WO2012111868A1 - Substrate-processing system - Google Patents

Substrate-processing system Download PDF

Info

Publication number
WO2012111868A1
WO2012111868A1 PCT/KR2011/001231 KR2011001231W WO2012111868A1 WO 2012111868 A1 WO2012111868 A1 WO 2012111868A1 KR 2011001231 W KR2011001231 W KR 2011001231W WO 2012111868 A1 WO2012111868 A1 WO 2012111868A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
unit
abrasive
sand blasting
polishing
Prior art date
Application number
PCT/KR2011/001231
Other languages
French (fr)
Korean (ko)
Inventor
강진기
마재용
박홍진
이경호
Original Assignee
한솔테크닉스(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한솔테크닉스(주) filed Critical 한솔테크닉스(주)
Publication of WO2012111868A1 publication Critical patent/WO2012111868A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B51/00Arrangements for automatic control of a series of individual steps in grinding a workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C1/00Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods
    • B24C1/06Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods for producing matt surfaces, e.g. on plastic materials, on glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C3/00Abrasive blasting machines or devices; Plants
    • B24C3/32Abrasive blasting machines or devices; Plants designed for abrasive blasting of particular work, e.g. the internal surfaces of cylinder blocks
    • B24C3/322Abrasive blasting machines or devices; Plants designed for abrasive blasting of particular work, e.g. the internal surfaces of cylinder blocks for electrical components

Definitions

  • the present invention relates to a substrate processing system for manufacturing a substrate for a semiconductor device, and more particularly to a substrate processing system for manufacturing a substrate that can be used for high brightness light emitting diodes (LEDs).
  • LEDs light emitting diodes
  • Light emitting diodes have advantages in comparison with conventional light sources (fluorescent lamps, incandescent lamps), which are superior in brightness and power consumption, and have a small volume, a thin thickness, and no harmful substances such as mercury.
  • the light emitting diode is a directional light source, which enables selective illumination for each area. Therefore, the light emitting diode is used in various lightings, traffic lights, and electronic displays.
  • light emitting diodes are now widely used as back light units (BLUs) for displays such as mobile phones and LCDs.
  • BLUs back light units
  • Blue and green light emitting diodes are generally manufactured by epitaxially growing a GaN active layer on a sapphire substrate.
  • the light emitting efficiency of a light emitting diode is classified into an efficiency in which light is generated (internal quantum efficiency) and an efficiency in which generated light is emitted out of the device (external light extraction efficiency).
  • internal quantum efficiency an efficiency in which light is generated
  • external light extraction efficiency an efficiency in which generated light is emitted out of the device.
  • the biggest obstacle to the emission of light generated in the active layer of the light emitting diode to the outside is the internal total reflection due to the difference in refractive index between each layer of the light emitting diode.
  • the light emitted by the total internal reflection is emitted to the outside is only about 20% of the generated light.
  • the light that is not emitted to the outside is converted to heat while moving inside the light emitting diode, which shortens the life of the light emitting diode.
  • the surface roughness of the semiconductor layer (p-GaN layer or n-GaN layer) formed on the sapphire substrate is increased, or the surface of the sapphire substrate is roughened to be fine for several micrometers.
  • a method of forming a groove pattern has been studied.
  • the sapphire substrate on which the bending pattern is formed is called a patterned sapphire substrate (PSS).
  • PSS patterned sapphire substrate
  • the back surface roughness of the substrate is conventionally determined in a lapping process.
  • the lapping process is a process in which a single crystal sapphire ingot is sliced in the form of a wafer to reduce thickness variation of the wafer and provide surface roughness.
  • This lapping process is a double-sided lapping process, in order to have the desired surface roughness through the lapping process, not only the process time is long, but also the problem of using a large amount of abrasives and excessive waste of the lapping process, There is also difficulty in making one surface roughness.
  • the technical problem to be solved by the present invention is to provide a substrate processing system that is given a uniform roughness on the back.
  • the substrate processing system is a cutting unit for cutting the ingot (ingot) in the form of a wafer (slicing), and spraying abrasives on at least one surface of both sides of the substrate cut in the wafer form And a sand blasting unit for sand blasting, a heat treatment unit for heat-treating the sand blasted substrate, and a polishing unit for mirror polishing the entire surface of the heat-treated substrate.
  • the process of imparting roughness to the rear surface of the substrate by sand blasting may reduce the process time compared to the process of imparting roughness to the rear surface of the substrate by the conventional double-sided lapping process.
  • the sand blasting process does not use the expensive abrasive used in the conventional double-sided lapping process, it is possible to reduce the production cost when manufacturing the substrate.
  • FIG. 1 is a schematic configuration diagram of a substrate processing system according to an embodiment of the present invention.
  • FIG. 2 and 3 are schematic configuration diagrams of the blasting unit shown in FIG.
  • FIG. 4 is a view illustrating a state of blasting the substrate in the blasting unit.
  • FIG. 5 is a flowchart illustrating a process of processing a substrate with the substrate processing system according to the present embodiment.
  • Fig. 6 is a schematic diagram showing the shape of the sapphire wafer before sandblasting, after processing and after heat treatment.
  • FIG. 1 is a schematic configuration diagram of a substrate processing system according to an embodiment of the present invention
  • FIGS. 2 and 3 are schematic configuration diagrams of a blasting unit shown in FIG. 1
  • FIG. 4 is a blasting substrate in a blasting unit. The figure expresses the appearance.
  • the substrate processing system 100 includes a cutting unit 10, a lapping unit 20, a heat treatment unit 30, a polishing unit 40, and a sand.
  • the blasting unit 50 is included.
  • the cutting unit 10 cuts the ingot into a wafer form, wherein the ingot may be made of at least one of sapphire, LiTaO 3, and LiNbO 3 .
  • a wire saw or a multi wire saw can be employed as the cutting unit.
  • the lapping unit 20 is an apparatus for wrapping both sides of a substrate cut in a wafer form.
  • an apparatus in the form as mentioned in the prior art that is, in the form of lapping the substrate by contacting the polishing portion (polishing plate) to the substrate while supplying a slurry may be employed.
  • the heat treatment unit 30 is a device for heating the substrate to relieve damage (stress) accumulated in the substrate.
  • the polishing unit 40 is a device for polishing or mirror polishing a substrate.
  • the cutting unit 10 Since the cutting unit 10, the lapping unit 20, the heat treatment unit 30, and the polishing unit 40 are well known devices, the description thereof will be omitted.
  • the sand blasting unit 50 is for imparting uniform roughness to the substrate by spraying abrasives onto the substrate.
  • the sand blasting unit 50 includes a table 51, a storage unit 52, and an injection unit. 53, a recovery part 54, and a filter part 55 are included.
  • the table 51 is where the substrate is seated.
  • a plurality of substrates w are seated on the table 51, and the seated substrates are fixed to the table 51 by a vacuum suction method. And this table 51 is rotatably provided.
  • the storage unit 52 is a space in which the abrasive is stored.
  • the abrasive SiC, B 4 C, CeO 2 , SiO 2 , Al 2 O 3 , metal particles, and combinations thereof may be used. It is preferable that they are 50 micrometers-100 micrometers.
  • the injection unit 53 is for injecting the abrasive stored in the storage unit to the substrate, it is configured in the form of a nozzle.
  • the spraying unit 53 sprays the abrasive at a pressure of 0.25 MPa to 0.35 MPa at a position of about 10 to 20 cm away from the substrate seated on the table. And injection pressure is for optimizing the surface roughness of the substrate. Meanwhile, as shown in FIG. 4, in the state in which the table rotates, the injection unit 53 injects abrasive into the substrate while reciprocating, and a plurality of injection units may be provided to increase sandblasting efficiency.
  • the recovery unit 54 is for recovering the abrasive injected to the substrate, and may include a pump installed in the lower part of the table. In this case, the through hole is provided in the table so that the abrasive injected into the substrate can be introduced into the pump. (Flow path of the abrasive) (not shown) can be formed.
  • the filter part 55 is for separating the crushed abrasive particles among the recovered abrasives. That is, the abrasive may be crushed while hitting the substrate during the sand blasting process, the filter unit filters the crushed abrasive particles.
  • the filter unit may be configured in various forms. For example, by using a net having a plurality of holes having a predetermined size, particles smaller than the reference size and particles larger than the reference size may be separated from each other. In addition, the filter unit may be configured to separate only particles smaller than the reference size using centrifugal force.
  • the crushed particles separated in the filter unit 55 is stored (discarded) separately, only the uncrushed particles are supplied back to the storage unit 52.
  • the new abrasive is supplied to the reservoir 52 as much as the amount of the crushed particles, as shown in FIG.
  • the abrasive of size may be sprayed onto the substrate.
  • FIG. 5 is a flowchart showing a process of processing a substrate by the substrate processing system according to the present embodiment
  • FIG. 6 is a schematic view showing the shape of the sapphire wafer before sandblasting, after processing, and after heat treatment.
  • ingots are cut into wafers in a cutting unit (S110). Then, the substrate cut in the lapping unit is double-sided wrapped. Through this double-sided lapping process, the thickness variation of the substrate is reduced to become a substrate having a uniform thickness, and the cutting traces generated during ingot cutting (S110) are removed. However, as described below, the double-sided lapping step S120 may be omitted as necessary.
  • the sand blasting step S130 is performed on both surfaces or one surface of the substrate.
  • the back side of the substrate is sandblasted, and the front side of the substrate may be sandblasted as necessary.
  • S130 to make the substrate to the desired thickness, to make the back surface of the substrate to the desired roughness.
  • the sand blasting step S130 will be described in more detail.
  • the wrapped substrate is mounted on a table, and the table is rotated at a constant speed of 150 rpm or more and 2400 rpm or less.
  • the abrasive is sprayed at a constant pressure.
  • the thickness of the substrate and the roughness of the substrate may be adjusted. I can regulate it.
  • the roughness of the substrate after the sand blasting process is preferably about Ra 0.6 ⁇ m ⁇ 1.2 ⁇ m.
  • the + plane means a convex surface as shown in (b) and (c) of Figure 6, the-plane means a concave surface. This is because the abrasive should be sprayed on the negative side of the sapphire wafer where the warpage phenomenon is distinguished during sandblasting. Hereinafter, the reason will be described.
  • the wafer when sandblasting is performed on the ⁇ surface, the wafer may be flattened by appropriately restoring stress through heat treatment.
  • the sand blasted substrate is heat treated (S140).
  • the sand blasted substrate has a processing stress, and it is necessary to relieve the processing stress, for which heat treatment (S140) is performed.
  • Heat treatment step (S140) is preferably performed in a temperature range of about 900 ⁇ 1600 °C.
  • the heat treatment step S140 is a step for releasing the stress formed in the sand blasting step S130. It eliminates surface stresses during double side lapping and sand blasting, and optimizes the conditions that minimize wafer warpage by a combination of temperature, time and atmosphere. That is, the curved substrate is flattened by releasing the stress formed on the substrate through the heat treatment step.
  • the edge of the heat-treated substrate is polished using an polishing unit (S150) and mirror-polished the entire surface of the substrate (S160).
  • the mirror polishing step (S160) is performed in the order of a wax mounting process (S161), a polishing (polishing) process, and a demounting process (S164) of the substrate.
  • the wax mounting process S161 is a process of attaching the back side of the substrate to the ceramic block using wax.
  • the polishing process is a process of polishing the entire surface of the substrate into a mirror surface, and is divided into a diamond polishing process (S162) and a pad polishing process (chemical mechanical polishing (CMP)) (S163).
  • CMP chemical mechanical polishing
  • Diamond polishing process (S162) is to remove the mechanical damage or rough surface using a diamond abrasive to start the mirror surface of the front surface of the substrate, such as total thickness variation (TTV), local thickness variation (LTV) The flatness is improved.
  • the pad polishing process (S163) removes damages caused by the diamond polishing process, removes defects such as microscratch, particles, stains, and pit on the front surface of the substrate, and minimizes surface roughness.
  • the front surface of the substrate is mirrored.
  • the wafer of stains, scratches or poor transparency can be quantified by controlling the processing method of sand blasting through a sand blasting step.
  • the surface roughness and the thickness of the substrate were matched through a double-sided lapping process, but since the particles of the abrasive are reduced due to the lapping process, the abrasive should be replenished or exchanged at any time during the processing. Therefore, the size of the abrasive particles cannot always be maintained at a constant level (i.e., the newly supplemented large particles and the used small particles coexist), and as a result, it is not only difficult to accurately control the surface roughness thickness, but also the amount of abrasive used. There is a problem that increases the number and decreases the productivity as the process manufacturing time increases. However, in the present invention, since the particle size of the abrasive and the amount of the abrasive are maintained at a constant level, there is an advantage that the surface roughness and thickness of the wafer can be precisely processed.
  • substrate can be adjusted easily.
  • the sand blasting process can reduce the production cost because expensive abrasives are not used as in the conventional double-sided lapping process.
  • the sandblasting process replaces the lapping process. That is, by sandblasting both surfaces of the substrate immediately without undergoing a double-side lapping process after the cutting process, the thickness of the substrate can be made uniform, and a uniform roughness can be formed at the same time as the cutting marks are removed.
  • the conventional double-sided lapping process can reduce the time than giving the thickness uniformity and roughness of the substrate.

Abstract

The present invention relates to a substrate-processing system, which imparts a uniform roughness to a back surface of the substrate using sand blasting. The substrate-processing system includes: a slicing unit for slicing an ingot into a wafer shape; a sand blasting unit for spraying a polishing material onto at least one surface from among the two surfaces of the substrate sliced into the wafer shape so as to perform sand blasting; a heat treatment unit for heat-treating the sand-blasted substrate; and a polishing unit for polishing the entire surface of the heat-treated substrate.

Description

기판처리시스템Substrate Processing System
본 발명은 반도체 소자용 기판을 제조하는 기판처리시스템에 관한 것으로서, 보다 상세하게는 고휘도 발광다이오드(LED)에 사용될 수 있는 기판을 제조하는 기판처리시스템에 관한 것이다.The present invention relates to a substrate processing system for manufacturing a substrate for a semiconductor device, and more particularly to a substrate processing system for manufacturing a substrate that can be used for high brightness light emitting diodes (LEDs).
발광다이오드(light emitting diode, LED)는 기존 조명용 광원(형광등, 백열등)과 비교하여 소비전력 대비 밝기가 우수하며, 부피가 작고, 두께가 얇고, 수은 등의 유해 물질이 포함되지 않는 장점이 있다. 그리고 발광다이오드는 방향성 광원으로 영역별 선택 조명이 가능하므로, 각종 조명, 신호등, 전광판 등에 이용되고 있다. 또한, 발광다이오드는 현재 휴대폰과 LCD 등의 디스플레이이의 백라이트유닛(back light unit, BLU)으로 널리 이용되고 있다.Light emitting diodes (LEDs) have advantages in comparison with conventional light sources (fluorescent lamps, incandescent lamps), which are superior in brightness and power consumption, and have a small volume, a thin thickness, and no harmful substances such as mercury. The light emitting diode is a directional light source, which enables selective illumination for each area. Therefore, the light emitting diode is used in various lightings, traffic lights, and electronic displays. In addition, light emitting diodes are now widely used as back light units (BLUs) for displays such as mobile phones and LCDs.
특히, 1995년 청색 발광다이오드가 개발됨에 따라 모든 색상을 구현하는 것이 가능하게 된 이후, 3색 발광다이오드를 배합하여 원하는 색상의 빛을 구현할 수 있게 되어, 응용분야가 더욱 다양해지고 있다. 청색과 녹색 계열의 발광다이오드는 일반적으로 사파이어 기판 상에 GaN계 활성층을 에피(epi) 성장시켜 제조한다.In particular, since the blue light emitting diode was developed in 1995, since it is possible to implement all colors, it is possible to realize a light of a desired color by combining three color light emitting diodes, and the application fields are becoming more diverse. Blue and green light emitting diodes are generally manufactured by epitaxially growing a GaN active layer on a sapphire substrate.
한편, 발광다이오드에 있어서, 가장 큰 문제점은 낮은 발광효율이다. 일반적으로 발광다이오드의 발광효율은 빛이 생성되는 효율(내부양자효율)과 생성된 빛이 소자 밖으로 방출되는 효율(외부광추출효율)로 구분된다. 발광다이오드의 고출력화를 위해서는 내부양자효율의 측면에서 활성층의 특성을 향상시키는 것도 중요하지만, 실제 발광효율을 높이기 위해서는 외부광추출효율을 증가시키는 것이 더욱 중요하다.On the other hand, in the light emitting diode, the biggest problem is low luminous efficiency. In general, the light emitting efficiency of a light emitting diode is classified into an efficiency in which light is generated (internal quantum efficiency) and an efficiency in which generated light is emitted out of the device (external light extraction efficiency). In order to increase the output power of the light emitting diode, it is important to improve the characteristics of the active layer in terms of internal quantum efficiency, but to increase the light emission efficiency, it is more important to increase the external light extraction efficiency.
발광다이오드의 활성층에서 생성된 빛이 외부로 방출되는 데 있어서 가장 큰 장애요인은 발광다이오드 각 층간의 굴절률 차에 의한 내부 전반사(internal total reflection)이다. 이러한 내부 전반사에 의해 생성된 빛이 외부로 방출되는 빛은 생성된 빛의 20% 정도에 불과하다. 또한, 외부로 방출되지 못한 빛은 발광다이오드 내부를 이동하다가 열로 전환되어, 발광다이오드의 수명을 단축시키게 된다.The biggest obstacle to the emission of light generated in the active layer of the light emitting diode to the outside is the internal total reflection due to the difference in refractive index between each layer of the light emitting diode. The light emitted by the total internal reflection is emitted to the outside is only about 20% of the generated light. In addition, the light that is not emitted to the outside is converted to heat while moving inside the light emitting diode, which shortens the life of the light emitting diode.
외부광추출효율을 향상시키기 위해서는 사파이어 기판 상에 형성되어 있는 반도체층(p-GaN층 또는 n-GaN층)의 표면의 거칠기를 증가시키거나, 사파이어 기판의 표면을 거칠게 하여 수 마이크로미터의 미세한 굴곡 패턴(groove pattern)을 형성시키는 방법이 연구되고 있다. 이와 같이 굴곡 패턴이 형성된 사파이어 기판을 PSS(patterned sapphire substrate)라고 한다. PSS 상에 GaN계 활성층을 에피 성장시키면 활성층의 휘도를 저감시키는 원인이 되는 전위(dislocation)의 밀도를 대폭 감소시킬 수 있고, 내부 전반사를 감소시킬 수 있어 발광다이오드의 발광효율을 향상시킬 수 있다.In order to improve the external light extraction efficiency, the surface roughness of the semiconductor layer (p-GaN layer or n-GaN layer) formed on the sapphire substrate is increased, or the surface of the sapphire substrate is roughened to be fine for several micrometers. A method of forming a groove pattern has been studied. The sapphire substrate on which the bending pattern is formed is called a patterned sapphire substrate (PSS). When epitaxially growing a GaN-based active layer on the PSS, the density of dislocations, which causes the luminance of the active layer, may be greatly reduced, and total internal reflection may be reduced, thereby improving luminous efficiency of the light emitting diode.
종래에 기판의 후면 표면 거칠기는 랩핑(lapping) 공정에서 결정된다. 랩핑 공정은 단결정 사파이어 잉곳(ingot)을 웨이퍼 형태로 절단(slicing)한 후, 웨이퍼의 두께 편차를 줄이고 표면 거칠기를 부여하는 공정이다. 이러한 랩핑 공정은 양면 랩핑 공정으로 진행되는데, 랩핑 공정을 통해 원하는 표면 거칠기를 갖도록 하기 위해서는, 공정 시간이 길어질 뿐 아니라, 랩핑 공정에서 사용하는 연마재의 다량 사용문제와 폐기물의 과다 발생문제가 있으며, 균일한 표면 거칠기를 만드는데도 어려움이 있다.The back surface roughness of the substrate is conventionally determined in a lapping process. The lapping process is a process in which a single crystal sapphire ingot is sliced in the form of a wafer to reduce thickness variation of the wafer and provide surface roughness. This lapping process is a double-sided lapping process, in order to have the desired surface roughness through the lapping process, not only the process time is long, but also the problem of using a large amount of abrasives and excessive waste of the lapping process, There is also difficulty in making one surface roughness.
본 발명이 해결하고자 하는 기술적 과제는 후면에 균일한 거칠기가 부여되는 기판처리시스템을 제공하는 데에 있다.The technical problem to be solved by the present invention is to provide a substrate processing system that is given a uniform roughness on the back.
상기의 기술적 과제를 해결하기 위한, 본 발명에 따른 기판처리시스템은 잉곳(ingot)을 웨이퍼 형태로 절단(slicing)하는 절단유닛과, 상기 웨이퍼 형태로 절단된 기판의 양면 중 적어도 일면에 연마재를 분사하여 샌드 블라스팅(sand blasting)하는 샌드 블라스팅 유닛과, 상기 샌드 블라스팅된 기판을 열처리하는 열처리 유닛과, 상기 열처리된 기판의 전면을 경면 연마하는 폴리싱(polishing) 유닛을 포함하는 것을 특징으로 한다.In order to solve the above technical problem, the substrate processing system according to the present invention is a cutting unit for cutting the ingot (ingot) in the form of a wafer (slicing), and spraying abrasives on at least one surface of both sides of the substrate cut in the wafer form And a sand blasting unit for sand blasting, a heat treatment unit for heat-treating the sand blasted substrate, and a polishing unit for mirror polishing the entire surface of the heat-treated substrate.
본 발명에 따르면, 샌드 블라스팅을 통해 기판의 후면에 균일한 거칠기를 부여할 수 있다. 그리고 샌드 블라스팅에 의해 기판의 후면에 거칠기를 부여하는 공정은 종래 양면 랩핑 공정에 의해 기판의 후면에 거칠기를 부여하는 공정에 비해 공정 시간을 감소시킬 수 있다. 또한, 샌드 블라스팅 공정은 종래의 양면 랩핑 공정에서 사용되는 고가의 연마재가 사용되지 않으므로, 기판 제조시 생산 원가를 감소시킬 수 있다.According to the present invention, it is possible to give uniform roughness to the rear surface of the substrate through sand blasting. In addition, the process of imparting roughness to the rear surface of the substrate by sand blasting may reduce the process time compared to the process of imparting roughness to the rear surface of the substrate by the conventional double-sided lapping process. In addition, since the sand blasting process does not use the expensive abrasive used in the conventional double-sided lapping process, it is possible to reduce the production cost when manufacturing the substrate.
도 1은 본 발명의 일 실시예에 따른 기판처리시스템의 개략적인 구성도이다.1 is a schematic configuration diagram of a substrate processing system according to an embodiment of the present invention.
도 2 및 도 3은 도 1에 도시된 블라스팅 유닛의 개략적인 구성도이다.2 and 3 are schematic configuration diagrams of the blasting unit shown in FIG.
도 4는 블라스팅 유닛에서 기판을 블라스팅 하는 모습을 표현한 도면이다.4 is a view illustrating a state of blasting the substrate in the blasting unit.
도 5는 본 실시예에 따른 기판처리시스템으로 기판을 처리하는 과정을 나타내는 흐름도이다.5 is a flowchart illustrating a process of processing a substrate with the substrate processing system according to the present embodiment.
도 6은 샌드 블라스팅 가공 전, 가공 후, 열처리 가공 후의 사파이어 웨이퍼의 형상을 나타낸 개략도이다.Fig. 6 is a schematic diagram showing the shape of the sapphire wafer before sandblasting, after processing and after heat treatment.
이하에서 첨부된 도면들을 참조하여 본 발명에 따른 기판처리시스템의 바람직한 실시예에 대해 상세하게 설명한다. 그러나 본 발명은 이하에서 개시되는 실시예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예는 본 발명의 개시가 완전하도록 하며, 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다. Hereinafter, with reference to the accompanying drawings will be described in detail a preferred embodiment of the substrate processing system according to the present invention. However, the present invention is not limited to the embodiments disclosed below, but will be implemented in various forms, and only the present embodiments are intended to complete the disclosure of the present invention and to those skilled in the art to fully understand the scope of the invention. It is provided to inform you.
도 1은 본 발명의 일 실시예에 따른 기판처리시스템의 개략적인 구성도이며, 도 2 및 도 3은 도 1에 도시된 블라스팅 유닛의 개략적인 구성도이며, 도 4는 블라스팅 유닛에서 기판을 블라스팅 하는 모습을 표현한 도면이다.1 is a schematic configuration diagram of a substrate processing system according to an embodiment of the present invention, FIGS. 2 and 3 are schematic configuration diagrams of a blasting unit shown in FIG. 1, and FIG. 4 is a blasting substrate in a blasting unit. The figure expresses the appearance.
도 1 내지 도 4를 참조하면, 본 실시예에 따른 기판처리시스템(100)은 절단 유닛(10)과, 랩핑 유닛(20)과, 열처리 유닛(30)과, 폴리싱 유닛(40)과, 샌드 블라스팅 유닛(50)을 포함한다.1 to 4, the substrate processing system 100 according to the present embodiment includes a cutting unit 10, a lapping unit 20, a heat treatment unit 30, a polishing unit 40, and a sand. The blasting unit 50 is included.
절단 유닛(10)은 잉곳을 웨이퍼 형태로 절단(slicing)하는 것으로, 이때 잉곳은 사파이어, LiTaO3 및 LiNbO3 중 적어도 하나로 이루어질 수 있다. 그리고, 절단 유닛으로는 와이어 쏘(wire saw) 또는 멀티 와이어 쏘(multi wire saw) 등이 채용가능하다.The cutting unit 10 cuts the ingot into a wafer form, wherein the ingot may be made of at least one of sapphire, LiTaO 3, and LiNbO 3 . As the cutting unit, a wire saw or a multi wire saw can be employed.
랩핑 유닛(20)은 웨이퍼 형태로 절단된 기판의 양면을 랩핑 하는 장치이다. 이 랩핑 유닛으로는 종래 기술에 언급된 바와 같은 형태, 즉 슬러리(slurry)를 공급하면서 기판에 연마부(연마정반)를 접촉시켜서 기판을 랩핑 하는 형태의 장치가 채용될 수 있다. The lapping unit 20 is an apparatus for wrapping both sides of a substrate cut in a wafer form. As the lapping unit, an apparatus in the form as mentioned in the prior art, that is, in the form of lapping the substrate by contacting the polishing portion (polishing plate) to the substrate while supplying a slurry may be employed.
열처리 유닛(30)은 기판을 가열하여 기판에 축적된 데미지(응력)를 해소하기 위한 장치이다.The heat treatment unit 30 is a device for heating the substrate to relieve damage (stress) accumulated in the substrate.
폴리싱 유닛(40)은 기판을 폴리싱 즉 경면연마하기 위한 장치이다.The polishing unit 40 is a device for polishing or mirror polishing a substrate.
상기한 절단 유닛(10), 랩핑 유닛(20), 열처리 유닛(30) 및 폴리싱 유닛(40)은 이미 널리 알려진 공지의 장치이므로, 구체적인 구성에 관해서는 설명을 생략한다.Since the cutting unit 10, the lapping unit 20, the heat treatment unit 30, and the polishing unit 40 are well known devices, the description thereof will be omitted.
샌드 블라스팅 유닛(50)은 기판으로 연마재를 분사하여 기판에 균일한 거칠기를 부여하기 위한 것으로, 본 실시예의 경우 샌드 블라스팅 유닛(50)은 테이블(51)과, 저장부(52)와, 분사부(53)와, 회수부(54)와, 필터부(55)를 포함한다.The sand blasting unit 50 is for imparting uniform roughness to the substrate by spraying abrasives onto the substrate. In the present embodiment, the sand blasting unit 50 includes a table 51, a storage unit 52, and an injection unit. 53, a recovery part 54, and a filter part 55 are included.
테이블(51)은 기판이 안착되는 곳이다. 본 실시예의 경우, 도 4에 도시된 바와 같이 테이블(51)에는 다수의 기판(w)이 안착되며, 안착된 기판은 진공흡착 방식에 의해 테이블(51)에 고정된다. 그리고, 이 테이블(51)은 회전 가능하게 설치된다.The table 51 is where the substrate is seated. In the present embodiment, as shown in FIG. 4, a plurality of substrates w are seated on the table 51, and the seated substrates are fixed to the table 51 by a vacuum suction method. And this table 51 is rotatably provided.
저장부(52)는 연마재가 저장되는 공간으로, 연마재로는 SiC, B4C, CeO2, SiO2, Al2O3, 금속 입자 및 이들의 조합이 이용될 수 있으며, 연마재 입자의 지름은 50μm ~ 100μm인 것이 바람직하다. The storage unit 52 is a space in which the abrasive is stored. As the abrasive, SiC, B 4 C, CeO 2 , SiO 2 , Al 2 O 3 , metal particles, and combinations thereof may be used. It is preferable that they are 50 micrometers-100 micrometers.
분사부(53)는 저장부에 저장된 연마재를 기판으로 분사하기 위한 것으로, 노즐 형태로 구성된다. 이 분사부(53)는 테이블에 안착된 기판으로부터 10~20 cm 정도 떨어진 위치에서, 0.25MPa ~ 0.35MPa의 압력으로 연마재를 분사하는 것이 바람직하며, 이러한 조건 즉 연마재 입자의 종류 및 크기, 분사거리 및 분사압력은 기판의 표면거칠기를 최적화하기 위한 것이다. 한편, 도 4에 도시된 바와 같이 테이블이 회전하는 상태에서, 분사부(53)는 왕복 운동을 하면서 기판으로 연마재를 분사하며, 샌드 블라스팅 효율을 높이기 위해 다수의 분사부가 구비될 수 있다.The injection unit 53 is for injecting the abrasive stored in the storage unit to the substrate, it is configured in the form of a nozzle. The spraying unit 53 sprays the abrasive at a pressure of 0.25 MPa to 0.35 MPa at a position of about 10 to 20 cm away from the substrate seated on the table. And injection pressure is for optimizing the surface roughness of the substrate. Meanwhile, as shown in FIG. 4, in the state in which the table rotates, the injection unit 53 injects abrasive into the substrate while reciprocating, and a plurality of injection units may be provided to increase sandblasting efficiency.
회수부(54)는 기판으로 분사된 연마재를 회수하기 위한 것으로, 테이블의 하부에 설치된 펌프 등을 포함하여 구성될 수 있으며, 이 경우 기판으로 분사된 연마재가 펌프로 유입될 수 있도록 테이블에는 관통공(연마재의 유동경로)(도면 미도시)이 형성될 수 있다. The recovery unit 54 is for recovering the abrasive injected to the substrate, and may include a pump installed in the lower part of the table. In this case, the through hole is provided in the table so that the abrasive injected into the substrate can be introduced into the pump. (Flow path of the abrasive) (not shown) can be formed.
필터부(55)는 회수된 연마재 중 파쇄된 연마재 입자를 분리하기 위한 것이다. 즉, 샌드 블라스팅 과정 중 연마재가 기판에 부딪히면서 파쇄될 수 있는데, 필터부는 이와 같이 파쇄된 연마재 입자를 필터링 한다. 이 필터부는 다양한 형태로 구성될 수 있다. 예를 들어, 일정 크기를 가지는 다수의 구멍이 형성된 망을 이용하여, 기준크기 이하의 입자와 기준크기 이상의 입자를 서로 분리할 수 있다. 또한, 원심력을 이용하여 기준크기 이하의 입자만 따로 분리되도록 필터부를 구성할 수도 있다. The filter part 55 is for separating the crushed abrasive particles among the recovered abrasives. That is, the abrasive may be crushed while hitting the substrate during the sand blasting process, the filter unit filters the crushed abrasive particles. The filter unit may be configured in various forms. For example, by using a net having a plurality of holes having a predetermined size, particles smaller than the reference size and particles larger than the reference size may be separated from each other. In addition, the filter unit may be configured to separate only particles smaller than the reference size using centrifugal force.
한편, 도 2에 도시된 바와 같이, 필터부(55)에서 분리된 파쇄된 입자는 따로 보관(버려짐)되고, 파쇄되지 않은 입자만 다시 저장부(52)로 공급된다. 이때,저장부에서 분사부로 공급되는 연마재의 양을 항상 일정하게 유지하도록 설정되므로, 도 2에 도시된 바와 같이 파쇄된 입자의 양만큼 새 연마재가 저장부(52)로 공급됨으로써, 항상 일정한 양과 입자 크기의 연마재가 기판으로 분사되도록 할 수 있다.On the other hand, as shown in Figure 2, the crushed particles separated in the filter unit 55 is stored (discarded) separately, only the uncrushed particles are supplied back to the storage unit 52. At this time, since the amount of the abrasive supplied from the reservoir to the injection unit is always maintained, the new abrasive is supplied to the reservoir 52 as much as the amount of the crushed particles, as shown in FIG. The abrasive of size may be sprayed onto the substrate.
이하, 상술한 기판처리시스템을 이용하여 기판을 처리하는 과정에 관하여 설명한다. 도 5는 본 실시예에 따른 기판처리시스템으로 기판을 처리하는 과정을 나타내는 흐름도이며, 도 6은 샌드 블라스팅 가공 전, 가공 후, 열처리 가공 후의 사파이어 웨이퍼의 형상을 나타낸 개략도이다.Hereinafter, the process of processing a board | substrate using the above-mentioned board | substrate processing system is demonstrated. FIG. 5 is a flowchart showing a process of processing a substrate by the substrate processing system according to the present embodiment, and FIG. 6 is a schematic view showing the shape of the sapphire wafer before sandblasting, after processing, and after heat treatment.
도 5 및 도 6을 참조하여 설명하면, 먼저 절단 유닛에서 잉곳(ingot)을 웨이퍼 형태로 절단(slicing)한다(S110). 그리고, 랩핑 유닛에서 절단된 기판을 양면 랩핑한다. 이 양면 랩핑 과정을 통해 기판의 두께 편차가 감소되어 균일한 두께의 기판이 되며, 잉곳 절단(S110)시 발생된 절단 흔적이 제거된다. 다만, 후술하는 바와 같이 양면 랩핑 단계(S120)는 필요에 따라 생략될 수 있다. Referring to FIGS. 5 and 6, first, ingots are cut into wafers in a cutting unit (S110). Then, the substrate cut in the lapping unit is double-sided wrapped. Through this double-sided lapping process, the thickness variation of the substrate is reduced to become a substrate having a uniform thickness, and the cutting traces generated during ingot cutting (S110) are removed. However, as described below, the double-sided lapping step S120 may be omitted as necessary.
다음으로, 양면 랩핑된 기판을 샌드 블라스팅한다(S130). 샌드 블라스팅 단계(S130)는 기판의 양면 또는 일면에 대해 수행한다. 특히 기판의 후면을 샌드 블라스팅하며, 기판의 전면은 필요에 따라 샌드 블라스팅할 수 있다. 샌드 블라스팅 단계(S130)를 통해, 기판을 목적하는 두께가 되도록 하며, 기판의 후면을 원하는 거칠기가 되도록 한다. Next, sandblasting the double-sided wrapped substrate (S130). The sand blasting step S130 is performed on both surfaces or one surface of the substrate. In particular, the back side of the substrate is sandblasted, and the front side of the substrate may be sandblasted as necessary. Through the sand blasting step (S130), to make the substrate to the desired thickness, to make the back surface of the substrate to the desired roughness.
샌드 블라스팅 단계(S130)에 대하여, 보다 더 구체적으로 설명하면, 랩핑 되어진 기판을 테이블에 장착하고, 150rpm이상 2400rpm이하의 일정 속도로 테이블을 회전시킨다. 동시에 분사부에서 일정 압력으로 연마재를 분사한다. 이때, 연마재 입자의 종류, 연마재 입자의 크기, 연마재 입자의 분사 압력, 분사부에서 나오는 연마재의 분사 범위 등의 조건과, 테이블의 회전 속도 등의 조건을 조절하면, 기판의 두께 및 기판의 거칠기를 조절할 수 있다. 바람직하게는, 샌드 블라스팅 가공 이후에 기판의 거칠기는 Ra 0.6μm ~ 1.2μm 정도가 되는 것이 바람직하다.The sand blasting step S130 will be described in more detail. The wrapped substrate is mounted on a table, and the table is rotated at a constant speed of 150 rpm or more and 2400 rpm or less. At the same time, the abrasive is sprayed at a constant pressure. At this time, if the conditions such as the type of abrasive particles, the size of the abrasive particles, the abrasive pressure of the abrasive particles, the spraying range of the abrasive from the spraying part, and the conditions such as the rotation speed of the table are adjusted, the thickness of the substrate and the roughness of the substrate may be adjusted. I can regulate it. Preferably, the roughness of the substrate after the sand blasting process is preferably about Ra 0.6μm ~ 1.2μm.
한편, 샌드 블라스팅 단계(S130)를 진행하기 앞서 사파이어 웨이퍼(즉, 기판)의 휨 현상을 확인한 후 +면과 -면을 구분을 해야 한다. 여기서, +면은 도 6의 (b),(c)에 도시된 바와 같이 볼록한 면을 뜻하며, -면은 오목한 면을 의미한다. 이는 샌드 블라스팅 가공시 휨 현상이 구분이 된 사파이어 웨이퍼의 -면에 연마재를 분사해야 하기 때문이다. 이하, 그 이유에 관하여 설명한다.On the other hand, before proceeding the sand blasting step (S130), after confirming the warpage phenomenon of the sapphire wafer (that is, the substrate), it is necessary to distinguish between the + side and-side. Here, the + plane means a convex surface as shown in (b) and (c) of Figure 6, the-plane means a concave surface. This is because the abrasive should be sprayed on the negative side of the sapphire wafer where the warpage phenomenon is distinguished during sandblasting. Hereinafter, the reason will be described.
도 6의 (a)에 도시된 바와 같이, 사파이어 웨이퍼를 샌드 블라스팅(Sand Blasting)하면 가공된 면 쪽으로 볼록하게 휨 현상이 발생하며, 이를 열처리하여 응력을 낮추어주면 웨이퍼가 다시 평평해 진다. As shown in (a) of FIG. 6, when sand blasting the sapphire wafer (Sand Blasting), a convex warp occurs toward the processed surface, and the wafer is flattened when the stress is reduced by heat treatment.
그런데, 만약 도 6의 (b)와 같이 +면에 샌드 블라스팅을 하면 웨이퍼가 더욱더 휘어지게 되므로, 열처리를 통해 응력을 낮추어 주더라도 웨이퍼가 평평해 지는데 한계가 있어서, 웨이퍼가 어느 정도로 휘어진 상태로 남게 된다.However, if the sand blasting on the + surface as shown in Figure 6 (b) is more bent the wafer, even if the stress is lowered through the heat treatment has a limit to flatten the wafer, so that the wafer remains bent to some extent do.
따라서, 도 6의 (c)와 같이 -면에 샌드 블라스팅을 하면 열처리를 통해 적절하게 응력을 회복시켜 웨이퍼를 평평하게 할 수 있다.Therefore, as shown in FIG. 6C, when sandblasting is performed on the − surface, the wafer may be flattened by appropriately restoring stress through heat treatment.
다음으로, 샌드 블라스팅된 기판을 열처리한다(S140). 샌드 블라스팅된 기판은 가공응력을 갖게 되고, 이 가공응력을 해소시킬 필요가 있는데, 이를 위해 열처리(S140)를 수행한다. 열처리 단계(S140)는 900 ~ 1600℃ 정도의 온도 범위에서 수행되는 것이 바람직하다. 열처리 단계(S140)는 샌드 블라스팅 단계(S130)에서 형성된 응력을 해소하기 위한 단계이다. 양면랩핑과 샌드 블라스팅 가공 시 생기는 표면응력을 해소하고, 웨이퍼의 휨을 최소화하는 조건을 온도, 시간, 분위기의 조합으로 최적화하도록 한다. 즉, 열처리 단계를 통해 기판에 형성되어 있는 응력을 해소함으로써 휘어져 있는 기판을 평평하게 한다.Next, the sand blasted substrate is heat treated (S140). The sand blasted substrate has a processing stress, and it is necessary to relieve the processing stress, for which heat treatment (S140) is performed. Heat treatment step (S140) is preferably performed in a temperature range of about 900 ~ 1600 ℃. The heat treatment step S140 is a step for releasing the stress formed in the sand blasting step S130. It eliminates surface stresses during double side lapping and sand blasting, and optimizes the conditions that minimize wafer warpage by a combination of temperature, time and atmosphere. That is, the curved substrate is flattened by releasing the stress formed on the substrate through the heat treatment step.
다음으로, 폴리싱 유닛을 이용하여 열처리된 기판의 모서리를 가공(edge grinding)(S150) 및 기판의 전면을 경면 연마한다(S160). 경면 연마 단계(S160)는 기판의 왁스 마운팅 공정(S161), 폴리싱(polishing) 공정 및 디마운팅 공정(S164) 순으로 이루어진다. 왁스 마운팅 공정(S161)은 세라믹 블록에 왁스를 이용하여 기판의 후면을 부착하는 공정이다. 그리고 폴리싱 공정은 기판의 전면을 경면으로 연마하는 공정으로, 다이아몬드 폴리싱(dia polishing) 공정(S162)과 패드 폴리싱(chemical mechanical polishing, CMP) 공정(S163)으로 구분된다. 다이아몬드 폴리싱 공정(S162)은 다이아몬드 연마재를 이용하여 기계적인 손상(mechanical damage)이나 거친 면을 제거하여 기판의 전면의 경면화가 시작되도록 하고, TTV(total thickness variation), LTV(local thickness variation)와 같은 평탄도(flatness)가 향상되도록 한다. 패드 폴리싱 공정(S163)은 다이아몬드 폴리싱 공정에서 발생한 손상을 제거하고, 기판의 전면의 마이크로스크래치(microscratch), 파티클(particle), 얼룩, 피트(pit) 등의 결함을 제거하며, 표면의 거칠기를 최소화하여 기판의 전면이 경면화되도록 한다. Next, the edge of the heat-treated substrate is polished using an polishing unit (S150) and mirror-polished the entire surface of the substrate (S160). The mirror polishing step (S160) is performed in the order of a wax mounting process (S161), a polishing (polishing) process, and a demounting process (S164) of the substrate. The wax mounting process S161 is a process of attaching the back side of the substrate to the ceramic block using wax. The polishing process is a process of polishing the entire surface of the substrate into a mirror surface, and is divided into a diamond polishing process (S162) and a pad polishing process (chemical mechanical polishing (CMP)) (S163). Diamond polishing process (S162) is to remove the mechanical damage or rough surface using a diamond abrasive to start the mirror surface of the front surface of the substrate, such as total thickness variation (TTV), local thickness variation (LTV) The flatness is improved. The pad polishing process (S163) removes damages caused by the diamond polishing process, removes defects such as microscratch, particles, stains, and pit on the front surface of the substrate, and minimizes surface roughness. Thus, the front surface of the substrate is mirrored.
상기 기판 경면 연마된 웨이퍼에서 얼룩이나 스크레치, 투명도 불량의 웨이퍼를 샌드 블라스팅 단계를 통해 샌드 블라스팅의 가공방법을 조절하여 양품화 시킬 수 있다.In the substrate mirror polished wafer, the wafer of stains, scratches or poor transparency can be quantified by controlling the processing method of sand blasting through a sand blasting step.
상술한 바와 같이, 본 실시예에서는 샌드 블라스팅을 통해 기판의 후면에 거칠기를 부여하므로, 기판의 후면에 균일한 거칠기를 부여할 수 있다. As described above, in the present embodiment, since roughness is provided to the rear surface of the substrate through sand blasting, uniform roughness may be imparted to the rear surface of the substrate.
즉, 종래의 경우에는 양면랩핑 공정을 통해 기판의 표면 거칠기와 두께를 맞추었으나, 랩핑 가공으로 인해 연마재의 입자가 작아지므로 가공 중간에 수시로 연마재를 보충 또는 교환을 해야 한다. 따라서, 연마재 입자의 크기를 항상 일정한 수준으로 유지할 수 없으며(즉, 새로 보충된 큰 입자와 사용되고 있던 작은 입자가 공존하게 됨), 그 결과 표면 거칠기 두께를 정확하게 제어하는데 어려움이 있을 뿐 아니라, 연마재 사용량이 많아지게 되고 또한 공정 제조시간이 증가되면서 생산성을 저하시키는 문제점이 있었다. 하지만, 본 발명에서는 연마재의 입자 크기와 연마재의 양이 일정한 수준으로 유지되므로, 웨이퍼의 표면 거칠기와 두께를 정확하게 가공할 수 있는 장점이 있다.That is, in the conventional case, the surface roughness and the thickness of the substrate were matched through a double-sided lapping process, but since the particles of the abrasive are reduced due to the lapping process, the abrasive should be replenished or exchanged at any time during the processing. Therefore, the size of the abrasive particles cannot always be maintained at a constant level (i.e., the newly supplemented large particles and the used small particles coexist), and as a result, it is not only difficult to accurately control the surface roughness thickness, but also the amount of abrasive used. There is a problem that increases the number and decreases the productivity as the process manufacturing time increases. However, in the present invention, since the particle size of the abrasive and the amount of the abrasive are maintained at a constant level, there is an advantage that the surface roughness and thickness of the wafer can be precisely processed.
그리고 샌드 블라스팅의 조건을 적절히 선택하면, 기판의 후면의 거칠기의 정도를 용이하게 조절할 수 있다. 또한 샌드 블라스팅 공정은 종래의 양면 랩핑 공정에서와 같이 고가의 연마재가 사용되지 않으므로 생산 원가를 감소시킬 수 있다. And if the conditions of sandblasting are selected suitably, the roughness of the back surface of a board | substrate can be adjusted easily. In addition, the sand blasting process can reduce the production cost because expensive abrasives are not used as in the conventional double-sided lapping process.
한편, 앞선 실시예에서는 랩핑 유닛을 구비하였으나, 랩핑 유닛을 구비하지 않을 수도 있다. 이 경우에는 샌드 블라스팅 공정으로 랩핑 공정을 대체한다. 즉, 절단 공정 후에 양면 랩핑 공정을 거치지 않고, 바로 기판의 양면을 샌드 블라스팅 함으로써, 기판의 두께를 균일하게 하고, 절단 흔적 제거와 동시에 균일한 거칠기 형성이 가능하게 된다. 이 경우, 종래의 양면 랩핑 공정을 통해 기판의 두께 균일 및 거칠기를 부여하는 것보다 시간을 감소시킬 수 있다. On the other hand, in the previous embodiment provided with a wrapping unit, it may not be provided with a wrapping unit. In this case, the sandblasting process replaces the lapping process. That is, by sandblasting both surfaces of the substrate immediately without undergoing a double-side lapping process after the cutting process, the thickness of the substrate can be made uniform, and a uniform roughness can be formed at the same time as the cutting marks are removed. In this case, the conventional double-sided lapping process can reduce the time than giving the thickness uniformity and roughness of the substrate.
이상에서 본 발명의 바람직한 실시예에 대해 도시하고 설명하였으나, 본 발명은 상술한 특정의 바람직한 실시예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변형 실시가 가능한 것은 물론이고, 그와 같은 변경은 청구범위 기재의 범위 내에 있게 된다.Although the preferred embodiments of the present invention have been shown and described above, the present invention is not limited to the specific preferred embodiments described above, and the present invention belongs to the present invention without departing from the gist of the present invention as claimed in the claims. Various modifications can be made by those skilled in the art, and such changes are within the scope of the claims.

Claims (7)

  1. 잉곳(ingot)을 웨이퍼 형태로 절단(slicing)하는 절단유닛;Cutting unit for cutting the ingot (ingot) in the form of a wafer (slicing);
    상기 웨이퍼 형태로 절단된 기판의 양면 중 적어도 일면에 연마재를 분사하여 샌드 블라스팅(sand blasting)하는 샌드 블라스팅 유닛; A sand blasting unit for sand blasting by spraying abrasives on at least one surface of both surfaces of the substrate cut into the wafer form;
    상기 샌드 블라스팅된 기판을 열처리하는 열처리 유닛; 및A heat treatment unit for heat treating the sand blasted substrate; And
    상기 열처리된 기판의 전면을 경면 연마하는 폴리싱(polishing) 유닛;을 포함하는 것을 특징으로 하는 기판처리시스템.And a polishing unit for mirror-polishing the entire surface of the heat-treated substrate.
  2. 제1항에 있어서,The method of claim 1,
    상기 기판의 샌드 블라스팅 이전에 상기 기판의 양면을 랩핑(lapping)하는 랩핑 유닛;을 더 포함하는 것을 특징으로 하는 기판처리시스템.And a lapping unit for lapping both sides of the substrate before sandblasting the substrate.
  3. 제1항에 있어서, The method of claim 1,
    상기 연마재는 SiC, B4C, CeO2, SiO2, Al2O3 및 금속 입자 중 적어도 하나를 포함하여 이루어지는 것을 특징으로 하는 기판처리시스템.The abrasive material comprises at least one of SiC, B 4 C, CeO 2 , SiO 2 , Al 2 O 3 and metal particles.
  4. 제3항에 있어서,The method of claim 3,
    상기 연마재는 0.25MPa ~ 0.35MPa의 압력으로 분사되는 것을 특징으로 하는 기판처리시스템.The abrasive is sprayed at a pressure of 0.25MPa ~ 0.35MPa substrate processing system.
  5. 제3항에 있어서,The method of claim 3,
    상기 연마재는 상기 기판으로부터 10~20cm 떨어진 위치에서 분사되는 것을 특징으로 하는 기판처리시스템.The abrasive is sprayed at a position 10 ~ 20cm away from the substrate.
  6. 제3항에 있어서,The method of claim 3,
    상기 연마재 입자의 지름은 50μm ~ 100μm인 것을 특징으로 하는 기판처리시스템.The diameter of the abrasive particles is a substrate processing system, characterized in that 50μm ~ 100μm.
  7. 제1항에 있어서,The method of claim 1,
    상기 샌드 블라스팅 유닛은,The sand blasting unit,
    상기 기판이 안착되며, 회전가능하게 설치되는 테이블과,A table on which the substrate is mounted and rotatably installed;
    상기 연마재가 저장되는 저장부와,A storage unit in which the abrasive is stored;
    상기 저장부에 저장된 연마재를 상기 기판으로 분사하는 분사부와,An injection unit for injecting the abrasive stored in the storage unit into the substrate;
    상기 기판으로 분사된 연마재가 회수되는 회수부와,A recovery part for recovering the abrasive injected into the substrate;
    상기 회수부로 회수된 연마재 중 파쇄된 연마재 입자를 분리하는 필터부를 포함하는 것을 특징으로 하는 기판처리시스템.And a filter unit for separating the crushed abrasive particles among the abrasives recovered by the recovery unit.
PCT/KR2011/001231 2011-02-16 2011-02-23 Substrate-processing system WO2012111868A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20110013733 2011-02-16
KR10-2011-0013733 2011-02-16

Publications (1)

Publication Number Publication Date
WO2012111868A1 true WO2012111868A1 (en) 2012-08-23

Family

ID=46672764

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/001231 WO2012111868A1 (en) 2011-02-16 2011-02-23 Substrate-processing system

Country Status (1)

Country Link
WO (1) WO2012111868A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100232914B1 (en) * 1993-07-22 1999-12-01 니시무로 타이죠 Semiconductor silicon wafer and process for preparing the same
JP2000340571A (en) * 1999-05-27 2000-12-08 Mitsubishi Materials Silicon Corp Manufacture of wafer of high planarity degree
US20100052103A1 (en) * 2008-08-28 2010-03-04 Sumco Corporation Silicon wafer and method for producing the same
KR20110009799A (en) * 2009-07-23 2011-01-31 주식회사 크리스탈온 Sapphire substrate and method of fabricating the same
KR20110107480A (en) * 2010-03-25 2011-10-04 주식회사 크리스탈온 Method of manufacturing substrate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100232914B1 (en) * 1993-07-22 1999-12-01 니시무로 타이죠 Semiconductor silicon wafer and process for preparing the same
JP2000340571A (en) * 1999-05-27 2000-12-08 Mitsubishi Materials Silicon Corp Manufacture of wafer of high planarity degree
US20100052103A1 (en) * 2008-08-28 2010-03-04 Sumco Corporation Silicon wafer and method for producing the same
KR20110009799A (en) * 2009-07-23 2011-01-31 주식회사 크리스탈온 Sapphire substrate and method of fabricating the same
KR20110107480A (en) * 2010-03-25 2011-10-04 주식회사 크리스탈온 Method of manufacturing substrate

Similar Documents

Publication Publication Date Title
KR101643342B1 (en) Sapphire substrate and method of fabricating the same
TW200633271A (en) Thin gallium nitride light emitting diode device
KR20000020751A (en) Method for manufacturing gallium nitride substrate
US7615470B2 (en) Method of manufacturing gallium nitride semiconductor
JP2009124153A (en) Method for producing semiconductor wafer with polished edge part
KR20050029645A (en) Method for separating sapphire wafer into chips using sand blast
CN111599674A (en) Etching method of composite substrate
KR100550857B1 (en) Method for separating sapphire wafer into chips using dry-etching
JP2007284283A (en) PROCESSING METHOD FOR GaN SINGLE CRYSTAL SUBSTRATE AND GaN SINGLE CRYSTAL SUBSTRATE
JP2006066442A (en) Single crystal sapphire substrate for semiconductor device and its manufacturing method, and semiconductor light emitting device
WO2012111869A1 (en) Substrate-processing method
KR101097178B1 (en) Method for manufacturing polishing slurry containing nano-diamonds, Polishing slurry manufactured by the method, and Polishing method using the polishing slurry
WO2012111868A1 (en) Substrate-processing system
KR101139928B1 (en) Method of manufacturing substrate
CN106129220B (en) A kind of production method and its making apparatus of LED chip
CN1167140C (en) Process for treating substrate of epitaxial chip for high-brightness gallium nitride-base LED
JP2003277194A (en) Single crystal sapphire substrate and method for producing the same
KR20120121980A (en) System of manufacturing substrate
CN102969410A (en) Method for preparing LED (Light-Emitting Diode) with GaN thick film vertical structure
KR101292619B1 (en) Method of manufacturing substrate
CN105190838A (en) Handle substrate of composite substrate for semiconductor, and composite substrate for semiconductor
KR20130027223A (en) Method of manufacturing substrate
WO2013015494A1 (en) Method for manufacturing a substrate
KR101525614B1 (en) Method of manufacturing substrate
CN104779330A (en) Light-emitting diode structure and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11858976

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16/12/2013)

122 Ep: pct application non-entry in european phase

Ref document number: 11858976

Country of ref document: EP

Kind code of ref document: A1