WO2012110162A1 - Single photon counting detector system having improved counter architecture - Google Patents
Single photon counting detector system having improved counter architecture Download PDFInfo
- Publication number
- WO2012110162A1 WO2012110162A1 PCT/EP2011/074237 EP2011074237W WO2012110162A1 WO 2012110162 A1 WO2012110162 A1 WO 2012110162A1 EP 2011074237 W EP2011074237 W EP 2011074237W WO 2012110162 A1 WO2012110162 A1 WO 2012110162A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- threshold
- readout
- detector
- photo
- readout unit
- Prior art date
Links
- 238000005513 bias potential Methods 0.000 claims abstract description 10
- 238000012545 processing Methods 0.000 claims abstract description 9
- 239000000463 material Substances 0.000 claims abstract description 8
- 239000003990 capacitor Substances 0.000 claims abstract description 5
- 230000010354 integration Effects 0.000 claims abstract description 4
- 239000000523 sample Substances 0.000 claims description 24
- 238000005259 measurement Methods 0.000 claims description 21
- 238000005086 pumping Methods 0.000 claims 1
- 238000013461 design Methods 0.000 description 4
- 238000007493 shaping process Methods 0.000 description 4
- 238000012937 correction Methods 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 101150041860 SEC16B gene Proteins 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000002050 diffraction method Methods 0.000 description 2
- 230000009977 dual effect Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- MARUHZGHZWCEQU-UHFFFAOYSA-N 5-phenyl-2h-tetrazole Chemical compound C1=CC=CC=C1C1=NNN=N1 MARUHZGHZWCEQU-UHFFFAOYSA-N 0.000 description 1
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 101100067427 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FUS3 gene Proteins 0.000 description 1
- 101100015484 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) GPA1 gene Proteins 0.000 description 1
- 238000005162 X-ray Laue diffraction Methods 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 238000009659 non-destructive testing Methods 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01T—MEASUREMENT OF NUCLEAR OR X-RADIATION
- G01T1/00—Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
- G01T1/29—Measurement performed on radiation beams, e.g. position or section of the beam; Measurement of spatial distribution of radiation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01T—MEASUREMENT OF NUCLEAR OR X-RADIATION
- G01T1/00—Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
- G01T1/16—Measuring radiation intensity
- G01T1/24—Measuring radiation intensity with semiconductor detectors
- G01T1/247—Detector read-out circuitry
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/70—SSIS architectures; Circuits associated therewith
- H04N25/76—Addressed sensors, e.g. MOS or CMOS sensors
- H04N25/77—Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components
- H04N25/772—Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components comprising A/D, V/T, V/F, I/T or I/F converters
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/70—SSIS architectures; Circuits associated therewith
- H04N25/76—Addressed sensors, e.g. MOS or CMOS sensors
- H04N25/77—Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components
- H04N25/772—Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components comprising A/D, V/T, V/F, I/T or I/F converters
- H04N25/773—Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components comprising A/D, V/T, V/F, I/T or I/F converters comprising photon counting circuits, e.g. single photon detection [SPD] or single photon avalanche diodes [SPAD]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N5/00—Details of television systems
- H04N5/30—Transforming light or analogous information into electric information
- H04N5/32—Transforming X-rays
Definitions
- the present invention relates to a single photon counting detector system having an improved counter architecture.
- the present subject matter describes the read out chips and parts of the detector systems for x-ray applications at synchrotrons or with lab equipment (lab diffractometers ) in material sciences, crystallography, non destructive testing and medical applications.
- the energy of the photons to be detected ranges roughly from about 0.1 to 150 keV.
- the detectors are hybrid detectors comprising an x-ray sensitive layer (silicon sensor) and readout chips.
- x-ray sensitive layer silicon sensor
- readout chips 2-dimensional detectors (pixel detectors) each pixel in the sensor is directly connected (bump bonding or flip chip bonding) to the corresponding pixel in the readout chip.
- the pixel size is therefore limited by the pixel size in the readout chip, and the number of electronic components per pixel in the readout chip is therefore rather limited as to find a suitable pay-off between the pixel size and
- the readout chip contains n (either 1-or 2 dimensional) independently working channels. Each channel has a charge sensitive preamp, gain stages and a counter. Each channel can count single photons independently of the other channels. An image requires two phases: 1) acquisition mode (where the counters count the incoming photons) and 2) readout mode (where the counting is disabled and the number of counts per channel are read out) . The readout can overlap the acquisition.
- a single photon counting detector system comprising :
- each of said photo- detector diodes having a bias potential interface and a diode output interface, said bias potential interface of each photo-detector diode being connected to a bias potential ;
- each readout unit cell comprising:
- a high-gain voltage amplifying means comprising an integration capacitor
- each line comprising a comparator having an
- indivudually gateable section which determines the counting intervals for each line of the digital counters .
- a multiplexing means allowing to access the readout cell unit either on a per pixel basis or for several pixels in parallel to read out the digital counter to a data processing means transfering the data off the chip to the data processing means, in particular external readout electronics which do not form an integral part of the readout unit cells.
- This detector system overcomes the limitations for pump and probe measurements of todays single photon counting systems. By having more than two independently gateable digital counters it is now possible to measure (probe) at different times during the relaxation of the system (one fixed
- the individually selectable threshold helps to mitigate or completely
- the counter at the lower level e.g. half the beam energy
- the counter at the upper level e.g. 1.5 times the beam energy, counts only the pulses where two photons arrived so close in time that the pulse of the second photon arrived during the pulse of the first photon and the total analogue signal did not fall below the
- comparator threshold half the beam energy in between the photons causing a pulse height of above 1.5 times the photon energy.
- the detector system according to the present invention may be adapted for the purpose when the gateable sections are controllable in order to be adapted to pump and probe measurements, wherein for a determined number of readout unit cells the hits during a pump phase are counted in one digital counter and the hits during a probe phase are counted in another digital counter.
- a further preferred embodiment of the present invention can be achieved when for a determined number of readout unit cells at least two thresholds are set-up to build a window discriminator thereby having one threshold to be set to the lower edge of the window and another threshold to be set to the upper edge of the window.
- this kind of a dual digital counter enables to count the number of photons having an energy within the energy window by subtracting from the number of counts of the lower threshold the number of counts of the higher threshold.
- This mode of usage is mainly interesting outside of pump and probe experiments for measurements with x-ray tubes (i.e. laboratory diffractometers ) which have a wider energy spectrum where the higher energies contribute only to the background which can be cut-off by using only photons within a window.
- x-ray tubes i.e. laboratory diffractometers
- Another preferred embodiment of the present invention can be achieved when the gate sections are gateable with a fixed frequency signal, preferably an count enable signal which is run with a fixed frequency of e.g. 10 to 200 MHz, with the output of the comparator thereby counting the pulses of the fixed frequency signal only when the analogue signal at the output of the high gain voltage amplifying means is above the threshold which is set-up for the respective comparator.
- a fixed frequency signal preferably an count enable signal which is run with a fixed frequency of e.g. 10 to 200 MHz
- the output of the comparator thereby counting the pulses of the fixed frequency signal only when the analogue signal at the output of the high gain voltage amplifying means is above the threshold which is set-up for the respective comparator.
- This is the so-called time over-threshold-mode where the counter measures the time during which the analogue signal was above the comparator threshold during the acquisition time. For signals with pile up of 2 photons (as explained above) the time during which the signal is above the
- comparator threshold is longer and the time-over-threshold measurement mode determines exactly this circumstance. The measured time then can be converted into the number of photons. Having the count rate in single photon counting mode from the first counter allows immediately the
- Figure 1 a schematic view of the design of a photo-detector diode
- Figure 2 a schematic view of a part of a detector module comprising an array of photo-detector diodes as one of them is shown in Figure 1 ;
- Figure 3 a schematic view of a design of a readout cell comprising two gateable digital counters
- Figure 4 a schematic view of a design of a readout cell comprising four gateable digital counters.
- Figures 1 illustrates schematically the architecture of a photo-detector diode 2 having a doped semiconductor p + , n ⁇ , n ++ trespassing section 4.
- the most commonly used material is a silicon crystal but also germanium, gallium arsenide or cadmium telluride are used.
- An incident photon 6 having an energy in the range of 100 eV to several KeV before entering the doped semiconductor p + , n ⁇ , n ++ trespassing section 4 passes through a possible cover layer (e.g. aluminum) 8 and causes according to its energy and to the energy needed to create an electron hole pair a respective number of electron hole pairs 10 after x-ray absorption.
- this number of electron hole pairs is exemplarily shown by three electron-hole pairs 10 being divided by the electrical field generated by a source of bias potential 12.
- Figure 2 shows a schematic view of a two-dimensional pixel detector 14 having a number of photo-detector diodes 2 arranged in an array of n rows and m columns.
- the photo detector diodes 2 have a length 1 and a width w of about 25- 200 ⁇ and a height of about 200 ⁇ to 2 mm.
- a readout chip 16 having a corresponding number of readout unit cells RO is arranged for collecting the charge from the electron hole pairs 10 generated in the respective photo-detector diodes 2.
- FIG. 3 illustrates schematically the design of a readout unit cell RO comprising two lines 30, 32 of digital counters 34, 36.
- the charge generated in the photo detector diode 2 by the x-ray is amplified by a low noise charge sensitive amplifier ampl where the charge is integrated on the integration capacitance Ci nt .
- a feedback resistor who's value can be changed by the voltage applied to Rgpr discharges the capacitor, therefore, forming a pulse at the input of the capacitor CI.
- the amplifier amp2 then further amplifies the signal with a gain given by the ration of C1/C2.
- the signals Rgpr and Rgsh change the value of the feedback resitors therefore influencing the discharge time (shaping) and the gain of the amplifiers ampl and amp2.
- the analogue pulse at the output of amp2 is then feed in parallel into the comparators compl and comp2. Compl and comp2 in all readout cells on a chip have in general the same comparator
- threshold voltages thresholdl and threshold2 respectively.
- An individual threshold per cell fine tuning (adjustment) can be done with the help of the per cell programmable digital to voltage converters DAC1 and DAC2 allowing to increase the uniformity of the effective threshold
- the comparators compl, comp2 each belong to one line 30, 32 of digital counters 34, 36.
- the two counters 34, 36 per channel are independently gateable by gateable sections 42, 44.
- One counter 34 measures the pumped and the other counter 36 the unpumped state of pump and probe measurements. This overcomes the limitations for pump and probe measurements of todays single photon counting systems.
- the counter values are usually read out sequentially such that the multiplex means MM transvers the data of the selected counter to the data processing means which might further serialize the data of the selected counter.
- the readout chip can have several multiplexing data processing means working in parallel thus increasing the readout speed.
- the second counter 36 at 1.5 times the beam energy counts only the pulses where two photons arrived so close in time that the pulse of the second photon arrived during the pulse of the first photon and the total analogue signal did not fall below the comparator threshold 38 (half the beam energy) in between the photons causing a pulse height of above 1.5 times the photon energy.
- having two (or more) counters allows to operate the first counter 34 in standard operation mode (single photon counting) and the second counter 36 in time over threshold mode.
- the second counter 36 measures the time during which the analogue signal was above the threshold 40 during the acquisition time.
- measurements can easily be done by gating a fixed frequency signal (this can for example be the count enable signal which is run with a fixed frequency of e.g. 10 to 200 MHz) with the output of the comparator comp2, i.e. counting the pulses of the fixed frequency signal only when the analogue signal is above the threshold 40.
- a fixed frequency signal this can for example be the count enable signal which is run with a fixed frequency of e.g. 10 to 200 MHz
- the comparator comp2 i.e. counting the pulses of the fixed frequency signal only when the analogue signal is above the threshold 40.
- the time-over-threshold measurement measures this.
- the measured time then can be converted into the number of photons. Having the count rate in single photon counting mode from the first counter 34 allows immediately the determination of the conversion from time-over-threshold mode to number of photons (i.e. single photon counting mode) for low count rates, i.e. the
- a dual counter system will also be usable as window discriminator, by subtracting from the number of counts of the lower threshold the number of counts of the higher threshold.
- a multi counter system can also be designed in such a way that one counter can be read out while an other counter acquires data. This allows a dead-time free operation of the system since data can continuously be acquired as
- the preamp would be reset (i.e. the analogue pulse be cut-off) if the analogue signal is above threshold. This shortens the pulse width of the analogue signal, therefore again increasing the count rate capability .
Landscapes
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- High Energy & Nuclear Physics (AREA)
- Molecular Biology (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Engineering & Computer Science (AREA)
- Measurement Of Radiation (AREA)
- Solid State Image Pick-Up Elements (AREA)
- Transforming Light Signals Into Electric Signals (AREA)
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/985,961 US9121955B2 (en) | 2011-02-16 | 2011-12-29 | Single photon counting detector system having improved counter architecture |
AU2011359088A AU2011359088B2 (en) | 2011-02-16 | 2011-12-29 | Single photon counting detector system having improved counter architecture |
JP2013553817A JP5875606B2 (ja) | 2011-02-16 | 2011-12-29 | 改善されたカウンタ構造を備えている単一光子計数検出器システム |
CN201180067558.6A CN103430533B (zh) | 2011-02-16 | 2011-12-29 | 具有改进的计数器结构的单光子计数检测器系统 |
EP11805061.6A EP2676434B1 (de) | 2011-02-16 | 2011-12-29 | Einzelphotondetektor mit verbesserter zählerarchitektur |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP20110154622 EP2490441A1 (de) | 2011-02-16 | 2011-02-16 | Einzelphoton-Zählerkennungssystem mit verbesserter Zählerarchitektur |
EP11154622.2 | 2011-02-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012110162A1 true WO2012110162A1 (en) | 2012-08-23 |
Family
ID=44148913
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2011/074237 WO2012110162A1 (en) | 2011-02-16 | 2011-12-29 | Single photon counting detector system having improved counter architecture |
Country Status (6)
Country | Link |
---|---|
US (1) | US9121955B2 (de) |
EP (2) | EP2490441A1 (de) |
JP (1) | JP5875606B2 (de) |
CN (1) | CN103430533B (de) |
AU (1) | AU2011359088B2 (de) |
WO (1) | WO2012110162A1 (de) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016123231A1 (en) * | 2015-01-27 | 2016-08-04 | Oregon State University | Low-cost and low-power radiation spectrometer |
Families Citing this family (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2290403A1 (de) * | 2009-08-28 | 2011-03-02 | Paul Scherrer Institut | Röntgen-Detektor mit integrierendem Auslesechip für Einzelphotonauflösung |
EP2490441A1 (de) * | 2011-02-16 | 2012-08-22 | Paul Scherrer Institut | Einzelphoton-Zählerkennungssystem mit verbesserter Zählerarchitektur |
US9310495B2 (en) * | 2011-05-04 | 2016-04-12 | Oy Ajat Ltd. | Photon/energy identifying X-ray and gamma ray imaging device (“PID”) with a two dimensional array of pixels and system therefrom |
EP2629118A3 (de) * | 2012-02-15 | 2017-09-06 | CSEM Centre Suisse d'Electronique et de Microtechnique SA - Recherche et Développement | Hochempfindlicher Röntgendetektor |
US20130301799A1 (en) * | 2012-05-14 | 2013-11-14 | Samsung Electronics Co., Ltd. | X-ray imaging apparatus and control method therefor |
CZ306489B6 (cs) | 2014-11-03 | 2017-02-08 | Crytur, Spol.S R.O. | Zařízení pro koincidenční zobrazování sekundárními elektrony |
DE102015205301A1 (de) * | 2015-03-24 | 2016-09-29 | Siemens Healthcare Gmbh | Betreiben eines zählenden digitalen Röntgenbilddetektors |
CN107533145B (zh) | 2015-04-07 | 2019-03-19 | 深圳帧观德芯科技有限公司 | 制作半导体x射线检测器的方法 |
US10007009B2 (en) | 2015-04-07 | 2018-06-26 | Shenzhen Xpectvision Technology Co., Ltd. | Semiconductor X-ray detector |
EP3281039B1 (de) * | 2015-04-07 | 2020-03-11 | Shenzhen Xpectvision Technology Co., Ltd. | Halbleiterröntgendetektor |
WO2016197338A1 (en) | 2015-06-10 | 2016-12-15 | Shenzhen Xpectvision Technology Co.,Ltd. | A detector for x-ray fluorescence |
CN107710021B (zh) | 2015-07-09 | 2019-09-27 | 深圳帧观德芯科技有限公司 | 制作半导体x射线检测器的方法 |
CN104990632A (zh) * | 2015-07-14 | 2015-10-21 | 华中科技大学 | 一种门控差分单光子探测系统 |
US10098595B2 (en) * | 2015-08-06 | 2018-10-16 | Texas Instruments Incorporated | Low power photon counting system |
CN108449982B (zh) | 2015-08-27 | 2020-12-15 | 深圳帧观德芯科技有限公司 | 利用能够分辨光子能量的检测器的x射线成像 |
CN107923987B (zh) * | 2015-09-08 | 2020-05-15 | 深圳帧观德芯科技有限公司 | 用于制作x射线检测器的方法 |
US10117626B2 (en) * | 2015-09-29 | 2018-11-06 | General Electric Company | Apparatus and method for pile-up correction in photon-counting detector |
EP3151545A1 (de) | 2015-10-01 | 2017-04-05 | Paul Scherrer Institut | Verfahren zur erweiterung des dynamischen bereichs eines bildelementdetektorsystems durch automatische umschaltung der verstärkung |
CN109690351B (zh) | 2016-09-23 | 2022-12-09 | 深圳帧观德芯科技有限公司 | 半导体x射线检测器的封装 |
CN110214284A (zh) * | 2017-01-23 | 2019-09-06 | 深圳帧观德芯科技有限公司 | 辐射检测器 |
WO2019019041A1 (en) * | 2017-07-26 | 2019-01-31 | Shenzhen Xpectvision Technology Co., Ltd. | METHODS OF MAKING AND USING X-RAY DETECTORS |
WO2019019039A1 (en) * | 2017-07-26 | 2019-01-31 | Shenzhen Xpectvision Technology Co., Ltd. | X-RAY DETECTOR |
US10151845B1 (en) | 2017-08-02 | 2018-12-11 | Texas Instruments Incorporated | Configurable analog-to-digital converter and processing for photon counting |
CN107677380B (zh) * | 2017-10-30 | 2024-07-19 | 湖北锐光科技有限公司 | 一种彩色数字硅光电倍增器件 |
CN111279222B (zh) * | 2017-10-30 | 2023-07-28 | 深圳源光科技有限公司 | 具有高时间分辨率的lidar检测器 |
US10024979B1 (en) | 2017-11-01 | 2018-07-17 | Texas Instruments Incorporated | Photon counting with coincidence detection |
US20190154852A1 (en) * | 2017-11-16 | 2019-05-23 | NueVue Solutions, Inc. | Analog Direct Digital X-Ray Photon Counting Detector For Resolving Photon Energy In Spectral X-Ray CT |
JP7095328B2 (ja) * | 2018-03-15 | 2022-07-05 | 富士電機株式会社 | 放射線測定装置 |
CN109151349B (zh) * | 2018-09-10 | 2020-06-05 | 中国科学院高能物理研究所 | 全信息读出的像素单元电路及全信息读出方法 |
US10890674B2 (en) | 2019-01-15 | 2021-01-12 | Texas Instruments Incorporated | Dynamic noise shaping in a photon counting system |
DE102019112893A1 (de) * | 2019-05-16 | 2020-11-19 | Universität Paderborn | Verfahren zum Auslesen eines optischen Detektors |
EP3805806A1 (de) * | 2019-10-07 | 2021-04-14 | Paul Scherrer Institut | Doppelmodusdetektor |
EP3855725A1 (de) | 2020-01-21 | 2021-07-28 | Paul Scherrer Institut | Detektoren zur einzelphotonenzählung in streifen- oder pixelausführung mit digitaler zwischenpixelkommunikation und logik |
US11255981B2 (en) * | 2020-02-05 | 2022-02-22 | Prismatic Sensors Ab | Total time-over-threshold (TTOT) processing for a photon-counting x-ray detector |
JP7391752B2 (ja) * | 2020-04-02 | 2023-12-05 | 株式会社東芝 | 放射線計測装置 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004064168A1 (en) | 2003-01-10 | 2004-07-29 | Paul Scherrer Institut | Photon counting imaging device |
EP1788629A1 (de) * | 2005-11-21 | 2007-05-23 | Paul Scherrer Institut | Auslesechip für Einzelphotonenzählung |
US20080191139A1 (en) * | 2007-02-13 | 2008-08-14 | Sebastien Christopher Coello | X- or gamma-ray detector |
Family Cites Families (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6275371A (ja) | 1985-09-30 | 1987-04-07 | Toshiba Corp | Mcp荷電粒子計数装置 |
US5475225A (en) * | 1989-03-17 | 1995-12-12 | Advanced Scientific Concepts Inc. | Autoradiographic digital imager |
JPH0619455B2 (ja) | 1989-08-15 | 1994-03-16 | 株式会社島津製作所 | 放射線測定装置 |
US5665959A (en) * | 1995-01-13 | 1997-09-09 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Adminstration | Solid-state image sensor with focal-plane digital photon-counting pixel array |
US6362484B1 (en) * | 1995-07-14 | 2002-03-26 | Imec Vzw | Imager or particle or radiation detector and method of manufacturing the same |
GB2318411B (en) * | 1996-10-15 | 1999-03-10 | Simage Oy | Imaging device for imaging radiation |
US6362482B1 (en) * | 1997-09-16 | 2002-03-26 | Advanced Scientific Concepts, Inc. | High data rate smart sensor technology |
GB2332585B (en) * | 1997-12-18 | 2000-09-27 | Simage Oy | Device for imaging radiation |
US6552745B1 (en) * | 1998-04-08 | 2003-04-22 | Agilent Technologies, Inc. | CMOS active pixel with memory for imaging sensors |
FI20000333A0 (fi) * | 2000-02-16 | 2000-02-16 | Jussi Nurmi | Homogeeninen menetelmä polynukleotidin havaitsemiseksi |
JP2002168958A (ja) | 2000-11-29 | 2002-06-14 | Toshiba Corp | 放射線検出器及び医用画像診断装置 |
US7868665B2 (en) * | 2002-03-05 | 2011-01-11 | Nova R&D, Inc. | Integrated circuit and sensor for imaging |
US7319423B2 (en) * | 2002-07-31 | 2008-01-15 | Quantum Semiconductor Llc | Multi-mode ADC and its application to CMOS image sensors |
CN1228646C (zh) * | 2003-07-18 | 2005-11-23 | 华东师范大学 | 高计数率的单光子检测器 |
US7634061B1 (en) * | 2004-03-26 | 2009-12-15 | Nova R & D, Inc. | High resolution imaging system |
CN1306281C (zh) * | 2004-05-27 | 2007-03-21 | 华东师范大学 | 一种平衡抑制的单光子探测电路模块 |
WO2008050283A2 (en) * | 2006-10-25 | 2008-05-02 | Koninklijke Philips Electronics N.V. | Apparatus, imaging device and method for detecting x-ray radiation |
US7829860B2 (en) * | 2006-10-31 | 2010-11-09 | Dxray, Inc. | Photon counting imaging detector system |
EP2092369B1 (de) * | 2006-12-13 | 2011-05-18 | Koninklijke Philips Electronics N.V. | Gerät und verfahren zur zählung von röntgenphotonen |
WO2008108734A1 (en) * | 2007-03-06 | 2008-09-12 | Richard Brenner | Detector for radiation therapy |
WO2008110182A1 (en) * | 2007-03-09 | 2008-09-18 | Cern - European Organization For Nuclear Research | Method, apparatus and computer program for measuring the dose, dose rate or composition of radiation |
US8338791B2 (en) * | 2007-06-19 | 2012-12-25 | Koninklijke Philips Electronics N.V. | Digital pulse processing for multi-spectral photon counting readout circuits |
EP2028509A1 (de) | 2007-08-09 | 2009-02-25 | European Organisation for Nuclear Research CERN | Strahlungsüberwachungsvorrichtung |
US7696483B2 (en) * | 2007-08-10 | 2010-04-13 | General Electric Company | High DQE photon counting detector using statistical recovery of pile-up events |
EP2045816A1 (de) * | 2007-10-01 | 2009-04-08 | Paul Scherrer Institut | Schnelles Auslesungsverfahren und Schaltkondensator-Arrayschaltung zur Wellenform-Digitalisierung |
US20100316184A1 (en) * | 2008-10-17 | 2010-12-16 | Jan Iwanczyk | Silicon photomultiplier detector for computed tomography |
CA2650066A1 (en) * | 2009-01-16 | 2010-07-16 | Karim S. Karim | Photon counting and integrating pixel readout architecture with dynamic switching operation |
US8384038B2 (en) * | 2009-06-24 | 2013-02-26 | General Electric Company | Readout electronics for photon counting and energy discriminating detectors |
KR101616056B1 (ko) * | 2009-08-19 | 2016-04-28 | 삼성전자주식회사 | 광자 계수 장치 및 방법 |
EP2290403A1 (de) * | 2009-08-28 | 2011-03-02 | Paul Scherrer Institut | Röntgen-Detektor mit integrierendem Auslesechip für Einzelphotonauflösung |
US8766161B2 (en) * | 2009-12-02 | 2014-07-01 | Nucript LLC | System for controling and calibrating single photon detection devices |
US9000385B2 (en) * | 2009-12-30 | 2015-04-07 | General Electric Company | Method and apparatus for acquiring radiation data |
EP2348704A1 (de) * | 2010-01-26 | 2011-07-27 | Paul Scherrer Institut | Auslesechip zur Einzelphotonenzählung mit geringfügiger Stillstandzeit |
US8338773B2 (en) * | 2010-09-06 | 2012-12-25 | King Abdulaziz City for Science and Technology. | High-speed analog photon counter and method |
US8716643B2 (en) * | 2010-09-06 | 2014-05-06 | King Abdulaziz City Science And Technology | Single photon counting image sensor and method |
US8859944B2 (en) * | 2010-09-07 | 2014-10-14 | King Abdulaziz City Science And Technology | Coordinated in-pixel light detection method and apparatus |
EP2490441A1 (de) * | 2011-02-16 | 2012-08-22 | Paul Scherrer Institut | Einzelphoton-Zählerkennungssystem mit verbesserter Zählerarchitektur |
KR101871361B1 (ko) * | 2011-11-01 | 2018-08-03 | 삼성전자주식회사 | 고해상도 및 고대조도 영상을 동시에 생성하기 위한 광자 계수 검출 장치 및 방법 |
-
2011
- 2011-02-16 EP EP20110154622 patent/EP2490441A1/de not_active Withdrawn
- 2011-12-29 CN CN201180067558.6A patent/CN103430533B/zh active Active
- 2011-12-29 AU AU2011359088A patent/AU2011359088B2/en active Active
- 2011-12-29 WO PCT/EP2011/074237 patent/WO2012110162A1/en active Application Filing
- 2011-12-29 US US13/985,961 patent/US9121955B2/en active Active
- 2011-12-29 EP EP11805061.6A patent/EP2676434B1/de active Active
- 2011-12-29 JP JP2013553817A patent/JP5875606B2/ja active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004064168A1 (en) | 2003-01-10 | 2004-07-29 | Paul Scherrer Institut | Photon counting imaging device |
EP1788629A1 (de) * | 2005-11-21 | 2007-05-23 | Paul Scherrer Institut | Auslesechip für Einzelphotonenzählung |
US20080191139A1 (en) * | 2007-02-13 | 2008-08-14 | Sebastien Christopher Coello | X- or gamma-ray detector |
Non-Patent Citations (4)
Title |
---|
CARINI G A ET AL: "XAMPS prototypes for the X-ray Pump Probe instruments at the LCLS", NUCLEAR SCIENCE SYMPOSIUM CONFERENCE RECORD, 2008. NSS '08. IEEE (19-25 OCT. 2008), IEEE, PISCATAWAY, NJ, USA, 19 October 2008 (2008-10-19), pages 1572 - 1577, XP031418979, ISBN: 978-1-4244-2714-7 * |
FISCHER P ET AL: "Single Photon Counting X-Ray Imaging with Si and CdTe Single Chip Pixel Detectors and Multichip Pixel Modules", IEEE TRANSACTIONS ON NUCLEAR SCIENCE, IEEE SERVICE CENTER, NEW YORK, NY, US, vol. 51, no. 4, 1 August 2004 (2004-08-01), pages 1717 - 1723, XP011116253, ISSN: 0018-9499, DOI: DOI:10.1109/TNS.2004.832610 * |
MATTEO PERENZONI ET AL: "A Multispectral Analog Photon-Counting Readout Circuit for X-ray Hybrid Pixel Detectors", IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, IEEE SERVICE CENTER, PISCATAWAY, NJ, US, vol. 57, no. 7, 1 July 2008 (2008-07-01), pages 1438 - 1444, XP011205122, ISSN: 0018-9456 * |
SZCZYGIEL R ET AL: "RG64â High Count Rate Low Noise Multichannel ASIC With Energy Window Selection and Continuous Readout Mode", IEEE TRANSACTIONS ON NUCLEAR SCIENCE, IEEE SERVICE CENTER, NEW YORK, NY, US, vol. 56, no. 2, 1 April 2009 (2009-04-01), pages 487 - 495, XP011255121, ISSN: 0018-9499 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016123231A1 (en) * | 2015-01-27 | 2016-08-04 | Oregon State University | Low-cost and low-power radiation spectrometer |
US10031242B1 (en) | 2015-01-27 | 2018-07-24 | Oregon State University | Low-cost and lower-power radiation spectrometer |
Also Published As
Publication number | Publication date |
---|---|
US20140166861A1 (en) | 2014-06-19 |
JP5875606B2 (ja) | 2016-03-02 |
CN103430533B (zh) | 2017-03-08 |
AU2011359088A1 (en) | 2013-08-15 |
AU2011359088B2 (en) | 2015-12-03 |
EP2676434A1 (de) | 2013-12-25 |
EP2490441A1 (de) | 2012-08-22 |
JP2014511598A (ja) | 2014-05-15 |
US9121955B2 (en) | 2015-09-01 |
CN103430533A (zh) | 2013-12-04 |
EP2676434B1 (de) | 2018-07-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2676434B1 (de) | Einzelphotondetektor mit verbesserter zählerarchitektur | |
EP2470927B1 (de) | Röntgen-Detektor mit integrierendem Auslesechip für Einzelphotonauflösung | |
JP4989005B2 (ja) | デジタルx線撮像の方法及びセンサ装置 | |
US10578752B2 (en) | Multiple energy detector | |
EP2994779A1 (de) | Detektorkonfiguration mit halbleiterphotovervielfacherstreifen und differenzieller ausgabe | |
US7851764B2 (en) | Method of high-energy particle imaging by computing a difference between sampled pixel voltages | |
Evangelista et al. | Characterization of a novel pixelated silicon drift detector (PixDD) for high-throughput x-ray astrophysics | |
Vernon et al. | Front-end ASIC for spectroscopic readout of virtual Frisch-grid CZT bar sensors | |
WO2008054883A2 (en) | Devices and methods for detecting and analyzing radiation | |
EP3780394A1 (de) | Schaltungsanordnung und verfahren zur ladungsintegration | |
WO2012041659A1 (en) | A method for correction of inefficiencies of a single photon counting detector system at high photon rates and single photon counting detector system | |
Prekas et al. | Direct and indirect detectors for X-ray photon counting systems | |
US20180288338A1 (en) | Method for extending the dynamic range of a pixel detector system using automatic gain switching | |
Siu et al. | Application Specific Integrated Circuits (ASICs) for Spectral Photon Counting | |
Michalowska-Forsyth | Detection limits of front-end IC architectures for hybrid imaging X-ray detectors | |
US10175367B2 (en) | Tool for detecting photon radiation, particularly adapted for high-flux radiation | |
Levin et al. | Initial studies of a new detector design for ultra-high resolution positron emission tomography | |
Tumer et al. | New two-dimensional solid state pixel detectors with dedicated front-end integrated circuits for x-ray and gamma-ray imaging | |
Iniewski et al. | Integrated Circuits for XRD Imaging | |
Iniewski et al. | Semiconductor Detector Readout ASICs for Baggage Scanning Applications | |
CN112929021A (zh) | 探测器模块及其信号计数校正方法 | |
Perić et al. | Monolithic SOI pixel detector for x-ray imaging applications with high dynamic range and MHz frame-rate | |
Berry et al. | Recent advances in biomedical imaging systems |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11805061 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011805061 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2011359088 Country of ref document: AU Date of ref document: 20111229 Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2013553817 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13985961 Country of ref document: US |