WO2012108095A1 - 発光制御装置及び方法、発光装置、画像表示装置、プログラム、並びに記録媒体 - Google Patents

発光制御装置及び方法、発光装置、画像表示装置、プログラム、並びに記録媒体 Download PDF

Info

Publication number
WO2012108095A1
WO2012108095A1 PCT/JP2011/078067 JP2011078067W WO2012108095A1 WO 2012108095 A1 WO2012108095 A1 WO 2012108095A1 JP 2011078067 W JP2011078067 W JP 2011078067W WO 2012108095 A1 WO2012108095 A1 WO 2012108095A1
Authority
WO
WIPO (PCT)
Prior art keywords
divided
region
light emission
feature amount
light
Prior art date
Application number
PCT/JP2011/078067
Other languages
English (en)
French (fr)
Inventor
瓶子 晃永
聡 山中
秀樹 吉井
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201180067137.3A priority Critical patent/CN103354935B/zh
Priority to US13/984,754 priority patent/US8786541B2/en
Priority to JP2012556757A priority patent/JP5323272B2/ja
Priority to TW100147329A priority patent/TWI450249B/zh
Publication of WO2012108095A1 publication Critical patent/WO2012108095A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/10Intensity circuits
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3406Control of illumination source
    • G09G3/342Control of illumination source using several illumination sources separately controlled corresponding to different display panel areas, e.g. along one dimension such as lines
    • G09G3/3426Control of illumination source using several illumination sources separately controlled corresponding to different display panel areas, e.g. along one dimension such as lines the different display panel areas being distributed in two dimensions, e.g. matrix
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0238Improving the black level
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2360/00Aspects of the architecture of display systems
    • G09G2360/16Calculation or use of calculated indices related to luminance levels in display data

Definitions

  • the present invention relates to a light emission control device and method, a light emission device, and an image display device, and more particularly to light emission luminance control of a light emission unit used for illumination of a light modulation unit of the image display device.
  • the present invention also relates to a program for causing a computer to execute processing of a light emission control method, and a computer-readable recording medium on which the program is recorded.
  • a display device using a light-receiving light modulation element such as a liquid crystal panel includes a light source for applying illumination light to the light modulation element.
  • the light modulation element generates and displays an image by adjusting the amount of light transmitted from the light source in accordance with the input image signal.
  • the light modulation element displays black, the light modulation element is in a state of blocking light emitted from the light source.
  • the light transmittance cannot actually be reduced to zero, and there is a light leak. Therefore, even a black screen has a phenomenon of shining slightly (black floating due to light leak). Display.
  • the black float In order to reduce the above-mentioned black float, it was considered to control the light source according to the display content of the image.
  • the light source is controlled uniformly over the entire screen.
  • the black float can be reduced by reducing the amount of light from the light source on a dark screen.
  • a high-luminance image portion existing in a dark screen is also displayed dark due to a decrease in the amount of illumination light, there is a problem that the dynamic range of display luminance is restricted.
  • a display device that divides a backlight light source into a plurality of partial regions and simultaneously controls the luminance for each region is shown in Patent Document 1 below, while reducing the black float and simultaneously expanding the display luminance dynamic range.
  • the luminance setting value of each partial region is reset using values obtained by weighting the luminance setting value of each partial region and the luminance setting value of the adjacent partial region.
  • the light emission control device includes: The light is modulated by the light modulation unit according to the image data to form an image represented by the image data,
  • the illumination light is emitted from a plurality of light emitting units,
  • the plurality of light emitting units irradiate each region obtained by dividing the light modulation unit into a plurality of parts, A region divided into a plurality of regions corresponding to the respective light emitting units is a divided region,
  • the light emission control device configured to control the light emission luminance of each of the plurality of light emitting units, Of the image represented by the image data, each of the divided areas of the light modulation unit is set as a noticed divided area, and a feature value of the noticed divided area is detected as a divided area feature quantity.
  • the feature amount of the extended region including the target divided region and the divided regions around the target divided region is detected as the extended region feature amount for the target divided region.
  • a full-screen feature amount detection unit that detects a feature amount of the entire image represented by the image data as a full-screen feature amount;
  • a light emission control unit that controls light emission luminance of the light emitting unit corresponding to the divided region of interest based on the divided region feature amount and the extended region feature amount of the divided region of interest and the full screen feature amount; It is characterized by providing.
  • FIG. 8A shows an image feature value Fa represented by image data used for light modulation in each divided region of the image output from the divided region feature value detection unit 6.
  • FIG. 10D shows the extended region variation data Db output from the extended region variation calculation unit 12, and FIG. The local variation data Df output from the adding unit 13 is shown.
  • (A) to (e) are diagrams showing data represented in the respective units of the image display device of FIG. 1 when the input image data output from the receiving unit 2 of FIG. 1 is that of the second example.
  • FIG. 8A shows an image feature value Fa represented by image data used for light modulation in each divided region of the image output from the divided region feature value detection unit 6.
  • FIG. 10D shows the extended region variation data Db output from the extended region variation calculation unit 12, and FIG. The local variation data Df output from the adding unit 13 is shown.
  • FIG. 8A shows an image feature value Fa represented by image data used for light modulation in each divided region of the image output from the divided region feature value detection unit 6.
  • FIG. 10D shows the extended region variation data Db output from the extended region variation calculation unit 12, and FIG.
  • the local variation data Df output from the adding unit 13 is shown.
  • FIG. 1 is a block diagram showing an image display apparatus according to Embodiment 1 of the present invention.
  • An image display apparatus shown in FIG. 1 includes an input terminal 1, a receiving unit 2, a light modulating unit 3, a plurality of light emitting units 5-1 to 5-N, that is, N (N is an integer of 2 or more), divided regions.
  • a feature amount detection unit 6, an extended region feature amount detection unit 8, a full screen feature amount detection unit 4, a light emission control data generation unit 7, and a light emission drive unit 9 are provided.
  • the divided region feature value detection unit 6, the extended region feature value detection unit 8, the full screen feature value detection unit 4, the light emission control data generation unit 7, and the light emission drive unit 9 constitute a light emission control device.
  • the light emission control device and the light emitting units 5-1 to 5-N constitute a light emitting device.
  • the input terminal 1 is supplied with an image signal of a predetermined format used in, for example, a television or a computer.
  • the receiving unit 2 receives the image signal supplied to the input terminal 1, converts it to RGB color data or image data composed of luminance and color difference data, and outputs the image data.
  • the image data includes a pixel value that determines the light transmittance in each pixel of the light modulation unit 3 to be described later.
  • the receiving unit 2 is configured with an A / D converter or the like when an analog image signal is input, and is configured with a predetermined demodulator when a modulated image signal is input.
  • the image data output from the reception unit 2 is input to the light modulation unit 3, the divided region feature value detection unit 6, the extended region feature value detection unit 8, and the full screen feature value detection unit 4.
  • the light modulation unit 3 modulates the illumination light from the light emitting units 5-1 to 5-N according to the image data to form an image represented by the image data.
  • the transmissive liquid crystal panel has pixels as a plurality of light modulation elements, and the light transmittance of each pixel is controlled by the corresponding pixel value of the image data.
  • each divided region includes a plurality of pixels.
  • the portion corresponding to each light emitting portion in the light modulating portion 3 is a light modulating pixel in which the light from the light emitting portion is dominant, in other words, the light from the light emitting portion is transmitted from each of the other light emitting portions. It means a set of pixels that receive more than light.
  • each divided region 3-n (n is any one of 1 to N) of the light modulating unit 3 corresponds to one light emitting unit 5-n, and the divided region 3-n of the light modulating unit 3 is Illuminated mainly by the corresponding light emitting section 5-n.
  • Each light emitting unit 5-n is a controlled unit whose emission luminance is controlled independently from other light emitting units, and each light emitting unit 5-n is composed of one or more light emitting elements, for example, LEDs. Has been.
  • each divided area 3-n of the light modulation unit 3 the horizontal and vertical positions in the display screen are represented by (h, v).
  • h 1 in the leftmost column
  • h H in the rightmost column
  • v 1 in the uppermost row
  • v V in the lowermost row.
  • Each divided region 3-n of the light modulation unit 3 may be represented as J (h, v) by the position (h, v) defined as described above.
  • the light emitting units 5-1 to 5-N are also denoted by reference numeral 5 (h, v) in accordance with the position (h, v) of the divided region of the corresponding light modulation unit.
  • Each divided region J (h, v) and surrounding divided regions constitute an extended region K (h, v) for each divided region.
  • J (5, 4) which is the central divided region, is the target divided region
  • the divided regions J (4, 3), J (5, 3), J (6, 3) J (4, 4), J (5, 4), J (6, 4), J (4, 5), J (5, 5), J (6, 5), and expansion region K (5, 4) An example in which is configured is shown.
  • the number of rows or columns in the divided area is two.
  • FIG. 14 shows a case where the number of rows is 8 and the number of columns is 2
  • FIG. 15 shows a case where the number of columns is 8 and the number of rows is 2.
  • the arrangement shown in FIG. 14 is used when the light emitting elements are arranged along the short edge of the screen
  • the arrangement shown in FIG. 15 is used when the light emitting elements are arranged along the long edge of the screen.
  • An array is used.
  • each divided region is a region corresponding to one light-emitting portion composed of one or a plurality of light-emitting elements.
  • the extended region for each divided region is a divided region belonging to the same column as the target divided region and a column arranged on one side with respect to the column to which the target divided region belongs.
  • the extension area for the divided area J (1,3) includes divided areas J (1,2), J (1,3), J (1,4) in the same column, and divided areas in the column adjacent to the right side. J (2, 2), J (2, 3), and J (2, 4).
  • the extension area for each divided area is the same as the target divided area and the divided area belonging to the row arranged on one side with respect to the row to which the target divided area belongs. Consists of.
  • the extension area for the divided area J (5,1) is divided areas J (4,1), J (5,1), J (6,1) in the same row as the divided area, and the adjacent row below. Divided areas J (4,2), J (5,2), and J (6,2).
  • the divided region J (h) corresponding to the light emitting unit (as a control target).
  • V) as an attention divided region
  • the feature amount of the image represented by the image data used for the light modulation in the attention divided region and the light modulation in the extended region K (h, v) including the attention divided region. Control is performed based on the feature amount of the image represented by the image data used and the overall feature amount of the image (feature amount of the entire screen).
  • the divided region feature amount detection unit 6 receives the input image data Di output from the receiving unit 2 and performs light modulation in each of the divided regions of the light modulation unit 3 in the input image data Di (J (h, v)).
  • the feature amount of the image represented by the image data used in (in other words, the feature amount of the portion formed by the divided region J (h, v) in the image represented by the input image data Di) is generated.
  • the feature amount of the image represented by the image data used for the light modulation in each divided region may be simply referred to as “the feature amount of the image of the divided region” or “the feature amount of the divided region”. .
  • the extended region feature quantity detection unit 8 receives the input image data Di output from the receiving unit 2, and expands each of the divided regions of the light modulation unit 3 in the input image data Di for J (h, v).
  • the feature amount of the image represented by the image data used in the light modulation in the region K (h, v) (in other words, of the image represented by the input image data Di, formed in the extended region K (h, v). (Partial feature amount) is generated and output as an extended region feature amount Fb (h, v).
  • the feature amount of the image represented by the image data used for light modulation in each extension region may be simply referred to as “the feature amount of the image of the extension region” or “the feature amount of the extension region”. .
  • each divided area J (h, v) is set as an attention divided area, and is divided into eight divided areas that are adjacent to and surround the noticeable divided area, in other words, each noticeable divided area J.
  • the extended region (target extended region) K (h, v) for the target divided region is configured, but the method of determining the target extended region is not limited to this, and for example, a wider range (for example, lateral coordinates and A range including all or a part of 16 divided areas whose longitudinal coordinates differ by “2” may be used as the extended area.
  • each expansion region may be, for example, left-right and / or up-down asymmetric. Further, it may not be determined in the same way for all the divided areas, for example, divided areas (for example, J (9, 5) in FIG. 2) positioned adjacent to the upper, lower, left and right sides of the light modulation unit 3 or As for the divided areas located at the corners (for example, J (1, 7) in FIG. 2), there is no divided area outside the light modulation unit 3, so that only the divided areas located inside are set as the peripheral divided areas.
  • the extended region (K (9, 5), K (1, 7)) may be configured.
  • the full screen feature quantity detection unit 4 detects the feature quantity of the image on the full screen based on the input image data Di output from the reception unit 2 and outputs it as the full screen feature quantity Fc.
  • the full screen feature quantity includes a first full screen feature quantity (first type full screen feature quantity) Fc0 and a second full screen feature quantity (second type full screen feature quantity) Fc1.
  • Each of the feature amounts Fa (h, v), Fb (h, v), Fc0, and Fc1 is a numerical value or an index related to the brightness of the image obtained from the pixel values constituting the image data. Average value, maximum value or minimum value of luminance values represented by image data for each pixel, The appearance frequency of a predetermined luminance value represented by image data for each pixel, Appearance frequency of specific saturation represented by image data for each pixel, or average value, maximum value or minimum value of color signals constituting image data for each pixel, or a combination of two or more of these This is the value obtained.
  • the divided region feature value Fa (h, v) for each divided region is obtained from the pixel value of the image data used for the light modulation in the divided region.
  • the divided region feature J (h , V) is an average value of pixel values of image data used for light modulation, and if it is a peak value, it may be a frequency of appearance of a specific value that is a peak value in the divided region J (h, v).
  • the extended area feature amount Fb (h, v) for each divided area is obtained from the pixel value of the image data used for light modulation in the extended area formed by the divided area and the surrounding divided areas.
  • the average value is the average value of the pixel values of the image data used for light modulation in the extended region K (h, v)
  • the peak value is the light modulation in the extended region K (h, v).
  • the frequency of appearance of a specific value which is the peak value of the pixel value of the image data used in the above, is the number of appearances of the specific pixel value in the image data used for light modulation in the extended region K (h, v) Divided by the number of pixels of the image data used for light modulation in the extended region, or a value obtained by multiplying the value by a predetermined coefficient.
  • Extended region feature amount for each attention divided region J (h, v) (feature amount for extended region K (h, v) composed of each attention divided region J (h, v) and surrounding divided regions) Fb (h, v) is obtained uniformly including the feature amount for the target divided region J (h, v).
  • the extended region feature amount Fb (h, v) for each target divided region J (h, v) includes the pixel values for the pixels in the target divided region J (h, v) and the surrounding divisions. Based on the pixel values for the pixels in the region (ie, the divided region located in the extended region K (h, v) and located around the target divided region J (h, v)). The pixel values are obtained without weighting.
  • the extended region feature amount Fb (h, v) for each target divided region J (h, v) is the pixel in the target divided region J (h, v).
  • Each of the first and second full-screen feature values Fc0 and Fc1 is obtained from pixel values for all pixels in the screen. For example, if the average value is an average value, the average value over the entire screen is the peak value. If it is a value, it is the peak value on the entire screen, and if it is the appearance frequency of a specific value, it is a value obtained by dividing the number of appearances on the entire screen by the number of pixels on the entire screen, or a value multiplied by a predetermined coefficient. .
  • Whether to use an average value for each divided area, or to use an appearance frequency of a peak value, a bottom value, and a predetermined luminance value is determined in consideration of the width of the divided area. For example, when each divided region is narrow, the brightness of the divided region can be estimated with sufficiently high accuracy based on the appearance frequency of the peak value, the bottom value, and the predetermined luminance value. When each divided region is wide, it is desirable to use an average value in order to increase the accuracy of brightness estimation.
  • Feature values Fa (h, v), Fb (h, v), and Fc1 are the same type of values (the same type of values among the feature amounts exemplified above).
  • the feature value Fc0 may be the same value as the three types of feature values or a different value.
  • the feature amounts Fa (h, v), Fb (h, v), and Fc1 may be luminance peak values, and the feature amount Fc0 may be an average luminance value.
  • the divided area feature value Fa (h, v), the extended area feature value Fb (h, v), and the full screen feature values Fc0 and Fc1 are supplied to the light emission control data generation unit 7.
  • the light emission control data generation unit 7 converts the divided region feature value Fa (h, v) and the extended region feature value Fb (h, v) for each divided region J (h, v), and the full screen feature values Fc0 and Fc1. Based on this, light emission control data Y (h, v) for the divided area is generated.
  • the light emission control data Y (h, v) is supplied to the light emission drive unit 9 and used to determine the light emission level (luminance level) of the corresponding light emission unit 5 (h, v).
  • the light emission driving unit 9 drives the light emitting unit 5 (h, v) corresponding to the divided region.
  • Drive signal Q (h, v) is generated and output to the light emitting unit 5 (h, v).
  • the light emission control data generation unit 7 and the light emission drive unit 9 use the divided region feature value Fa (h, v) and the extended region feature value Fb (h, v) for each of the divided regions J (h, v) of the light modulation unit 3. v), and a light emission control unit 30 that controls the light emission luminance of the light emitting unit corresponding to the divided area, based on the full screen feature values Fc0 and Fc1.
  • FIG. 3 shows a configuration example of the light emission control data generation unit 7 of FIG.
  • the illustrated light emission control data generation unit 7 includes a full screen light emission control data conversion unit 10, a divided region variation calculation unit 11, an extended region variation calculation unit 12, an addition unit 13, a change data generation unit 14, and an addition unit 15. It has.
  • the first full-screen feature value Fc0 detected by the full-screen feature value detection unit 4 in FIG. 1 is input to the full-screen light emission control data conversion unit 10, converted to full-screen light emission control data D0, and output.
  • the value of the full screen light emission control data D0 is represented by a monotonically increasing function f (Fc0) with respect to the first full screen feature value Fc0. If the first full screen feature value Fc0 increases as a whole, the full screen light emission control data F0 Although the value D0 of the control data also increases, as described later, the divided area light emission control data Y is restricted so as to avoid a negative value and not exceed a predetermined maximum value.
  • the value of the full screen light emission control data D0 is input to the adder 15.
  • the divided region feature value Fa detected by the divided region feature value detection unit 6 in FIG. 1 and the second full screen feature value Fc1 detected by the full screen feature value detection unit 4 in FIG. 11 is input.
  • the divided region variation calculation unit 11 subtracts the second full-screen feature value Fc1 from the divided region feature value Fa (h, v) for each divided region J (h, v), and represents a difference between the two.
  • the region variation data Da (h, v) is output.
  • the divided region variation data Da (h, v) represents the variation for each divided region.
  • the divided region variation data Da output from the divided region variation calculation unit 11 is input to the addition unit 13.
  • the extended area feature quantity Fb detected by the extended area feature quantity detection unit 8 in FIG. 1 and the second full screen feature quantity Fc1 detected by the full screen feature quantity detection unit 4 in FIG. 12 is input.
  • the extended region variation calculation unit 12 uses the extended region feature amount for each divided region J (h, v) (that is, the extended region for the extended region K (h, v) corresponding to the divided region J (h, v)).
  • the second full-screen feature value Fc1 is subtracted from the feature value) Fb (h, v), and extended region variation data Db (h, v) representing the difference between the two is output.
  • the extended region variation data Db (h, v) represents the variation for each extended region.
  • the extended region variation data Db output from the extended region variation calculation unit 12 is input to the addition unit 13.
  • the adding unit 13 adds the extended region variation data Db (h, v) for the same divided region as the divided region variation data Da (h, v) for each divided region, and adds the addition result for the divided region. Output as local variation data Df (h, v).
  • the local variation data Df output from the adding unit 13 is input to the change data generation unit 14, converted into luminance change data De for each divided region, and output.
  • the value of the brightness change data De is expressed by a monotonically increasing function g (Df) with respect to the local change data Df. As a whole, if Df increases, the value of the brightness change data De also increases.
  • the divided region light emission control data Y is restricted so as to avoid a negative value and not to exceed a predetermined maximum value.
  • the luminance change data De is input to the adding unit 15.
  • the full-screen light emission control data D0 is data corresponding to a certain feature value obtained for the entire screen or an average value over the entire screen, and is also referred to as a “DC component”.
  • the luminance change amount data De (h, v) is data corresponding to a difference or variation of a value for each divided region with respect to the average value of the feature amount over the entire screen, and is also referred to as “AC component”.
  • the data corresponding to the variation (AC component) for each divided area contributes to both the improvement of the display dynamic range and the suppression of black float, and the data corresponding to the overall average value (DC component) described above is It plays a role of reducing the luminance of the entire screen as much as possible, and has an effect of suppressing black float.
  • extended region variation data Db (h, v) calculated by the extended region variation calculation unit 12 and
  • the local variation data Df (h, v) obtained by the adding unit 13 will be described.
  • the light modulation unit 3 corresponding to the entire display screen is composed of 25 5 ⁇ 5 divided regions, and the coordinates (h, v) of each divided region are (1, 1) to (5, 5). ).
  • the extended region variation data Db (h, v) shown in FIG. 4D the luminance difference between adjacent divided regions is suppressed, but the central high luminance portion is not emphasized.
  • the average luminance value Fa (5,1) of the image represented by the image data used is “30”, and the average luminance value Fa (1,1) of the image represented by the image data used for light modulation in the lower left corner divided region 5) is “35”, the average luminance value Fa (5, 5) of the image represented by the image data used for light modulation in the lower right divided area is “40”, and is used for light modulation in the other divided areas.
  • Average luminance value F of the image represented by the image data (H, v) is "0". Further, the average luminance value Fb (h, v) of the image represented by the image data used for the light modulation in the extended region for each divided region (h, v) is as shown in FIG.
  • the divided area variation data Da (h, v) obtained in this way the luminance difference between the divided areas at the center and the four corners and the divided areas adjacent thereto is not suppressed.
  • the extended region variation data Db (h, v) shown in FIG. 5D the luminance difference between adjacent divided regions is suppressed, but the high luminance portions at the center and at the four corners are not emphasized.
  • Local variation data Df (h, v) obtained by adding the divided region variation data Da (h, v) in FIG. 5C and the expanded region variation data Db (h, v) in FIG. v) is as shown in FIG. 5 (e), and the luminance difference between adjacent divided areas is suppressed while the high luminance portions at the center and the four corners are emphasized.
  • the average luminance value Fa (2, 4) is “35”, the average luminance value Fa (4, 4) of the image represented by the image data used for light modulation in the lower right divided region at the center is “40”, etc.
  • Image data used for light modulation in Average luminance value Fa (h, v) of the image represented by the data is "0”.
  • the average luminance value Fb (h, v) of the image represented by the image data used for the light modulation in the extended region for each divided region (h, v) is as shown in FIG. 6B.
  • the extended region variation data Db (h, v) shown in FIG. 6D the luminance difference between adjacent divided regions is suppressed, but the high luminance portions diagonally above and below the center are emphasized. It has not been.
  • luminance change data De (h, v) for each divided area is obtained, and this is converted from the full screen feature value Fc0.
  • the light emission luminance of the corresponding light emitting unit 5 (h, v) is controlled. As a result, it is possible to suppress a luminance difference between adjacent divided regions while coordinating high-luminance portions. Therefore, it is possible to widen the dynamic range and suppress black float.
  • the data for the whole light emission is created to suppress the black float on the dark screen and shine white on the bright screen.
  • the light emission luminance of the light emitting unit corresponding to the divided area to be noticed is changed by the local variation data based on the difference from the divided area feature quantity of the noticed divided area and the difference from the extended area feature value of the noticed divided area.
  • the data for full-screen light emission is originally generated by the full-screen feature quantity that does not have a variation in light emission luminance between divided areas (between light emitting units corresponding to the divided areas). Based on the data for light emission on the entire screen, local variation data at a level at which a deviation in light emission luminance between regions is not visually recognized is added. This process makes it easy to suppress the deviation of the light emission luminance between the regions to a level where it is not visually recognized.
  • the dark region suppresses the black floating, and the bright region emits the surface light so that bright white is expressed. . Thereby, the dynamic range of light emission luminance can be raised.
  • the light emission luminance is changed using the feature amount of the divided area where attention is paid to the emission data based on the full screen feature amount and the feature amount of the extended area including the noticed divided area.
  • the peripheral features of the target divided region are included, an effect of weighting in consideration of the correlation with the surrounding region can be obtained while placing importance on the target divided region without weighting.
  • the process of weighting the information from the divided areas requires a complicated process of knowing the positional relationship and the distance relationship between the focused divided area and other divided areas. Furthermore, since there is no correlation between the information from each region, more complicated processing is required for weighting. Such a complicated process is not required and can be realized with a simple hardware configuration by a simple process.
  • FIG. FIG. 7 shows a light emission control data generation unit 7 used in the image display device according to the second embodiment of the present invention, a divided region feature amount detection unit 6, an extended region feature amount detection unit 8b, and a full screen feature amount detection unit 4b. Indicates.
  • the light emission control data generation unit 7 shown in FIG. 7 is for setting a plurality of extended areas having different widths for each divided area to reduce the luminance difference between adjacent divided areas. Yes, full screen light emission control data conversion unit 10, divided region variation calculation unit 11, first to Mth extended region variation calculation units 12-1 to 12-M, addition unit 13b, modified data generation unit 14, And an adder 15.
  • members having the same reference numerals as those in FIG. 3 perform the same operation.
  • the extended region feature amount detection unit 8b receives the input image data Di output from the reception unit 2, and for each J (h, v) of the divided regions of the light modulation unit 3 in the input image data Di, First to M-th (M is an integer greater than or equal to 2) extended areas K 1 (h, v) to K M (h, v) including divided areas J (h, v) are set. Image feature amounts Fb 1 (h, v) to Fb M (h, v) are output.
  • the first extension region K 1 (h, v) is the same as, for example, the extension region K (h, v) in the first embodiment.
  • the m-th (m is any one of 2 to M) extension region K m (h, v) is greater than the (m ⁇ 1) -th extension region K (m ⁇ 1) (h, v).
  • the first extension region K 1 (h, v) is formed in the same manner as the extension region K (5, 4) shown in FIG. 2, and the second extension region K 2.
  • (H, v) includes the first extension region K 1 (h, v), and is further located around the first extension region K 1 (h, v). Includes split areas.
  • the first and second extension regions for each divided region are one column with respect to the same column as the target divided region and the column to which the target divided region belongs. It is composed of divided areas belonging to columns arranged on the side.
  • the first extended area for the divided area J (1,3) is divided areas J (1,2), J (1,3), J (1,4) in the same column, and a column adjacent to the right side.
  • Divided areas J (2,2), J (2,3), J (2,4), and the second extended area is divided areas J (1,1), J (1, 2), J (1,3), J (1,4), J (1,5) and divided regions J (2,1), J (2,2), J (2 , 3), J (2, 4), and J (2, 5).
  • the second extended region for each target divided region is expanded only within the same column with respect to the first extended region for the same target divided region.
  • the first and second extended regions for each divided region are either the same row as the target divided region or the row to which the target divided region belongs. It is composed of divided areas belonging to rows arranged on the side.
  • the first extended area for the divided area J (5,1) is divided into the divided areas J (4,1), J (5,1), J (6,1) in the same row and the lower adjacent columns.
  • the divided areas J (4,2), J (5,2), and J (6,2) are composed of the divided areas J (3,1) and J (4,1) in the same row. ), J (5,1), J (6,1), J (7,1), and divided areas J (3,2), J (4,2), J (5,2) ), J (6, 2), J (7, 2).
  • the second extended region for each target divided region is expanded only within the same row with respect to the first extended region for the same target divided region.
  • the extended region feature value detection unit 8b outputs the feature values for a plurality of extended regions K 1 (h, v) to K M (h, v) expanded hierarchically for each divided region. It can be said that it is a thing.
  • the m-th extended region feature amount for each target divided region J (h, v) (the image feature amount of the m-th extended region K m (h, v) for each target divided region J (h, v)) Fb m (h, v) is uniform including the feature amount for the (m ⁇ 1) -th extended region K (m ⁇ 1) (h, v) for the target divided region J (h, v). It is what I asked for.
  • the m-th extended region feature amount Fb m (h, v) for each target divided region J (h, v) is the (m ⁇ 1) th expansion for the target divided region J (h, v).
  • the pixel values for the pixels in the region K (m ⁇ 1) (h, v), the surrounding divided regions (ie, the m-th extended region K m (h, v))
  • the pixel values are weighted It is what was sought without.
  • the m-th extended region feature amount Fb m (h, v) for each target divided region J (h, v) is the (m ⁇ 1) -th extension.
  • the full screen feature quantity detection unit 4b detects and outputs the first and second full screen feature quantities Fc0 and Fc1 of the full screen based on the input image data Di output from the reception unit 2.
  • the first to Mth extension region variation calculation units 12-1 to 12-M respectively perform the first to Mth extension regions K 1 (h, v) to K M (h, v).
  • a difference between the Mth extended region feature amount Fb 1 (h, v) to Fb M (h, v) and the second full screen feature amount Fc1 is obtained, and the first to Mth extended region variation data Db 1 (h, v) to Db M (h, v) are output.
  • the first to Mth extension region variation data Db 1 (h, v) to Db M (h, v) output from the first to Mth extension region variation calculation units 12-1 to 12-M are All are input to the adding unit 13b and added to the divided region variation data Da (h, v) in the adding unit 13b, and the local variation data Df (h, v) is obtained by this addition.
  • the change data generation unit 14 generates luminance change data De (h, v) based on the local variation data Df (h, v) from the addition unit 13b.
  • the variation data Db 1 (h, v) to Db M (h, v) output from the first to M-th extended region variation calculation units 12-1 to 12-M are all added by the addition unit 13b. And contributes to the generation of brightness change data De (h, v) in the change data generation unit 14.
  • the variation data Db 1 (h, v) to Db M (h, v) of the expanded area K 1 (h, v) to K M (h, v) expanded hierarchically is converted into the luminance change data De (h , V) can be used to change the light emission luminance of the light emitting unit stepwise (a little by little) over a wider range, and the light emission luminance difference between adjacent divided regions can be further reduced. The luminance difference between the adjacent divided areas is less visible.
  • the value of the full screen light emission control data D0 is represented by a monotonically increasing function f (Fc0) with respect to the first full screen feature value Fc0, and the value of the luminance change amount data De is a monotonically increasing function with respect to the local variation amount data Df.
  • f the value of the full screen light emission control data
  • De the value of the luminance change amount data De is a monotonically increasing function with respect to the local variation amount data Df.
  • g (Df) this is the case where the luminance of the light emitting unit increases due to an increase in the value of the light emission control data Y (h, v) (for example, in the case of controlling the pulse width of the light emitting unit).
  • the luminance is set.
  • the value of the light emission control data Y (h, v) is decreased.
  • the value of the full screen light emission control control data D0, the value of the luminance change data De It will decrease with the increase of There is a need.
  • the full-screen light emission control data D0 data having a value represented by the monotonic decreasing function f (Fc0) with respect to the first full-screen feature value Fc0 is used, and the local variation is used as the luminance change amount data De.
  • the one having a value represented by a monotonic decreasing function g (Df) for the minute data Df is used.
  • a restriction is provided so that the divided region light emission control data Y is prevented from becoming a negative value and does not exceed a predetermined maximum value.
  • FIG. 9 shows a light emission control data generation unit 7 used in the image display apparatus according to Embodiment 3 of the present invention, a divided region feature value detection unit 6, an extended region feature value detection unit 8b, and a full screen feature value detection unit. 4b is shown.
  • the light emission control data generation unit 7 shown in FIG. 9 sets a plurality of extended areas with different widths for each divided area. Accordingly, unlike the second embodiment in that the set extended area is selected and used, the full-screen light emission control data conversion unit 10, the divided area variation calculation unit 11, the first to Mth expanded area variations Minute calculation units 12-1 to 12-M, an image feature determination unit 18, a selection addition unit 17, a changed data generation unit 14, and an addition unit 15 are provided. 9, members having the same reference numerals as those in FIGS. 3 and 7 perform the same operation.
  • the image feature determination unit 18 receives the divided region feature amount Fa, the first to Mth extended region feature amounts Fb 1 to Fb M , and the first and second full-screen feature amounts Fc0 and Fc1, and based on these, Determine the characteristics of the image.
  • the selection adding unit 17 selects and outputs part or all of the expanded region variation data Db 1 (h, v) to Db M (h, v) based on the determination result by the image feature determination unit 18. To do.
  • the selection adding unit 17 determines the number of hierarchies of the extension area used for generating the luminance change data De (h, v) by such processing.
  • an image is represented by image data used for light modulation in one portion of the whole, that is, one divided region among a plurality of divided regions J (1,1) to J (H, V).
  • the image feature determination unit 18 detects this from the feature amounts Fa, Fb, Fc0, and Fc1, particularly the feature amount Fa.
  • the determination result by the image feature determination unit 18 is input to the selection / addition unit 17, and the selection / addition unit 17 is controlled so as to increase the number of extended region variation data to be added. For example, in the above case, all of the extended region variation data Db 1 (h, v) to Db M (h, v) are added.
  • the emission luminance of the corresponding light emitting unit is changed stepwise (a little by little) between the divided region corresponding to the high luminance part of the image and the divided region far from the divided region, It is possible to reduce the difference in the light emission luminance of the corresponding light emitting units between the adjacent divided regions, thereby making it difficult to visually recognize the luminance difference between the adjacent divided regions.
  • the image feature determination unit 18 detects this from the feature amounts Fa, Fb, Fc0, and Fc1, particularly the feature amount Fa.
  • the determination result of the image feature determination unit 18 is input to the selection / addition unit 17, and the selection / addition unit 17 is a part of the input variation data Db 1 (h, v) to Db M (h, v). Select only to perform addition. For example, only the first extended region variation data Db 1 (h, v) is selected and added. Instead, the first to Lth (L ⁇ M) extended region variation data Db 1 of the first to Mth extended region variation data Db 1 (h, v) to Db M (h, v).
  • the difference calculation process in the fluctuation calculation unit (part of 12-1 to 12-M) that outputs the fluctuation data that is not used for the addition is stopped. It may be allowed to. In that case, the output of the image feature determination unit 18 is supplied to the variation calculation units 12-1 to 12-M for control.
  • FIG. 10 shows the light emission control data generation unit 7 used in the image display device according to the fourth embodiment of the present invention.
  • the light emission control data generation unit 7 shown in FIG. 10 adjusts the luminance change data when the difference in luminance change between adjacent divided regions exceeds a predetermined allowable limit value.
  • Control data conversion unit 10 divided region variation calculation unit 11, extended region variation calculation unit 12, addition unit 13, change data generation unit 14, divided region difference calculation unit 16, limit value holding unit 21, comparison processing unit 20, a change adjustment unit 19, and an addition unit 15.
  • members having the same reference numerals as those in FIGS. 3, 7, and 9 perform the same operation.
  • the difference calculation unit 16 between divided regions receives the luminance change data for each divided region (for each light emitting unit) generated by the changed data generation unit 14 and changes the luminance between adjacent divided regions (between the light emitting units). Is calculated and output to the comparison processing unit 20.
  • the limit value holding unit 21 holds an allowable limit value. This permissible limit value is for limiting the luminance difference between adjacent divided regions (between the light emitting units).
  • the comparison processing unit 20 In this case, information indicating this and the degree of excess is supplied to the change adjustment unit 19.
  • the change adjustment unit 19 adjusts the luminance change data from the change data generation unit 14 based on the information from the comparison processing unit 20. Specifically, the brightness change amount of each of the adjacent divided regions (partition region pairs) in which the difference between the divided regions (between the light emitting units) exceeds the allowable limit value is brought close to the luminance change amount of the other divided region. As described above, the difference is set so that the difference in luminance change between these two divided areas is equal to or less than the allowable limit value.
  • the brightness change amount for each of the adjacent divided regions may be changed, or only one of them may be changed.
  • the average value of the luminance change for all the divided areas in the screen is obtained, and the one with the larger difference from the average value of the luminance changes of the two divided areas is changed.
  • both may be changed to the same extent, and the above average value of the luminance changes of the two divided areas (the average value of the luminance changes for all the divided areas in the display screen) It is good also as changing more greatly the one where the difference with respect to is larger.
  • the allowable limit value varies depending on the characteristics of the light modulation unit 3
  • the allowable limit value is determined by performing measurement in a state where the light emitting units 5-1 to 5 -N and the light modulation unit 3 are combined and held in the limit value holding unit 21. Let me.
  • the change adjustment unit 19 is added, so that the luminance difference between the adjacent divided regions can be more reliably performed. Can be suppressed (contained within the allowable limit) and the dynamic range can be improved.
  • FIG. FIG. 11 shows the light emission control data generation unit 7 used in the image display device according to the fifth embodiment of the present invention.
  • the light emission control data generation unit 7 shown in FIG. 11 changes the luminance when the difference in luminance change between adjacent divided regions (adjacent light emitting units) exceeds a predetermined allowable limit value.
  • full-screen light emission is performed in that minute data adjustment is performed, but a plurality of permissible limit values are set and the permissible limit value to be used is selected according to the image characteristics.
  • Control data conversion unit 10 divided region variation calculation unit 11, extended region variation calculation unit 12, addition unit 13, change data generation unit 14, divided region difference calculation unit 16, image feature determination unit 18b, limit value holding A unit 21b, a limit value selection unit 22, a comparison processing unit 20, a change adjustment unit 19, and an addition unit 15 are provided.
  • FIG. 11 members having the same reference numerals as those in FIGS. 3, 7, 9, and 10 perform the same operations.
  • the limit value holding unit 21b is similar to the limit value holding unit 21 of FIG. 10, but holds a plurality of allowable limit values. Similar to the image feature determination unit 18 of the third embodiment, the image feature determination unit 18b determines image features and outputs a determination result. The limit value selection unit 22 selects and outputs one of the allowable limit values held in the limit value holding unit 21b according to the determination result by the image feature determination unit 18b.
  • the ease of visually recognizing the luminance difference between adjacent divided areas varies depending on the characteristics of the image. For example, due to visual characteristics, the adjacent luminance difference on a dark screen is easily recognized, whereas the adjacent luminance difference on a bright screen is difficult to recognize. Therefore, in each of these cases, measurement is performed, a plurality of allowable limit values are set, and the limit value holding unit 21b holds them.
  • the image feature determination unit 18b receives the divided region feature value Fa, the extended region feature value Fb, and the first and second full-screen feature values Fc0 and Fc1, and determines the image feature based on these.
  • the limit value selection unit 22 selects and reads one of a plurality of allowable limit values held in the limit value holding unit 21b based on the determination result by the image feature determination unit 18b, and sends it to the comparison processing unit 20. Supply. For example, when the image feature amount determination unit 18b determines that the image of the target divided region is dark, a relatively small value is selected from the plurality of allowable limit values held in the limit value holding unit 21b. Is output. On the contrary, when the image feature amount determination unit 18b determines that an image with a bright target divided region is bright, a relatively large value among the plurality of allowable limit values held in the limit value holding unit 21b. Selected and output.
  • the change adjustment unit 19 adjusts the luminance change data from the change data generation unit 14 based on the information from the comparison processing unit 20 as in the case of the fourth embodiment. Specifically, the brightness change of each of the adjacent divided areas (partition area pairs) where the difference between the divided areas exceeds the allowable limit value is changed so as to approach the brightness change of the other divided area. The difference in luminance change between these two divided areas is set to be equal to or less than the allowable limit value.
  • the change adjustment unit 19 is added, so that the luminance difference between the adjacent divided regions can be more reliably performed. Can be suppressed (within an allowable limit according to the image characteristics) and the dynamic range can be improved.
  • FIG. 12 shows the light emission control data generation unit 7 used in the image display device according to the sixth embodiment of the present invention.
  • the image display apparatus according to the sixth embodiment displays on-screen display (OSD) information.
  • the light emission control data generation unit 7 shown in FIG. 12 is used in such an image display device, and is a full screen light emission control data conversion unit 10, a divided region variation calculation unit 11, and an extended region variation calculation unit 12.
  • the OSD processing unit 23 receives OSD display information Dosd including information indicating display contents of an on-screen display (OSD) and display position information.
  • the OSD display information Dosd has a different property from the input image data output from the receiving unit 2 in FIG. 1, and the OSD display portion is configured so that a luminance difference does not occur for each divided region depending on the input image data. desirable.
  • the OSD processing unit 23 detects a divided area where the OSD display is performed based on the OSD display information Dosd, and outputs information indicating the divided area where the OSD display is performed.
  • the divided area where the OSD display is performed means a divided area where the OSD is performed partly or entirely.
  • FIG. 13 shows a case where the divided areas for OSD display are the three divided areas J (7, 7), J (8, 7), and J (9, 7) at the lower right of the screen.
  • the change adjustment unit 19b receives the luminance change data De output from the change data generation unit 14 and indicates the difference in light emission luminance between the divided regions that perform OSD display indicated by the information output from the OSD processing unit 23.
  • the brightness change is adjusted so as not to occur.
  • the luminance change amount of the divided area where the OSD display is performed is reduced so that the luminance difference between the divided area where the OSD display is performed and the divided area adjacent to the divided area where the OSD display is not performed is as small as possible. It is desirable to adjust.
  • Embodiments 1 to 6 can be used in combination with each other.
  • the adjustment for the luminance change of the divided region for OSD display described in the sixth embodiment can be applied to the first to fifth embodiments.
  • the light emission control method executed by the light emission control device also forms part of the present invention. Furthermore, a part or all of the processing in the above-described light emission control device, in other words, the processing executed in the above light emission control method can be executed by software, that is, a programmed computer, and the above processing is executed by the computer. And a computer-readable recording medium on which the program is recorded form part of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Liquid Crystal (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Image Processing (AREA)

Abstract

 発光制御装置は、分割領域特徴量検出部(6)、拡張領域特徴量検出部(8)、全画面特徴量検出部(4)および発光制御部(30)を備える。分割領域特徴量検出部(6)は、分割領域の画像の特徴量を分割領域特徴量として検出する。拡張領域特徴量検出部(8)は、注目する分割領域及び該注目する分割領域の周囲の注目する分割領域を含む拡張領域とし、前記拡張領域の画像の特徴量を当該注目する分割領域についての拡張領域特徴量として検出する。全画面特徴量検出部(4)は、画像全体の特徴量を全画面特徴量として検出する。発光制御部(30)は、前記注目する分割領域についての前記分割領域特徴量及び前記拡張領域特徴量、並びに前記全画面特徴量に基づき、前記注目する分割領域に対応する前記発光部の発光輝度を制御する。

Description

発光制御装置及び方法、発光装置、画像表示装置、プログラム、並びに記録媒体
 本発明は、発光制御装置及び方法、発光装置、並びに画像表示装置に関するものであり、特に画像表示装置の光変調部の照明に用いられる発光部の発光輝度制御に関する。本発明はまた、発光制御方法の処理をコンピュータで実行させるためのプログラム、及び該プログラムを記録した、コンピュータで読み取り可能な記録媒体に関する。
 液晶パネルなどの受光型光変調素子を用いた表示機器は、光変調素子に照明光をあてるための光源を備えている。光変調素子は入力された画像信号に応じて、光源から照射される光透過量を調整して画像を生成し、表示する。光変調素子は黒を表示するときは、光源から照射される光を遮断する状態となる。しかし、「遮断状態」でも実際には光の透過率をゼロにすることはできず、光の漏れが存在し、このため、黒色画面でも若干光り輝く現象(光の漏れによる黒浮き)を持った表示になる。
 上述した黒浮きを減らすために、画像の表示内容に応じて、光源の制御を実施することが考えられた。一つの方法では光源を全画面一律に制御することとしており、例えば暗い画面で光源からの光量を絞ることにより黒浮きを減らすことができる。しかし、暗い画面の中に存在する高輝度画像部分も照明光量の低下により暗く表示されるため、表示輝度のダイナミックレンジが制約されるという問題があった。
 黒浮きを減らしながら、同時に表示輝度ダイナミックレンジを拡大するためにバックライトの光源を複数の部分領域に分け、領域毎に輝度を制御する表示装置が下記の特許文献1に示されている。この特許文献1に開示された表示装置においては、各部分領域の輝度設定値と隣接部分領域の輝度設定値に重み付けして得られる値を用いて各部分領域の輝度設定値を設定しなおす構成にすることで、部分領域毎の輝度差を抑制しながら、黒浮きの抑制と、表示輝度ダイナミックレンジの拡大を図っている。
特開2009-139470号公報(第9頁、第9図)
 しかしながら、上記特許文献1に開示された方法では、各部分領域と隣接部分領域の全てに重み付けして計算し、各部分領域の輝度設定値を設定しなおしており、膨大な量の計算が必要になり、回路規模が大きくなる。また部分領域毎の輝度設定値の重み付けによって各部分領域の輝度設定値を決定しており、輝度差が感じられないように制御することが優先されており、黒浮きの抑制、及びダイナミックレンジの拡大の効果が抑制されてしまうという問題があった。
 本発明に係る発光制御装置は、
 照明光を画像データに応じて光変調部で光変調することにより、前記画像データで表される画像を形成し、
 前記照明光は複数の発光部から照射され、
 前記複数の発光部は、前記光変調部を複数に分割した領域それぞれを照射し、
 前記それぞれの発光部に対応して複数に分割された領域を分割領域とし、
 前記複数の発光部のそれぞれの発光輝度が制御できるように構成された発光制御装置において、
 前記画像データにより表される画像のうち、前記光変調部の前記分割領域の各々を、注目する分割領域とし、前記注目する分割領域の特徴量を分割領域特徴量として検出する分割領域特徴量検出部と、
 前記画像データにより表される画像のうち、前記注目する分割領域及び前記注目する分割領域の周囲の分割領域を含む拡張領域の特徴量を、前記注目する分割領域についての拡張領域特徴量として検出する拡張領域特徴量検出部と、
 前記画像データにより表される画像全体の特徴量を、全画面特徴量として検出する全画面特徴量検出部と、
 前記注目する分割領域についての前記分割領域特徴量及び前記拡張領域特徴量、並びに前記全画面特徴量に基づき、前記注目する分割領域に対応する前記発光部の発光輝度を制御する発光制御部と
 を備えることを特徴とする。
 本発明によれば、回路規模を大きくすることなく、分割領域間の輝度差を抑制しながら、黒浮きの抑制及びダイナミックレンジの拡大を実現することができる。
本発明の実施の形態1の画像表示装置を示すブロック図である。 それぞれ光変調部の一部で構成される分割領域と、拡張領域を示す図である。 図1の発光制御データ生成部7の構成例を示すブロック図である。 (a)~(e)は、図1の受信部2から出力される入力画像データが第1の例のものであるときに、図1の画像表示装置の各部に表されるデータを示す図であり、同図(a)は、分割領域特徴量検出部6から出力される画像の各分割領域での光変調に用いられる画像データで表される画像の特徴量Faを示し、同図(b)は、拡張領域特徴量検出部8から出力される各拡張領域での光変調に用いられる画像データで表される画像の特徴量Fbを示し、同図(c)は、分割領域変動分算出部11から出力される分割領域変動分データDaを示し、同図(d)は、拡張領域変動分算出部12から出力される拡張領域変動分データDbを示し、同図(e)は、加算部13から出力される局所変動分データDfを示す。 (a)~(e)は、図1の受信部2から出力される入力画像データが第2の例のものであるときに、図1の画像表示装置の各部に表されるデータを示す図であり、同図(a)は、分割領域特徴量検出部6から出力される画像の各分割領域での光変調に用いられる画像データで表される画像の特徴量Faを示し、同図(b)は、拡張領域特徴量検出部8から出力される各拡張領域での光変調に用いられる画像データで表される画像の特徴量Fbを示し、同図(c)は、分割領域変動分算出部11から出力される分割領域変動分データDaを示し、同図(d)は、拡張領域変動分算出部12から出力される拡張領域変動分データDbを示し、同図(e)は、加算部13から出力される局所変動分データDfを示す。 (a)~(e)は、図1の受信部2から出力される入力画像データが第3の例のものであるときに、図1の画像表示装置の各部に表されるデータを示す図であり、同図(a)は、分割領域特徴量検出部6から出力される画像の各分割領域での光変調に用いられる画像データで表される画像の特徴量Faを示し、同図(b)は、拡張領域特徴量検出部8から出力される各拡張領域での光変調に用いられる画像データで表される画像の特徴量Fbを示し、同図(c)は、分割領域変動分算出部11から出力される分割領域変動分データDaを示し、同図(d)は、拡張領域変動分算出部12から出力される拡張領域変動分データDbを示し、同図(e)は、加算部13から出力される局所変動分データDfを示す。 本発明の実施の形態2で用いられる発光制御データ生成部7の構成例を示す分割領域図である。 本発明の実施の形態2における、光変調部3の一部を成す分割領域及び拡張領域の例を示す図である。 本発明の実施の形態3で用いられる発光制御データ生成部7の構成例を示す分割領域図である。 本発明の実施の形態4で用いられる発光制御データ生成部7の構成例を示す分割領域図である。 本発明の実施の形態5で用いられる発光制御データ生成部7の構成例を示す分割領域図である。 本発明の実施の形態6で用いられる発光制御データ生成部7の構成例を示す分割領域図である。 OSD表示が行われる分割領域の例を示す図である。 発光素子が画面短辺エッジに沿って配置される場合の分割領域の構成例を示す別の図である。 発光素子が画面長辺エッジに沿って配置される場合の分割領域の構成例を示す別の図である。
実施の形態1.
 図1は、本発明の実施の形態1の画像表示装置を示すブロック図である。図1に示される画像表示装置は、入力端子1、受信部2、光変調部3、複数の、即ちN個(Nは2以上の整数)の発光部5-1~5-N、分割領域特徴量検出部6、拡張領域特徴量検出部8、全画面特徴量検出部4、発光制御データ生成部7、及び発光駆動部9を備えている。
 上記のうち、分割領域特徴量検出部6、拡張領域特徴量検出部8、全画面特徴量検出部4、発光制御データ生成部7、及び発光駆動部9により発光制御装置が構成されており、さらに該発光制御装置と発光部5-1~5-Nで発光装置が構成されている。
 入力端子1には、例えばテレビやコンピュータなどで用いられる所定の形式の画像信号が供給される。
 受信部2は、入力端子1に供給された画像信号を受信して、RGBの色データ、あるいは輝度と色差データからなる画像データに変換して出力する。画像データは、後述の光変調部3の各画素における光透過率を決める画素値を含む。受信部2は、アナログ形式の画像信号が入力される場合にはA/D変換器などで構成され、また、変調された画像信号が入力される場合は所定の復調器により構成される。
 受信部2から出力された画像データは、光変調部3、分割領域特徴量検出部6、拡張領域特徴量検出部8、及び全画面特徴量検出部4に入力される。
 光変調部3は、画像データに応じて発光部5-1~5-Nからの照明光を光変調して、画像データで表される画像を形成するもので、例えば透過型液晶パネルで構成されている。透過型液晶パネルは、複数の光変調素子としての画素を有し、各画素の光透過率は画像データの対応する画素値により制御される。
 光変調部3のうち、それぞれ、発光部5-1~5-Nに対応する領域乃至部分を部分領域乃至分割領域3-1~3-Nと呼ぶ。各分割領域には複数の画素が含まれる。光変調部3のうち、各発光部に対応する部分とは、当該発光部からの光が支配的である光変調画素、言い換えると、当該発光部からの光を他の発光部の各々からの光よりも多く受ける画素の集合を意味する。光変調部3は、例えば図2に示すように、表示画面に対応して矩形状に形成されており、縦方向V個(図示の例ではV=7)、横方向H個(図示の例ではH=9)のV×H=N個の分割領域3-1~3-Nから成る。
 上記のように光変調部3の各分割領域3-n(nは1~Nのいずれか)は1個の発光部5-nに対応し、光変調部3の分割領域3-nは、主に対応する発光部5-nにより照明される。各発光部5-nは、その発光輝度が他の発光部から独立に制御される被制御単位であり、各発光部5-nは、1個又は2個以上の発光素子、例えばLEDで構成されている。
 光変調部3の各分割領域3-nは、その表示画面内の横方向及び縦方向の位置が(h,v)で表される。
 図2において、最も左の列においてはh=1、最も右の列においてはh=Hであり、最も上の行においてはv=1、最も下の行においてはv=Vである。
 光変調部3の各分割領域3-nは、上記のようにして定義される位置(h,v)により、J(h,v)と表されることがある。同様に、発光部5-1~5-Nも、対応する光変調部の分割領域の位置(h,v)に応じて符号5(h,v)で表される。
 各分割領域J(h,v)とその周囲の分割領域とで、上記の各分割領域についての拡張領域K(h,v)が構成される。図2には、中央の分割領域であるJ(5,4)が注目分割領域であり、その周囲の分割領域J(4,3)、J(5,3)、J(6,3)、J(4,4)、J(5,4)、J(6,4)、J(4,5)、J(5,5)、J(6,5)により拡張領域K(5,4)が構成された例が示されている。
 分割領域の行の数或いは列の数が2である場合もある。
 例えば、図14は行の数が8、列の数が2の場合を示し、図15は列の数が8、行の数が2の場合を示す。
 例えば、発光素子が画面短辺エッジに沿って配置されている場合に図14に示される配列が用いられ、発光素子が画面の長辺エッジに沿って配置されている場合に図15に示される配列が用いられる。いずれの場合にも、各分割領域は1個又は複数個の発光素子で構成される1つの発光部に対応する領域である。
 図14の配列の場合、各分割領域(注目分割領域)に対する拡張領域は、当該注目分割領域と同じ列及び当該注目分割領域が属する列に対して一方の側に配置された列に属する分割領域により構成される。例えば、分割領域J(1,3)に対する拡張領域は、同じ列の分割領域J(1,2)、J(1,3)、J(1,4)及び右方に隣接する列の分割領域J(2,2)、J(2,3)、J(2,4)で構成される。
 図15の配列の場合、各分割領域(注目分割領域)に対する拡張領域は、当該注目分割領域と同じ行及び当該注目分割領域が属する行に対して一方の側に配置された行に属する分割領域により構成される。例えば、分割領域J(5,1)に対する拡張領域は、当該分割領域と同じ行の分割領域J(4,1)、J(5,1)、J(6,1)及び下方に隣接する行の分割領域J(4,2)、J(5,2)、J(6,2)で構成される。
 以下に詳しく述べるように、本発明の画像表示装置では、各発光部5(h,v)の発光輝度を制御するために、当該(制御対象としての)発光部に対応する分割領域J(h,v)を注目分割領域として、該注目分割領域における光変調に用いられる画像データで表される画像の特徴量、並びに、該注目分割領域を含む拡張領域K(h,v)における光変調に用いられる画像データで表される画像の特徴量、並びに画像の全体の特徴量(全画面の特徴量)に基づく制御を行う。
 分割領域特徴量検出部6は、受信部2から出力される入力画像データDiを受け、当該入力画像データDiのうちの、光変調部3の分割領域の各々J(h,v)における光変調で用いられる画像データで表される画像の特徴量(言い換えると、入力画像データDiで表される画像のうち、分割領域J(h,v)で形成される部分の特徴量)を生成して、分割領域特徴量Fa(h,v)として出力する。
 以下では、各分割領域における光変調に用いられる画像データで表される画像の特徴量を、単に当該「分割領域の画像の特徴量」或いは当該「分割領域についての特徴量」と言うことがある。
 拡張領域特徴量検出部8は、受信部2から出力される入力画像データDiを受け、当該入力画像データDiのうちの、光変調部3の分割領域の各々J(h,v)についての拡張領域K(h,v)における光変調で用いられる画像データで表される画像の特徴量(言い換えると、入力画像データDiで表される画像のうち、拡張領域K(h,v)で形成される部分の特徴量)を生成して、拡張領域特徴量Fb(h,v)として出力する。
 以下では、各拡張領域における光変調に用いられる画像データで表される画像の特徴量を、単に当該「拡張領域の画像の特徴量」或いは当該「拡張領域についての特徴量」と言うことがある。
 図2に示す例では、各分割領域J(h,v)を注目分割領域として、当該注目分割領域に隣接し、それを囲むように配置された8つの分割領域、言い換えると各注目分割領域J(h,v)に対して横方向座標及び縦方向座標が「1」だけ異なる8つ分割領域J(h-1,v-1)、J(h,v-1)、J(h+1,v-1)、J(h-1,v)、J(h+1,v)、J(h-1,v+1)、J(h,v+1)、J(h+1,v+1)と、当該注目分割領域とで、当該注目分割領域についての拡張領域(注目拡張領域)K(h,v)を構成しているが、注目拡張領域の定め方はこれに限定されず、例えばより広い範囲(例えば横方向座標及び縦方向座標が「2」だけ異なる16個分割領域の全部又は一部をも含む範囲)を拡張領域としても良く、各拡張領域の形状は例えば左右及び/又は上下非対称的であっても良い。また、すべての分割領域に対して同じように定められなくても良く、例えば光変調部3の上下左右の辺に隣接して位置する分割領域(例えば図2のJ(9,5))や、隅に位置する分割領域(例えば図2のJ(1,7))については、光変調部3の外側には分割領域が存在しないので、内側に位置する分割領域のみを周辺の分割領域として拡張領域(K(9,5)、K(1,7))を構成することとしても良い。
 全画面特徴量検出部4は、受信部2から出力される入力画像データDiに基づき、全画面の画像の特徴量を検出して全画面特徴量Fcとして出力する。全画面特徴量は第1の全画面特徴量(第1の種類の全画面特徴量)Fc0、及び第2の全画面特徴量(第2の種類の全画面特徴量)Fc1を含む。
 特徴量Fa(h,v)、Fb(h,v)、Fc0、及びFc1の各々は、画像データを構成する画素値から得られる、画像の明るさに関係する数値乃至指標であり、例えば、
各画素についての画像データで表される輝度値の平均値、最大値若しくは最小値、
各画素についての画像データで表される所定の輝度値の出現頻度、
各画素についての画像データで表される特定の彩度の出現頻度、又は
各画素についての画像データを構成する色信号の平均値、最大値若しくは最小値、又は
これらのうちの2つ以上を組み合わせることで得られる値である。
 各分割領域についての分割領域特徴量Fa(h,v)は、当該分割領域における光変調に用いられる画像データの画素値から得られるものであり、例えば平均値であれば当該分割領域J(h,v)における光変調に用いられる画像データの画素値の平均値であり、ピーク値であれば、当該分割領域J(h,v)内のピーク値である、特定の値の出現頻度であれば、当該分割領域J(h,v)における光変調に用いられる画像データ内の特定の画素値の出現回数を当該分割領域における光変調に用いられる画像データの画素数で割った値、またはそれに所定の係数を掛けた値である。
 各分割領域についての拡張領域特徴量Fb(h,v)は、当該分割領域とその周囲の分割領域で形成される拡張領域における光変調に用いられる画像データの画素値から得られるものであり、例えば平均値であれば当該拡張領域K(h,v)における光変調に用いられる画像データの画素値の平均値であり、ピーク値であれば、当該拡張領域K(h,v)における光変調に用いられる画像データの画素値のピーク値である、特定の値の出現頻度であれば、当該拡張領域K(h,v)における光変調に用いられる画像データ内における特定の画素値の出現回数を当該拡張領域における光変調に用いられる画像データの画素数で割った値、またはそれに所定の係数を掛けた値である。
 各注目分割領域J(h,v)についての拡張領域特徴量(各注目分割領域J(h,v)とその周囲の分割領域で構成される拡張領域K(h,v)についての特徴量)Fb(h,v)は、当該注目分割領域J(h,v)についての特徴量を含めて一様に求めたものである。例えば、各注目分割領域J(h,v)についての拡張領域特徴量Fb(h,v)は、当該注目分割領域J(h,v)内の画素のための画素値と、その周囲の分割領域(即ち、当該拡張領域K(h,v)内に位置し、当該注目分割領域J(h,v)の周囲に位置する分割領域)内の画素のための画素値とに基づいて、それらの画素値に対して重み付けを行うことなく求めたものである。例えば、平均値を特徴量とする場合には、各注目分割領域J(h,v)についての拡張領域特徴量Fb(h,v)は、当該注目分割領域J(h,v)内の画素のための画素値と、その周囲の分割領域内の画素のための画素値に基づいて重み付けを行うことなく求めた平均値(単純平均値)である。
 第1及び第2の全画面特徴量Fc0及びFc1の各々は、画面内のすべての画素のための画素値から得られるものであり、例えば平均値であれば画面全体にわたる平均値であり、ピーク値であれば、画面全体におけるピーク値である、特定の値の出現頻度であれば、画面全体における出現回数を画面全体の画素数で割った値、またはそれに所定の係数を掛けた値である。
 各分割領域について平均値を用いるか、或いはピーク値、ボトム値、所定の輝度値の出現頻度を用いるかは、分割領域の広さを考慮して定められる。例えば、各分割領域が狭い場合には、ピーク値、ボトム値、所定の輝度値の出現頻度により当該分割領域の明るさを十分に高い精度で推測できる。各分割領域が広い場合には、明るさの推測の精度を高めるために平均値を用いることが望ましい。
 特徴量Fa(h,v)、Fb(h,v)及びFc1は同種の値(上に例示した特徴量のうちの同じ種類の値)である。特徴量Fc0は前記3種類の特徴量と同種の値であっても、異種の値であってもよい。異種である場合、例えば、特徴量Fa(h,v)、Fb(h,v)及びFc1は輝度のピーク値であり、特徴量Fc0は輝度の平均値であっても良い。
 分割領域特徴量Fa(h,v)、拡張領域特徴量Fb(h,v)、及び全画面特徴量Fc0、及びFc1は発光制御データ生成部7へ供給される。
 発光制御データ生成部7は、各分割領域J(h,v)についての分割領域特徴量Fa(h,v)及び拡張領域特徴量Fb(h,v)、並びに全画面特徴量Fc0及びFc1に基づいて、当該分割領域についての発光制御データY(h,v)を生成する。
 この発光制御データY(h,v)は、発光駆動部9に供給されて、対応する発光部5(h,v)の発光レベル(輝度レベル)を決定するために用いられる。
 発光駆動部9は、発光制御データ生成部7から入力された分割領域毎の発光制御データY(h,v)に基づいて、当該分割領域に対応する発光部5(h,v)を駆動するための駆動信号Q(h,v)を生成し、当該発光部5(h,v)に出力する。
 発光制御データ生成部7と発光駆動部9とで、光変調部3の分割領域の各々J(h,v)についての分割領域特徴量Fa(h,v)及び拡張領域特徴量Fb(h,v)、並びに全画面特徴量Fc0及びFc1に基づき、当該分割領域に対応する発光部の発光輝度を制御する発光制御部30が構成されている。
 図3は、図1の発光制御データ生成部7の構成例を示す。
 図示の発光制御データ生成部7は、全画面発光制御データ変換部10、分割領域変動分算出部11、拡張領域変動分算出部12、加算部13、変更分データ生成部14、及び加算部15を備えている。
 図1の全画面特徴量検出部4で検出された第1の全画面特徴量Fc0は全画面発光制御データ変換部10に入力され、全画面発光制御データD0に変換されて出力される。
 全画面発光制御データD0の値は、第1の全画面特徴量Fc0に対する単調増加関数f(Fc0)で表され、全体的には第1の全画面特徴量Fc0が増加すれば、全画面発光制御データの値D0も増加するが、後述のように、分割領域発光制御データYが負の値になるのを避けるとともに所定の最大値を超えないように制限を付けている。全画面発光制御データD0の値は、加算部15に入力される。
 図1の分割領域特徴量検出部6で検出された分割領域特徴量Faと、図1の全画面特徴量検出部4で検出された第2の全画面特徴量Fc1は分割領域変動分算出部11に入力される。
 分割領域変動分算出部11は、各分割領域J(h,v)についての分割領域特徴量Fa(h,v)から第2の全画面特徴量Fc1を減算して、両者の差分を表す分割領域変動分データDa(h,v)を出力する。分割領域変動分データDa(h,v)は、分割領域毎の変動分を表すものである。分割領域変動分算出部11から出力される分割領域変動分データDaは加算部13に入力される。
 図1の拡張領域特徴量検出部8で検出された拡張領域特徴量Fbと、図1の全画面特徴量検出部4で検出された第2の全画面特徴量Fc1は拡張領域変動分算出部12に入力される。
 拡張領域変動分算出部12は、各分割領域J(h,v)についての拡張領域特徴量(即ち、分割領域J(h,v)に対応する拡張領域K(h,v)についての拡張領域特徴量)Fb(h,v)から第2の全画面特徴量Fc1を減算して、両者の差分を表す拡張領域変動分データDb(h,v)を出力する。拡張領域変動分データDb(h,v)は、拡張領域毎の変動分を表すものである。拡張領域変動分算出部12から出力される拡張領域変動分データDbは加算部13に入力される。
 加算部13は、各分割領域について分割領域変動分データDa(h,v)と同じ分割領域についての拡張領域変動分データDb(h,v)を加算して、加算結果を当該分割領域についての局所変動分データDf(h,v)として出力する。
 加算部13から出力された局所変動分データDfは変更分データ生成部14に入力され、分割領域毎の輝度変更分データDeに変換されて出力される。
 輝度変更分データDeの値は、局所変動分データDfに対する単調増加関数g(Df)で表され、全体的にはDfが増加すれば、輝度変更分データDeの値も増加するが、後述のように、分割領域発光制御データYが負の値になるのを避けるとともに所定の最大値を超えないように制限を付けている。輝度変更分データDeは加算部15に入力される。
 加算部15は入力された全画面発光制御データD0と各分割領域についての輝度変更分データDe(h,v)とを加算して、当該分割領域についての発光制御データY(h,v)(=D0+De(h,v))を出力する。
 全画面発光制御データD0は、画面全体を対象として求めた、ある特徴量の値、或いは画面全体にわたる平均的な値に相当するデータであって、「直流成分」とも呼ばれる。一方、輝度変更分データDe(h,v)は、当該特徴量の画面全体の平均値に対する分割領域毎の値の差分乃至変動分に相当するデータであって、「交流成分」とも呼ばれる。
 この分割領域毎の変動分(交流成分)に相当するデータは表示のダイナミックレンジの改善と黒浮きの抑制の両方に寄与し、さらに上記した全体の平均値(直流成分)に相当するデータは、画面全体の輝度を可能な限り低下させる役割を担うものであり、黒浮きを抑制する効果を有する。
 以下、分割領域特徴量Fa、及び拡張領域Fb、並びに第1及び第2の全画面特徴量Fc0及びFc1のすべてが画像の平均輝度であり、従って、Fc0=Fc1である場合について、画像の幾つかの例に関し、分割領域特徴量検出部6で検出される分割領域毎の平均輝度Fa(h,v)、拡張領域特徴量検出部8で検出される拡張領域毎の平均輝度Fb(h,v)、分割領域変動分算出部11で算出される分割領域変動分データDa(h,v)、拡張領域変動分算出部12で算出される拡張領域変動分データDb(h,v)、及び加算部13で求められる局所変動分データDf(h,v)について説明する。以下の例では、表示画面の全体に対応する光変調部3が5×5の25個の分割領域から成り、各分割領域の座標(h,v)は(1,1)~(5,5)で表される。
 図4(a)に示す例では、画像の中心にのみ高輝度の部分があり、中心の分割領域における光変調に用いられる画像データで表される画像の平均輝度値Fa(3,3)が「40」であり、他の分割領域における光変調に用いられる画像データで表される画像の平均輝度値Fa(h,v)(h=1~5、v=1~5、但しh=3でかつv=3の場合を除く)が「0」である。また、各分割領域(h,v)についての拡張領域における光変調に用いられる画像データで表される画像の平均輝度値Fb(h,v)は、図4(b)に示すごとくである。
 第1及び第2の全画面特徴量としての全画面の平均輝度(Fc0=Fc1)の値は、整数で計算した場合(計算結果を四捨五入した場合)には「2」となる。
 図4(a)に示される分割領域平均輝度Fa(h,v)から全画面平均輝度Fc1(=Fc0)を減算することで得られる分割領域変動分データDa(h,v)は、図4(c)に示されるごとくとなる。このようして得られる分割領域変動分データDa(h,v)では、中心の分割領域と、これに隣接する分割領域との間の輝度差は抑制されていない。
 図4(b)に示される拡張領域平均輝度値Fb(h,v)から全画面平均輝度値Fc1(=Fc0)を減算することで求められる拡張領域変動分データDb(h,v)は図4(d)に示される。図4(d)に示される拡張領域変動分データDb(h,v)では、隣接分割領域間の輝度差が抑制されているが、中心の高輝度部分が強調されていない。
 図4(c)の分割領域変動分データDa(h,v)と図4(d)の拡張領域変動分データDb(h,v)を加算することで得られる局所変動分データDf(h,v)は図4(e)に示されように、中央の高輝度部分が強調されながら、隣接する分割領域との輝度差分も抑制されたものとなる。
 図5(a)に示す例では、画像の中心及び4隅に高輝度の部分があり、中心の分割領域における光変調に用いられる画像データで表される画像の平均輝度値Fa(3,3)が「40」であり、左上隅の分割領域における光変調に用いられる画像データで表される画像の平均輝度値Fa(1,1)が「25」、右上隅の分割領域における光変調に用いられる画像データで表される画像の平均輝度値Fa(5,1)が「30」、左下隅の分割領域における光変調に用いられる画像データで表される画像の平均輝度値Fa(1,5)が「35」、右下隅の分割領域における光変調に用いられる画像データで表される画像の平均輝度値Fa(5,5)が「40」、他の分割領域における光変調に用いられる画像データで表される画像の平均輝度値Fa(h,v)が「0」である。また、各分割領域(h,v)についての拡張領域における光変調に用いられる画像データで表される画像の平均輝度値Fb(h,v)は、図5(b)に示すごとくである。
 第1及び第2の全画面特徴量としての全画面の平均輝度(Fc0=Fc1)の値は、整数で計算した場合(計算結果を四捨五入した場合)には「7」となる。
 図5(a)に示される分割領域平均輝度Fa(h,v)から全画面平均輝度Fc1(=Fc0)を減算することで得られる分割領域変動分データDa(h,v)は、図5(c)に示されるごとくとなる。このようにして得られる分割領域変動分データDa(h,v)では、中心及び4隅の分割領域と、これらに隣接する分割領域との間の輝度差は抑制されていない。
 図5(b)に示される拡張領域平均輝度値Fb(h,v)から全画面平均輝度値Fc1(=Fc0)を減算することで求められる拡張領域変動分データDb(h,v)は図5(d)に示される。図5(d)に示される拡張領域変動分データDb(h,v)では、隣接分割領域間の輝度差が抑制されているが、中心及び4隅の高輝度部分が強調されていない。
 図5(c)の分割領域変動分データDa(h,v)と図5(d)の拡張領域変動分データDb(h,v)を加算することで得られる局所変動分データDf(h,v)は図5(e)に示されようになり、中央及び4隅の高輝度部分が強調されながら、隣接する分割領域との輝度差も抑制されたものとなる。
 図6(a)に示す例では、画像の中心及びその斜め上及び斜め下に高輝度の部分があり、中心の分割領域における光変調に用いられる画像データで表される画像の平均輝度値Fa(3,3)が「40」であり、中心の左上の分割領域における光変調に用いられる画像データで表される画像の平均輝度値Fa(2,2)が「25」、中心の右上の分割領域における光変調に用いられる画像データで表される画像の平均輝度値Fa(4,2)が「30」、中心の左下の分割領域における光変調に用いられる画像データで表される画像の平均輝度値Fa(2,4)が「35」、中心の右下の分割領域における光変調に用いられる画像データで表される画像の平均輝度値Fa(4,4)が「40」、他の分割領域における光変調に用いられる画像データで表される画像の平均輝度値Fa(h,v)が「0」である。また、各分割領域(h,v)についての拡張領域における光変調に用いられる画像データで表される画像の平均輝度値Fb(h,v)は、図6(b)に示すごとくである。
 第1及び第2の全画面特徴量としての全画面の平均輝度(Fc0=Fc1)の値は、整数で計算した場合(計算結果を四捨五入した場合)には「7」となる。
 図6(a)に示される分割領域平均輝度Fa(h,v)から全画面平均輝度Fc1(=Fc0)を減算することで得られる分割領域変動分データDa(h,v)は、図6(c)に示されるごとくとなる。このようにして得られる分割領域変動分データDa(h,v)では、中心及びその斜め上、斜め下の分割領域と、これらに隣接する分割領域との輝度差は抑制されていない。
 図6(b)に示される拡張領域平均輝度値Fb(h,v)から全画面平均輝度値Fc1=Fc0)を減算することで求められる拡張領域変動分データDb(h,v)は図6(d)に示される。図6(d)に示される拡張領域変動分データDb(h,v)では、隣接分割領域間の輝度差が抑制されているが、中心及び中心の斜め上、斜め下の高輝度部分が強調されていない。
 図6(c)の分割領域変動分データDa(h,v)と図6(d)の拡張領域変動分データDb(h,v)を加算することで得られる局所変動分データDf(h,v)は図6(e)に示されようになり、中央及び中央の斜め上、斜め下の高輝度部分が強調されながら、隣接する分割領域との輝度差も抑制されたものとなる。
 このようにして得られる分割領域毎の局所変動分データDf(h,v)から、分割領域毎の輝度変更分データDe(h,v)を求め、これを、全画面特徴量Fc0からの変換で得られている全画面発光制御データD0に加算することで分割領域毎の発光制御データY(h,v)を生成し、この発光制御データY(h,v)に基づいて各分割領域に対応する発光部5(h,v)の発光輝度を制御する。その結果、高輝度部分を協調しながら、隣接する分割領域間の輝度差を抑制することができる。従って、ダイナミックレンジを広くするとともに、黒浮きを抑制することができる。
 補足すると、全画面特徴量を利用して、暗い画面は黒浮きを抑制し、明るい画面は輝く白を表現する全面発光用のデータを作っておく。そこに注目する分割領域の分割領域特徴量との差分、注目する分割領域の拡張領域特徴量との差分による局所変動分データで注目する分割領域に対応する発光部の発光輝度を変更する。全画面発光用のデータは、もともと分割領域間の(分割領域に対応する発光部間の)発光輝度のバラツキが存在しない全画面特徴量によって作られている。その全画面発光用のデータをベースにして、領域間の発光輝度のずれが視認されないレベルの局所変動分データを付加する。この処理は、領域間の発光輝度のずれが視認されないレベルに抑制することを容易にする。
 さらに全面発光用のデータと、領域間の発光輝度のずれが視認されないレベルの局所変動分データを付加すると、暗い領域は黒浮きを抑制し、明るい領域は輝く白を表現するように面発光する。これにより、発光輝度のダイナミックレンジをあげることができる。
 さらに全画面特徴量による発光データを注目する分割領域の特徴量と、注目する分割領域を含む拡張領域の特徴量を使って、発光輝度を変更する。つまり、注目分割領域の周辺特徴も含んでいるため、重み付けせずとも注目する分割領域を重要視しながら、周囲領域との相関関係を考慮した重み付けする効果が得られる。
 分割領域からの情報を重み付けする処理は、注目する分割領域と、他の分割領域との位置関係、距離関係を知るという複雑な処理が必要である。さらに、それぞれの領域からの情報に相関関係がないため、重み付けのためにさらに複雑な処理が必要になる。このような複雑な処理を必要とせず、簡単な処理による簡単なハードウェア構成で実現することができる。
実施の形態2.
 図7は、本発明の実施の形態2の画像表示装置で使用される発光制御データ生成部7、並びに分割領域特徴量検出部6、拡張領域特徴量検出部8b及び全画面特徴量検出部4bを示す。
 図7に示される発光制御データ生成部7は、各分割領域に対して、複数の、互いに異なる広さの拡張領域を設定して、隣接分割領域間の輝度差分をより小さくするためのものであり、全画面発光制御データ変換部10、分割領域変動分算出部11、第1乃至第Mの拡張領域変動分算出部12-1~12-M、加算部13b、変更分データ生成部14、及び加算部15を備えている。図7において、図3と同じ符号の部材は同様の動作を行う。
 拡張領域特徴量検出部8bは、受信部2から出力される入力画像データDiを受け、当該入力画像データDiのうちの、光変調部3の分割領域の各々J(h,v)について、当該分割領域J(h,v)を含む第1~第M(Mは2以上の整数)の拡張領域K(h,v)~K(h,v)を設定し、それぞれの拡張領域の画像の特徴量Fb(h,v)~Fb(h,v)を出力する。
 第1の拡張領域K(h,v)は、例えば実施の形態1における拡張領域K(h,v)と同じである。第2の拡張領域K(h,v)は、第1の拡張領域K(h,v)よりも広く、第1の拡張領域K(h,v)とその周囲の1以上の分割領域とを含む。一般化すれば、第m(mは2~Mのいずれか)の拡張領域K(h,v)は、第(m-1)の拡張領域K(m-1)(h,v)よりも広く、第(m-1)の拡張領域K(m-1)(h,v)とその周囲の1以上の分割領域とを含む。
 図8には、M=2の場合について、第1の拡張領域K(h,v)と第2の拡張領域K(h,v)を示す。図8に示す例では、第1の拡張領域K(h,v)は、図2に示す拡張領域K(5,4)と同様に形成されたものであり、第2の拡張領域K(h,v)は、第1の拡張領域K(h,v)を含み、さらにその周囲に位置し、第1の拡張領域K(h,v)を取り囲むように位置する16個の分割領域を含む。
 図14の配列でM=2の場合、各分割領域(注目分割領域)に対する第1及び第2の拡張領域は、当該注目分割領域と同じ列及び当該注目分割領域が属する列に対して一方の側に配置された列に属する分割領域により構成される。例えば、分割領域J(1,3)に対する第1の拡張領域は、同じ列の分割領域J(1,2)、J(1,3)、J(1,4)及び右方に隣接する列の分割領域J(2,2)、J(2,3)、J(2,4)で構成され、第2の拡張領域は、同じ列の分割領域J(1,1)、J(1,2)、J(1,3)、J(1,4)、J(1,5)及び右方に隣接する列の分割領域J(2,1)、J(2,2)、J(2,3)、J(2,4)、J(2,5)で構成される。このように、各注目分割領域についての第2の拡張領域は、同じ注目分割領域についての第1の拡張領域に対して、同じ列内でのみ拡張される。
 図15の配列でM=2の場合、各分割領域(注目分割領域)に対する第1及び第2の拡張領域は、当該注目分割領域と同じ行及び当該注目分割領域が属する行に対して一方の側に配置された行に属する分割領域により構成される。例えば、分割領域J(5,1)に対する第1の拡張領域は、同じ行の分割領域J(4,1)、J(5,1)、J(6,1)及び下方に隣接する列の分割領域J(4,2)、J(5,2)、J(6,2)で構成され、第2の拡張領域は、同じ行の分割領域J(3,1)、J(4,1)、J(5,1)、J(6,1)、J(7,1)及び下方に隣接する行の分割領域J(3,2)、J(4,2)、J(5,2)、J(6,2)、J(7,2)で構成される。このように、各注目分割領域についての第2の拡張領域は、同じ注目分割領域についての第1の拡張領域に対して、同じ行内でのみ拡張される。
 本実施の形態の拡張領域特徴量検出部8bは、各分割領域について、階層的に広げた複数の拡張領域K(h,v)~K(h,v)についての特徴量を出力するものであると言える。
 各注目分割領域J(h,v)についての第mの拡張領域特徴量(各注目分割領域J(h,v)についての第mの拡張領域K(h,v)の画像の特徴量)Fb(h,v)は、当該注目分割領域J(h,v)についての第(m-1)の拡張領域K(m-1)(h,v)についての特徴量を含めて一様に求めたものである。例えば、各注目分割領域J(h,v)についての第mの拡張領域特徴量Fb(h,v)は、当該注目分割領域J(h,v)についての第(m-1)の拡張領域K(m-1)(h,v)内の画素とのための画素値、その周囲の分割領域(即ち、当該第mの拡張領域K(h,v)内に位置し、当該第(m-1)の拡張領域K(m-1)(h,v)の周囲に位置する分割領域)内の画素のための画素値とに基づいて、それらの画素値に対して重み付けを行うことなく求めたものである。例えば、平均値を特徴量とする場合には、各注目分割領域J(h,v)についての第mの拡張領域特徴量Fb(h,v)は、当該第(m-1)の拡張領域K(m-1)(h,v)内の画素のための画素値と、その周囲の分割領域内の画素のための画素値に基づいて重み付けを行うことなく求めた平均値(単純平均値)である。
 全画面特徴量検出部4bは、受信部2から出力される入力画像データDiに基づき、全画面の第1及び第2の全画面特徴量Fc0及びFc1を検出して出力する。
 第1乃至第Mの拡張領域変動分算出部12-1~12-Mは、それぞれ第1乃至第Mの拡張領域K(h,v)~K(h,v)についての第1乃至第Mの拡張領域特徴量Fb(h,v)~Fb(h,v)と、第2の全画面特徴量Fc1との差分を求め、第1乃至第Mの拡張領域変動分データDb(h,v)~Db(h,v)を出力する。
 第1乃至第Mの拡張領域変動分算出部12-1~12-Mから出力される第1乃至第Mの拡張領域変動分データDb(h,v)~Db(h,v)はすべて加算部13bに入力されて、加算部13bにおいて、分割領域変動分データDa(h,v)と加算され、この加算により局所変動分データDf(h,v)が求められる。
 変更分データ生成部14は、加算部13bからの局所変動分データDf(h,v)に基づいて輝度変更分データDe(h,v)を生成する。
 このように、第1乃至第Mの拡張領域変動分算出部12-1~12-Mから出力される変動分データDb(h,v)~Db(h,v)はすべて加算部13bに入力されて、変更分データ生成部14での輝度変更分データDe(h,v)の生成に寄与する。
 階層的に広げた拡張領域K(h,v)~K(h,v)の変動分データDb(h,v)~Db(h,v)を、輝度変更分データDe(h,v)の生成を用いることで、発光部の発光輝度をより広い範囲にわたり段階的に(少しずつ)変化させることができ、隣接分割領域間での発光輝度差をより小さくすることができ、隣接分割領域間の輝度差が視認されにくくなる。
 なお、全画面発光制御データD0の値は、第1の全画面特徴量Fc0に対する単調増加関数f(Fc0)で表され、輝度変更分データDeの値は、局所変動分データDfに対する単調増加関数g(Df)で表される旨説明したが、これは、発光制御データY(h,v)の値の増加により発光部の輝度が増加する場合(例えば、発光部をパルス幅制御する場合において、発光制御データY(h,v)の値がON時間に対応する場合)を想定しており、例えば発光制御データY(h,v)の値がOFF時間に対応する場合には、輝度を増加させるために発光制御データY(h,v)の値を減少させることになり、その場合、全画面発光制御制御データD0の値も、輝度変更分データDeの値も、所望の輝度の値の増加に伴い、減少するものとする必要がある。その場合には、全画面発光制御データD0として、第1の全画面特徴量Fc0に対する単調減少関数f(Fc0)で表される値を有するものが用いられ、輝度変更分データDeとして、局所変動分データDfに対する単調減少関数g(Df)で表される値を有するものが用いられる。さらに、単調増加関数で表されるものが用いられる場合と同様に、分割領域発光制御データYが負の値になるのを避けるとともに所定の最大値を超えないような制限が付けられる。
実施の形態3.
 図9は、本発明の実施の形態3の画像表示装置で使用される発光制御データ生成部7、並びに分割領域特徴量検出部6、拡張領域特徴量検出部8b、及び全画面特徴量検出部4bを示す。
 図9に示される発光制御データ生成部7は、実施の形態2と同様に、各分割領域に対して、複数の、互いに異なる広さの拡張領域を設定するものであるが、画像の特徴に応じて、設定された拡張領域を選択して利用する点で実施の形態2とは異なり、全画面発光制御データ変換部10、分割領域変動分算出部11、第1乃至第Mの拡張領域変動分算出部12-1~12-M、画像特徴判定部18、選択加算部17、変更分データ生成部14、及び加算部15を備えている。図9において、図3及び図7と同じ符号の部材は同様の動作を行う。
 画像特徴判定部18は、分割領域特徴量Fa、第1乃至第Mの拡張領域特徴量Fb~Fb、第1及び第2の全画面特徴量Fc0及びFc1を受け、これらに基づいて、画像の特徴を判定する。
 選択加算部17は、画像特徴判定部18による判定結果に基づいて、拡張領域変動分データDb(h,v)~Db(h,v)のうちの一部又は全部を選択して出力する。選択加算部17は、このような処理により、輝度変更分データDe(h,v)の生成に用いる拡張領域の階層数を決定する。
 例えば、画像が、その全体のうち1箇所、即ち、複数の分割領域J(1,1)~J(H,V)のうちの1つの分割領域における光変調に用いられる画像データで表される部分のみにおいて高輝度である場合、画像特徴判定部18は、そのことを、特徴量Fa、Fb、Fc0、及びFc1、特に特徴量Faから検出する。
 画像特徴判定部18による判定結果は選択加算部17に入力され、選択加算部17は加算する拡張領域変動分データの数が多くなるように制御される。例えば、上記の場合には、拡張領域変動分データDb(h,v)~Db(h,v)のすべてを加算する。
 このようにすることにより、画像の高輝度部分に対応する分割領域と、該分割領域から遠く離れた分割領域との間で対応する発光部の発光輝度を段階的に(少しずつ)変化させ、隣接分割領域間で、対応する発光部の発光輝度の差を小さくして、隣接分割領域間で画像の輝度差を視認されにくくすることができる。
 一方、画像が全体として略一様な輝度のものである場合には、画像特徴判定部18は、そのことを、特徴量Fa、Fb、Fc0、及びFc1、特に特徴量Faから検出する。画像特徴判定部18の判定結果は選択加算部17に入力され、選択加算部17は、入力されている変動分データDb(h,v)~Db(h,v)のうちの一部のみを選択して加算を行なう。
 例えば、第1の拡張領域変動分データDb(h,v)のみを選択して加算する。代わりに、第1乃至第Mの拡張領域変動分データDb(h,v)~Db(h,v)のうちの第1乃至第L(L<M)の拡張領域変動分データDb(h,v)~Db(h,v)のみを選択して加算することとして良く、例えば、第(s+1×t)、第(s+2×t)、第(s+3×t)…の拡張領域変動分データ(sは、0以上の所定の整数、tは2以上の処理の整数)のみを選択することしても良い。このように、拡張領域変動分データを選択して加算することにより、処理時間や消費電力を抑制した処理が実施される。
 なお、選択加算部17において加算する拡張領域を選択する処理とともに、加算に用いられない変動分データを出力する変動分算出部(12-1~12-Mの一部)における差分算出処理を停止させることしても良い。その場合には、画像特徴判定部18の出力を変動分算出部12-1~12-Mに供給して制御を行う。
実施の形態4.
 図10は、本発明の実施の形態4の画像表示装置で使用される発光制御データ生成部7を示す。図10に示される発光制御データ生成部7は、隣接分割領域相互間で輝度変更分の差分が所定の許容限界値を超える場合に、輝度変更分データの調整を行うものであり、全画面発光制御データ変換部10、分割領域変動分算出部11、拡張領域変動分算出部12、加算部13、変更分データ生成部14、分割領域間差分算出部16、限界値保持部21、比較処理部20、変更分調整部19、及び加算部15を備えている。図10において、図3、図7、及び図9と同じ符号の部材は同様の動作を行う。
 分割領域間差分算出部16は、変更分データ生成部14で生成された分割領域毎(発光部毎)の輝度変更分データを受け、互いに隣接する分割領域間(発光部間)で輝度変更分の差分を算出して、比較処理部20に出力する。
 一方、限界値保持部21は、許容限界値を保持している。この許容限界値は、隣接する分割領域間(発光部間)で輝度差を制限するためのものである。
 比較処理部20は、分割領域間差分算出部16で算出された輝度変更分の隣接分割領域間(発光部間)の差分が、限界値保持部21に保持されている許容限界値を超える場合には、そのこと及び超える程度を示す情報を変更分調整部19に供給する。
 変更分調整部19は、比較処理部20からの情報に基づいて、変更分データ生成部14からの輝度変更分データを調整する。具体的には、分割領域間(発光部間)の差分が許容限界値を超える、互いに隣接する分割領域(分割領域対)の各々の輝度変更分を、他方の分割領域の輝度変更分に近付けるように、変更し、これらの2つの分割領域の輝度変更分の差が許容限界値以下となるようにする。
 この場合、隣接する分割領域の双方について、各々についての輝度変更分を変更しても良く、一方のみを変更しても良い。一方のみを変更する場合には、画面内のすべての分割領域についての輝度変更分の平均値を求め、2つの分割領域の輝度変更分のうちの上記平均値に対する差がより大きい方を変更する。双方を変更する場合には、双方を同程度変更しても良く、2つの分割領域の輝度変更分のうちの上記平均値(表示画面内のすべての分割領域についての輝度変更分の平均値)に対する差がより大きい方をより大幅に変更することとしても良い。
 尚、許容限界値は、光変調部3の特性によって異なるため、発光部5-1~5-Nと光変調部3を組み合わせた状態で測定を行うことで定め、限界値保持部21に保持させておく。
 分割領域変動分データDaと拡張領変動分データDbによって、隣接分割領域間の輝度差の抑制を図った構成において、変更分調整部19を加えることで、より確実に隣接分割領域間の輝度差を抑制し(許容限界内に収め)、かつダイナミックレンジの改善を実現することが可能になる。
実施の形態5.
 図11は、本発明の実施の形態5の画像表示装置で使用される発光制御データ生成部7を示す。図11に示される発光制御データ生成部7は、実施の形態4と同様に、隣接分割領域(隣接発光部)相互間で輝度変更分の差分が所定の許容限界値を超える場合に、輝度変更分データの調整を行うものであるが、複数の許容限界値を設定しておき、画像の特徴に応じて使用する許容限界値を選択する点で、実施の形態4とは異なり、全画面発光制御データ変換部10、分割領域変動分算出部11、拡張領域変動分算出部12、加算部13、変更分データ生成部14、分割領域間差分算出部16、画像特徴判定部18b、限界値保持部21b、限界値選択部22、比較処理部20、変更分調整部19、及び加算部15を備えている。
 図11において、図3、図7、図9、及び図10と同じ符号の部材は同様の動作を行う。
 限界値保持部21bは、図10の限界値保持部21と同様であるが、複数の許容限界値を保持している。
 画像特徴判定部18bは、実施の形態3の画像特徴判定部18と同様に、画像の特徴を判定して判定結果を出力する。
 限界値選択部22は、画像特徴判定部18bによる判定結果に応じて、限界値保持部21bに保持されている許容限界値のうちの一つを選択して出力する。
 隣接分割領域間の輝度差の視認されやすさは、画像の特徴によって異なる。例えば、視覚の特性上、暗い画面の隣接輝度差は認識されやすく、一方明るい画面での隣接輝度差は認識されにくい。そこで、これらのそれぞれの場合について、測定を行って、複数の許容限界値を設定し、限界値保持部21bに保持させておく。
 画像特徴判定部18bは、分割領域特徴量Fa及び拡張領域特徴量Fb、並びに第1及び第2の全画面特徴量Fc0及びFc1を受け、これらに基づいて画像の特徴を判定する。
 限界値選択部22は、画像特徴判定部18bによる判定結果に基づいて、限界値保持部21bに保持されている複数の許容限界値のうちの1つを選択して読み出し、比較処理部20に供給する。
 例えば、注目分割領域の画像が暗いと画像特徴量判定部18bが判定した場合には、限界値保持部21bに保持されている複数の許容限界値のうちの比較的小さな値のものが選択されて出力される。
 逆に、注目分割領域が明るい画像が明るいと画像特徴量判定部18bが判定した場合には、限界値保持部21bに保持されている複数の許容限界値のうちの比較的大きな値のものが選択されて出力される。
 比較処理部20は、分割領域間差分算出部16で算出された輝度変更分相互間の差分が、限界値選択部22で選択されている許容限界値を超える場合には、そのこと及び超える程度を示す情報を変更分調整部19に供給する。
 変更分調整部19は、実施の形態4の場合と同様に、比較処理部20からの情報に基づいて、変更分データ生成部14からの輝度変更分データを調整する。具体的には、分割領域間の差分が許容限界値を超える、互いに隣接する分割領域(分割領域対)の各々の輝度変更分を、他方の分割領域の輝度変更分に近付けるように、変更し、これらの2つの分割領域の輝度変更分の差が許容限界値以下となるようにする。
 分割領域変動分データDaと拡張領変動分データDbによって、隣接分割領域間の輝度差の抑制を図った構成において、変更分調整部19を加えることで、より確実に隣接分割領域間の輝度差を抑制し(画像の特徴に応じた許容限界内に収め)、かつダイナミックレンジの改善を実現することが可能になる。
実施の形態6.
 図12は、本発明の実施の形態6の画像表示装置で使用される発光制御データ生成部7を示す。実施の形態6の画像表示装置はオンスクリーンディスプレイ(OSD)情報を表示するものである。図12に示される発光制御データ生成部7は、そのような画像表示装置で用いられるものであり、全画面発光制御データ変換部10、分割領域変動分算出部11、拡張領域変動分算出部12、加算部13、変更分データ生成部14、OSD処理部23、変更分調整部19、及び加算部15を備えている。
 OSD処理部23にはオンスクリーンディスプレイ(OSD)の表示内容を示す情報及び表示位置情報を含むOSD表示情報Dosdが入力される。このOSD表示情報Dosdは図1の受信部2から出力される入力画像データとは性質が異なり、OSD表示部分は、入力画像データによって分割領域毎に輝度の差が生じないように構成するのが望ましい。
 OSD処理部23は、OSD表示情報Dosdに基づきOSD表示を行う分割領域を検出し、OSD表示を行う分割領域を示す情報を出力する。ここでOSD表示を行う分割領域とは、その一部又は全部においてOSDが行われる分割領域を意味する。図13は、OSD表示を行う分割領域が画面の右下の3つの分割領域J(7,7)、J(8,7)、J(9,7)である場合を示す。
 変更分調整部19bでは、変更分データ生成部14から出力される輝度変更分データDeを受け、OSD処理部23から出力される情報によって示された、OSD表示を行う分割領域間で発光輝度差が生じないように、輝度変更分の調整を行う。この動作によってOSD表示部分において、入力画像データによる分割領域輝度差が視認されないように抑制することができる。この場合、OSD表示が行われる分割領域と、該分割領域に隣接し、OSD表示が行われない分割領域との輝度差ができるだけ小さくなるように、OSD表示が行われる分割領域の輝度変更分を調整するのが望ましい。
 図13に示すように、OSD表示が右下の3つの分割領域J(7,7)、J(8,7)、J(9,7)で行われる場合、これらの分割領域では、隣接分割領域間の発光輝度差がゼロとなり、かつOSD表示が行われる分割領域と、OSD表示が行われる分割領域に隣接する分割領域J(7,6)、J(8,6)、J(9,6)、J(6,7)の各々との輝度差の絶対値の総和が最小となるように、OSD表示が行われる分割領域の輝度変更分を調整する。
 以上実施の形態1~6で説明した各実施の形態の特徴は互いに組み合わせて用いることもできる。例えば、実施の形態6で説明した、OSD表示を行う分割領域の輝度変更分の調整は、実施の形態1~5においても適用することができる。
 以上発光制御装置について詳細に説明したが、該発光制御装置で実行される発光制御方法もまた本発明の一部をなす。さらに、上記した発光制御装置における処理、言い換えると上記の発光制御方法で実行される処理の一部又は全部は、ソフトウェアで即ちプログラムされたコンピュータで実行させることができ、上記の処理をコンピュータに実行させるためのプログラム、並びに該プログラムを記録した、コンピュータで読み取り可能な記録媒体もまた本発明の一部を成す。
 1 入力端子、 2 受信部、 3 光変調部、 4 全画面特徴量検出部、 5-1~5-N 発光部、 6 分割領域特徴量検出部、 7 発光制御データ生成部、 8 拡張領域特徴量検出部、 9 発光駆動部、 10 全画面発光制御データ変換部、 11 分割領域変動分算出部、 12、12-1~12-M 拡張領域変動分算出部、 13 加算部、 14 変更分データ生成部、 15 加算部、 16 分割領域差分算出部、 17 選択加算部、 18、18b 画像特徴判定部、 19、19b 変更分調整部、 20 比較処理部、 21、21b 限界値保持部、 22 限界値選択部、 23 OSD処理部、 30 発光制御部。

Claims (10)

  1.  照明光を画像データに応じて光変調部で光変調することにより、前記画像データで表される画像を形成し、
     前記照明光は複数の発光部から照射され、
     前記複数の発光部は、前記光変調部を複数に分割した領域それぞれを照射し、
     前記それぞれの発光部に対応して複数に分割された領域を分割領域とし、
     前記複数の発光部のそれぞれの発光輝度が制御できるように構成された発光制御装置において、
     前記画像データにより表される画像のうち、前記光変調部の前記分割領域の各々を、注目する分割領域とし、前記注目する分割領域の特徴量を分割領域特徴量として検出する分割領域特徴量検出部と、
     前記画像データにより表される画像のうち、前記注目する分割領域及び前記注目する分割領域の周囲の分割領域を含む拡張領域の特徴量を、前記注目する分割領域についての拡張領域特徴量として検出する拡張領域特徴量検出部と、
     前記画像データにより表される画像全体の特徴量を、全画面特徴量として検出する全画面特徴量検出部と、
     前記注目する分割領域についての前記分割領域特徴量及び前記拡張領域特徴量、並びに前記全画面特徴量に基づき、前記注目する分割領域に対応する前記発光部の発光輝度を制御する発光制御部と
     を備えることを特徴とする発光制御装置。
  2.  前記注目する分割領域についての前記拡張領域特徴量が、前記注目する分割領域についての分割領域特徴量と、前記注目する分割領域の周囲の分割領域についての分割領域特徴量に重み付けすることなく、一様に求めたものであることを特徴とする請求項1に記載の発光制御装置。
  3.  前記発光制御部が、
     前記注目する分割領域についての前記分割領域特徴量及び前記拡張領域特徴量、並びに前記全画面特徴量に基づき、前記注目する分割領域に対応する前記発光部の発光輝度を制御するための発光制御データを生成する発光制御データ生成部と、
     前記発光制御データ生成部で生成された前記発光部のための前記発光制御データに応じた発光輝度で、前記発光部を発光させる発光駆動部とを備える
     ことを特徴とする請求項1又は2に記載の発光制御装置。
  4.  前記発光制御データ生成部は、
     前記全画面特徴量から全画面発光制御データを変換により生成し、
     さらに前記複数の分割領域の各々について、
     前記注目する分割領域についての前記分割領域特徴量と、前記全画面特徴量の差分をとって前記注目する分割領域についての分割領域変動分データを生成し、
     前記注目する分割領域を含む拡張領域についての前記拡張領域特徴量と、前記全画面特徴量の差分をとって前記注目する分割領域についての拡張領域変動分データを生成し、
     前記全画面発光制御データと、前記注目する分割領域についての前記分割領域変動分データ及び前記拡張領域変動分データから前記注目する分割領域についての前記発光制御データを生成する
     ことを特徴とする請求項3に記載の発光制御装置。
  5.  前記全画面特徴量が、第1の種類の全画面特徴量と、第1の種類の特徴量とは異なる第2の種類の全画面特徴量を含み、
     前記第2の種類の全画面特徴量と、前記分割領域特徴量と前記拡張領域特徴量とが同種類の特徴量である
     ことを特徴とする請求項4に記載の発光制御装置。
  6.  請求項1乃至5のいずれかに記載の発光制御装置と、
     前記発光制御装置により発光輝度が制御される複数の発光部とを有する
     発光装置。
  7.  請求項6の発光装置と、
     前記発光部から発せられた照明光を前記画像データに基づいて光変調して画像を表示する光変調部とを備えた
     画像表示装置。
  8.  照明光を画像データに応じて光変調部で光変調することにより、前記画像データで表される画像を形成し、
     前記照明光は複数の発光部から照射され、
     前記複数の発光部は、前記光変調部を複数に分割した領域それぞれを照射し、
     前記それぞれの発光部に対応して複数に分割された領域を分割領域とし、
     前記複数の発光部のそれぞれの発光輝度が制御できるように構成された発光制御装置において、
     前記画像データにより表される画像のうち、前記光変調部の前記分割領域の各々を、注目する分割領域とし、前記注目する分割領域の特徴量を分割領域特徴量として検出する分割領域特徴量検出ステップと、
     前記画像データにより表される画像のうち、前記注目する分割領域及び前記注目する分割領域の周囲の分割領域を含む拡張領域の特徴量を、前記注目する分割領域についての拡張領域特徴量として検出する拡張領域特徴量検出ステップと、
     前記画像データにより表される画像全体の特徴量を、全画面特徴量として検出する全画面特徴量検出ステップと、
     前記注目する分割領域についての前記分割領域特徴量及び前記拡張領域特徴量、並びに前記全画面特徴量に基づき、前記注目する分割領域に対応する前記発光部の発光輝度を制御する発光制御ステップと
     を備えることを特徴とする発光制御方法。
  9.  請求項8に記載の発光制御方法の各ステップの処理をコンピュータに実行させるためのプログラム。
  10.  請求項9に記載のプログラムを記録した、コンピュータで読み取り可能な記録媒体。
PCT/JP2011/078067 2011-02-09 2011-12-05 発光制御装置及び方法、発光装置、画像表示装置、プログラム、並びに記録媒体 WO2012108095A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201180067137.3A CN103354935B (zh) 2011-02-09 2011-12-05 发光控制装置和方法、发光装置、图像显示装置
US13/984,754 US8786541B2 (en) 2011-02-09 2011-12-05 Light emission control device and method, light emission device, image display device, program, and recording medium
JP2012556757A JP5323272B2 (ja) 2011-02-09 2011-12-05 発光制御装置及び方法、発光装置、画像表示装置、プログラム、並びに記録媒体
TW100147329A TWI450249B (zh) 2011-02-09 2011-12-20 發光控制裝置及方法、發光裝置、圖像顯示裝置、程式產品及記錄媒體

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011026067 2011-02-09
JP2011-026067 2011-02-09

Publications (1)

Publication Number Publication Date
WO2012108095A1 true WO2012108095A1 (ja) 2012-08-16

Family

ID=46638324

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/078067 WO2012108095A1 (ja) 2011-02-09 2011-12-05 発光制御装置及び方法、発光装置、画像表示装置、プログラム、並びに記録媒体

Country Status (5)

Country Link
US (1) US8786541B2 (ja)
JP (1) JP5323272B2 (ja)
CN (1) CN103354935B (ja)
TW (1) TWI450249B (ja)
WO (1) WO2012108095A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015001580A (ja) * 2013-06-14 2015-01-05 キヤノン株式会社 表示装置、表示装置の制御方法、及び、プログラム
JP2017106991A (ja) * 2015-12-08 2017-06-15 三菱電機株式会社 バックライト制御装置、画像表示装置及びバックライト制御方法
WO2018083928A1 (ja) * 2016-11-07 2018-05-11 シャープ株式会社 画像表示装置および画像表示方法
JP2018156813A (ja) * 2017-03-17 2018-10-04 三菱電機株式会社 バックライト制御装置、映像表示装置及びバックライト制御方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6234114B2 (ja) * 2013-08-26 2017-11-22 キヤノン株式会社 光源装置、光源装置の制御方法、及び、プログラム
US10885840B2 (en) * 2017-06-21 2021-01-05 Shenzhen Torey Microelectronic Technology Co. Ltd. Image display apparatus
CN107154237B (zh) * 2017-07-03 2019-08-23 江西厚普电子科技有限公司 基于pov-led屏的亮度自适应调节方法
CN109346016A (zh) * 2018-11-29 2019-02-15 厦门天马微电子有限公司 背光结构、背光结构的亮度调节方法和显示装置
CN109686321B (zh) * 2019-02-15 2021-01-26 京东方科技集团股份有限公司 显示装置的背光控制方法、背光控制器及显示装置
CN109975999B (zh) * 2019-05-20 2020-06-16 南京大学 一种硅基马赫-曾德尔型电光调制器的工艺偏差分析方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004350179A (ja) * 2003-05-26 2004-12-09 Funai Electric Co Ltd 液晶テレビジョン装置、バックライト制御装置、バックライト制御方法およびバックライト制御プログラム
JP2009192717A (ja) * 2008-02-13 2009-08-27 Sharp Corp 液晶表示装置
JP2009192963A (ja) * 2008-02-18 2009-08-27 Sharp Corp 画像表示装置および画像表示方法
JP2009288793A (ja) * 2009-06-08 2009-12-10 Toshiba Corp 液晶表示装置
JP2010134435A (ja) * 2008-10-28 2010-06-17 Panasonic Corp バックライト装置および表示装置

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7064740B2 (en) * 2001-11-09 2006-06-20 Sharp Laboratories Of America, Inc. Backlit display with improved dynamic range
CN1643565B (zh) * 2002-03-13 2013-09-04 杜比实验室特许公司 高动态范围显示装置
JP3953506B2 (ja) 2005-10-18 2007-08-08 シャープ株式会社 液晶表示装置
JP4951973B2 (ja) 2006-01-10 2012-06-13 ソニー株式会社 表示装置及び表示方法
JP5176397B2 (ja) * 2006-06-01 2013-04-03 ソニー株式会社 表示装置及びその駆動方法
KR100815588B1 (ko) * 2006-08-16 2008-03-20 삼성전자주식회사 디스플레이장치 및 그 밝기조정방법
JP2008090076A (ja) 2006-10-03 2008-04-17 Sharp Corp 液晶表示装置
JP4237220B2 (ja) 2006-11-13 2009-03-11 シャープ株式会社 透過型ディスプレイ装置
JP2008176211A (ja) 2007-01-22 2008-07-31 Hitachi Ltd 液晶表示装置及びその輝度制御方法
JP2008203292A (ja) 2007-02-16 2008-09-04 Seiko Epson Corp 画像表示装置、及び画像表示方法
JP2008268642A (ja) 2007-04-23 2008-11-06 Sony Corp バックライト装置、バックライト制御方法、および液晶表示装置
JP2008299191A (ja) 2007-06-01 2008-12-11 Sharp Corp 画像表示装置
JP2008304578A (ja) 2007-06-06 2008-12-18 Sharp Corp 画像表示装置
JP5110355B2 (ja) 2007-07-09 2012-12-26 Nltテクノロジー株式会社 液晶表示装置のバックライト駆動方法及びその装置並びに液晶表示装置
KR20090044292A (ko) 2007-10-31 2009-05-07 삼성전자주식회사 표시 장치 및 이의 구동방법
JP4655079B2 (ja) 2007-11-06 2011-03-23 ソニー株式会社 液晶表示装置、液晶表示モジュールおよび液晶表示装置の駆動方法
JP5122927B2 (ja) 2007-12-04 2013-01-16 株式会社東芝 画像表示装置および画像表示方法
JP5250339B2 (ja) * 2008-08-25 2013-07-31 株式会社日立製作所 画像表示装置
US20120113164A1 (en) * 2009-07-06 2012-05-10 Sharp Kabushiki Kaisha Liquid Crystal Display Device And Method For Controlling Display Of Liquid Crystal Display Device
JP5460435B2 (ja) * 2010-04-09 2014-04-02 日立コンシューマエレクトロニクス株式会社 画像表示装置および画像表示装置の制御方法
JP5661336B2 (ja) * 2010-05-28 2015-01-28 日立マクセル株式会社 液晶表示装置
JP2012008388A (ja) * 2010-06-25 2012-01-12 Hitachi Consumer Electronics Co Ltd 液晶表示装置
KR101324453B1 (ko) * 2010-11-25 2013-10-31 엘지디스플레이 주식회사 로컬 디밍 방법과 이를 이용한 액정표시장치
JP2012123100A (ja) * 2010-12-07 2012-06-28 Hitachi Consumer Electronics Co Ltd 液晶表示装置
KR101354333B1 (ko) * 2012-02-24 2014-01-27 엘지디스플레이 주식회사 백라이트 디밍 방법과 이를 이용한 액정표시장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004350179A (ja) * 2003-05-26 2004-12-09 Funai Electric Co Ltd 液晶テレビジョン装置、バックライト制御装置、バックライト制御方法およびバックライト制御プログラム
JP2009192717A (ja) * 2008-02-13 2009-08-27 Sharp Corp 液晶表示装置
JP2009192963A (ja) * 2008-02-18 2009-08-27 Sharp Corp 画像表示装置および画像表示方法
JP2010134435A (ja) * 2008-10-28 2010-06-17 Panasonic Corp バックライト装置および表示装置
JP2009288793A (ja) * 2009-06-08 2009-12-10 Toshiba Corp 液晶表示装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015001580A (ja) * 2013-06-14 2015-01-05 キヤノン株式会社 表示装置、表示装置の制御方法、及び、プログラム
JP2017106991A (ja) * 2015-12-08 2017-06-15 三菱電機株式会社 バックライト制御装置、画像表示装置及びバックライト制御方法
WO2018083928A1 (ja) * 2016-11-07 2018-05-11 シャープ株式会社 画像表示装置および画像表示方法
CN109891489A (zh) * 2016-11-07 2019-06-14 夏普株式会社 图像显示装置及图像显示方法
JP2018156813A (ja) * 2017-03-17 2018-10-04 三菱電機株式会社 バックライト制御装置、映像表示装置及びバックライト制御方法

Also Published As

Publication number Publication date
US8786541B2 (en) 2014-07-22
CN103354935A (zh) 2013-10-16
JPWO2012108095A1 (ja) 2014-07-03
JP5323272B2 (ja) 2013-10-23
US20130321491A1 (en) 2013-12-05
CN103354935B (zh) 2015-04-01
TW201246166A (en) 2012-11-16
TWI450249B (zh) 2014-08-21

Similar Documents

Publication Publication Date Title
JP5323272B2 (ja) 発光制御装置及び方法、発光装置、画像表示装置、プログラム、並びに記録媒体
JP5122927B2 (ja) 画像表示装置および画像表示方法
KR101741638B1 (ko) 디스플레이장치 및 그 영상보정방법
JP4527202B2 (ja) バックライト装置および表示装置
US8866728B2 (en) Liquid crystal display
JP5769493B2 (ja) 表示装置及びその制御方法
WO2012114682A1 (ja) 表示装置及び表示方法
US8854295B2 (en) Liquid crystal display for displaying an image using a plurality of light sources
JP5089427B2 (ja) 画像表示装置および画像表示方法
KR20150038862A (ko) 유기 발광 표시 장치의 구동 방법 및 유기 발광 표시 장치
US20150035870A1 (en) Display apparatus and control method for same
JP5450793B2 (ja) 画像表示装置およびその制御方法
US20090295783A1 (en) Image display apparatus and method
US20170010845A1 (en) Light control device, display device, multiscreen display system, light control method, and program
JPWO2011039996A1 (ja) バックライト装置および表示装置
JP5197698B2 (ja) 映像表示装置および情報処理装置
JP2008039868A (ja) 液晶表示装置
JP2016004099A (ja) 表示装置及び表示方法
JP5773636B2 (ja) 表示制御装置及びその制御方法
JP6788456B2 (ja) 画像表示装置および画像表示方法
JP2009175415A (ja) 液晶表示装置
JP5267496B2 (ja) 液晶表示装置およびこれに用いる映像表示方法
WO2011125351A1 (ja) 表示装置およびその表示方法
JP2011227200A (ja) 液晶表示装置
JP2018194567A (ja) 発光装置、表示装置、及び、発光装置の制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11858087

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012556757

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13984754

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11858087

Country of ref document: EP

Kind code of ref document: A1