龄野生型 C57 BL/6小鼠在静脉注射了抗 CXCL-10 单克隆抗体后, 感染曱型 H1N1流感病毒 BJ501株, 其肺脏湿干比相 比抗体对照治疗组小鼠显著降低, 说明抗 CXCL-10抗体可以显著緩 解曱型 H1N1流感病毒 BJ501株感染后小鼠的肺脏水肿。 *尸<0.05 。
此结果进一步说明, CXCL-10分子在曱型 H1N1流感病毒 BJ501 株感染导致小鼠发生急性肺组织损伤的病理过程中发挥了重要作用。
图 20A-C 中 (x200倍, HE染色) 病理照片显示: 感染滴度为 105 5 TCID50的曱型 H1N1流感病毒 BJ501株后, 静脉注射抗体溶剂 ( PBS ) 以及对照抗体的 4周龄的野生型 C57 BL/6小鼠肺组织中出 现严重的病理损伤(分别如图 20A和图 20B所示)。 肺组织正常结构 被破坏, 肺组织纹理紊乱, 伴随出血、 炎性渗出及大量红细胞、 炎症 细胞浸润等病理损伤。
感染相同滴度病毒静脉注射抗 CXCL-10单克隆抗体的小鼠肺组 织未见显著病理损伤, 无显著的出血、 渗出或者炎症细胞浸润等病理 变化, 肺组织纹理清晰, 结构完整(图 20C )。
结果说明, 抗 CXCL-10抗体对小鼠在感染曱型 H1N1流感病毒
BJ501株导致的急性肺组织病理损伤中发挥了重要保护作用。 实施例 7抗 CXCL-10单克隆抗体可以使曱型 H1N1流感病毒 PR8株感染引起的急性肺损伤得以减轻
本实施例实验材料和实验方法等同实施例 2基本相同,实验材料 区别在于含有曱型 H1N1流感病毒 PR8株,不含有曱型 H1N1流感病 毒 BJ501株, 实验方法区别在于使用曱型 H1N1流感病毒 PR8株代 替曱型 H1N1流感病毒 BJ501株进行感染。
野生型 C57BL/6小鼠经静脉注射 PBS、 抗体对照 (抗 Hly抗体, 购自北京华大蛋白质研发中心有限公司, 货号: AbM59538-10-PU ) 或抗 CXCL-10单克隆抗体( AbM50009-l-PU, 购自北京华大蛋白质 研发中心有限公司)后, 感染病毒滴度为 1.33xl04 TCID50 的曱型 H1N1流感病毒 PR8株后的死亡率结果, 如图 21所示。
感染相同滴度的 PR8株曱型 H1N1流感病毒后, 静脉注射 PBS 和静脉注射抗体对照的小鼠死亡率都明显高于静脉注射抗 CXCL-10 单克隆抗体的小鼠(图 21 )。 *尸<0.05。
此结果说明, CXCL-10在曱型 H1N1流感病毒 PR8株感染导致 小鼠死亡的过程中发挥重要作用, 针对 CXCL-10分子的干预在治疗 曱型 H1N1流感病毒 PR8株感染所导致的损伤中,有可能发挥重要作 用。
检测小鼠肺脏湿干比, 可以反映小鼠发生急性肺水肿的程度。从 图 22中可见, 4周龄野生型 C57 BL/6小鼠在静脉注射了抗 CXCL-10 单克隆抗体后,感染曱型 H1N1流感病毒 PR8株,其肺脏湿干比相比 抗体对照治疗组小鼠显著降低, 说明抗 CXCL-10抗体可以显著緩解 曱型 H1N1流感病毒 PR8株感染后小鼠的肺脏水肿。 *尸<0.05 。
此结果进一步说明, CXCL-10分子在曱型 H1N1 流感病毒 PR8 株感染导致小鼠发生急性肺组织损伤的病理过程中发挥了重要作用。
图 23A-C 中 (x200倍, HE染色) 病理照片显示: 感染滴度为 1.33 lO4 TCID50的曱型 H1N1流感病毒 PR8株后 , 静脉注射抗体溶 剂 (PBS ) 以及对照抗体的 4周龄的野生型 C57 BL/6小鼠肺组织中 出现严重的病理损伤 (分别如图 23A、 和图 23B所示)。 肺组织正常 结构被破坏, 肺组织纹理紊乱, 伴随出血、 炎性渗出及大量红细胞、 炎症细胞浸润等病理损伤。
感染相同滴度病毒静脉注射抗 CXCL-10单克隆抗体的小鼠肺组 织未见显著病理损伤, 无显著的出血、 渗出或者炎症细胞浸润等病理 变化, 肺组织纹理清晰, 结构完整(图 23C )。 鸡胚尿嚢液组小鼠肺 组织也未见显著病理损伤。
结果说明, 抗 CXCL-10抗体对小鼠在感染曱型 H1N1流感病毒 PR8株导致的急性肺组织病理损伤中发挥了重要保护作用。 实施例 8 抗 CXCL-10 单克隆抗体可以緩解由来自大肠杆菌 Olll: B4的脂多糖和来自酿酒酵母的酵母多糖 A联合感染后小鼠的 肺组织病理损伤
实验材料:
1)主要实验仪器: SPF级动物房、 SPF级生物安全拒、 SPF级动 物饲养拒、 SPF级小鼠饲养笼、 小动物手术器械、 高温组织干燥器、 无菌注射器、 移液器、 移液管等。
2)主要实验试剂: 抗 CXCL-10单克隆抗体( AbM50009-l-PU, 购自北京华大蛋白质研发中心有限公司 )、 抗体对照抗 Hly 抗体 ( AbM59538-10-PU, 购自北京华大蛋白质研发中心有限公司)、 1% ( W/V )戊巴比妥钠溶液、 病毒稀译液、 无菌 PBS、 消毒剂 (2.5%碘 酒和 75%酒精)等。
3)脂多糖 (LPS): L2630, 购于 Sigma; 酵母多糖 (Zymosan A): Z4250, 购于 Sigma。
4)实验动物:
SPF级野生型 BALB/c小鼠( 4周龄): 购于维通利华实验动物技 术有限公司。
实验方法:
1)分组: 脂多糖和酵母多糖溶剂空白对照组、脂多糖和酵母多糖 溶剂 +同型抗体对照组、 脂多糖和酵母多糖溶剂 +抗 CXCL-10单克隆 抗体组、脂多糖和酵母多糖组 +同型抗体对照组、脂多糖和酵母多糖 + 抗 CXCL-10单克隆抗体组;
2)小鼠静脉注射抗体对照或抗 CXCL-10单克隆抗体, 每只小鼠 每次静脉注射 50微克, 共注射 3次, 分别为感染前 12小时, 1小时 和感染后 8小时;
3)安全固定小鼠, 用 lmL无菌注射器腹腔注射 1% ( W/V )戊巴 比妥钠溶液麻醉;
4)保持麻醉小鼠头部向上向后倾斜姿势, 使其鼻腔向上。 用酒精 消毒颈部, 用剪刀剪开颈部皮肤, 分离气管, 用注射器注入 50微升 含 100微克脂多糖的 PBS緩冲液, 每组感染 4只小鼠;
5)保持小鼠此体位 5分钟, 使脂多糖进入呼吸道。 将小鼠置于鼠 笼内, 待其恢复清醒后, 给予水及食物;
6)给予脂多糖 1小时后, 按照操作 3中方法麻醉小鼠, 保持麻醉 小鼠头部向上向后倾斜姿势, 使其鼻腔向上。 用酒精消毒颈部, 分离 气管, 用注射器注入 50微升含 60微克酵母多糖的 PBS緩冲液, 每 组感染 4只小鼠; 7)保持小鼠此体位 5分钟, 使脂多糖进入呼吸道。 将小鼠置于鼠 笼内, 待其恢复清醒后, 给予水及食物;
8)感染病毒后 24小时, 用腹腔注射过量麻醉剂的方法使小鼠死 亡;
9)将小鼠固定于小动物手术台,移除胸部皮肤及骨骼,暴露胸腔, 将小鼠肺脏连同心脏同时取出, 用无菌 PBS 洗去表面血液, 置于曱 醛固定液中室温固定 48h;
10) 固定后的样品由病理实验室进行包埋、切片、 HE染色等处 理;
11) 病理切片置于显 镜下观察, 并记录。
实验结果:
图 14A-E中 (x200倍, HE染色)病理照片显示: 脂多糖和酵母 多糖溶剂空白对照组、 脂多糖和酵母多糖溶剂 +同型抗体对照组、 脂 多糖和酵母多糖溶剂 +抗 CXCL-10 单克隆抗体组的小鼠肺组织未见 显著病理损伤, 无显著的出血、 渗出或者炎症细胞浸润等病理变化, 肺组织纹理清晰, 结构完整(分别如图 14A、 图 14B和图 14C所示), 感染来自大肠杆菌 0111 : B4的脂多糖和来自酿酒酵母的酵母多糖 A 后, 静脉注射抗体对照的 4周龄的野生型 C57 BL/6小鼠肺组织中出 现严重的病理损伤 (图 14D )。 肺组织正常结构被破坏, 肺组织纹理 紊乱,伴随出血、炎性渗出及大量红细胞、炎症细胞浸润等病理损伤。
感染相同滴度病毒静脉注射抗 CXCL-10单克隆抗体的小鼠肺组 织未见显著病理损伤, 无显著的出血、 渗出或者炎症细胞浸润等病理 变化, 肺组织纹理清晰, 结构完整(图 14E )。
结果说明, 抗 CXCL-10抗体对小鼠在感染来自大肠杆菌 0111 : B4的脂多糖和来自酿酒酵母的酵母多糖 A联合导致的急性肺组织病 理损伤中发挥了重要保护作用。

Claims

权 利 要 求
1、 通过在对象中抑制 CXCL- 10活性、 降低 CXCL- 10表达和 /或 降低 CXCL-10水平来治疗和 /或预防所述对象中肺损伤的方法。
2、 根据权利要求 1的方法, 其包括向所述对象施用治疗有效量 的用于抑制 CXCL- 10活性、 降低 CXCL- 10表达和 /或降低 CXCL- 10 水平的物质, 例如 CXCL- 10抑制剂。
3、 根据权利要求 1或 2的方法, 其中所述肺损伤由病毒感染、 细菌感染、 真菌感染、 和 /或败血症导致; 优选地所述病毒为流感病 毒, 所述细菌为革兰氏阴性菌和 /或所述真菌为酵母菌; 更优选地所 述流感病毒为曱型流感病毒 (例如选自曱型 Hl、 H3、 H5、 H7和 H9 亚型毒株的曱型流感病毒), 所述细菌为大肠埃希氏菌和 /或所述真菌 为酿酒酵母;特别地所述流感病毒为曱型 H1N1流感病毒(例如 BJ501 株或 PR8株 )和 /或所述细菌为大肠杆菌 0111: B4。
4、根据权利要求 1至 3中任一项的方法, 其中所述肺损伤选自: 肺水肿、 急性肺损伤和严重呼吸窘迫综合症。
5、根据权利要求 1至 4任一项的方法, 其中所述 CXCL-10抑制 剂选自: 抗 CXCL-10抗体及其功能性片段(优选地, 其选自特异性 抗 CXCL-10的多克隆抗体、 单克隆抗体、 嵌合抗体、 表面重塑抗体、 重构抗体、全人源抗体及其功能性片段)、针对 CXCL-10的干扰 RNA (优选地, 其选自短干扰 RNA ( siRNA )、 微小 RNA ( miRNA )、 双 链 RNA ( dsRNA )和发夹 RNA ( shRNA ) )或特异性抑制 CXCL-10 表达的其他化合物(例如小分子化合物)。
6、 根据前述任一项权利要求的方法, 其中所述 siRNA的正义序 列如 SEQ. ID. NO. 1: gauggccuucgauucuggaUU所示,反义序列如 SEQ.
ID. NO. 2: UUguccagaaucgaaggccauc所示。
7、根据前述任一项权利要求的方法, 其中所述 CXCL-10抑制剂 以注射剂、 喷雾剂、 滴鼻剂、 吸入剂或口服剂的形式施用。
8、通过在对象中调控 PI3K-Akt-p38通路来治疗和 /或预防所述对 象中肺损伤的方法。
9、 根据权利要求 8的方法, 其中调控 PI3K-Akt-p38通路包括下 调所述通路的信号转导, 例如通过抑制 PI3K活性、 降低 PI3K水平 和 /或降低 PI3K表达。
10、 根据权利要求 9的方法, 其中调控 PI3K-Akt-p38通路还包 括抑制 CXCL-10活性、降氐 CXCL-10表达和 /或降氐 CXCL-10水平。
11、 通过在对象中抑制 CXCL-10活性、 降低 CXCL-10表达和 / 或降低 CXCL-10水平来治疗和 /或预防所述对象中曱型流感的方法。
12、 通过在对象中调控 PI3K-Akt-p38通路来治疗和 /或预防所述 对象中曱型流感的方法。
PCT/CN2013/075548 2012-05-15 2013-05-13 治疗和/或预防肺损伤的方法 WO2013170735A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210150909.6 2012-05-15
CN201210150909.6A CN103417967B (zh) 2012-05-15 2012-05-15 Cxcl‑10抑制剂在制备治疗和/或预防肺损伤的药物中的用途

Publications (1)

Publication Number Publication Date
WO2013170735A1 true WO2013170735A1 (zh) 2013-11-21

Family

ID=49583130

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/075548 WO2013170735A1 (zh) 2012-05-15 2013-05-13 治疗和/或预防肺损伤的方法

Country Status (2)

Country Link
CN (1) CN103417967B (zh)
WO (1) WO2013170735A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017220989A1 (en) 2016-06-20 2017-12-28 Kymab Limited Anti-pd-l1 and il-2 cytokines

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018227440A1 (zh) * 2017-06-14 2018-12-20 中国医学科学院基础医学研究所 miR-200c-3p微小RNA的应用
CN113684238A (zh) * 2021-08-09 2021-11-23 广州医科大学附属第一医院(广州呼吸中心) Cxc趋化因子受体3作为咳嗽药物靶点的用途

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060040329A1 (en) * 2004-08-17 2006-02-23 David Kelvin CXCL10-based diagnosis and treatment of respiratory illnesses
WO2006039819A1 (en) * 2004-10-15 2006-04-20 St. Michael's Hospital Markers of lung injury
CN1889979A (zh) * 2003-12-10 2007-01-03 米德列斯公司 Ip-10抗体及其用途

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1889979A (zh) * 2003-12-10 2007-01-03 米德列斯公司 Ip-10抗体及其用途
US20060040329A1 (en) * 2004-08-17 2006-02-23 David Kelvin CXCL10-based diagnosis and treatment of respiratory illnesses
WO2006039819A1 (en) * 2004-10-15 2006-04-20 St. Michael's Hospital Markers of lung injury

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017220989A1 (en) 2016-06-20 2017-12-28 Kymab Limited Anti-pd-l1 and il-2 cytokines
WO2017220988A1 (en) 2016-06-20 2017-12-28 Kymab Limited Multispecific antibodies for immuno-oncology
WO2017220990A1 (en) 2016-06-20 2017-12-28 Kymab Limited Anti-pd-l1 antibodies

Also Published As

Publication number Publication date
CN103417967B (zh) 2017-05-10
CN103417967A (zh) 2013-12-04

Similar Documents

Publication Publication Date Title
Wang et al. Xuanfei Baidu Decoction reduces acute lung injury by regulating infiltration of neutrophils and macrophages via PD-1/IL17A pathway
Zhu et al. An intranasal ASO therapeutic targeting SARS-CoV-2
Qu et al. Newcastle disease virus infection triggers HMGB1 release to promote the inflammatory response
Okino et al. Early immune responses and development of pathogenesis of avian infectious bronchitis viruses with different virulence profiles
JP6775424B2 (ja) リポ多糖を欠損する細胞構成要素をベースとしたアシネトバクター・バウマニワクチン
Lion et al. Enhanced pathogenesis caused by influenza D virus and Mycoplasma bovis coinfection in calves: A disease severity linked with overexpression of IFN-γ as a key player of the enhanced innate immune response in lungs
WO2012113343A1 (zh) Il-17抑制剂在制备治疗和/或预防肺损伤的药物中的用途
US11613750B2 (en) Methods of reducing virus molecule levels
WO2013170735A1 (zh) 治疗和/或预防肺损伤的方法
Gedefaw et al. Targeting inflammasome activation in COVID-19: delivery of RNA interference-based therapeutic molecules
WO2021251453A1 (ja) 核酸脂質粒子ワクチン
CN113475463B (zh) 一种新型冠状病毒致肺损伤动物模型的建立方法及其小鼠模型
CN110468130B (zh) 流感长链非编码RNA-lnc330及其应用
US10240150B2 (en) Avian influenza virus miRNA, and appraisal, detection, and application thereof
CN113144194B (zh) 一种GP73抑制剂在制备治疗SARS-CoV-2肺炎及其并发症的药物中的应用
RU2526146C2 (ru) Способ профилактики и лечения бронхиальной астмы, осложняющих ее респираторных вирусных инфекций и других воспалительных заболеваний дыхательных путей
Zhang et al. Recombinant hemagglutinin displaying on yeast reshapes congenital lymphocyte subsets to prompt optimized systemic immune protection against avian influenza infection
CN113577242A (zh) Nlrp12在制备治疗冠状病毒感染或相关的炎症性疾病的药物中的应用
Streblow et al. Aerosol delivery of SARS-CoV-2 human monoclonal antibodies in macaques limits viral replication and lung pathology
JP2023526529A (ja) サイトカイン放出症候群の診断及び処置の方法
TWI378800B (en) Development of asthma therapy with raav-mediated amcase shrna
Zhang et al. Regulatory role of ncRNAs in pulmonary epithelial and endothelial barriers: Molecular therapy clues of influenza-induced acute lung injury
KR101369527B1 (ko) 천식 및 비염 질환의 치료효과를 갖는 MDC 유전자의 siRNA 및 이를 함유하는 조성물
US20220218668A1 (en) Compositions and methods for treating viral infection
WO2023086386A1 (en) Treatment of 2019-ncov using sirnas against tgfb1 and cox2

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13791053

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13791053

Country of ref document: EP

Kind code of ref document: A1