CN103430533A - 具有改进的计数器结构的单光子计数检测器系统 - Google Patents

具有改进的计数器结构的单光子计数检测器系统 Download PDF

Info

Publication number
CN103430533A
CN103430533A CN2011800675586A CN201180067558A CN103430533A CN 103430533 A CN103430533 A CN 103430533A CN 2011800675586 A CN2011800675586 A CN 2011800675586A CN 201180067558 A CN201180067558 A CN 201180067558A CN 103430533 A CN103430533 A CN 103430533A
Authority
CN
China
Prior art keywords
counter
detector system
comparator
threshold value
reading unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011800675586A
Other languages
English (en)
Other versions
CN103430533B (zh
Inventor
贝恩德·施米特
安娜·贝尔加马斯基
阿尔多·莫扎尼卡
罗伯托·迪纳波利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Scherrer Paul Institut
Original Assignee
Scherrer Paul Institut
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Scherrer Paul Institut filed Critical Scherrer Paul Institut
Publication of CN103430533A publication Critical patent/CN103430533A/zh
Application granted granted Critical
Publication of CN103430533B publication Critical patent/CN103430533B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/29Measurement performed on radiation beams, e.g. position or section of the beam; Measurement of spatial distribution of radiation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/24Measuring radiation intensity with semiconductor detectors
    • G01T1/247Detector read-out circuitry
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/77Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components
    • H04N25/772Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components comprising A/D, V/T, V/F, I/T or I/F converters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/30Transforming light or analogous information into electric information
    • H04N5/32Transforming X-rays

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Measurement Of Radiation (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

本发明涉及一种单光子计数检测器系统(14),包括:a)感光材料层(4);b)在所述感光材料层(4)中布置的NxM光检测器二极管(2)阵列;每个所述光检测器二极管(2)具有偏压接口(12)和二极管输出接口,每个光检测器二极管(2)的所述偏压接口(12)连接到偏压(Vbias);c)NxM高增益、低噪声读取单元(RO)阵列,每个光检测器二极管(2)具有一个读取单元(RO);d)每个读取单元(RO)包括:d1)连接到所述二极管输出接口的输入接口(IN)、包括集成电容器(Cint)的高增益电压放大装置(amp),d2)至少两条并行数字计数器线路,d3)每条线路包括具有可独立选择的阈值(thresold1、threshold2)的比较器和确定数字计数器的计数间隔的可选通部(gate1、gate2);e)多路复用装置,允许基于每个像素或对于若干像素并行访问读取单元,以读取数字计数器给数据处理装置,将数据从芯片传递到数据处理装置,特别是不形成读取单元的整体部分的外部读取电子器件。

Description

具有改进的计数器结构的单光子计数检测器系统
技术领域
本发明涉及一种具有改进的计数器结构的单光子计数检测器系统。
背景技术
本主题描述了在材料科学、结晶学、无损测试以及医疗应用中在同步加速或使用实验室装备(实验室衍射仪)进行的x射线应用中的检测器系统的读取芯片和部分。要检测的光子的能量大致在约0.1到150keV的范围内。
检测器是包括x射线感光层(硅传感器)和读取芯片的混合检测器。在2维检测器(像素检测器)的情况下,传感器中的每个像素直接连接(凸块接合或倒装片接合)到读取芯片中的对应的像素。像素的尺寸因此被读取芯片中的像素的尺寸所限,并且由于为了寻找读取芯片中的像素尺寸和电子器件的容量之间的适当的平衡(pay-off),所以读取芯片中的每像素的电子部件的数量因此相当受限。在微带检测器的情况下,传感器通常线接合到读取芯片并且在沿垂直于带的方向上空间通常受限。在国际专利申请WO 2004/064 168 A1中公开了该种像素检测器和带检测器,该国际专利申请通过引用被并入本文。
读取芯片包含n(1维或2维)独立的工作通道。每个通道具有电荷灵敏前置放大器、增益级和计数器。每个通道可以独立于其他通道对单光子进行计数。图像需要两种阶段:1)获取模式(其中,计数器对到来的光子进行计数)以及2)读取模式(其中,计数被禁用并且每条通道的计数的数量被读取)。读取可以与获取重叠。
当前最大的问题是:
i)对于高到来光子率(500KHz到3MHz),模拟信号开始堆积并且计数丢失。所测量的比率因此必须被校正(比率校正)。当前实现的3MHz以上的单光子计数系统基本上不再可用。这对蛋白质结晶特别成问题。由于晶体管的有效参数的像素到像素的变化,所以在成形时间也存在像素到像素的变化。由于比率校正测量非常困难,所以对所有像素的平均成形时间进行比率校正测量。因此,成形时间校正仅可以根据到来的光子率对线性计数区域进行略微延伸。
ii)对于泵浦和探测测量,样本被激励(泵浦)并且然后在可选择的时间之后,对于短时间段启用计数(探测)。然后如收集统计数据所需这被尽可能频繁地重复,并且然后才被读取。由于条件通常不是恒定的或样本变差(例如,粉末衍射中的拉伸测试或疲劳测量),所以必须(至少)同时进行2次类似的测量(通常是泵浦的和非泵浦的)。由于每个像素的计数仅可以被堆积在单个计数器中,从而对于每个探测间隔进行读取并且对必要的泵浦的和非泵浦的间隔进行离线求和,所以当前这对高重复率的泵浦信号是不可能的。由于对于泵浦和探测测量,统计数据通常非常有限,所以泵浦重复率需要被最大化,这阻止了针对每个间隔的读取(泵浦的和非泵浦的两者)。另外对于快速变化的系统,不总是给出对每个探测间隔读取检测器的可能性。
发明内容
因此本发明的目的是提供如下单光子计数检测器系统:该系统特别在泵浦和探测测量中提供高采样率并且处理计数间隔快速变化的问题。
这个目的被单光子计数检测器系统根据本发明来实现,该单光子计数检测器系统包括:
a)感光材料层;
b)在所述感光材料层中布置的NxM光检测器二极管阵列;每个所述光检测器二极管具有偏压接口和二极管输出接口,每个光检测器二极管的所述偏压接口连接到偏压;
c)NxM高增益、低噪声读取单元阵列,每个光检测器二极管具有一个读取单元;
d)每个读取单元包括:
d1)连接到所述二极管输出接口的输入接口,包括集成电容器的高增益电压放大装置,
d2)至少两条并行数字计数器线路,
d3)每条线路包括具有可独立选择的阈值的比较器和确定每条数字计数器线路的计数间隔的独立可选通部。
e)多路复用装置,允许基于每个像素或对于若干像素并行访问读取单元,以读取数字计数器给数据处理装置,将数据从芯片传递到数据处理装置,特别是不形成读取单元的整体部分的外部读取电子器件。
这个检测器系统克服了当前的单光子计数系统的泵浦和探测测量的局限。通过具有多于两个独立的可选通数字计数器,现在可在系统的松弛期间的不同时间测量(探测)(每个计数器具有一个固定可选择的时间)。对于使用连续光束进行测量(如粉末衍射中的泵浦和探测测量),这个最新的选择特别受关注。
在当前的单光子计数检测器系统中,高到来光子率的模拟信号的堆积问题是未解决的问题。在本发明的优选的实施例中,当设置至少两个阈值以使得一个阈值在光子能量以下的水平(例如,约光子能量的一半)并且至少另一阈值在光束能量以上的水平(例如,约1.5倍的光子能量)时,可独立选择的阈值有助于减轻或完全消除堆积的问题。较低水平(例如,光束能量的一半)的计数器是在当前系统中使用的标准计数器。较高水平(例如1.5倍的光束能量)的计数器仅对如下脉冲计数:在这些脉冲中,两个光子到达的时间非常接近使得第二光子的脉冲在第一光子的脉冲期间到达,并且光子之间的总的模拟信号不下降到比较器阈值(光束能量的一半)以下,导致脉冲的高度是光子能量的1.5倍以上。通过增加这两个计数器的计数的数量,计数率能力增加了约2倍,这是重要的改进。
如上面已经提到的,对泵浦和探测测量的处理成为当前的单光子计数检测器系统的严重问题。根据本发明的检测器系统可适于如下目的:当为了适合泵浦和探测测量,可选通部是可控制的,其中,对于确定数量的读取单元,在一个数字计数器中对在泵浦阶段期间的命中(hit)进行计数并且在另一数字计数器中对在探测阶段期间的命中进行计数。当谈到确定数量的读取单元时,在大多数的应用中,所有的读取单元被寻址,但存在设想的示例:可仅需要具有相应控制的可选通部的读取单元的子群(诸如在受关注的区域中的子群等)。
当对于确定数量的读取单元,设置至少两个阈值被来建立窗口鉴别器,由此使得一个阈值被设置为该窗口的下边缘并且另一阈值被设置为该窗口的上边缘时,可以实现本发明的另一优选的实施例。对于不引起堆积的光子强度,这种双数字计数器使得通过从较低阈值的计数数量中减去较高阈值的计数数量来对具有能量窗口内的能量的光子的数量进行计数。这种使用模式主要受关注于使用具有较宽的能量频谱(其中较高的能量仅对通过仅使用窗口内的光子可以切除的背景起作用)的x射线管(即,实验室衍射仪)进行测量的泵浦和探测实验之外。在同步加速方面,对于具有某些能量范围的光子的某些应用(如例如劳厄衍射),对仅某些能量窗口中的光子进行计数也是有利的。
当利用固定频率的信号(优选地例如以10到200MHz的固定频率来行进的计数使能信号)来选通可选通部,该信号由比较器的输出选通,由此仅当高增益电压放大装置的输出处的模拟信号高于为各个比较器设置的阈值才对固定频率信号的脉冲进行计数时,可以实现本发明的另一优选的实施例。这是所谓的时间过阈值模式,在该时间过阈值模式中,计数器在获取时间期间测量模拟信号高于比较器阈值的时间。对于2个光子堆积的信号(如上所说明),信号高于比较器阈值的时间更长,并且时间过阈值测量模式精确地确定了这种情况。所测量的时间然后被转换成光子的数量。具有来自第一计数器的单光子计数模式中的计数率允许立即地确定从时间过阈值模式到低计数率的单光子计数模式的转换,即,使用单光子计数器对时间过阈值计数器进行校准。这允许对以同步加速的单光子计数系统的计数率能力扩展到堆积不再是问题的水平。
可以从其余的从属权利要求得到本发明的此外优选的实施例。
附图说明
在下文中将参照下面附图更详细地讨论本发明的优选的实施例,在附图中:
图1是光检测器二极管的设计的示意图;
图2是包括光检测器二极管(其中的一个在图1中示出)阵列的检测器模块的部分的示意图;
图3是包括两个可选通的数字计数器的读取单元的设计的示意图;以及
图4是包括四个可选通的数字计数器的读取单元的设计的示意图。
具体实施方式
图1示意性地示出了具有掺杂半导体p+、n-、n++侵入部分4的光检测器二极管2的结构。最常用的材料是硅晶体,但也可使用锗、砷化镓或碲化镉。
具有100eV到数Kev的范围的能量的入射光子6在进入掺杂的半导体p+、n-、n++侵入部分4之前通过可能的覆盖层(例如,铝)8,并且在x射线吸收之后根据其能量和建立电子空穴对所需的能量来产生相应的数量的电子空穴对10。在附图中,以被偏压源12生成的电场所分割的三个电子空穴对10例示性地示出了这些数量的电子空穴对。
图2示出了具有以n行和m列的阵列布置的大量光检测器二极管2的二维像素检测器14的示意图。光检测器二极管2具有长度l、约25-200μm的宽度w以及约200μm到2mm的高度。在这些光检测器二极管2的平面之下布置具有对应数量的读取单元RO的读取芯片16,以从各个光检测器二极管2中生成的电子空穴对10中收集电荷。在光检测器二极管2的二极管输出接口和读取单元RO的输入接口IN之间的电连接被用于示例铟凸点24的凸块接合所实现。
图3示意性地示出了包括两条数字计数器34、36的线路30、32的读取单元RO的设计。在光检测器二极管2中通过x射线生成的电荷被低噪声电荷灵敏放大器amp1所放大,在该低噪声电荷灵敏放大器amp1中,电荷被集中在集成电容Cint上。反馈电阻器(其值可以被施加给Rgpr的电压所改变)使电容器放电,因此,在电容器C1的输入形成脉冲。放大器amp2然后以C1/C2的比给出的增益来进一步放大信号。信号Rgpr和Rgsh改变反馈电阻器的值,从而影响放电时间(成形)以及放大器amp1和amp2的增益。amp2的输出的模拟脉冲然后被并行馈送到比较器comp1和comp2。芯片上的所有读取单元中的comp1和comp2通常分别具有相同的比较器阈值电压threshold1和threshold2。可以借助于给电压转换器DAC1和DAC2的每单元可编程数字来对每单元独立阈值作出微调(调节),从而允许增加芯片上的晶体管参数的变化引起的有效阈值波动的一致性。比较器comp1、comp2每个属于数字计数器34、36的一条线路30、32。对于泵浦和探测测量,每通道的两个计数器34、36被可选通部42、44独立地选通。一个计数器34测量泵浦和探测测量的泵浦的状态,并且另一计数器36测量泵浦和探测测量的非泵激的状态。这克服了当前单光子计数系统的泵浦和探测测量的局限。
由于读取芯片中的大量的计数器单元以及有限数量的读取引脚,所以通常顺序地读取计数器值,使得多路复用装置MM将所选择的计数器的数据传输给数据处理装置,该数据处理装置可进一步对所选择的计数器的数据进行序列化。读取芯片可以具有并行工作的若干多路复用数据处理装置,从而提高了读取的速度。
具有多于两个独立的可选通计数器34、36、46(参照图4)也允许在系统的松弛期间的不同时间来测量(探测)(每个计数器具有一个固定的可选择的时间)。对于使用连续光束的测量(如在粉末衍射中的泵浦和探测测量),这个最新的选择特别受关注并且被在图4中示出。
具有两个以上的计数器34、36、46还允许通过对一个计数器34使用光束能量(标准值)的一半的第一阈值38并且对第二计数器36使用1.5倍的光束能量的第二阈值40,测量模拟信号的堆积。为光束能量的一半的计数器34是在当今系统中使用的标准计数器。为光束能量的1.5倍的第二计数器36仅对如下脉冲进行计数:在这些脉冲中,两个光子到达时间非常接近,使得第二光子的脉冲在第一光子的脉冲期间到达,并且光子之间的总的模拟信号不下降到比较器阈值38(光束能量的一半)以下,从而使得脉冲的高度是光子能量的1.5倍以上。通过增加这两个计数器的计数的数量,计数率能力约增加了2倍,这是重要的改进。
另外,具有两个(以上)的计数器允许以标准工作模式来操作第一计数器34(单光子计数)并且以时间过阈值模式来操作第二计数器36。在时间过阈值模式中,第二计数器36测量在获取时间期间模拟信号高于阈值40的时间。通过使用比较器comp2的输出来选通固定频率的信号(例如,这可以是计数使能信号,其以例如10到200MHz的固定的频率来行进),即,仅当模拟信号高于阈值40时,对固定的频率信号的脉冲进行计数,可以容易地进行这些测量。对于堆积两个光子的信号(如上述),信号高于阈值的时间更长,并且时间过阈值测量测量这个时间。所测量的时间然后可以转换成光子的数量。具有来自第一计数器34的单光子计数模式中的计数率允许立刻确定从时间过阈值模式到低计数率的光子数量(即,单光子计数模式)的转换,即,使用单光子计数器(第一计数器34)来对时间过阈值计数器(第二计数器36)进行校准。这允许将以同步加速的单光子计数系统的计数率能力扩展到堆积不再是问题的水平。
对于不引起堆积的强度,双计数器系统通过从较低阈值的计数的数量中减去较高阈值的计数的数量,也将被使用作为窗口鉴别器。
也可以以如下这样的方式来设计多计数器系统:一个计数器可以被读取,同时其他计数器获取数据。由于如图4所示可以连续地获取数据,所以这允许系统在静寂时间(dead-time)自由地操作。
对于所有单光子计数系统的可能选择是前置放大器的有效复位。如果模拟信号高于阈值,则前置放大器将复位(即,模拟脉冲被切除)。这缩短了模拟信号的脉冲宽度,从而再次提高了计数率能力。

Claims (7)

1.一种单光子计数检测器系统(14),包括:
a)感光材料层(4);
b)在所述感光材料层(4)中布置的NxM光检测器二极管(2)阵列;每个所述光检测器二极管(2)具有偏压接口(12)和二极管输出接口,每个光检测器二极管(2)的所述偏压接口(12)连接到偏压(Vbias);
c)NxM高增益、低噪声读取单元(RO)阵列,每个光检测器二极管(2)具有一个读取单元(RO);
d)每个读取单元(RO)包括:
d1)连接到所述二极管输出接口的输入接口(IN)、包括集成电容器(Cint)的高增益电压放大装置(amp),
d2)至少两条并行数字计数器线路,
d3)每条线路包括具有可独立选择的阈值(threshold1、threshold2)的比较器和对于每条计数器线路独立地确定所述数字计数器的计数间隔的可选通部(gate1、gate2)。
e)多路复用装置,允许基于每个像素或对于若干像素并行访问所述读取单元,以读取所述数字计数器给数据处理装置,将数据从芯片传递到所述数据处理装置,特别是不形成所述读取单元的整体部分的外部读取电子器件。
2.根据权利要求1所述的检测器系统,其中,设置至少两个阈值,使得一个阈值在约光子能量的一半的水平,并且至少另一阈值在约1.5倍的光子能量的水平。
3.根据权利要求1或2所述的检测器系统,其中为了适于泵浦和探测测量,所述可选通部是能够控制的,其中对于确定数量的读取单元(包括全部读取单元),在一个数字计数器中对在探测阶段(泵浦)期间的命中计数,并且在另一数字计数器中对在另一探测(非泵浦,即,不需要样本的泵浦)阶段期间的命中进行计数。
4.根据前述权利要求中任一项所述的检测器系统,其中对于确定数量的读取单元(包括全部读取单元),设置至少两个阈值以建立窗口鉴别器,由此使得一个阈值被设置为所述窗口的下边缘,而另一阈值被设置为所述窗口的上边缘。
5.根据前述权利要求中任一项所述的检测器系统,其中所述可选通部以固定频率的信号、优选地以例如10MHz到200MHz的固定频率行进的计数使能信号选通,所述信号由所述比较器的输出选通,由此仅当所述高增益电压放大装置(amp)的输出处的模拟信号高于为各个比较器(comp1、comp2、comp4)设置的阈值时,对所述固定频率信号的脉冲进行计数。
6.根据前述权利要求中任一项所述的检测器系统,其中所述多路复用装置和数据处理装置允许读取一条计数器线路、同时其他计数器线路用于下一次的数据获取。
7.根据前述权利要求中任一项所述的检测器系统,其中如果比较器输入处的信号高于比较器阈值,则通过单元的比较器、对于每个单元电荷积分放大器(amp1)独立地复位。
CN201180067558.6A 2011-02-16 2011-12-29 具有改进的计数器结构的单光子计数检测器系统 Active CN103430533B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP20110154622 EP2490441A1 (en) 2011-02-16 2011-02-16 Single photon counting detector system having improved counter architecture
EP11154622.2 2011-02-16
PCT/EP2011/074237 WO2012110162A1 (en) 2011-02-16 2011-12-29 Single photon counting detector system having improved counter architecture

Publications (2)

Publication Number Publication Date
CN103430533A true CN103430533A (zh) 2013-12-04
CN103430533B CN103430533B (zh) 2017-03-08

Family

ID=44148913

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201180067558.6A Active CN103430533B (zh) 2011-02-16 2011-12-29 具有改进的计数器结构的单光子计数检测器系统

Country Status (6)

Country Link
US (1) US9121955B2 (zh)
EP (2) EP2490441A1 (zh)
JP (1) JP5875606B2 (zh)
CN (1) CN103430533B (zh)
AU (1) AU2011359088B2 (zh)
WO (1) WO2012110162A1 (zh)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104990632A (zh) * 2015-07-14 2015-10-21 华中科技大学 一种门控差分单光子探测系统
WO2017041221A1 (en) * 2015-09-08 2017-03-16 Shenzhen Xpectvision Technology Co., Ltd. Methods for making an x-ray detector
CN107677380A (zh) * 2017-10-30 2018-02-09 湖北京邦科技有限公司 一种彩色数字硅光电倍增器件
US9915741B2 (en) 2015-04-07 2018-03-13 Shenzhen Xpectvision Technology Co., Ltd. Method of making semiconductor X-ray detectors
WO2018053778A1 (en) * 2016-09-23 2018-03-29 Shenzhen Xpectvision Technology Co.,Ltd. Packaging of semiconductor x-ray detectors
US10007009B2 (en) 2015-04-07 2018-06-26 Shenzhen Xpectvision Technology Co., Ltd. Semiconductor X-ray detector
WO2018133088A1 (en) * 2017-01-23 2018-07-26 Shenzhen Xpectvision Technology Co., Ltd. A radiation detector
US10056425B2 (en) 2015-07-09 2018-08-21 Shenzhen Xpectvision Technology Co., Ltd. Methods of making semiconductor X-ray detector
US10061038B2 (en) 2015-04-07 2018-08-28 Shenzhen Xpectvision Technology Co., Ltd. Semiconductor X-ray detector
CN109151349A (zh) * 2018-09-10 2019-01-04 中国科学院高能物理研究所 全信息读出的像素单元电路及全信息读出方法
WO2019019041A1 (en) * 2017-07-26 2019-01-31 Shenzhen Xpectvision Technology Co., Ltd. METHODS OF MAKING AND USING X-RAY DETECTORS
WO2019019039A1 (en) * 2017-07-26 2019-01-31 Shenzhen Xpectvision Technology Co., Ltd. X-RAY DETECTOR
US10539691B2 (en) 2015-06-10 2020-01-21 Shenzhen Xpectvision Technology Co., Ltd. Detector for X-ray fluorescence
CN111279222A (zh) * 2017-10-30 2020-06-12 深圳源光科技有限公司 具有高时间分辨率的lidar检测器
US10705031B2 (en) 2015-08-27 2020-07-07 Shenzhen Xpectvision Technology Co., Ltd. X-ray imaging with a detector capable of resolving photon energy

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2290403A1 (en) * 2009-08-28 2011-03-02 Paul Scherrer Institut X-ray detector with integrating readout chip for single photon resolution
EP2490441A1 (en) * 2011-02-16 2012-08-22 Paul Scherrer Institut Single photon counting detector system having improved counter architecture
US9310495B2 (en) * 2011-05-04 2016-04-12 Oy Ajat Ltd. Photon/energy identifying X-ray and gamma ray imaging device (“PID”) with a two dimensional array of pixels and system therefrom
EP2629118A3 (en) * 2012-02-15 2017-09-06 CSEM Centre Suisse d'Electronique et de Microtechnique SA - Recherche et Développement High-sensitivity x-ray detector
EP2664280A3 (en) * 2012-05-14 2013-12-04 Samsung Electronics Co., Ltd X-ray imaging apparatus and control method therefor
CZ306489B6 (cs) 2014-11-03 2017-02-08 Crytur, Spol.S R.O. Zařízení pro koincidenční zobrazování sekundárními elektrony
WO2016123231A1 (en) * 2015-01-27 2016-08-04 Oregon State University Low-cost and low-power radiation spectrometer
DE102015205301A1 (de) * 2015-03-24 2016-09-29 Siemens Healthcare Gmbh Betreiben eines zählenden digitalen Röntgenbilddetektors
US10098595B2 (en) * 2015-08-06 2018-10-16 Texas Instruments Incorporated Low power photon counting system
US10117626B2 (en) * 2015-09-29 2018-11-06 General Electric Company Apparatus and method for pile-up correction in photon-counting detector
EP3151545A1 (en) * 2015-10-01 2017-04-05 Paul Scherrer Institut Method for extending the dynamic range of a pixel detector system using automatic gain switching
US10151845B1 (en) 2017-08-02 2018-12-11 Texas Instruments Incorporated Configurable analog-to-digital converter and processing for photon counting
US10024979B1 (en) 2017-11-01 2018-07-17 Texas Instruments Incorporated Photon counting with coincidence detection
US20190154852A1 (en) * 2017-11-16 2019-05-23 NueVue Solutions, Inc. Analog Direct Digital X-Ray Photon Counting Detector For Resolving Photon Energy In Spectral X-Ray CT
JP7095328B2 (ja) * 2018-03-15 2022-07-05 富士電機株式会社 放射線測定装置
US10890674B2 (en) 2019-01-15 2021-01-12 Texas Instruments Incorporated Dynamic noise shaping in a photon counting system
DE102019112893A1 (de) * 2019-05-16 2020-11-19 Universität Paderborn Verfahren zum Auslesen eines optischen Detektors
EP3805806A1 (en) * 2019-10-07 2021-04-14 Paul Scherrer Institut Dual mode detector
EP3855725A1 (en) 2020-01-21 2021-07-28 Paul Scherrer Institut Single photon counting detectors in strip or pixel design having digital inter-pixel communication and logic
JP7427799B2 (ja) * 2020-02-05 2024-02-05 プリズマティック、センサーズ、アクチボラグ 光子計数x線検出器のための閾値超合計時間(ttot)処理
JP7391752B2 (ja) * 2020-04-02 2023-12-05 株式会社東芝 放射線計測装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1482470A (zh) * 2003-07-18 2004-03-17 华东师范大学 高计数率的单光子检测器
CN1584629A (zh) * 2004-05-27 2005-02-23 华东师范大学 一种平衡抑制的单光子探测电路模块
US20100316184A1 (en) * 2008-10-17 2010-12-16 Jan Iwanczyk Silicon photomultiplier detector for computed tomography

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6275371A (ja) * 1985-09-30 1987-04-07 Toshiba Corp Mcp荷電粒子計数装置
US5475225A (en) * 1989-03-17 1995-12-12 Advanced Scientific Concepts Inc. Autoradiographic digital imager
JPH0619455B2 (ja) * 1989-08-15 1994-03-16 株式会社島津製作所 放射線測定装置
US5665959A (en) * 1995-01-13 1997-09-09 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Adminstration Solid-state image sensor with focal-plane digital photon-counting pixel array
US6362484B1 (en) * 1995-07-14 2002-03-26 Imec Vzw Imager or particle or radiation detector and method of manufacturing the same
GB2318411B (en) * 1996-10-15 1999-03-10 Simage Oy Imaging device for imaging radiation
US6362482B1 (en) * 1997-09-16 2002-03-26 Advanced Scientific Concepts, Inc. High data rate smart sensor technology
GB2332585B (en) * 1997-12-18 2000-09-27 Simage Oy Device for imaging radiation
US6552745B1 (en) * 1998-04-08 2003-04-22 Agilent Technologies, Inc. CMOS active pixel with memory for imaging sensors
FI20000333A0 (fi) * 2000-02-16 2000-02-16 Jussi Nurmi Homogeeninen menetelmä polynukleotidin havaitsemiseksi
JP2002168958A (ja) * 2000-11-29 2002-06-14 Toshiba Corp 放射線検出器及び医用画像診断装置
US7868665B2 (en) * 2002-03-05 2011-01-11 Nova R&D, Inc. Integrated circuit and sensor for imaging
US7319423B2 (en) * 2002-07-31 2008-01-15 Quantum Semiconductor Llc Multi-mode ADC and its application to CMOS image sensors
DE60327809D1 (de) * 2003-01-10 2009-07-09 Scherrer Inst Paul Photonenzähl-abbildungseinrichtung
US7634061B1 (en) * 2004-03-26 2009-12-15 Nova R & D, Inc. High resolution imaging system
EP1788629A1 (en) * 2005-11-21 2007-05-23 Paul Scherrer Institut A readout chip for single photon counting
EP2076791B1 (en) * 2006-10-25 2015-04-22 Koninklijke Philips N.V. Apparatus, imaging device and method for detecting x-ray radiation
US7829860B2 (en) * 2006-10-31 2010-11-09 Dxray, Inc. Photon counting imaging detector system
ATE510231T1 (de) * 2006-12-13 2011-06-15 Koninkl Philips Electronics Nv Gerät und verfahren zur zählung von röntgenphotonen
FR2912588B1 (fr) * 2007-02-13 2009-04-10 Commissariat Energie Atomique Detecteur de rayonnement x ou gamma
WO2008108734A1 (en) * 2007-03-06 2008-09-12 Richard Brenner Detector for radiation therapy
WO2008110182A1 (en) * 2007-03-09 2008-09-18 Cern - European Organization For Nuclear Research Method, apparatus and computer program for measuring the dose, dose rate or composition of radiation
CN101680956B (zh) * 2007-06-19 2013-02-13 皇家飞利浦电子股份有限公司 用于多谱光子计数读出电路的数字脉冲处理
EP2028509A1 (en) * 2007-08-09 2009-02-25 European Organisation for Nuclear Research CERN Radiation monitoring device
US7696483B2 (en) * 2007-08-10 2010-04-13 General Electric Company High DQE photon counting detector using statistical recovery of pile-up events
EP2045816A1 (en) * 2007-10-01 2009-04-08 Paul Scherrer Institut Fast readout method and swiched capacitor array circuitry for waveform digitizing
CA2650066A1 (en) * 2009-01-16 2010-07-16 Karim S. Karim Photon counting and integrating pixel readout architecture with dynamic switching operation
US8384038B2 (en) * 2009-06-24 2013-02-26 General Electric Company Readout electronics for photon counting and energy discriminating detectors
KR101616056B1 (ko) * 2009-08-19 2016-04-28 삼성전자주식회사 광자 계수 장치 및 방법
EP2290403A1 (en) * 2009-08-28 2011-03-02 Paul Scherrer Institut X-ray detector with integrating readout chip for single photon resolution
US8766161B2 (en) * 2009-12-02 2014-07-01 Nucript LLC System for controling and calibrating single photon detection devices
US9000385B2 (en) * 2009-12-30 2015-04-07 General Electric Company Method and apparatus for acquiring radiation data
EP2348704A1 (en) * 2010-01-26 2011-07-27 Paul Scherrer Institut A single photon counting readout chip with neglibible dead time
US8716643B2 (en) * 2010-09-06 2014-05-06 King Abdulaziz City Science And Technology Single photon counting image sensor and method
US8338773B2 (en) * 2010-09-06 2012-12-25 King Abdulaziz City for Science and Technology. High-speed analog photon counter and method
US8859944B2 (en) * 2010-09-07 2014-10-14 King Abdulaziz City Science And Technology Coordinated in-pixel light detection method and apparatus
EP2490441A1 (en) * 2011-02-16 2012-08-22 Paul Scherrer Institut Single photon counting detector system having improved counter architecture
KR101871361B1 (ko) * 2011-11-01 2018-08-03 삼성전자주식회사 고해상도 및 고대조도 영상을 동시에 생성하기 위한 광자 계수 검출 장치 및 방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1482470A (zh) * 2003-07-18 2004-03-17 华东师范大学 高计数率的单光子检测器
CN1584629A (zh) * 2004-05-27 2005-02-23 华东师范大学 一种平衡抑制的单光子探测电路模块
US20100316184A1 (en) * 2008-10-17 2010-12-16 Jan Iwanczyk Silicon photomultiplier detector for computed tomography

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MATTEO PERENZONI ET AL.: "A Multispectral Analog Photon-Counting Readout Circuit for X-Ray Hybrid Pixel Detectors", 《IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT》 *
ROBERT SZCZYGIEL ET AL.: "RG64-High Count Rate Low Noise Multichannel ASIC With Energy Window Selection and Continuous Readout Mode", 《IEEE TRANSACTIONS ON NUCLEAR SCIENCE》 *

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10061038B2 (en) 2015-04-07 2018-08-28 Shenzhen Xpectvision Technology Co., Ltd. Semiconductor X-ray detector
US9915741B2 (en) 2015-04-07 2018-03-13 Shenzhen Xpectvision Technology Co., Ltd. Method of making semiconductor X-ray detectors
US10007009B2 (en) 2015-04-07 2018-06-26 Shenzhen Xpectvision Technology Co., Ltd. Semiconductor X-ray detector
US10539691B2 (en) 2015-06-10 2020-01-21 Shenzhen Xpectvision Technology Co., Ltd. Detector for X-ray fluorescence
US10056425B2 (en) 2015-07-09 2018-08-21 Shenzhen Xpectvision Technology Co., Ltd. Methods of making semiconductor X-ray detector
CN104990632A (zh) * 2015-07-14 2015-10-21 华中科技大学 一种门控差分单光子探测系统
US10705031B2 (en) 2015-08-27 2020-07-07 Shenzhen Xpectvision Technology Co., Ltd. X-ray imaging with a detector capable of resolving photon energy
WO2017041221A1 (en) * 2015-09-08 2017-03-16 Shenzhen Xpectvision Technology Co., Ltd. Methods for making an x-ray detector
CN107923987A (zh) * 2015-09-08 2018-04-17 深圳帧观德芯科技有限公司 用于制作x射线检测器的方法
US10007007B2 (en) 2015-09-08 2018-06-26 Shenzhen Xpectvision Technology Co., Ltd. Methods for making an X-ray detector
WO2018053778A1 (en) * 2016-09-23 2018-03-29 Shenzhen Xpectvision Technology Co.,Ltd. Packaging of semiconductor x-ray detectors
US10677940B2 (en) 2016-09-23 2020-06-09 Shenzhen Xpectvision Technology Co., Ltd. Packaging of semiconductor X-ray detectors
CN109690351A (zh) * 2016-09-23 2019-04-26 深圳帧观德芯科技有限公司 半导体x射线检测器的封装
CN109690351B (zh) * 2016-09-23 2022-12-09 深圳帧观德芯科技有限公司 半导体x射线检测器的封装
US10989820B2 (en) 2017-01-23 2021-04-27 Shenzhen Xpectvision Technology Co., Ltd. Radiation detector
WO2018133088A1 (en) * 2017-01-23 2018-07-26 Shenzhen Xpectvision Technology Co., Ltd. A radiation detector
CN110214284A (zh) * 2017-01-23 2019-09-06 深圳帧观德芯科技有限公司 辐射检测器
WO2019019041A1 (en) * 2017-07-26 2019-01-31 Shenzhen Xpectvision Technology Co., Ltd. METHODS OF MAKING AND USING X-RAY DETECTORS
WO2019019039A1 (en) * 2017-07-26 2019-01-31 Shenzhen Xpectvision Technology Co., Ltd. X-RAY DETECTOR
US11156726B2 (en) 2017-07-26 2021-10-26 Shenzhen Xpectvision Technology Co., Ltd. Methods of making and using an x-ray detector
US11171171B2 (en) 2017-07-26 2021-11-09 Shenzhen Xpectvision Technology Co., Ltd. X-ray detector
CN111279222A (zh) * 2017-10-30 2020-06-12 深圳源光科技有限公司 具有高时间分辨率的lidar检测器
CN107677380A (zh) * 2017-10-30 2018-02-09 湖北京邦科技有限公司 一种彩色数字硅光电倍增器件
CN111279222B (zh) * 2017-10-30 2023-07-28 深圳源光科技有限公司 具有高时间分辨率的lidar检测器
CN109151349A (zh) * 2018-09-10 2019-01-04 中国科学院高能物理研究所 全信息读出的像素单元电路及全信息读出方法

Also Published As

Publication number Publication date
AU2011359088B2 (en) 2015-12-03
JP5875606B2 (ja) 2016-03-02
EP2490441A1 (en) 2012-08-22
AU2011359088A1 (en) 2013-08-15
US9121955B2 (en) 2015-09-01
JP2014511598A (ja) 2014-05-15
US20140166861A1 (en) 2014-06-19
WO2012110162A1 (en) 2012-08-23
EP2676434B1 (en) 2018-07-18
EP2676434A1 (en) 2013-12-25
CN103430533B (zh) 2017-03-08

Similar Documents

Publication Publication Date Title
CN103430533A (zh) 具有改进的计数器结构的单光子计数检测器系统
Frach et al. The digital silicon photomultiplier—System architecture and performance evaluation
US9046614B2 (en) X-ray detector with integrating readout chip for single photon resolution
Pichler et al. Lutetium oxyorthosilicate block detector readout by avalanche photodiode arrays for high resolution animal PET
US9040898B2 (en) Device having a plurality of photosensitive microcells arranged in row or matrix form
US20030035510A1 (en) Sensor arrangement and method in digital x-ray imaging
Bagliesi et al. A custom front-end ASIC for the readout and timing of 64 SiPM photosensors
EP2994779A1 (en) A detector configuration with semiconductor photomultiplier strips and differential readout
CN110133710B (zh) 一种信号校正的方法及装置
AU2014372312B2 (en) Radiation detection apparatus and method
US10838088B2 (en) Apparatus, device and method for measuring gain of sensor
Vernon et al. Front-end ASIC for spectroscopic readout of virtual Frisch-grid CZT bar sensors
JP4934826B2 (ja) 放射線画像検出モジュールおよび放射線画像検出装置
Llosa et al. Energy, timing and position resolution studies with 16-pixel silicon photomultiplier matrices for small animal PET
Nassalski et al. Silicon photomultiplier as an alternative for APD in PET/MRI applications
CN211236260U (zh) 符合分辨时间(crt)读出电路
Stapels et al. Solid-state photomultiplier in CMOS technology for gamma-ray detection and imaging applications
Shao et al. Energy and timing measurement of a PET detector with time-based readout electronics
Llosa et al. Evaluation of the first Silicon Photomultiplier matrices for a small animal PET scanner
Tumer et al. High-resolution imaging 1D and 2D solid state detector systems
Harris et al. Digital electronics for 256 anode Hamamatsu H9500 PSPMT arrays in full-volume Compton imagers
Tumer et al. New two-dimensional solid state pixel detectors with dedicated front-end integrated circuits for x-ray and gamma-ray imaging
Habte et al. Investigation of low noise, low cost readout electronics for high sensitivity PET systems based on Avalanche Photodiode arrays

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant