WO2012113095A1 - 坐标信息转换及显示系统 - Google Patents

坐标信息转换及显示系统 Download PDF

Info

Publication number
WO2012113095A1
WO2012113095A1 PCT/CN2011/000272 CN2011000272W WO2012113095A1 WO 2012113095 A1 WO2012113095 A1 WO 2012113095A1 CN 2011000272 W CN2011000272 W CN 2011000272W WO 2012113095 A1 WO2012113095 A1 WO 2012113095A1
Authority
WO
WIPO (PCT)
Prior art keywords
coordinate
image
area
module
axis
Prior art date
Application number
PCT/CN2011/000272
Other languages
English (en)
French (fr)
Inventor
彭炘烽
Original Assignee
Peng Hsin-Fung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peng Hsin-Fung filed Critical Peng Hsin-Fung
Priority to PCT/CN2011/000272 priority Critical patent/WO2012113095A1/zh
Publication of WO2012113095A1 publication Critical patent/WO2012113095A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V2201/00Indexing scheme relating to image or video recognition or understanding
    • G06V2201/02Recognising information on displays, dials, clocks

Definitions

  • the invention relates to synchronous conversion of coordinate data, in particular to capturing a coordinate area image of a machine tool controller, and converting the coordinate area image into coordinate values for calculation by a computer system by the image recognition and conversion technology of the present invention, and The synchronization is displayed on the screen interface of the measurement system for use by the measurement system.
  • the contact measurement method was the main means of object detection engineering.
  • different gauges and fixtures must be designed for different objects or objects to be tested.
  • the jig locates the object to be tested at a specific detection position, and under the condition that the basis is satisfied, the measured value obtained by using the corresponding gage will be effective and available.
  • the production and design of jigs and gages are very complicated and time-consuming, and complicated pre-operations are required before the test, such as positioning of the object to be tested, positioning and calibration, contact position setting of the gage, etc., which is quite cumbersome and time consuming.
  • the cost of testing operations is relatively high.
  • Today's industrial products are characterized by diversification, miniaturization and precision.
  • the above-mentioned contact measurement method is a challenging, burdensome and misaligned work for the inspectors.
  • a correct measurement system can be used to further achieve high-precision machining operations, and direct measurement of machining on-line is an important basis for precision machining.
  • Today's precision measurement has been improved to match the measurement of high-precision optical lenses to assist in machining operations.
  • the range of optical lenses is limited, and must be matched with the optical scale or encoder of each axis of the tool itself. Achieve a wide range of precision measurements.
  • the tool machinery brands vary, the optical scales, encoder specifications, modes, and signals used are different, and even the optical signals are not opened. Therefore, it is perfectly applicable to various brands of tool machinery.
  • the specifications of the optical ruler, encoder, etc., the manufacturing cost of the measurement system will be extremely high, and it will not be popularized by most of the processing industry. In this way, the industry trend of more and more precision machining will obviously hinder its development.
  • the object of the present invention is to provide a coordinate information conversion and display system, which is characterized in that an image capturing method is used to capture a coordinate area image from a screen of a machine controller, and the coordinate area image includes X, ⁇ , ⁇
  • the coordinate digital image of the axis, the coordinate number in the coordinate digital image is measured by the optical scale of the tool machine itself and displayed in the screen of the 3 ⁇ 4 controller.
  • the invention converts the coordinate digital image into an achievable coordinate value through image recognition and conversion technology, and eliminates the problem of the direct interpretation tool mechanical optical scale or encoder, that is equivalent to direct acquisition of optical
  • the coordinate values of the X, ⁇ , and ⁇ axes of the ruler or encoder but the present invention is not subject to the technical specifications of the optical ruler or the encoder because it does not involve the electronic signal of the optical scale or the encoder, and the optical signal is extracted.
  • any tool machine, any size optical encoder or encoder can use the image recognition and conversion technology of the present invention to indirectly obtain the coordinate values of the X, ⁇ , and ⁇ axes of the tool mechanical optical scale or encoder.
  • the present invention simultaneously acquires the image of the coordinate area and simultaneously performs three steps of image data recognition, conversion and display, thereby achieving synchronous, real-time, high-efficiency, high-correctness data conversion purposes, and is converted.
  • the subsequent coordinate value data can be utilized and operated by the program system.
  • a coordinate information conversion and display system mainly includes:
  • An image capturing module configured to perform a step of capturing a coordinate area image from a controller screen of a machine tool; the coordinate area image includes a coordinate digital image;
  • An image receiving module is coupled to the image capturing module, receives the coordinate area image, and displays the coordinate area image on an operation interface;
  • An identification area setting module is coupled to the image receiving module, and an operation tool (such as a mouse) is provided in the operation interface, for the user to set the area to be identified in the coordinate area image; a recognition and conversion module, and The identification area setting module is coupled to receive the information of the to-be-identified area, and convert the coordinate digital image in the to-be-identified area into X, ⁇ , and ⁇ coordinate values available for system operation, and is represented by the operation interface. A result is displayed in the block.
  • an operation tool such as a mouse
  • a system for converting and displaying coordinate information includes the following steps: Coordinate area image capture and transfer step: an image capture module is used to capture an X, ⁇ , and ⁇ coordinate coordinate area image in the machine tool controller screen, and the coordinate area image includes a coordinate digital image; the image capture module Transmitting the coordinate area image to an image receiving module, the image receiving module displaying the X, ⁇ , and ⁇ axis coordinate area images in an operation interface;
  • the identification area setting step is: the user sets an operation tool provided by the recognition area setting module, in the operation interface, sets a plurality of to-be-identified areas for the X, ⁇ , and the axis coordinate area image, and the The data of the area to be identified is transmitted to an identification and conversion module;
  • the recognition and conversion module converts the X, ⁇ , and ⁇ coordinate digital images in the to-be-identified area into X, ⁇ , and ⁇ coordinate values available for system operation, and synchronizes the operation
  • a result of the interface is displayed in the block, and in the recognition process, digital image samples of 0 ⁇ 9 need to be set for identification system identification.
  • FIG. 1 is a block diagram of a system block of the present invention
  • FIG. 2 is a schematic diagram of the implementation of the system of the present invention.
  • FIG. 3 is a schematic diagram of a controller image capturing device in the system of the present invention.
  • FIG. 4 is a schematic diagram of an image of a coordinate area captured by the system of the present invention.
  • Figure 5 is a schematic diagram of the operation interface
  • FIG. 6 is a schematic diagram of a user setting an area to be identified
  • FIG. 7 is a schematic diagram of a system coordinate value input interface according to the present invention.
  • Figure 8 is a flow chart of the method of the present invention.
  • the coordinate information conversion and display system of the present invention mainly includes an image capturing module. 20.
  • An image receiving module 21 an identification area setting module 22, an identification and conversion module 24.
  • the image capturing module 20 captures an X, Y, and a picture from the controller 52 of a machine tool 10.
  • the axis optical scale signal is interpreted and displayed on the controller screen.
  • the image receiving module 21 is coupled to the image capturing module 20 to receive the above
  • the identification area setting module 22 is coupled to the image receiving module 21, and an operation tool (such as a mouse) is provided in the operation interface for the user to set the to-be-identified area in the coordinate area image 30;
  • an operation tool such as a mouse
  • An identification and conversion module 24 is coupled to the identification area setting module 22, and receives information of the to-be-identified area, and converts the X, ⁇ , and ⁇ -axis coordinate digital images in the to-be-identified area into coordinates for system operation.
  • the values are synchronously displayed in a result display block 212 of the operation interface 211.
  • the numbers of 0 to 9 are first set to correspond to the X, ⁇ , and ⁇ axis image samples for identification by the recognition system.
  • the machine table 11 of the machine tool 10 is equipped with an optical scale or an encoder to detect the displacement of the X, Y, and ⁇ axes.
  • An object to be tested 50 is fixed to the machine table 11.
  • An object taking lens 51 images the object 50 and transmits the image to a first display 53 coupled to the controller 52 of the machine tool 10.
  • the controller 50 and the first display 53 can perform the required measurement work on the object to be tested 50, wherein the controller 52 of the machine tool 10 has a coordinate display area 531 to display the tool.
  • Coordinate area image capturing and transmitting step As shown in FIG. 3, the image capturing module 20 captures the first display with the taking lens 201.
  • the coordinate display area 531 in the 53 screen generates an X, ⁇ , ⁇ three-axis coordinate area image 30 (Fig. 4) having X, ⁇ , ⁇ three-axis character image 31 and coordinate digital image 32 in the coordinate area image 30.
  • the image capturing module 20 transmits the X, ⁇ , and ⁇ -axis coordinate area image 30 to the image receiving module 21, and the image receiving module 21 presents the X, ⁇ , and ⁇ -axis coordinate area image 30 to an operation interface 211.
  • Identification area setting step The identification area setting module 22 provides an operation tool in the operation interface 211 for the user to set the X, Y, Z axis coordinate to be identified in the screen image.
  • the operation tool is a mouse cross cursor 221 for the user to select a frame of X, ⁇ , and ⁇ -axis coordinate digital images 32 in the coordinate area image 30 to become a plurality of areas to be identified.
  • the frame selection mode as shown in FIG.
  • the user selects the coordinate axes of the cross cursor 221, respectively, the upper and lower coordinate points of the digital image of each axis coordinate of the X, ⁇ , and ⁇ axis coordinate digital images 32, and then The coordinate axes of the cross cursor 221 are respectively selected through the center point of each digital image in the coordinate digital image 32 of any one of the three axes, thereby forming an identification area such as a cross.
  • the recognition area setting module 22 provides the two-dimensional coordinate value of the cross cursor 221 in real time, whereby the user can obtain the upper limit coordinate 61, the lower limit coordinate 62, and the center coordinate 63.
  • An upper limit coordinate 61, a lower limit coordinate 62, and a center coordinate 63 constitute an area to be identified.
  • the user can input the upper limit coordinate 61, the lower limit coordinate 62 and the central coordinate 63_ into a corresponding frame through a coordinate value input interface 66, so that the identification and conversion module 24 obtains each A data of the area to be identified.
  • FIG. 7 depicts a general state of the coordinate value input interface 66, an upper limit coordinate input field frame 661 having X, ⁇ , and ⁇ axes, a lower limit coordinate input field frame 662, and a center coordinate input field frame 663, and the user is in each frame.
  • the upper limit coordinate 61, the lower limit coordinate 62, and the center coordinate 63 are input separately.
  • the recognition and conversion module 24 identifies the coordinate digital image 32 of each area to be identified, and converts it into numerical data available for system operation, and displays it in Arabic numerals on one of the operation interfaces 211. The result is displayed in block 212, as shown in FIG. Correspondingly, in the identification process, it is necessary to first set a number from 0 to 9 and a digital image of the X, ⁇ , and x-axis coordinates to correspond to each other for identification by the recognition system.
  • the identification area setting step is performed when the system of the present invention is embedded in the machine control system, and then, after the image capturing module 20 captures a coordinate area image 30, the image recognition and conversion steps are performed, thereby
  • the coordinate digital image in the X, ⁇ , and ⁇ axis coordinate area images is converted into X, ⁇ , and ⁇ axis coordinate values for use in system operations, and simultaneously displayed in the system screen of the present invention for measurement system operation. Parameter setting.
  • the present invention captures an X, ⁇ , and ⁇ -axis coordinate area image 30 from a screen of a machine controller by means of image capture, and uses the image recognition and conversion technique to X, ⁇ ,
  • the coordinate digital image 32 in the Z-axis coordinate area image 30 is converted into an operable X, Y, and ⁇ coordinate value, and the result of the conversion is displayed on the measurement interface in real time synchronization.
  • three steps of simultaneously recognizing, converting, and displaying image data are achieved, thereby achieving synchronization, real-time, high efficiency, and high accuracy of data conversion purposes.
  • the converted X, ⁇ , and ⁇ axis coordinate value data can be utilized and calculated by the measurement program system.
  • the present invention does not involve the electronic signal of the optical scale or the encoder, and the optical signal extraction technique, so it is not subject to the specifications of the optical scale or the encoder, so any machine tool, any size optical encoder or encoder
  • the X, ⁇ , and ⁇ axis coordinate values displayed by the optical scale or the encoder can be obtained by using the image recognition and conversion technology of the present invention, and are used for measurement system calculation.

Description

坐标信息转换及显示系统 技术领域
本发明涉及坐标数据同步转换, 特别是撷取一工具机控制器的坐标 区域图像, 通过本发明的图像识别及转换技术, 将该坐标区域图像转换 为可供计算机系统运算的坐标值, 并将其同步的显示于量测系统的屏幕 界面上, 供量测系统使用。
背景技术
早期的工业领域中, 接触式量测法为对象检测工程的主要手段。 为 达到精确测量的要求, 需针对不同的对象或对象上的待测目标设计不同 的检具和治具。 治具将待测对象定位在特定的检测位置, 在此一基础被 满足的条件下, 利用对应的检具取得的量测值将是有效的且具有可利用 性。 但是治具和检具的制作和设计非常复杂耗时, 且检测之前尚需经过 复杂的前置作业,例如待测对象定位、定位校准、检具的接触位置设定…. 等, 相当繁琐费时, 检测作业的成本相对高昂。 而现今工业产品具有多 样化、 微型化和精密化的特征, 上述的接触式量测法对于检测人员而言 是一项充满挑战、 负担以及失准率的工作。
为了解决这个问题, 高精密非接触式量测手段在近几年被陆续提出, 且目前仍在不断的发展中。 己知的非接触式量测手段包括雷射、 超音波、 光学以及图像量测…等等, 皆不外乎在为高精密的加工服务。
有正确的量测系统才能进一步做到高精密度的加工作业, 而加工在 线的直接量测, 更是精密加工的重要基础。 如今的精密量测, 已进步到 配合高精密光学镜头来辅助加工作业的量测, 然而, 光学镜头的范围毕 竟有限, 必须配合工具机械本身各轴的光学尺或编码器 (encoder)等, 方能 达到较大范围的精密量测。 但是, 工具机械厂牌各异, 所使用的光学尺、 编码器规格、 模式、 信号各不相同, 甚至不开放光学信号的撷取, 因此; 若要完全适用于各种厂牌的工具机械的光学尺、 编码器等规格, 则量测 系统的制造成本, 将极其高昂, 无法普及大多数的加工业者, 如此; 将 越来越要求精密加工的产业趋势而言, 明显阻碍其发展。
如何能以较低阶方式及成本, 获得大范围及高精密的量测系统, 使 一般多数加工业者受惠, 则为本发明人所积极追求的目的及方向, 因此, 本发明发明人提出了一个新颖的技术方案, 来解决并辅助精密量测系统 的此一问题。 发明内容
本发明的目的是提供一种坐标信息转换及显示系统, 其特点是利用 图像撷取手段从一机台控制器的画面中撷取一坐标区域图像, 该坐标区 域图像中包含 X、 Υ、 Ζ轴的坐标数字图像, 该坐标数字图像中的坐标数 字是由工具机械本身的光学尺量测而得并显示在 ¾制器的画面中。 本发 明通过图像识别及转换技术, 将该坐标数字图像转换为可运算的坐标值, 免去直接解译工具机械光学尺或编码器 (encoder)的上揭所叙问题,即等同 于直接取得光学尺或编码器的 X、 Υ、 Ζ轴的坐标数值, 但本发明因不涉 及光学尺或编码器的电子信号、 光学信号的撷取技术, 所以不受制于光 学尺或编码器的技术规格, 换言之, 任何工具机械, 任何规格的光学尺 或编码器 (encoder)均可以利用本发明的图像识别及转换技术,间接的取得 工具机械光学尺或编码器的 X、 Υ、 Ζ轴的坐标数值。 更进一步的, 本发 明于撷取该坐标区域图像的同时随即同步进行图像数据的识别、 转换及 显示等三个步骤, 达到同步、 实时、 高效率、 高正确性的数据转换目的, 且经转换后的坐标值数据可供程序系统利用及运算。
一种坐标信息转换及显示系统, 主要包括:
一图像撷取模块, 执行从一工具机的控制器画面中撷取一坐标区域 图像的步骤; 该坐标区域图像中包含坐标数字图像;
一图像接收模块, 与该图像撷取模块耦合, 接收上述坐标区域图像, 并将该坐标区域图像显示于一操作界面; '
一识别区域设定模块, 与该图像接收模块耦合, 在该操作界面中提 供操作工具 (如: 鼠标), 供使用者在该坐标区域图像中设定待识别区域; 一识别及转换模块, 与该识别区域设定模块耦合, 接收该待识别区 域的信息,将该待识别区域中的坐标数字图像,转换为可供系统运算的 X、 Υ、 Ζ轴坐标数值, 并表现于该操作界面的一结果显示区块中。
一种坐标信息转换及显示方法系统, 包括以下步骤: 坐标区域图像撷取暨传送步骤: 以一图像撷取模块撷取工具机控制 器画面中的 X、 Υ、 Ζ轴坐标区域图像, 该坐标区域图像中包含了坐标数 字图像; 该图像撷取模块将该坐标区域图像传送至一图像接收模块, 该 图像接收模块在一操作界面中显示该 X、 Υ、 Ζ轴坐标区域图像;
识别区域设定步骤: 使用者通过一识别区域设定模块所提供的操作 工具, 在该操作界面中, 对该 X、 Υ、 Ζ轴坐标区域图像, 设定多个待识 别区域, 并将该待识别区域的数据传送至一识别及转换模块;
识别及转换步骤: 该识别及转换模块将该待识别区域中的 X、 Υ、 ζ轴坐 标数字图像, 转换为可供系统运算的 X、 Υ、 Ζ轴坐标数值, 并同步的表 现于该操作界面的一结果显示区块中, 而在识别过程需先设定 0~9 的数 字图像样本, 以供识别系统识别。 附图说明
图 1为本发明系统方块配置图;
图 2为本发明系统的实施基础示意图之一;
图 3为本发明系统中控制器图像撷取装置示意图;
图 4为本发明系统所撷取的坐标区域图像示意图;
图 5为操作界面示意图;
图 6为使用者设定待识别区域的示意图;
图 7为本发明系统坐标值输入界面的示意图;
图 8为本发明方法流程图。
【主要组件符号说明】
10-工具机
11-机台
20-图像撷取模块 ;
201-取像镜头
21-图像接收模块 211-操作界面
212-结果显示区块
22-识别区域设定模块
221-十字游标
24-识别及转换模块
30-坐标区域图像
31- Χ,Υ,Ζ三轴文字图像
32-坐标数字图像
50-待测物件
51-物件取像镜头
52-控制器
53-第一显示器
531-坐标显示区
61-上限坐标
62-下限坐标
63-中心坐标
66-坐标值输入界面
661-上限坐标输入栏框
662-下限坐标输入栏框
663-中心坐标输入栏框 具体实施方式
为便于说明本发明于上述发明内容一栏中所表示的中心思想, 兹以 具体实施例表达。 实施例中各种不同对象是按适于说明的比例、 尺寸、 变形量或位移量而描绘, 而非按实际组件的比例予以绘制, 合先叙明。 且以下的说明中, 类似的组件是以相同的编号来表示。
如图 1, 本发明坐标信息转换及显示系统, 主要包括一图像撷取模块 20、一图像接收模块 21,一识别区域设定模块 22,—识别及转换模块 24。 该图像撷取模块 20从一工具机 10的控制器 52画面中撷取一 X、 Y、
Ζ轴坐标区域图像 30, 如图 4所示; 该坐标区域图像 30中包含坐标数字 图像 32; 该坐标数字图像 32中的坐标数字, 是由工具机本身的 X、 Υ、
Ζ轴光学尺信号所解译, 而显示于该控制器屏幕上。
如图 5, 该图像接收模块 21, 与该图像撷取模块 20耦合, 接收上述
X、 Υ、 Ζ轴坐标区域图像 30, 并将该坐标区域图像 30显示于一操作界 面 211 ;
该识别区域设定模块 22, 与该图像接收模块 21耦合, 在该操作界面 中提供操作工具 (如: 鼠标), 供使用者在该坐标区域图像 30 中设定待识 别区域;
一识别及转换模块 24, 与该识别区域设定模块 22耦合, 接收该待识 别区域的信息, 将该待识别区域中的 X、 Υ、 Ζ轴坐标数字图像, 转换为 可供系统运算的坐标数值, 并同步表现于该操作界面 211 的一结果显示 区块 212中, 而在识别过程需先设定 0~9的数字与 X、 Υ、 Ζ轴图像样本 相互对应, 以供识别系统识别。
以下举一实例说明上述各模块的运作步骤, 如图 2, 一工具机 10的 机台 11配备有光学尺或编码器 (encoder), 以检测 X、 Y、 Ζ三轴的位移。 一待测物件 50被固定于该机台 11上。 一对象取像镜头 51对该对象 50 进行取像, 并将图像传输至与工具机 10的控制器 52耦合的第一显示器 53。 可通过该控制器 52及该第一显示器 53对该待测对象 50进行所需的 量测工作, 其中; 该工具机 10的控制器 52的屏幕上, 会有坐标显示区 531以显示该工具机目前的 X、 Υ、 Ζ三轴坐标值。
如图 3-8所示, 通过本发明上述各模块, 依序实施以下步骤: 坐标区域图像撷取及传送步骤: 如图 3, 该图像撷取模块 20以取像 镜头 201拍摄该第一显示器 53画面中的坐标显示区 531, 产生一 X、 Υ、 Ζ三轴坐标区域图像 30(如图 4), 该坐标区域图像 30中具备 X、 Υ、 Ζ三 轴文字图像 31 以及坐标数字图像 32。 该图像撷取模块 20将该 X、 Υ、 Ζ 轴坐标区域图像 30, 传送至该图像接收模块 21, 该图像接收模块 21将 该 X、 Υ、 Ζ轴坐标区域图像 30表现于一操作界面 211, 如图 5。 识别区域设定步骤: 该识别区域设定模块 22在该操作界面 211中提 供一操作工具, 供使用者于屏幕画面中设定 X、 Y、 Z轴坐标待识别区域。 所述的操作工具为一鼠标十字光标 221, 供使用者在该坐标区域图像 30 中将 X、 Υ、 Ζ轴坐标数字图像 32—个一个的框选出来, 而成为复数个 待识别区域。 框选方式, 如图 6, 使用者将该十字光标 221的坐标轴, 分 别点选该 X、 Υ、 Ζ轴坐标数字图像 32中每一轴坐标数字图像的上限及 下限坐标点, 之后再将十字游标 221 的坐标轴, 分别点选经过该三轴中 任一轴的坐标数字图像 32中每一数字图像的中心点, 以此形成一如十字 交差的识别区域。 该十字光标 221移动时, 该识别区域设定模块 22, 实 时的提供十字光标 221的二维坐标值, 据此, 使用者可获得上限坐标 61、 下限坐标 62以及中心坐标 63。 而一个上限坐标 61、 一个下限坐标 62、 与一个中心坐标 63即构成一个待识别区域。 请参阅图 7所示; 使用者可 通过一坐标值输入界面 66, 将该上限坐标 61、 下限坐标 62 以及中心坐 标 63—一输入相对应的栏框中, 使该识别及转换模块 24获得每一个待 识别区域的数据。 图 7描述该坐标值输入界面 66的大致样态, 具有 X、 Υ、 Ζ轴的上限坐标输入栏框 661, 下限坐标输入栏框 662以及中心坐标 输入栏框 663, 使用者在各栏框中分别输入该上限坐标 61、 下限坐标 62 以及中心坐标 63。
图像识别及转换步骤: 该识别及转换模块 24将对每一个待识别区域 的坐标数字图像 32进行识别, 并转换成可供系统运算的数值数据, 并以 阿拉伯数字显示于该操作界面 211的一结果显示区块 212中, 如图 5。 相 应的是, 在识别过程需先设定 0〜9的数字与 X、 Υ、 Ζ轴坐标数字图像样 本, 相互对应, 以供识别系统识别。
上述识别区域设定步骤, 是在本发明系统嵌入机台控制系统时执行 即可, 嗣后, 当该图像撷取模块 20撷取一坐标区域图像 30后, 随即进 行图像识别及转换步骤, 从而将 X、 Υ、 Ζ轴坐标区域图像中的坐标数字 图像, 转换成可供系统运算使用的 X、 Υ、 Ζ轴坐标值, 并同步显示于本 发明的系统画面中, 以供量测系统运算的参数设定。
综上所陈, 本发明利用图像撷取手段从一机台控制器的画面中撷取 一 X、 Υ、 Ζ轴坐标区域图像 30, 通过图像识别及转换技术, 将该 X、 Υ、 Z轴坐标区域图像 30中的坐标数字图像 32, 转换为可运算的 X、 Y、 Ζ 轴坐标值, 并实时同步的将转换的结果显示于量测界面。 据此本发明在 撷取 X、 Υ、 Ζ轴坐标区域图像之时, 即同步进行图像数据的识别、 转换 及显示等三个步骤, 达到同步、 实时、 高效率、 高正确性的数据转换目 的, 且经转换后的 X、 Υ、 Ζ轴坐标值数据可供量测程序系统利用及运算。 而本发明不涉及光学尺或编码器 (encoder)的电子信号、光学信号的撷取技 术, 所以不受制于光学尺或编码器的技术规格, 因此任何工具机, 任何 规格的光学尺或编码器模示, 均可以利用本发明的图像识别及转换技术 取得光学尺或编码器所显示的 X、 Υ、 Ζ轴坐标值, 并供量测系统运算。
虽然本发明是以最佳实施例做说明, 但精于此技艺者能在不脱离本 发明精神与范畴下做各种不同形式的改变。 以上所举实施例仅用以说明 本发明而己, 非用以限制本发明的范围。 举凡不违本发明精神所从事的 种种修改或变化, 俱落入本发明权利要求的范围。

Claims

权利要求
1、 一种坐标信息转换及显示系统, 主要包括:
一图像撷取模块,执行从一工具机的控制器画面中撷取一 X、 Y、 Ζ轴坐标区域图像, 该坐标区域图像中包含 X、 Υ、 Ζ轴坐标数字图 像;
一识别及转换模块, 与该图像撷取模块耦合, 接收该 X、 Υ、 ζ 轴坐标区域图像, 将该坐标区域图像中的 X、 Υ、 Ζ轴坐标数字图像, 转换为可供系统运算的坐标数值,并同步表现于一操作界面的结果显 示区块中。
2、 如权利要求 1所述的坐标信息转换及显示系统, 其中, 上述 图像撷取模块以一取像镜头拍摄该工具机的控制器画面,从而取得该
X、 Υ、 Ζ轴坐标区域图像。
3、如权利要求 1所述的坐标信息转换及显示系统,其中还包括: 一图像接收模块及一识别区域设定模块;该图像接收模块与该图像撷 取模块耦合, 接收上述 X、 Υ、 Ζ轴坐标区域图像, 并将该坐标区域 图像, 显示于该操作界面; 该识别区域设定模块, 与该图像接收模块 耦合, 在该操作界面中提供操作工具, 供使用者在该 X、 Υ、 Ζ轴坐 标区域图像中设定待识别区域,该待识别区域提供给该识别及转换模 块, 以将坐标数字图像转换为坐标数值。
4、 如权利要求 3所述的坐标信息转换及显示系统, 所述的操作 工具为一鼠标十字光标, 供使用者在该 X、 Υ、 Ζ轴坐标区域图像中 将坐标数字图像一一的点选成为各待识别区域。
5、如权利要求 4所述的坐标信息转换及显示系统,其中,该 X、 Υ、 Ζ轴待识别区域, 是由一上限坐标、 一下限坐标、 以及一中心坐 标所构成;该上限坐标是由该十字游标的坐标轴经过该坐标数字图像 的上限坐标点所取得,该下限坐标是由该十字游标的坐标轴经过该坐 标数字图像的下限坐标点所取得,该中心坐标是由该十字光标的坐标 点,点选该三轴坐标值中任一坐标值中的所有坐标数字图像的中心点 所取得。
6、 如权利要求 5所述的坐标信息转换及显示系统, 其中, 该上 限坐标、 下限坐标、 以及中心坐标, 是通过一个坐标值输入界面而传 输给该识别及转换模块。
7、 一种坐标信息转换及显示方法, 该方法包括步骤: 一坐标区域图像撷取及传送步骤:以一图像撷取模块撷取一工具 机控制器画面中的 X、 Υ、 ζ轴坐标区域图像, 该坐标区域图像中包 含了坐标数字图像; 该图像撷取模块将该 X、 Υ、 Ζ轴坐标区域图像 传送至一识别及转换模块;
识别及转换步骤: 该识别及转换模块将该 X、 Υ、 ζ轴坐标区域 图像中的坐标数字图像转换为可供系统运算的坐标数值,并同步显示 于一操作界面的一结果显示区块中, 在识别过程需先设定 0〜9的数 字与 X、 Υ、 Ζ轴坐标数字图像样本, 相互对应, 以供识别及转换模 块识别。
8、 如权利要求 7所述的坐标信息转换及显示方法, 其还包含一 识别区域设定步骤,该识别区域设定步骤介于该坐标区域图像撷取及 传送步骤以及识别及转换步骤之间,使用者通过一识别区域设定模块 所提供的操作工具, 在一操作界面中, 对该 X、 Υ、 Ζ轴坐标区域图 像设定多个待识别区域,并将该待识别区域的数据传送至该识别及转 换模块。
PCT/CN2011/000272 2011-02-22 2011-02-22 坐标信息转换及显示系统 WO2012113095A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/000272 WO2012113095A1 (zh) 2011-02-22 2011-02-22 坐标信息转换及显示系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/000272 WO2012113095A1 (zh) 2011-02-22 2011-02-22 坐标信息转换及显示系统

Publications (1)

Publication Number Publication Date
WO2012113095A1 true WO2012113095A1 (zh) 2012-08-30

Family

ID=46720063

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/000272 WO2012113095A1 (zh) 2011-02-22 2011-02-22 坐标信息转换及显示系统

Country Status (1)

Country Link
WO (1) WO2012113095A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020115217A1 (de) * 2018-12-06 2020-06-11 company42 GmbH Erfassungsvorrichtung für ein nachrüsten einer erfassungsfunktionalität
WO2020115215A1 (de) * 2018-12-06 2020-06-11 company42 GmbH Verfahren zur erfassung eines ausgabeparameters einer ausgabeeinheit einer maschine
WO2020115214A1 (de) * 2018-12-06 2020-06-11 company42 GmbH Verfahren zur konfiguration einer erfassungsvorrichtung

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11249863A (ja) * 1998-03-06 1999-09-17 Mitsubishi Electric Corp 座標表示装置
CN1794268A (zh) * 2005-12-21 2006-06-28 兰州大学 从记录于坐标纸上的曲线函数提取数据的方法
CN101059364A (zh) * 2007-04-24 2007-10-24 中国科学院合肥物质科学研究院 字符条码计量指示字轮的图像直读方法
CN101771752A (zh) * 2009-12-29 2010-07-07 中兴通讯股份有限公司 一种手机电视文字信息提取方法及具备该功能的移动终端
CN101964057A (zh) * 2010-07-28 2011-02-02 中国人民解放军海军航空工程学院青岛分院 机载平显记录视频信息的动态提取方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11249863A (ja) * 1998-03-06 1999-09-17 Mitsubishi Electric Corp 座標表示装置
CN1794268A (zh) * 2005-12-21 2006-06-28 兰州大学 从记录于坐标纸上的曲线函数提取数据的方法
CN101059364A (zh) * 2007-04-24 2007-10-24 中国科学院合肥物质科学研究院 字符条码计量指示字轮的图像直读方法
CN101771752A (zh) * 2009-12-29 2010-07-07 中兴通讯股份有限公司 一种手机电视文字信息提取方法及具备该功能的移动终端
CN101964057A (zh) * 2010-07-28 2011-02-02 中国人民解放军海军航空工程学院青岛分院 机载平显记录视频信息的动态提取方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020115217A1 (de) * 2018-12-06 2020-06-11 company42 GmbH Erfassungsvorrichtung für ein nachrüsten einer erfassungsfunktionalität
WO2020115215A1 (de) * 2018-12-06 2020-06-11 company42 GmbH Verfahren zur erfassung eines ausgabeparameters einer ausgabeeinheit einer maschine
WO2020115214A1 (de) * 2018-12-06 2020-06-11 company42 GmbH Verfahren zur konfiguration einer erfassungsvorrichtung

Similar Documents

Publication Publication Date Title
CN106052607B (zh) 多传感器测量机坐标统一和精度检定的标准器及使用方法
CN112683215A (zh) 生成关于坐标测量机的传感器链的信息的方法
JP7211805B2 (ja) 位置測定デバイス、寸法計測測定システムの動作方法及び位置測定デバイスの動作方法
CN108188835B (zh) 基于机器视觉的数控机床主轴热伸长测试装置及测试方法
CN206132015U (zh) 多传感器测量机坐标统一和精度检定的标准器
CN108627104A (zh) 一种零部件高度尺寸的点激光测量方法
JP7282962B2 (ja) アナログ測定工具の測定値の読み取り装置
CN111929566A (zh) 晶圆测试方法、装置及其控制设备
CN103831669A (zh) 圆度误差在线测量系统及测量方法
CN107020634A (zh) 一种射频连接器装配机器人的控制系统
WO2012113095A1 (zh) 坐标信息转换及显示系统
CN104316530A (zh) 一种零部件检测方法及应用
CN103383240A (zh) 机器视觉二维检测平台装置
JP2012037257A (ja) 測定設定データ作成装置、測定設定データ作成方法及び測定設定データ作成装置用のプログラム
CN108627103A (zh) 一种零部件高度尺寸的2d激光测量方法
CN104034259A (zh) 一种影像测量仪校正方法
JP2020089963A (ja) ロボットシステムおよび座標変換方法
TWI419015B (zh) 座標資訊轉換及顯示系統
US10825216B2 (en) Apparatus for reading value measured with analog measuring tool
CN101660895B (zh) 准确定位被测要素位置的计算机系统及方法
CN205317153U (zh) 一种适合零部件使用的检测机构
CN111189396B (zh) 一种基于神经网络的增量绝对光栅尺的位移检测方法
TW201516383A (zh) 影像量測系統、影像量測系統的使用方法和終端裝置
CN114115126A (zh) 一种原位拉伸台控制系统及方法
CN113134848A (zh) 一种基于六轴机器人重复定位精度的测量方式

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11859630

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11859630

Country of ref document: EP

Kind code of ref document: A1