WO2012108187A1 - 立体視用画像生成装置および方法、並びにプログラム - Google Patents

立体視用画像生成装置および方法、並びにプログラム Download PDF

Info

Publication number
WO2012108187A1
WO2012108187A1 PCT/JP2012/000812 JP2012000812W WO2012108187A1 WO 2012108187 A1 WO2012108187 A1 WO 2012108187A1 JP 2012000812 W JP2012000812 W JP 2012000812W WO 2012108187 A1 WO2012108187 A1 WO 2012108187A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
parallax
stereoscopic
parallax images
subject
Prior art date
Application number
PCT/JP2012/000812
Other languages
English (en)
French (fr)
Inventor
西納 直行
大田 恭義
孝夫 桑原
靖子 八尋
玲 長谷川
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to CN2012800082265A priority Critical patent/CN103348684A/zh
Priority to JP2012556792A priority patent/JPWO2012108187A1/ja
Publication of WO2012108187A1 publication Critical patent/WO2012108187A1/ja
Priority to US13/945,995 priority patent/US20130300737A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/204Image signal generators using stereoscopic image cameras
    • H04N13/207Image signal generators using stereoscopic image cameras using a single 2D image sensor
    • H04N13/221Image signal generators using stereoscopic image cameras using a single 2D image sensor using the relative movement between cameras and objects
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/02Devices for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/022Stereoscopic imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/50Clinical applications
    • A61B6/502Clinical applications involving diagnosis of breast, i.e. mammography
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/10Processing, recording or transmission of stereoscopic or multi-view image signals
    • H04N13/106Processing image signals
    • H04N13/139Format conversion, e.g. of frame-rate or size
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/204Image signal generators using stereoscopic image cameras
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/332Displays for viewing with the aid of special glasses or head-mounted displays [HMD]
    • H04N13/337Displays for viewing with the aid of special glasses or head-mounted displays [HMD] using polarisation multiplexing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/356Image reproducers having separate monoscopic and stereoscopic modes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/286Image signal generators having separate monoscopic and stereoscopic modes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/346Image reproducers using prisms or semi-transparent mirrors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/363Image reproducers using image projection screens

Definitions

  • the present invention relates to a technique for generating a stereoscopic image using binocular parallax.
  • Stereoscopic display technology using the principle of binocular parallax is known. Specifically, this stereoscopic display technology generates parallax images for the left and right eyes by imaging the same subject from different positions corresponding to the left and right eyes, and generates the generated parallax images for each eye. It is given independently to the left and right eyes of the observer. Thus, the observer can recognize the subject represented in each parallax image as a stereoscopic image with a sense of depth.
  • This stereoscopic display technology is being used not only in the field of digital cameras and televisions, but also in the medical field such as radiation diagnostic equipment such as mammography and endoscopy equipment.
  • various types of stereoscopic display devices based on the principle of binocular parallax are known.
  • the left and right parallax images are output in a superimposed manner by a half mirror, and the polarization filter method that separates and outputs the parallax images to the left and right eyes with glasses with a polarization filter, and the parallax images are switched at high speed and displayed.
  • a method using special glasses such as a frame-sequential method in which only parallax images corresponding to the left and right eyes are provided by glasses having liquid crystal shutters that alternately shield the left and right visual fields in synchronization with the switching is known. .
  • an autostereoscopic display device that displays left and right parallax images in a spatially divided manner and gives only parallax images corresponding to the left and right eyes by a parallax barrier, a lenticular lens, or the like. Yes.
  • the glasses-type stereoscopic display device requires glasses for the number of observers (for example, Patent Document 1).
  • each parallax image is not recognized as a stereoscopic image, and the contour is defined by binocular parallax. It will be recognized as a double image.
  • each parallax image may be recognized as a double image.
  • the present invention has been made in view of the above circumstances, and both an observer in an observation mode capable of stereoscopic viewing with respect to a parallax image for each of the left and right eyes and an observer in an observation mode impossible of stereoscopic viewing, It is an object of the present invention to provide a stereoscopic image generation apparatus and method, and a program that allow each parallax image stereoscopically displayed to be observed with an acceptable display quality.
  • the present invention is an application of the knowledge found by the present applicant that stereoscopic observation is possible even if the image quality of the parallax images for the left and right eyes does not match.
  • the stereoscopic image generation apparatus of the present invention includes a parallax image generation unit that generates parallax images for the left and right eyes that are targets of fusion display for stereoscopic vision using binocular parallax.
  • a parallax image generation unit that generates parallax images for the left and right eyes that are targets of fusion display for stereoscopic vision using binocular parallax.
  • the parallax image generation unit observes at least one of the parallax images in an observation mode in which both of the parallax images displayed in an integrated manner can be viewed stereoscopically.
  • the stereoscopic image generation method of the present invention is a method of generating a parallax image for each of the left and right eyes that is a target of fusion display for binocular parallax, and at least one of the parallax images. If the observer observes both parallax images displayed in a fused manner in a stereoscopically observable manner, the subject in the parallax image can be observed as a stereoscopic image and When both of the displayed parallax images are observed in an observation mode incapable of stereoscopic viewing, the subject is generated with a low resolution or low sharpness that can be recognized as a planar image.
  • the stereoscopic image generation program of the present invention causes a computer to perform the above-described stereoscopic image generation method.
  • the fused display of the parallax images for the left and right eyes means that the parallax images are displayed in a fused position, and excludes the display of the individual parallax images separated in position.
  • Specific examples of the fusion display include superimposed display of parallax images in the polarization filter method, time-division display of parallax images in the frame sequential method, space-division display of parallax images in the naked eye method, and the like.
  • observation is performed without glasses in glasses-type stereoscopic display, or observation is performed at an inappropriate position in stereoscopic display regardless of glasses-type or naked-eye type.
  • observation is performed without glasses in glasses-type stereoscopic display, or observation is performed at an inappropriate position in stereoscopic display regardless of glasses-type or naked-eye type.
  • the degree to which the resolution and sharpness of at least one of the parallax images is reduced may be determined based on information representing the parallax amount in the parallax images for the left and right eyes.
  • information representing the amount of parallax include shooting conditions such as the shooting direction of each parallax image and the distance between each of the focal point, the subject, and the imaging plane.
  • an observer in an observation mode capable of stereoscopic observation can view the subject as a stereoscopic image.
  • an observer in an observation mode that cannot perform stereoscopic observation cannot see the subject, and the image is totally blurred, and the subject cannot be recognized as a planar image.
  • the subject in the parallax image is regarded as a stereoscopic image.
  • the subject can be recognized as a planar image even when the observer observes both the parallax images displayed in a fused manner in an observation mode incapable of stereoscopic viewing.
  • the present invention when at least one of the parallax images for the left and right eyes is observed in an observation mode in which both of the parallax images displayed in an integrated manner can be viewed stereoscopically, Low enough to allow the subject to be observed as a three-dimensional image, and to allow the observer to recognize the subject as a planar image even when both of the parallax images shown in a fused manner are observed in an observation mode incapable of stereoscopic viewing. Can be generated with resolution or low sharpness. As a result, both the observer in the observation mode capable of stereoscopic viewing of the parallax images for the left and right eyes and the observer in the observation mode not capable of stereoscopic viewing can view the stereoscopic image with acceptable display quality. It becomes possible to observe, and coexistence of observers of both observation modes is realized.
  • FIG. 1 is a schematic configuration diagram of a breast image capturing and displaying system in which a stereoscopic image generating apparatus according to an embodiment of the present invention is mounted.
  • Schematic cross-sectional view showing the arm part of the breast image radiographing display system 1 is a block diagram showing a schematic configuration inside a computer, peripheral devices, etc. of a breast image radiographing display system according to a first embodiment of the present invention.
  • the schematic block diagram of the polarization filter system display system mounted in the breast image radiographing display system.
  • a breast image capturing and displaying system in which a stereoscopic image generating apparatus according to an embodiment of the present invention is mounted includes a stereo imaging mode for capturing radiographic images for left and right eyes for stereoscopic viewing, and a normal two-dimensional image.
  • the stereo imaging mode one of the radiographic images for the left and right eyes is generated with a given resolution or sharpness lower than the other.
  • a breast image photographing display system 1 includes a breast image photographing device 10, a computer 8 connected to the breast image photographing device 10, and a three-dimensional image connected to the computer 8.
  • the visual display 9 and the input unit 7 are included.
  • the mammography apparatus 10 includes a base 11, a rotary shaft 12 that can move in the vertical direction (Z direction) relative to the base 11, and a rotary shaft 12. 11 and an arm portion 13 connected to the arm portion 13.
  • the arm portion 13 is shaped like an alphabet C, and a radiation stand 16 is attached to one end of the arm portion 13 so as to face the photographing stand 14 at the other end.
  • the rotation and vertical movement of the arm unit 13 are controlled by an arm controller 31 incorporated in the base 11, details of which will be described later.
  • a radiation image detector 15 such as a flat panel detector and a detector controller 33 that controls reading of a charge signal from the radiation image detector 15 are provided.
  • the imaging table 14 has a charge amplifier that converts a charge signal read from the radiation image detector 15 into a voltage signal, and a voltage signal output from the charge amplifier.
  • a circuit board provided with a correlated double sampling circuit for sampling, an AD conversion unit for converting a voltage signal into a digital signal, and the like are also installed.
  • the radiographic image detector 15 can repeatedly perform recording and reading of radiographic images, and a so-called direct conversion type radiographic image detector that directly receives radiation and generates charges may be used.
  • a so-called indirect conversion type radiation image detector that converts radiation once into visible light and converts the visible light into a charge signal may be used.
  • a radiation image signal readout method a radiation image signal is read out by turning on and off a TFT (thin film transistor) switch, or a radiation image is emitted by irradiating reading light. It is desirable to use a so-called optical readout system in which a signal is read out, but the present invention is not limited to this, and other systems may be used.
  • the charge signal read from the radiation image detector 15 is converted into digital image data representing a radiation image through each process by a subsequent charge amplifier, a correlated double sampling circuit, and an AD conversion unit.
  • the radiation irradiation unit 16 is provided with a radiation source 17 and a radiation source controller 32.
  • the radiation source controller 32 controls the timing of irradiating radiation from the radiation source 17 and the radiation generation conditions (tube voltage, tube current, irradiation time, tube current time product, etc.) in the radiation source 17.
  • a compression plate 18 that is disposed above the imaging table 14 and presses and compresses the breast M, a support unit 20 that supports the compression plate 18, and a support unit 20 in the vertical direction (Z And a moving mechanism 19 that moves in a direction).
  • the position and compression thickness of the compression plate 18 are controlled by the compression plate controller 34.
  • FIG. 2 schematically shows the front shape of the arm 13 viewed from the right direction (positive direction of the y-axis) in FIG.
  • the arm portion 13 is configured to rotate about the rotation shaft 12.
  • the photographing table 14 is configured to be rotatable with respect to the arm unit 13, so that even when the arm unit 13 rotates about the rotation shaft 12 with respect to the base 11, the photographing table 14 is configured as a base. 11 is maintained in a fixed orientation.
  • the rotating shaft 12 is disposed at substantially the same height as the radiation image detector 15. For this reason, the radiation irradiation axes of the radiation sources 17 at different rotational positions intersect with each other in the vicinity of the radiation image detector 15.
  • the arm unit 13 may be rotated so that the radiation irradiation axis intersects in the breast M as the subject.
  • the radiation source 17 with respect to the radiation image detector 15 at various imaging angles ⁇ (the magnitude of the angle formed by the radiation irradiation axis with respect to the normal of the detection surface of the radiation image detector 15). It is possible to take a picture by irradiating with radiation.
  • the photographing angle ⁇ is given from the computer 8 to the arm controller 31, and the arm unit 31 is rotated by the control of the arm controller 31 so that the photographing angle ⁇ becomes the same. For example, in the stereo shooting mode, shooting is performed twice with the shooting angles ⁇ being + 2 ° and ⁇ 2 °, and in the 2D shooting mode, shooting is performed only once with the shooting angle ⁇ being 0 °.
  • the computer 8 that controls the operation of the mammography apparatus 10 includes a central processing unit (CPU) and a storage device such as a semiconductor memory, a hard disk, and an SSD, and operates on these hardware and these hardware.
  • the control unit 8a, the radiation image storage unit 8b, and the display control unit 8c as shown in FIG. 3 are configured by software.
  • the controller 8a outputs predetermined control signals to the various controllers 31 to 34 to control the entire system. A specific control method will be described in detail later.
  • the radiographic image storage unit 8b stores digital image data representing a radiographic image.
  • the radiographic image storage unit 8b has a storage area for image data of two radiographic images, and stereo imaging. In the mode, image data of radiographic images for left and right eyes for stereoscopic display is stored. On the other hand, in the 2D imaging mode, only image data of one radiation image is stored.
  • the display control unit 8c reads out the radiation image data stored in the radiation image storage unit 8b, and displays the radiation image of the breast M on the stereoscopic display 9 based on the radiation image data.
  • the input unit 7 is composed of a pointing device such as a keyboard and a mouse, for example, and receives input of a shooting mode, shooting conditions, a shooting start instruction, and the like by a photographer.
  • the stereoscopic display 9 is configured to perform stereoscopic display using the image data of the left and right binocular radiographic images stored in the radiographic image storage unit 8b of the computer 8 when imaging is performed in the stereo imaging mode. It has been done.
  • the left and right binocular radiographic images are respectively displayed using two screens, and one of these radiographic images is visually recognized by the observer's right eye by using a half mirror or polarizing glass,
  • the other radiation image has a configuration of a polarization filter system that is visually recognized by the left eye of the observer.
  • FIG. 4 is a schematic diagram showing the configuration of the stereoscopic display 9 of the present embodiment.
  • the stereoscopic display 9 outputs a right-eye light output unit 40R that outputs a right-eye light signal 46R for displaying a right-eye image, and a left-eye light signal 46L that displays a left-eye image.
  • the right-eye light output unit 40R and the left-eye light output unit 40L are light output units that can perform output control independently of each other, and are arranged so that the output directions of the optical signals are orthogonal to each other.
  • the right-eye light output unit 40R and the left-eye light output unit 40L are, for example, liquid crystal panels, and polarizing filters (not shown) having polarization directions orthogonal to each other are provided on the surfaces thereof.
  • the optical signal polarized in the horizontal direction P1 (the horizontal direction in the drawing in the drawing, the same applies hereinafter) is output from the right-eye light output unit 40R.
  • the light output unit 40L for the left eye outputs an optical signal polarized in the vertical direction P2 (the vertical direction in the drawing. However, for convenience, the arrows are shown in the vertical direction in the drawing. The same applies hereinafter). .
  • the half mirror 42 is provided at a position where the right-eye light signal 46R from the right-eye light output unit 40R and the left-eye light signal 46L from the left-eye light output unit 40L intersect. Further, the half mirror 42 is configured to transmit the right-eye optical signal 46 ⁇ / b> R and to reflect the left-eye optical signal 46 ⁇ / b> L in a direction toward the polarizing glass 43. Therefore, a combined signal 46 of the right-eye optical signal 46R and the left-eye optical signal 46L is formed on the half mirror 42.
  • the polarizing glass 43 includes a polarizing filter 43R that transmits the right-eye optical signal 46R polarized in the horizontal direction P1, and a polarizing filter 43L that transmits the left-eye optical signal 46L polarized in the vertical direction P2.
  • the polarizing glass 43 is configured such that when the observer E puts on the polarizing glass 43, the polarizing filter 43R faces the right eye and the polarizing filter 43L faces the left eye.
  • the observer E observes the composite signal 46 through the polarizing glass 43.
  • the polarizing filter 43R transmits only the right-eye optical signal 46R polarized in the horizontal direction P1
  • the polarizing filter 43L transmits only the left-eye optical signal 46L polarized in the vertical direction P2.
  • the observer E can recognize two images having parallax with each of the left and right eyes, and can observe the breast M in both images as a stereoscopic image.
  • the display control unit 8c of the computer 8 uses the image data of one radiographic image stored in the radiographic image storage unit 8b for the right eye of the stereoscopic display 9. This is applied to both the light output unit 40R and the left-eye light output unit 40L. As a result, the same radiation image reaches both eyes of the viewer E via the half mirror 42 and the polarizing glass 43, so that the viewer E can observe the breast M as a two-dimensional image.
  • the breast M is arranged on the imaging table 14, and the breast M is compressed with a predetermined pressure by the compression plate 18.
  • the arm unit 13 is set to an initial position that is perpendicular to the imaging table 14, that is, a position indicated by a solid line in FIG.
  • the input unit 7 accepts input of various shooting conditions and selection of shooting modes.
  • the control unit 8a reads the shooting angle ⁇ in the preset stereo shooting mode from the internal memory, and outputs information on the shooting angle ⁇ to the arm controller 31.
  • 2 ° is stored in advance as information on the photographing angle ⁇ .
  • the present invention is not limited to this, and the photographing angle ⁇ may be an angle of about 2 ° to 5 °.
  • the arm controller 31 receives the information of the photographing angle ⁇ output from the control unit 8a, and outputs a control signal for rotating the arm unit 13 by + ⁇ from the initial position based on the information of the photographing angle ⁇ . . Therefore, the arm portion 13 rotates by + ⁇ according to this control signal.
  • control unit 8a outputs a control signal to the radiation source controller 32 and the detector controller 33 so as to perform radiation irradiation and readout of the radiation image signal. Therefore, radiation is emitted from the radiation source 17 in accordance with this control signal, and a radiation image signal obtained by imaging the breast from the + ⁇ direction is detected by the radiation image detector 15. Next, a radiation image signal is read from the radiation image detector 15 by the detector controller 33. Then, after AD conversion and predetermined signal processing are performed on the radiographic image signal, digital image data of the radiographic image is stored in the radiographic image storage unit 8 b of the computer 8.
  • the arm controller 31 once returns the arm 13 to the initial position, and then outputs a control signal for rotating the arm 13 by ⁇ from the initial position. As a result, the arm 13 rotates by - ⁇ from the initial position.
  • control unit 8a outputs a control signal to the radiation source controller 32 and the detector controller 33 so as to perform radiation irradiation and readout of the radiation image signal. Therefore, radiation is emitted from the radiation source 17 in accordance with this control signal, and a radiation image signal obtained by imaging the breast from the ⁇ direction is detected by the radiation image detector 15. Next, a radiation image signal is read from the radiation image detector 15 by the detector controller 33. Then, after AD conversion and predetermined signal processing are performed on the radiographic image signal, digital image data of the radiographic image is stored in the radiographic image storage unit 8 b of the computer 8.
  • the observer E instructs the stereoscopic image display of the radiation image of the breast M from the input unit 7
  • a radiation image based on the two radiation image data stored in the radiation image storage unit 8 b is generated according to the display instruction.
  • the images are displayed stereoscopically on the stereoscopic display 9 as images for the left and right eyes.
  • the radiographic image obtained by the first imaging can be used as the right-eye image of the stereoscopic image
  • the radiographic image obtained by the second imaging can be used as the left-eye image of the stereoscopic image. it can.
  • the configuration including the detector controller 33, the LUT 35, and the radiation image detector 15 corresponds to the parallax image generation unit of the present invention.
  • the resolution conversion processing unit 8d The configuration including the LUT 8e and the radiation image detector 15 corresponds to the parallax image generation unit of the present invention.
  • the configuration including the unsharpening processing unit 8f, the LUT 8e, and the radiation image detector 15 is the main configuration. This corresponds to the parallax image generation unit of the invention.
  • the detector controller 33 in the case of the stereo photographing mode, in the first photographing at the photographing angle + ⁇ , the detector controller 33 is controlled to perform reading at a low resolution, and the radiation image detector 15 is controlled. The signal of each pixel is thinned out at a predetermined interval in two dimensions and output. On the other hand, in the second imaging at the imaging angle ⁇ , the detector controller 33 is controlled to perform reading at a high resolution, and the radiation image detector 15 outputs all the signals of each pixel.
  • the detector controller 33 accesses the LUT 35 and acquires a signal thinning interval corresponding to the photographing condition.
  • the LUT 35 includes an imaging angle ⁇ , a distance between the radiation source 17 and the radiation image detector 15, a distance between the radiation source 17 and the breast M, a distance between the breast M and the radiation image detector 15, It is the reference table which defined the thinning-out interval of a signal for every one or more imaging conditions of compression thickness etc. This thinning interval is determined when the radiographic image obtained in the stereo imaging mode is stereoscopically displayed on the stereoscopic display 9 and the observer E wearing the polarizing glass 43 observes the image when the radiographic image is displayed on the subject.
  • a certain breast M can be observed as a three-dimensional image, and even when an observer E who does not wear the polarizing glass 43 observes these images, the breast M can be recognized as a planar image. This is determined experimentally and empirically in advance for each photographing condition so as to achieve a resolution of a certain degree. In addition to this, thinning is performed so that the breast M can be recognized as a planar image even when the observer E at the observation position where stereoscopic observation is difficult even when the polarizing glass 43 is worn, observes these images. An interval may be set. In the case where the shooting conditions can be digitized, a function that outputs the thinning interval with the digitized shooting conditions as an input may be used instead of the LUT 35.
  • the detector controller 33 accesses the LUT 35, so that the observer E can view the stereoscopic display 9 on the stereoscopic display 9.
  • the subject's breast M can be observed as a stereoscopic image, and each radiographic image is observed in a stereoscopically observable manner.
  • the thinning interval is determined so that the breast M as the subject can be recognized as a planar image, and one of the radiographic image signals for the left and right eyes is read at the thinning interval.
  • reading at low resolution is performed for the first shooting, and reading at high resolution is performed for the second shooting.
  • the signal reading time in the first shooting is shortened, but the signal reading in the second shooting takes more time than the first shooting.
  • the restraint time of the subject is the start of signal reading of the second imaging from the first imaging. It only takes up to Therefore, by performing reading at a low resolution before reading at a high resolution, it becomes possible to shorten the restraint time of the subject as compared with the case of reading both signals at a high resolution.
  • the burden on the subject in mammography imaging is reduced. In particular, in mammography, the subject often feels a heavy burden on breast compression, so the psychological burden reducing effect by shortening the restraint time is significant.
  • the amount of data of the image read at the low resolution is small, so that the total amount of data required for stereoscopic viewing is reduced. Can be reduced, and the problems of increased storage load for storing radiation image data and reduced image data delivery efficiency between devices can be alleviated.
  • stereo shooting was performed with a shooting angle of ⁇ 2 °.
  • shooting was performed with one shooting angle set to 0 ° and the other shooting angle set to, for example, 4 ° or ⁇ 4 °.
  • the radiographic image obtained by this imaging may be used as an image for both stereoscopic display and two-dimensional display used for normal interpretation and diagnosis. Accordingly, it is not necessary to capture / acquire a two-dimensional display image separately from the stereoscopic display image, and the burden on the subject is reduced by reducing the subject's restraint time and the exposure dose.
  • an image at an imaging angle of 0 ° which is less affected by grid damage and the like. It can be used for interpretation and diagnosis and contributes to improvement of interpretation and diagnosis accuracy. Furthermore, when one imaging angle is set to 0 °, radiographic image signals obtained by imaging at an imaging angle of 0 ° are read at a high resolution in order to obtain a radiographic image for interpretation and diagnosis with higher definition. It is preferable to do.
  • the second embodiment of the present invention converts the resolution by image processing on the image data of the radiographic image after signal reading / conversion without changing the resolution at the time of signal reading from the radiographic image detector 15. is there.
  • FIG. 5 is a block diagram showing a schematic configuration inside the computer 8 of the breast image capturing and displaying system according to the second embodiment of the present invention.
  • a resolution conversion processing unit 8d is further added to the inside of the computer 8, and the LUT 8e is replaced by a computer instead of the LUT 35 accessed by the detector controller 33. 8 is mounted inside.
  • the resolution conversion processing unit 8d is realized by executing a program installed from a recording medium such as a CD-ROM.
  • the program may be installed after being downloaded from a storage device of a server connected via a network such as the Internet.
  • the resolution conversion processing unit 8d performs a known resolution conversion process using digital image data representing a radiation image as an input, and outputs the image data after conversion to a low resolution.
  • the degree of resolution reduction by the resolution conversion processing is acquired by the resolution conversion processing unit 8d accessing the LUT 8e.
  • the LUT 8e includes an imaging angle ⁇ , a distance between the radiation source 17 and the radiation image detector 15, a distance between the radiation source 17 and the breast M, a distance between the breast M and the radiation image detector 15, It is a reference table that defines the degree of resolution reduction for each photographing condition such as compression thickness.
  • the specific degree of resolution is reduced when the observer E who is wearing the polarizing glass 43 observes these images when the radiographic image obtained in the stereo shooting mode is stereoscopically displayed on the stereoscopic display 9.
  • the detector controller 33 performs control so that high resolution reading is performed without thinning out in both the first shooting and the second shooting. Then, after the read radiation image signal is converted into radiation image data through each process by the charge amplifier, the correlated double sampling circuit, and the AD conversion unit, the resolution conversion processing unit 8d accesses the LUT 8e. Then, the degree of resolution reduction is determined, and resolution conversion processing is performed on the radiation image data obtained by the first or second imaging.
  • the radiographic image storage unit 8b stores the image data of which the resolution has been reduced for the radiographic image whose resolution has been converted. The other points are the same as in the first embodiment.
  • the resolution conversion processing unit 8d reduces the resolution of one of the radiation images by image processing, so that the same effect as in the first embodiment can be obtained.
  • the resolution is reduced by the resolution conversion processing unit 8d before the radiation image data is stored in the radiation image storage unit 8b.
  • the resolution of one radiographic image may be converted.
  • the radiographic image storage unit 8b stores two pieces of radiographic image data read at high resolution, and the observer E instructs the stereoscopic image display of the radiographic image of the breast M from the input unit 7.
  • the resolution conversion processing unit 8d reduces the resolution of one of the two radiation images, and the display control unit 8c performs the reduced-resolution radiation image data and the resolution conversion processing.
  • the stereoscopic display 9 is caused to perform a stereoscopic display based on the other radiation image data that has not been performed. Therefore, in this modified example, it is possible to store the radiographic image data obtained by either the first imaging or the second imaging in the radiographic image storage unit 8b in a high resolution state. Value is improved.
  • the selection of whether to perform the resolution reduction processing by the resolution conversion processing unit 8d during stereoscopic display is received from the input unit 7, and the processing of the resolution conversion processing unit 8d can be switched according to the selection. It is possible.
  • the resolution conversion processing unit 8d is selected to perform a resolution reduction process, or the number of polarizing glasses 43 is the number of observers E.
  • the number of persons is greater than or equal to the number of persons, it is possible to make a selection so as to skip the process of the resolution conversion processing unit 8d, so that a flexible stereoscopic display according to the observation mode of the observer E is realized.
  • the third embodiment of the present invention is based on the knowledge found by the present applicant that stereoscopic observation is possible even with two radiographic images with different sharpness. Instead of increasing the resolution, unsharp image processing is performed.
  • FIG. 6 is a block diagram showing a schematic configuration inside the computer 8 of the breast image capturing and displaying system according to the third embodiment of the present invention.
  • the resolution conversion processing unit 8d of the second embodiment is replaced with an unsharpening processing unit 8f.
  • the unsharpening processing unit 8f is realized by executing the installed program in the same manner as the resolution conversion processing unit 8d of the second embodiment.
  • the processing timing of the unsharpening processing unit 8f is the same as that of the resolution conversion processing unit 8d in the second embodiment or its modification.
  • the unsharpening processing unit 8f performs a known unsharpening process with digital image data representing a radiation image as an input, and outputs unsharpened image data.
  • the degree of unsharpening is acquired by the unsharpening processing unit 8f accessing the LUT 8e.
  • the LUT 8e includes an imaging angle ⁇ , a distance between the radiation source 17 and the radiation image detector 15, a distance between the radiation source 17 and the breast M, a distance between the breast M and the radiation image detector 15, It is a reference table that defines the degree of unsharpening for each imaging condition such as compression thickness.
  • the specific degree of unsharpness is determined when the observer E wearing the polarizing glass 43 observes the images when the radiographic images obtained in the stereo shooting mode are stereoscopically displayed on the stereoscopic display 9.
  • the non-sharpening processing unit 8f unsharpens one of the radiographic images by image processing, thereby obtaining the same effects as those of the first and second embodiments. It is done.
  • the polarizing glass 43 may be provided with a switch for switching whether to perform polarization.
  • a switch for switching whether to perform polarization.
  • the subject's breast is the subject, but other parts such as the head and chest (heart, lungs) may be the subject. Further, it may be an endoscopic image. Further, it may be a photographic image obtained by a digital camera or a video for television.
  • the stereoscopic display may be a frame-sequential method or a naked eye type.
  • two radiographic images for stereoscopic display are taken by changing the radiation irradiation direction in the XZ plane shown in FIG.
  • a plurality of radiographic images may be taken by changing. That is, for example, a plurality of radiographic images may be taken by changing the radiation irradiation direction in the YZ plane (plane perpendicular to the paper surface of FIG. 2) shown in FIG.
  • the radiographic images for the left and right eyes is reduced in resolution or unsharpened, but the resolution is reduced or unsharpened for both radiographic images. It may be. In that case, the degree of resolution reduction or unsharpening may be the same or different in both images.

Abstract

【課題】左右各眼用の視差画像に対する立体視が可能な観察態様にある観察者と立体視が不可能な観察態様にある観察者の両者が、許容可能な表示品質で立体視用画像を観察することを可能にする。 【解決手段】左右各眼用の視差画像のうちの少なくとも一方を、観察者が融合的に表示された視差画像の両方を立体視可能な観察態様で観察した場合には視差画像中の被写体を立体像として観察可能な程度、かつ、観察者が融合的に示された視差画像の両方を立体視不可能な観察態様で観察した場合には被写体を平面像として認識可能な程度の低解像度または低鮮鋭度で生成する。例えば、放射線画像検出器(15)から放射線画像信号を読み取る際に低解像度で読み取る。あるいは、コンピュータ(8)に解像度変換処理部または非鮮鋭化処理部を設ける。

Description

立体視用画像生成装置および方法、並びにプログラム
 本発明は、両眼視差を用いた立体視用画像の生成技術に関するものである。
 両眼視差の原理を用いた立体視表示技術が知られている。具体的には、この立体視表示技術は、同一の被写体を左右両眼に対応する異なる位置から撮像することによって左右各眼用の視差画像を生成し、生成された各眼用の視差画像を観察者の左右各眼に独立して与えるものである。これにより、観察者は、各視差画像中に表された被写体を奥行き感のある立体像として認識することができる。
 この立体視表示技術は、デジタルカメラやテレビ等の分野だけでなく、マンモグラフィ等の放射線診断機器や内視鏡検査装置等の医療分野でも利用されつつある。
 また、両眼視差の原理に基づいた立体視表示装置としては、様々な方式のものが知られている。例えば、左右の各視差画像をハーフミラーによって重畳的に出力し、偏光フィルタ付きの眼鏡によって左右各眼に各視差画像を分離して出力する偏光フィルタ方式や、各視差画像を高速に切り替えて表示し、その切替えに同期して左右の視野を交互に遮蔽する液晶シャッターを有する眼鏡によって左右各眼に対応する視差画像のみを与えるフレーム・シーケンシャル方式等の特別な眼鏡を用いる方式が知られている。また、左右の各視差画像を空間的に分割して表示し、パララックスバリアやレンチキュラーレンズ等によって左右各眼に対応する視差画像のみを与えるようにした裸眼式の立体視表示装置も知られている。
 ここで、複数の観察者に対する立体視表示を行う場合、眼鏡式の立体視表示装置では、観察者の人数分の眼鏡が必要になる(例えば、特許文献1)。
特開平10-240212号公報
 しかしながら、状況によっては、観察者全員分の眼鏡が用意できないこともあり得る。この場合、眼鏡を着用していない観察者が、立体視表示装置に表示された各眼用の視差画像を観察すると、各視差画像は、立体像としては認識されず、両眼視差によって輪郭が二重になった二重像として認識されてしまう。
 また、裸眼式の立体視表示装置の場合は、レンチキュラーレンズの指向性等により、立体視観察が可能な観察位置が限られていたり、立体像として観察できない領域が生じたりしてしまう。したがって、眼鏡式の立体視表示装置と同様に、各視差画像が二重像として認識されてしまうことが起こり得る。
 本発明は上記事情に鑑みてなされたものであり、左右各眼用の視差画像に対する立体視が可能な観察態様にある観察者と立体視が不可能な観察態様にある観察者の両者が、許容可能な表示品質で、立体視表示された各視差画像を観察することを可能にする立体視用画像生成装置および方法、並びにプログラムを提供することを目的とするものである。
 本発明は、本出願人が見出した、左右各眼用の視差画像の画質が一致していなくても、立体視観察が可能であるという知見を応用したものである。
 具体的には、本発明の立体視用画像生成装置は、両眼視差を用いた立体視のための融合的表示の対象となる左右各眼用の視差画像を生成する視差画像生成部を備えたものであり、視差画像生成部が、視差画像のうちの少なくとも一方を、観察者が融合的に表示された視差画像の両方を立体視可能な観察態様で観察した場合には視差画像中の被写体を立体像として観察可能な程度、かつ、観察者が融合的に表示された視差画像の両方を立体視不可能な観察態様で観察した場合には被写体を平面像として認識可能な程度の低解像度または低鮮鋭度で生成するようにしたものである。
 本発明の立体視用画像生成方法は、両眼視差を用いた立体視のための融合的表示の対象となる左右各眼用の視差画像を生成する方法であり、視差画像のうちの少なくとも一方を、観察者が融合的に表示された視差画像の両方を立体視可能な観察態様で観察した場合には視差画像中の被写体を立体像として観察可能な程度、かつ、観察者が融合的に表示された視差画像の両方を立体視不可能な観察態様で観察した場合には被写体を平面像として認識可能な程度の低解像度または低鮮鋭度で生成するようにしたものである。
 本発明の立体視用画像生成プログラムは、コンピュータに上記立体視用画像生成方法をさせるものである。
 ここで、左右各眼用の視差画像の融合的表示とは、各視差画像を位置的に融合して表示することを意味し、個々の視差画像を位置的に離して表示することを除外している。融合的表示の具体例としては、偏光フィルタ方式における各視差画像の重畳表示や、フレーム・シーケンシャル方式における各視差画像の時分割表示や、裸眼式における各視差画像の空間分割表示等が挙げられる。
 また、立体視不可能な観察態様の具体例としては、眼鏡式の立体視表示において眼鏡なしで観察を行う場合や、眼鏡式、裸眼式にかかわらず立体視表示において適正でない位置で観察を行う場合等のように、環境的要因によって立体視が不可能な状態と、観察者の個人差や目の疲労等の人的要因によって立体視が不可能な状態が挙げられる。
 上記少なくとも一方の視差画像の解像度や鮮鋭度を低下させる程度は、左右各眼用の視差画像における視差量を表す情報に基づいて決定するようにしてもよい。ここで、視差量を表す情報の具体例としては、各視差画像の撮影方向や、焦点、被写体、結像面の各間の距離等の撮影条件が挙げられる。
 例えば、ある観察条件下で、一方の視差画像の低解像度化、または、低鮮鋭化の程度を強めていくと、まず、立体視観察が可能な観察態様の観察者が、被写体を立体像として観察できなくなり、次に、立体視観察が不可能な観察態様の観察者が、画像が全体的にぼやけてしまい、被写体を平面像として認識できなくなる。このような観察条件下では、少なくとも一方の視差画像を、観察者が融合的に表示された視差画像の両方を立体視可能な観察態様で観察した場合には視差画像中の被写体を立体像として観察可能な程度の解像度や鮮鋭度にすることにより、観察者が該融合的に表示された視差画像の両方を立体視不可能な観察態様で観察した場合にも被写体を平面像として認識可能な程度の低解像度または低鮮鋭度となる。
 本発明によれば、左右各眼用の視差画像のうちの少なくとも一方を、観察者が融合的に表示された視差画像の両方を立体視可能な観察態様で観察した場合には視差画像中の被写体を立体像として観察可能な程度、かつ、観察者が融合的に示された視差画像の両方を立体視不可能な観察態様で観察した場合にも被写体を平面像として認識可能な程度の低解像度または低鮮鋭度で生成することができる。これにより、左右各眼用の視差画像に対する立体視が可能な観察態様にある観察者と立体視が不可能な観察態様にある観察者の両者が、許容可能な表示品質で立体視用画像を観察することが可能になり、両観察態様の観察者の共存が実現される。
本発明の実施の形態となる立体視用画像生成装置が実装された乳房画像撮影表示システムの概略構成図 乳房画像撮影表示システムのアーム部を示す概略断面図 本発明の第1の実施形態における乳房画像撮影表示システムのコンピュータ内部の概略構成と周辺機器等を示すブロック図 乳房画像撮影表示システムに実装された偏光フィルタ方式ディスプレイシステムの概略構成図。 本発明の第2の実施形態における乳房画像撮影表示システムのコンピュータ内部の概略構成を示すブロック図 本発明の第3の実施形態における乳房画像撮影表示システムのコンピュータ内部の概略構成を示すブロック図
 以下、マンモグラフィ撮影で得られた乳房の放射線画像を立体視表示して観察する場合を例にして、本発明の実施形態について図面を用いて説明する。なお、視認しやすくするため、図中の各構成要素の縮尺等は実際のものとは適宜異ならせてある。
 本発明の実施形態となる立体視用画像生成装置が実装された乳房画像撮影表示システムは、立体視用の左右各眼用の放射線画像の撮影を行うステレオ撮影モードと、通常の2次元画像の撮影を行う2D撮影モードの2つの撮影モードを有しており、これらの撮影モードでの撮影で得られた放射線画像を立体視表示可能なディスプレイ(立体視表示部)に表示するものである。また、ステレオ撮影モードでは、左右各眼用の放射線画像のうちの一方は他方よりも低い所与の解像度または鮮鋭度で生成される。以下、本発明の第1から第3の実施形態に共通の構成や処理の流れを説明した後、各実施形態に特有の部分について説明する。
 図1に模式的に表したように、本実施形態における乳房画像撮影表示システム1は、乳房画像撮影装置10と、乳房画像撮影装置10に接続されたコンピュータ8と、コンピュータ8に接続された立体視ディスプレイ9および入力部7とから構成されている。
 この乳房画像撮影装置10は、図1に示すように、基台11と、基台11に対し上下方向(Z方向)に移動可能でかつ回転可能な回転軸12と、回転軸12により基台11と連結されたアーム部13とを備えている。
 アーム部13はアルファベットのCのような形状をしており、その一端には撮影台14が、その他端には撮影台14と対向するように放射線照射部16が取り付けられている。アーム部13の回転および上下方向の移動は、基台11に組み込まれたアームコントローラ31によって制御されるが、その詳細については後述する。
 撮影台14の内部には、フラットパネルディテクタ等の放射線画像検出器15と、この放射線画像検出器15からの電荷信号の読み出しを制御する検出器コントローラ33とが設けられている。また、図には示されていないが、撮影台14の内部には、放射線画像検出器15から読み出された電荷信号を電圧信号に変換するチャージアンプや、チャージアンプから出力された電圧信号をサンプリングする相関2重サンプリング回路や、電圧信号をデジタル信号に変換するAD変換部などが設けられた回路基板等も設置されている。
 放射線画像検出器15は、放射線画像の記録と読出しを繰り返して行うことができるものであり、放射線の照射を直接受けて電荷を発生する、いわゆる直接変換型の放射線画像検出器を用いてもよいし、放射線を一旦可視光に変換し、その可視光を電荷信号に変換する、いわゆる間接変換型の放射線画像検出器を用いるようにしてもよい。また、放射線画像信号の読出方式としては、TFT(thin film transistor)スイッチをオン・オフされることによって放射線画像信号が読み出される、いわゆるTFT読出方式のものや、読取光を照射することによって放射線画像信号が読み出される、いわゆる光読出方式のものを用いることが望ましいが、これに限らずその他のものを用いるようにしてもよい。
 放射線画像検出器15から読み出された電荷信号は、後続のチャージアンプや、相関2重サンプリング回路、AD変換部による各処理を経て、放射線画像を表すデジタル画像データに変換される。
 放射線照射部16には放射線源17と、放射線源コントローラ32とが配設されている。放射線源コントローラ32は、放射線源17から放射線を照射するタイミングと、放射線源17における放射線発生条件(管電圧、管電流、照射時間、管電流時間積等)を制御するものである。
 アーム部13の中央部には、撮影台14の上方に配置されて乳房Mを押さえつけて圧迫する圧迫板18と、その圧迫板18を支持する支持部20と、支持部20を上下方向(Z方向)に移動させる移動機構19とが設けられている。圧迫板18の位置、圧迫厚は、圧迫板コントローラ34により制御される。
 ここで、回転軸12によるアーム部13の回転機構について説明する。図2は、図1の右方向(y軸正方向)から見たアーム部13の正面形状を模式的に表したものである。図に示したとおり、アーム部13が回転軸12を中心に回転するように構成されている。また、撮影台14はアーム部13に対して回転可能に構成されており、それにより、基台11に対してアーム部13が回転軸12を中心に回転したときでも、撮影台14が基台11に対して一定の向きに維持されるようになっている。そして、この回転軸12は放射線画像検出器15と略同じ高さ位置に配設されている。そのため、相異なる回転位置にある放射線源17の放射線照射軸は、互いに放射線画像検出器15の近辺で交差する状態となる。なお、放射線照射軸が被写体である乳房Mの中において交差するようにアーム部13を回転させるようにしても構わない。
 このような回転機構により、様々な撮影角度θ(放射線画像検出器15の検出面の法線に対して放射線照射軸がなす角度の大きさ)で、放射線画像検出器15に対して放射線源17から放射線を照射して撮影を行うことができる。この撮影角度θはコンピュータ8からアームコントローラ31に与えられ、アームコントローラ31の制御により、アーム部31が、その撮影角度θとなるように回転する。例えば、ステレオ撮影モードでは撮影角度θが+2°と-2°の状態で2回の撮影が行われ、2D撮影モードでは撮影角度θが0°の状態で1回だけ撮影が行われる。
 乳房画像撮影装置10の動作を制御するコンピュータ8は、中央処理装置(CPU)および半導体メモリやハードディスクやSSD等のストレージデバイスなどを備えており、これらのハードウェアとこれらのハードウェア上で稼働するソフトウェアとによって、図3に示すような制御部8a、放射線画像記憶部8b、表示制御部8cが構成されている。
 制御部8aは、各種のコントローラ31~34に対して所定の制御信号を出力し、システム全体の制御を行うものである。具体的な制御方法については後で詳述する。
 放射線画像記憶部8bは、放射線画像を表すデジタル画像データを記憶するものであり、本実施形態では、放射線画像記憶部8bは2つの放射線画像の画像データの記憶領域を有しており、ステレオ撮影モードでは、立体視表示のための左右両眼用の放射線画像の画像データが記憶される。一方、2D撮影モードでは、1つの放射線画像の画像データのみが記憶される。
 表示制御部8cは、放射線画像記憶部8bに記憶された放射線画像データを読み出し、その放射線画像データに基づいて、乳房Mの放射線画像を立体視ディスプレイ9に表示させる。
 入力部7は、例えば、キーボードやマウスなどのポインティングデバイスから構成されるものであり、撮影者による、撮影モードや撮影条件、撮影開始指示などの入力を受け付けるものである。
 立体視ディスプレイ9は、ステレオ撮影モードで撮影が行われた場合、コンピュータ8の放射線画像記憶部8bに記憶された左右両眼用の放射線画像の画像データを用いて立体視表示を行うように構成されたものである。本実施形態では、2つの画面を用いて左右両眼用の放射線画像をそれぞれ表示させて、これらをハーフミラーや偏光グラスなどを用いることで一方の放射線画像は観察者の右眼に視認させ、他方の放射線画像は観察者の左眼に視認させる偏光フィルタ方式の構成を有している。
 図4は、本実施形態の立体視ディスプレイ9の構成を示す概略図である。立体視ディスプレイ9は、右眼用画像を表示するための右眼用光信号46Rを出力する右眼用光出力部40Rと、左眼用画像を表示するための左眼用光信号46Lを出力する左眼用光出力部40Lと、ハーフミラー42と、偏光グラス43とを備える。
 右眼用光出力部40Rおよび左眼用光出力部40Lは、互いに独立して出力制御が可能な光出力部であり、光信号の出力方向が互いに直交するように配置されている。また、右眼用光出力部40Rおよび左眼用光出力部40Lは例えば液晶パネルであり、その表面には、互いに直交する偏光方向を有する偏光フィルタ(図示省略)がそれぞれ設けられている。これにより、右眼用光出力部40Rからは、横方向P1(図における紙面内左右方向。以下同じ。)に偏光された光信号が出力される。一方、左眼用光出力部40Lからは、縦方向P2(図における紙面垂直方向。ただし、便宜上矢印は紙面内上下方向に表してある。以下同じ。)に偏光された光信号が出力される。
 ハーフミラー42は、右眼用光出力部40Rからの右眼用光信号46Rおよび左眼用光出力部40Lからの左眼用光信号46Lが交差する位置に設けられている。さらに、ハーフミラー42は、右眼用光信号46Rを透過せしめ、左眼用光信号46Lを偏光グラス43に向かう方向に反射するよう構成されている。したがって、右眼用光信号46Rおよび左眼用光信号46Lの合成信号46が上記ハーフミラー42上で形成される。
 偏光グラス43は、横方向P1に偏光した右眼用光信号46Rを透過せしめる偏光フィルタ43Rと、縦方向P2に偏光した左眼用光信号46Lを透過せしめる偏光フィルタ43Lとを備えている。偏光グラス43は、観察者Eがこの偏光グラス43をかけると、偏光フィルタ43Rは右眼に、偏光フィルタ43Lは左眼に対向するように構成されている。観察者Eは、この偏光グラス43を通して上記合成信号46を観察する。その際、偏光フィルタ43Rは横方向P1に偏光した右眼用光信号46Rのみを透過せしめ、偏光フィルタ43Lは縦方向P2に偏光した左眼用光信号46Lのみを透過せしめるため、観察者Eの右眼によって右眼用光信号46Rのみが受光され、左眼によって左眼用光信号46Lのみが受光される。これにより、観察者Eは、互いに視差のある2つの画像を左右の眼それぞれで認識し、両画像中の乳房Mを立体像として観察することができる。
 なお、2D撮影モードで撮影が行われた場合には、コンピュータ8の表示制御部8cは、放射線画像記憶部8bに記憶された1つの放射線画像の画像データを、立体視ディスプレイ9の右眼用光出力部40Rと左眼用光出力部40Lの両方に与える。これにより、観察者Eの両眼には、ハーフミラー42と偏光グラス43を介して、同じ放射線画像が届くことになるので、観察者Eは乳房Mを2次元像として観察することができる。
 次に、この乳房画像撮影装置10におけるステレオ撮影モードの場合の処理の流れについて説明する。まず、図1に示すように、撮影台14の上に乳房Mが配置され、圧迫板18により乳房Mが所定の圧力で圧迫される。なお、この時点でアーム部13は、撮影台14に垂直な方向を向く初期位置、すなわち図2に実線で示す位置に設定されている。
 次に、入力部7により、種々の撮影条件の入力、および、撮影モードの選択が受け付けられる。ここでステレオ撮影モードが選択された場合、制御部8aは、予め設定されたステレオ撮影モードにおける撮影角度θを内部メモリから読み出し、その撮影角度θの情報をアームコントローラ31に出力する。ここで、本実施形態においては、この撮影角度θの情報としてθ=2°が予め記憶されているものとする。しかし、これに限らず、撮影角度θは2°~5°程度の角度としてもよい。
 次に、アームコントローラ31は、制御部8aから出力された上記撮影角度θの情報を受け、この撮影角度θの情報に基づいて、アーム部13を前記初期位置から+θ回転させる制御信号を出力する。そこで、この制御信号に応じてアーム部13が+θ回転する。
 続いて、制御部8aは、放射線源コントローラ32および検出器コントローラ33に対して、放射線の照射と放射線画像信号の読出しを行うよう制御信号を出力する。そこで、この制御信号に応じて放射線源17から放射線が射出され、乳房を+θ方向から撮影した放射線画像信号が放射線画像検出器15によって検出される。次いで検出器コントローラ33によって放射線画像検出器15から放射線画像信号が読み出される。そして、その放射線画像信号に対してAD変換および所定の信号処理が施された後、その放射線画像のデジタル画像データがコンピュータ8の放射線画像記憶部8bに記憶される。
 次にアームコントローラ31は、アーム部13を一旦初期位置に戻した後、アーム部13をその初期位置から-θ回転させる制御信号を出力する。それにより、アーム部13が初期位置から-θ回転する。
 続いて、制御部8aは、放射線源コントローラ32および検出器コントローラ33に対して、放射線の照射と放射線画像信号の読出しを行うよう制御信号を出力する。そこで、この制御信号に応じて放射線源17から放射線が射出され、乳房を-θ方向から撮影した放射線画像信号が放射線画像検出器15によって検出される。次いで検出器コントローラ33によって放射線画像検出器15から放射線画像信号が読み出される。そして、その放射線画像信号に対してAD変換および所定の信号処理が施された後、その放射線画像のデジタル画像データがコンピュータ8の放射線画像記憶部8bに記憶される。
 このようにして、互いに視差のある左右両眼用の2つの放射線画像が得られる。
 さらに、観察者Eが入力部7から乳房Mの放射線画像の立体視表示の指示を行うと、その表示指示に応じて、放射線画像記憶部8bに記憶された2つの放射線画像データによる放射線画像が、左右各眼用の画像として、立体視ディスプレイ9に立体視表示される。ここでは、例えば、1回目の撮影によって得られた放射線画像を立体視画像の右眼用画像として、2回目の撮影によって得られた放射線画像を立体視画像の左眼用画像として利用することができる。
 以下、各実施形態に特有の部分について説明する。なお、第1の実施形態では、検出器コントローラ33、LUT35及び放射線画像検出器15からなる構成が、本発明の視差画像生成部に相当し、第2の実施形態では、解像度変換処理部8d、LUT8e及び放射線画像検出器15からなる構成が、本発明の視差画像生成部に相当し、第3の実施形態では、非鮮鋭化処理部8f、LUT8e及び放射線画像検出器15からなる構成が、本発明の視差画像生成部に相当する。
 本発明の第1の実施形態では、ステレオ撮影モードの場合、撮影角度+θでの1回目の撮影では、検出器コントローラ33により低解像度での読取りを行うように制御され、放射線画像検出器15は各画素の信号を2次元的に所定間隔で間引いて出力する。一方、撮影角度-θでの2回目の撮影では、検出器コントローラ33により高解像度での読取りを行うように制御され、放射線画像検出器15は各画素の信号をすべて出力する。
 ここで、1回目の撮影における低解像度での読取りの際、検出器コントローラ33はLUT35にアクセスし、撮影条件に応じた信号の間引き間隔を取得する。このLUT35は、撮影角度θや、放射線源17と放射線画像検出器15の間の距離、放射線源17と乳房Mの間の距離、乳房Mと放射線画像検出器15の間の距離、乳房Mの圧迫厚等のうちの1つ以上の撮影条件毎に、信号の間引き間隔を定義した参照テーブルである。この間引き間隔は、ステレオ撮影モードで得られた放射線画像が立体視ディスプレイ9によって立体視表示された際、偏光グラス43をかけている観察者Eがそれらの画像を観察した場合には、被写体である乳房Mを立体像として観察することが可能で、かつ、偏光グラス43をかけていない観察者Eがそれらの画像を観察した場合であっても乳房Mを平面像として認識することが可能な程度の解像度となるように、撮影条件毎に、実験的、経験的に予め求められたものである。また、これに加えて、偏光グラス43をかけていても立体視観察が困難な観察位置の観察者Eがそれらの画像を観察した場合であっても乳房Mを平面像として認識できるように間引き間隔を定めるようにしてもよい。なお、撮影条件が数値化できる場合には、LUT35の代わりに、その数値化された撮影条件を入力として間引き間隔を出力する関数を用いるようにしてもよい。
 このように本発明の第1の実施形態では、放射線画像検出器15からの信号の読取りの際に、検出器コントローラ33がLUT35にアクセスすることによって、観察者Eが立体視ディスプレイ9に立体視表示された左右各眼用の放射線画像を立体視可能な観察態様で観察した場合には被写体である乳房Mを立体像として観察でき、かつ、各放射線画像を立体視不可能な観察態様で観察した場合にも被写体である乳房Mを平面像として認識できる程度の間引き間隔が決定され、その間引き間隔で左右各眼用の放射線画像信号のうちの一方の読取りが行われる。ここで、本出願人が見出した知見のとおり、このようにして生成された解像度の異なる2つの放射線画像であっても立体視観察は可能である。したがって、偏光グラス43をかけた、立体視可能な観察態様にある観察者と、偏光グラス43をかけていなかったり、偏光グラス43をかけていても立体視に適していない観察位置にあったり等の、立体視が不可能な観察態様にある観察者の両者が、許容可能な表示品質で放射線画像を観察することが可能になり、両観察態様の観察者の共存が実現される。
 また、本実施形態では、1回目の撮影に対して低解像度での読取り、2回目の撮影に対して高解像度での読取りが行われる。これにより、1回目の撮影の際の信号の読取時間が短縮されるが、2回目の撮影における信号の読取りは1回目よりも時間がかかる。ここで、2回目の信号の読取処理の段階では被検者の乳房Mに対する圧迫を解除することができるので、被検体の拘束時間は、1回目の撮影から2回目の撮影の信号読取りの開始までの時間で済む。したがって、低解像度での読取りを高解像度での読取りよりも先に行うことにより、両方の撮影の信号読取りを高解像度で行う場合と比べて、被検体の拘束時間を短縮することが可能になり、マンモグラフィ撮影における被検体の負担が軽減される。特に、マンモグラフィ撮影では、乳房の圧迫に対して被検体が大きな負担を感じることが多いので、拘束時間の短縮による心理的な負担軽減効果は顕著である。
 さらに、左右両眼用の放射線画像のうちの一方を他方よりも低解像度で読み取ることにより、低解像度で読み取られた画像はデータ量が小さくなるので、立体視に必要な画像全体としてのデータ量を小さくすることができ、放射線画像データを記憶するためのストレージの負荷の増大や、機器間の画像データ配送効率の低下の問題を緩和させることができる。
 上記実施形態では、撮影角度を±2°としてステレオ撮影を行ったが、一方の撮影角度を0°とし、他方の撮影角度を例えば4°や-4°として撮影を行い、撮影角度0°での撮影で得られた放射線画像を、立体視表示と、通常の読影・診断に用いられる2次元表示の兼用の画像として利用するようにしてもよい。これにより、立体視表示用の画像とは別に2次元表示用の画像を撮影/取得する必要がなくなり、被検体の拘束時間の短縮や被曝量の低減により、被検体の負担が軽減される。また、撮影角度±2°での撮影で得られた放射線画像のいずれか一方を読影・診断用の画像として用いる場合と比べると、グリッドによるけられ等の影響が少ない撮影角度0°の画像を読影・診断用に利用することができ、読影・診断精度の向上に資する。さらに、一方の撮影角度を0°とする場合、より高精細な読影・診断用の放射線画像を得るために、撮影角度0°での撮影で得られた放射線画像信号は高解像度で読み取るようにすることが好ましい。
 本発明の第2の実施形態は、放射線画像検出器15からの信号読取時に解像度を変更せずに、信号読取・変換後の放射線画像の画像データに対して画像処理により解像度を変換するものである。
 図5は、本発明の第2の実施形態における乳房画像撮影表示システムのコンピュータ8の内部の概略構成を示すブロック図である。図に示したように、本発明の第2の実施形態では、解像度変換処理部8dがコンピュータ8の内部にさらに付加されるとともに、検出器コントローラ33によってアクセスされたLUT35の代わりに、LUT8eがコンピュータ8の内部に実装されている。ここで、解像度変換処理部8dは、CD-ROM等の記録媒体からインストールされたプログラムを実行することによって実現される。また、このプログラムは、インターネット等のネットワーク経由で接続されたサーバの記憶装置からダウンロードされた後にインストールされたものであってもよい。
 解像度変換処理部8dは、放射線画像を表すデジタル画像データを入力として公知の解像度変換処理を行い、低解像度に変換後の画像データを出力するものである。ここで解像度変換処理による低解像度化の程度は、解像度変換処理部8dがLUT8eにアクセスすることによって取得される。このLUT8eは、撮影角度θや、放射線源17と放射線画像検出器15の間の距離、放射線源17と乳房Mの間の距離、乳房Mと放射線画像検出器15の間の距離、乳房Mの圧迫厚等の撮影条件毎に、低解像度化の程度を定義した参照テーブルである。具体的な低解像度化の程度は、ステレオ撮影モードで得られた放射線画像が立体視ディスプレイ9によって立体視表示された際、偏光グラス43をかけている観察者Eがそれらの画像を観察した場合には、被写体である乳房Mを立体像として観察することが可能で、かつ、偏光グラス43をかけていない観察者Eがそれらの画像を観察した場合であっても乳房Mを平面像として認識することが可能な程度の解像度となるように、撮影条件毎に、実験的、経験的に予め求められたものである。
 本発明の第2の実施形態では、ステレオ撮影モードの場合、1回目、2回目のいずれの撮影の際にも、検出器コントローラ33は間引きなしで高解像度の読取りを行うように制御する。そして、読み出された放射線画像信号が、チャージアンプや、相関2重サンプリング回路、AD変換部による各処理を経て、放射線画像データに変換された後、解像度変換処理部8dが、LUT8eにアクセスして低解像度化の程度を決定し、1回目、2回目のいずれか一方の撮影で得られた放射線画像データに対して解像度変換処理を行う。放射線画像記憶部8bには、解像度変換が行われた方の放射線画像については、その低解像度化された画像データが記憶される。それ以外の点は、第1の実施形態と同様である。
 このように、本発明の第2の実施形態では、解像度変換処理部8dが画像処理によって一方の放射線画像の低解像度化することにより、第1の実施形態と同様の効果が得られる。
 また、上記第2の実施形態では、放射線画像記憶部8bに放射線画像データを記憶させる前に解像度変換処理部8dによる低解像度化を行っているが、その変形例として、立体視ディスプレイ9に放射線画像を表示させる際に、一方の放射線画像の解像度を変換するようにしてもよい。具体的には、放射線画像記憶部8bには、高解像度で読み取られた2つの放射線画像データを記憶させておき、観察者Eが入力部7から乳房Mの放射線画像の立体視表示の指示を行うと、その表示指示に応じて、解像度変換処理部8dが、2つの放射線画像のうちの一方を低解像度化し、表示制御部8cが、その低解像度化された放射線画像データと、解像度変換処理が行われなかった他方の放射線画像データとに基づいて、立体視ディスプレイ9に立体視表示を行わせる。したがって、この変形例では、1回目、2回目のいずれの撮影で得られた放射線画像データも、高解像度の状態で放射線画像記憶部8bに記憶させておくことが可能になり、放射線画像の利用価値が向上する。
 例えば、立体視表示の際に解像度変換処理部8dによる低解像度化処理を行うかどうかの選択を入力部7から受け付け、その選択に応じて、解像度変換処理部8dの処理を切り替えられるようにすることが考えられる。これにより、偏光グラス43の数が観察者Eの人数よりも少ない場合には、解像度変換処理部8dに低解像度化処理を行わせるように選択を行ったり、偏光グラス43の数が観察者Eの人数以上場合には、解像度変換処理部8dの処理をスキップさせるように選択を行ったりすることが可能になるので、観察者Eの観察態様に応じた柔軟な立体視表示が実現される。
 本発明の第3の実施形態は、本出願人が見出した、鮮鋭度が異なる2つの放射線画像であっても立体視観察は可能であるという知見に基づくものであり、一方の放射線画像を低解像度化する代わりに非鮮鋭化する画像処理を行うものである。
 図6は、本発明の第3の実施形態における乳房画像撮影表示システムのコンピュータ8の内部の概略構成を示すブロック図である。図に示したように、本発明の第3の実施形態では、第2の実施形態の解像度変換処理部8dが非鮮鋭化処理部8fに置換された構成となっている。この非鮮鋭化処理部8fは、第2の実施形態の解像度変換処理部8dと同様にしてインストールされたプログラムを実行することによって実現される。また、非鮮鋭化処理部8fの処理タイミングは、第2の実施形態またはその変形例における解像度変換処理部8dと同様である。
 非鮮鋭化処理部8fは、放射線画像を表すデジタル画像データを入力として公知の非鮮鋭化処理を行い、非鮮鋭化された画像データを出力するものである。ここで非鮮鋭化の程度は、非鮮鋭化処理部8fがLUT8eにアクセスすることによって取得される。このLUT8eは、撮影角度θや、放射線源17と放射線画像検出器15の間の距離、放射線源17と乳房Mの間の距離、乳房Mと放射線画像検出器15の間の距離、乳房Mの圧迫厚等の撮影条件毎に、非鮮鋭化の程度を定義した参照テーブルである。具体的な非鮮鋭化の程度は、ステレオ撮影モードで得られた放射線画像が立体視ディスプレイ9によって立体視表示された際、偏光グラス43をかけている観察者Eがそれらの画像を観察した場合には、被写体である乳房Mを立体像として観察することが可能で、かつ、偏光グラス43をかけていない観察者Eがそれらの画像を観察した場合であっても乳房Mを平面像として認識することが可能な程度の鮮鋭度となるように、撮影条件毎に、実験的、経験的に予め求められたものである。
 このように、本発明の第3の実施形態では、非鮮鋭化処理部8fが画像処理によって一方の放射線画像の非鮮鋭化することにより、第1、第2の実施形態と同様の効果が得られる。
 なお、上記各実施形態において、偏光グラス43に、偏光を行うかどうかを切り替えるためのスイッチを設けてもよい。これにより、偏光グラス43をかけた観察者毎に、自らの立体視の観察状態(例えば、観察位置や、立体視可否についての個人差、眼の疲労度等)に応じて、立体視表示による観察を行うかどうかを切り替えることができる。その際、立体視表示による観察を行わないように切り替えたとしても、一方の放射線画像が低解像度化あるいは低鮮鋭化されていることにより、被写体である乳房Mを平面像として許容可能な表示品質で観察することができる。
 上記の実施形態や変形例はあくまでも例示であり、上記のすべての説明が本発明の技術的範囲を限定的に解釈するために利用されるべきものではない。また、上記の実施形態におけるシステム構成、ハードウェア構成、処理フロー、モジュール構成、ユーザインターフェースや具体的処理内容等に対して、本発明の趣旨から逸脱しない範囲で様々な改変を行ったものも、本発明の技術的範囲に含まれる。
 例えば、上記各実施形態では、人体の乳房を被写体としているが、頭部や胸部(心臓、肺)等の他の部位を被写体としてもよい。また、内視鏡画像であってもよい。さらに、デジタルカメラで得られた写真画像やテレビ用の映像であってもよい。
 また、立体視ディスプレイについても、フレーム・シーケンシャル方式や裸眼式のもの等であってもよい。
 さらに、上記各実施形態においては、立体視表示用の2つの放射線画像を、図2に示すX-Z面内で放射線照射方向を変えることによって撮影しているが、その他の方向に放射線照射方向を変えて複数の放射線画像を撮影してもよい。すなわち、例えば図2に示すY-Z面(図2の紙面に対して垂直な面)内で放射線照射方向を変えることによって複数の放射線画像を撮影してもよい。
 さらにまた、上記各実施形態では、左右各眼用の放射線画像のうちの一方のみを低解像度化または非鮮鋭化しているが、両方の放射線画像に対して低解像度化または非鮮鋭化を行うようにしてもよい。その場合、低解像度化または非鮮鋭化の程度は、両画像で同じであってもよいし、異なるようにしてもよい。

Claims (9)

  1.  両眼視差を用いた立体視のための融合的表示の対象となる左右各眼用の視差画像を生成する視差画像生成部を備えた立体視用画像生成装置であって、
     該視差画像生成部は、該視差画像のうちの少なくとも一方を、観察者が該融合的に表示された該視差画像の両方を立体視可能な観察態様で観察した場合には該視差画像中の被写体を立体像として観察可能な程度、かつ、観察者が該融合的に表示された該視差画像の両方を立体視不可能な観察態様で観察した場合には該被写体を平面像として認識可能な程度の低解像度で生成するものであることを特徴とする立体視用画像生成装置。
  2.  両眼視差を用いた立体視のための融合的表示の対象となる左右各眼用の視差画像を生成する視差画像生成部を備えた立体視用画像生成装置であって、
     該視差画像生成部は、該視差画像のうちの少なくとも一方を、観察者が該融合的に表示された該視差画像の両方を立体視可能な観察態様で観察した場合には該視差画像中の被写体を立体像として観察可能な程度、かつ、観察者が該融合的に表示された該視差画像の両方を立体視不可能な観察態様で観察した場合には該被写体を平面像として認識可能な程度の低鮮鋭度で生成するものであることを特徴とする立体視用画像生成装置。
  3.  前記視差画像生成部は、前記各視差画像における視差量を表す情報に基づいて前記程度を決定するものであることを特徴とする請求項1または2に記載の立体視用画像生成装置。
  4.  前記視差量を表す情報が、前記各視差画像の撮影方向、および/または、前記各視差画像の撮影時の焦点、被写体、結像面のうちのいずれか2つの間の距離であることを特徴とする請求項3に記載の立体視用画像生成装置。
  5.  前記各視差画像を用いた立体視表示を行う立体視表示部をさらに備えたことを特徴とする請求項1から4のいずれか1項に記載の立体視用画像生成装置。
  6.  両眼視差を用いた立体視のための融合的表示の対象となる左右各眼用の視差画像を生成する立体視用画像生成方法であって、該方法は、
     該視差画像のうちの少なくとも一方を、観察者が該融合的に表示された該視差画像の両方を立体視可能な観察態様で観察した場合には該視差画像中の被写体を立体像として観察可能な程度、かつ、観察者が該融合的に表示された該視差画像の両方を立体視不可能な観察態様で観察した場合には該被写体を平面像として認識可能な程度の低解像度で生成するものであることを特徴とする立体視用画像生成方法。
  7.  両眼視差を用いた立体視のための融合的表示の対象となる左右各眼用の視差画像を生成する立体視用画像生成方法であって、該方法は、
     該視差画像のうちの少なくとも一方を、観察者が該融合的に表示された該視差画像の両方を立体視可能な観察態様で観察した場合には該視差画像中の被写体を立体像として観察可能な程度、かつ、観察者が該融合的に表示された該視差画像の両方を立体視不可能な観察態様で観察した場合には該被写体を平面像として認識可能な程度の低鮮鋭度で生成するものであることを特徴とする立体視用画像生成方法。
  8.  コンピュータに、両眼視差を用いた立体視のための融合的表示の対象となる左右各眼用の視差画像を生成させる立体視用画像生成プログラムであって、該コンピュータに、
     該視差画像のうちの少なくとも一方を、観察者が該融合的に表示された該視差画像の両方を立体視可能な観察態様で観察した場合には該視差画像中の被写体を立体像として観察可能な程度、かつ、観察者が該融合的に表示された該視差画像の両方を立体視不可能な観察態様で観察した場合には該被写体を平面像として認識可能な程度の低解像度で生成させるものであることを特徴とする立体視用画像生成プログラム。
  9.  コンピュータに、両眼視差を用いた立体視のための融合的表示の対象となる左右各眼用の視差画像を生成する立体視用画像生成プログラムであって、該コンピュータに、
     該視差画像のうちの少なくとも一方を、観察者が該融合的に表示された該視差画像の両方を立体視可能な観察態様で観察した場合には該視差画像中の被写体を立体像として観察可能な程度、かつ、観察者が該融合的に表示された該視差画像の両方を立体視不可能な観察態様で観察した場合には該被写体を平面像として認識可能な程度の低鮮鋭度で生成させるものであることを特徴とする立体視用画像生成プログラム。
PCT/JP2012/000812 2011-02-08 2012-02-07 立体視用画像生成装置および方法、並びにプログラム WO2012108187A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2012800082265A CN103348684A (zh) 2011-02-08 2012-02-07 立体图像生成设备、立体图像生成方法以及立体图像生成程序
JP2012556792A JPWO2012108187A1 (ja) 2011-02-08 2012-02-07 立体視用画像生成装置および方法、並びにプログラム
US13/945,995 US20130300737A1 (en) 2011-02-08 2013-07-19 Stereoscopic image generating apparatus, stereoscopic image generating method, and stereoscopic image generating program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201161440517P 2011-02-08 2011-02-08
US61/440,517 2011-02-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/945,995 Continuation US20130300737A1 (en) 2011-02-08 2013-07-19 Stereoscopic image generating apparatus, stereoscopic image generating method, and stereoscopic image generating program

Publications (1)

Publication Number Publication Date
WO2012108187A1 true WO2012108187A1 (ja) 2012-08-16

Family

ID=46638408

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/000812 WO2012108187A1 (ja) 2011-02-08 2012-02-07 立体視用画像生成装置および方法、並びにプログラム

Country Status (4)

Country Link
US (1) US20130300737A1 (ja)
JP (1) JPWO2012108187A1 (ja)
CN (1) CN103348684A (ja)
WO (1) WO2012108187A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015198709A (ja) * 2014-04-04 2015-11-12 キヤノン株式会社 放射線透視撮影装置およびその制御方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140087213A (ko) * 2012-12-28 2014-07-09 삼성전자주식회사 엑스선 촬영 장치 및 입체 영상 생성 방법
US9503705B2 (en) * 2013-12-12 2016-11-22 Lenovo (Singapore) Pte. Ltd. Stereoscopic image generation
WO2016110470A1 (en) * 2015-01-06 2016-07-14 Koninklijke Philips N.V. Scanning mammography x-ray system with movement adaption mechanism
US9507241B1 (en) 2015-11-17 2016-11-29 Lenovo (Singapore) Pte, Ltd. Adjustable camera field of view

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08130752A (ja) * 1994-10-31 1996-05-21 Toshiba Corp 放射線画像処理方法及びその装置
JPH10224822A (ja) * 1997-01-31 1998-08-21 Sony Corp 映像表示方法および表示装置
WO2009123066A1 (ja) * 2008-04-03 2009-10-08 日本電気株式会社 画像処理方法、画像処理装置及び記録媒体
JP2010081001A (ja) * 2008-09-24 2010-04-08 National Institute Of Information & Communication Technology 2d互換3d表示装置及び3d視装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5831691A (ja) * 1981-08-19 1983-02-24 Matsushita Electric Ind Co Ltd 立体テレビジヨン装置
JPH05122733A (ja) * 1991-10-28 1993-05-18 Nippon Hoso Kyokai <Nhk> 3次元画像表示装置
JP3182009B2 (ja) * 1992-12-24 2001-07-03 日本電信電話株式会社 両眼立体視装置
JP4598115B2 (ja) * 1999-01-26 2010-12-15 富士フイルム株式会社 画像処理方法および装置並びに記録媒体
US6525732B1 (en) * 2000-02-17 2003-02-25 Wisconsin Alumni Research Foundation Network-based viewing of images of three-dimensional objects
JP3700707B2 (ja) * 2003-03-13 2005-09-28 コニカミノルタホールディングス株式会社 計測システム
GB2403367A (en) * 2003-06-28 2004-12-29 Sharp Kk Multiple view display
CN1266452C (zh) * 2004-12-31 2006-07-26 深圳大学 复合编码多分辨三维数字成像方法
CN103501431A (zh) * 2008-07-15 2014-01-08 株式会社Ip舍路信 裸眼立体画面显示系统、裸眼立体画面显示装置、游戏机、视差屏障薄片
JP5276536B2 (ja) * 2009-07-16 2013-08-28 富士フイルム株式会社 3次元画像表示装置及び3次元画像表示方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08130752A (ja) * 1994-10-31 1996-05-21 Toshiba Corp 放射線画像処理方法及びその装置
JPH10224822A (ja) * 1997-01-31 1998-08-21 Sony Corp 映像表示方法および表示装置
WO2009123066A1 (ja) * 2008-04-03 2009-10-08 日本電気株式会社 画像処理方法、画像処理装置及び記録媒体
JP2010081001A (ja) * 2008-09-24 2010-04-08 National Institute Of Information & Communication Technology 2d互換3d表示装置及び3d視装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015198709A (ja) * 2014-04-04 2015-11-12 キヤノン株式会社 放射線透視撮影装置およびその制御方法

Also Published As

Publication number Publication date
JPWO2012108187A1 (ja) 2014-07-03
US20130300737A1 (en) 2013-11-14
CN103348684A (zh) 2013-10-09

Similar Documents

Publication Publication Date Title
JP2012073434A (ja) 立体視ディスプレイの調整方法およびそれに用いられる調整装置、並びに、立体視画像表示方法およびそれに用いられる表示装置
WO2012108187A1 (ja) 立体視用画像生成装置および方法、並びにプログラム
WO2012081244A1 (ja) 表示装置
WO2012056695A1 (ja) 立体視画像表示装置および方法並びにプログラム
JP2012165358A (ja) 立体視画像表示装置
JP5658818B2 (ja) 放射線乳房画像表示方法、放射線乳房画像表示装置ならびにプログラム
JP5695524B2 (ja) 立体視画像表示装置および方法並びにプログラム
JP2012066049A (ja) 放射線画像撮影装置および立体視画像表示方法
JP5946070B2 (ja) 画像再生システムおよび画像ファイル生成装置
WO2012056679A1 (ja) 立体視画像表示システムおよび立体視画像用表示装置
WO2012029705A1 (ja) 画像配信装置および方法
WO2012056677A1 (ja) 立体視画像表示装置
WO2012043480A1 (ja) 立体視画像表示方法および立体視画像表示装置
JP2012068610A (ja) 立体視画像表示装置、放射線画像撮影表示システムおよび立体視画像表示方法
WO2012132443A1 (ja) 画像表示装置
WO2012043547A1 (ja) 立体視画像表示方法および立体視画像表示装置
WO2012132379A1 (ja) 画像表示装置、表示制御装置、表示制御方法ならびにプログラム
WO2012056692A1 (ja) 立体視画像表示装置および立体視画像表示方法
WO2012077319A1 (ja) 立体視画像表示方法および装置
JP2012110645A (ja) 立体視画像表示装置および立体視画像表示方法
WO2012132453A1 (ja) 放射線乳房画像表示方法、放射線乳房画像表示装置ならびにプログラム
WO2013024572A1 (ja) 画像再生装置および画像再生方法並びにプログラム
WO2012102022A1 (ja) 立体視画像表示方法、並びに、立体視画像表示制御装置およびプログラム
JP2012178626A (ja) 立体視放射線画像表示方法および装置
JP2012024516A (ja) 放射線画像撮影表示方法および装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12745102

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012556792

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12745102

Country of ref document: EP

Kind code of ref document: A1