WO2012105617A1 - 耐水素脆化感受性に優れた溶接金属 - Google Patents

耐水素脆化感受性に優れた溶接金属 Download PDF

Info

Publication number
WO2012105617A1
WO2012105617A1 PCT/JP2012/052305 JP2012052305W WO2012105617A1 WO 2012105617 A1 WO2012105617 A1 WO 2012105617A1 JP 2012052305 W JP2012052305 W JP 2012052305W WO 2012105617 A1 WO2012105617 A1 WO 2012105617A1
Authority
WO
WIPO (PCT)
Prior art keywords
weld metal
less
hydrogen embrittlement
particles
content
Prior art date
Application number
PCT/JP2012/052305
Other languages
English (en)
French (fr)
Inventor
秀徳 名古
▲琢▼哉 高知
漆原 亘
統宣 佐藤
良彦 北川
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to RU2013140454/02A priority Critical patent/RU2535417C1/ru
Priority to US13/982,761 priority patent/US9718150B2/en
Priority to KR1020137020478A priority patent/KR101484873B1/ko
Priority to CA2822966A priority patent/CA2822966C/en
Priority to EP12741500.8A priority patent/EP2671668A4/en
Priority to CN201280007329.XA priority patent/CN103338894B/zh
Priority to SG2013050513A priority patent/SG191777A1/en
Publication of WO2012105617A1 publication Critical patent/WO2012105617A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • B23K35/3093Fe as the principal constituent with other elements as next major constituents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0255Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in welding
    • B23K35/0261Rods, electrodes, wires
    • B23K35/0266Rods, electrodes, wires flux-cored
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • B23K35/3066Fe as the principal constituent with Ni as next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • B23K35/3073Fe as the principal constituent with Mn as next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • B23K35/308Fe as the principal constituent with Cr as next major constituent
    • B23K35/3086Fe as the principal constituent with Cr as next major constituent containing Ni or Mn
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese

Definitions

  • the present invention relates to a weld metal having reduced sensitivity to hydrogen embrittlement in a weld metal used for a welded structure.
  • gas shielded arc welding using a flux-cored wire has excellent welding workability, so a technique for ensuring low temperature cracking resistance is required for a weld metal formed by this welding method.
  • Patent Document 1 discloses a technique for preventing low-temperature cracking by dispersing Mo carbide (carbide containing Mo) having a high hydrogen trap capability in a weld metal.
  • Mo carbide carbide containing Mo
  • Patent Document 1 discloses a technique for preventing low-temperature cracking by dispersing Mo carbide (carbide containing Mo) having a high hydrogen trap capability in a weld metal.
  • this technique in order to disperse Mo carbides, it is necessary to employ a special welding technique in which the steel materials are butted and then submerged arc welding is performed from the inner surface side.
  • Patent Document 2 proposes a technique for preventing cold cracking by managing the cooling time during welding. This technology requires strict construction management according to the components, and has a problem that the work load is high.
  • Patent Document 3 proposes a technique for preventing cold cracking by setting the retained austenite fraction for trapping diffusible hydrogen to 1% or more in the weld metal.
  • this technique is premised on double-sided one-pass seam welding in steel pipes, and cannot be applied to general welding of steel materials.
  • Patent Document 4 proposes a technology for improving cold cracking resistance by reducing the amount of diffusible hydrogen and appropriately controlling the strength and chemical composition. However, even in this technique, since a satisfactory strength level is affected by the components, the number of application points is limited in actual construction.
  • weld metals used for offshore structures Since these weld metals can withstand use in cold regions, high values are required not only for resistance to hydrogen embrittlement and strength, but also for low temperature toughness.
  • Japanese Unexamined Patent Publication No. 2005-40816 Japanese Unexamined Patent Publication No. 2003-33876 Japanese Laid-Open Patent Publication No. 2002-115032 Japanese Unexamined Patent Publication No. 11-147196
  • the present invention has been made in view of the above circumstances, and the purpose thereof is a weld metal that has excellent resistance to hydrogen embrittlement resistance even if it has high strength, and that does not cause cold cracking.
  • the object is to provide a weld metal having excellent low-temperature toughness.
  • the weld metal according to the present invention that has solved the above problems is a weld metal formed by gas shielded arc welding using a flux-cored wire, C: 0.02 to 0.12% (meaning “mass%”; chemical composition is the same hereinafter), Si: 0.10 to 2.0%, Mn: 0.90 to 2.5%, Ni : 0.20 to 3.5%, Mo: 0.05 to 1.5%, Ti: 0.040 to 0.150%, N: 0.015% or less (excluding 0%), and O: 0 0.030-0.10% each, the balance being iron and inevitable impurities, It has a gist in that there are 2500 / mm 2 or more of retained austenite particles and the total volume fraction of the retained austenite particles is 4.0% or more. In addition, the size of the retained austenite particles that are the objects in the measurement of the number density is not less than the measurement limit (the equivalent circle diameter exceeds 0.15 ⁇ m).
  • the weld metal of the present invention satisfies Si: 0.10 to 0.5% and Ni: 1.0 to 2.0%, respectively, and the ⁇ value defined by the following formula (1) is 3.2. It is also useful to satisfy the above requirement, and as a result, a weld metal having excellent low-temperature toughness (specifically, impact absorption energy vE -40 at ⁇ 40 ° C. exceeds 85 J) can be realized.
  • ⁇ value [Mn] + [Ni] + (2 ⁇ [Mo]) + (16 ⁇ [Ti]) ⁇ (12 ⁇ [O]) (1)
  • [Mn], [Ni], [Mo], [Ti] and [O] indicate the contents (mass%) of Mn, Ni, Mo, Ti and O, respectively.
  • oxide particles containing 20% by mass or more of Ti and having an equivalent circle diameter of 0.15 to 1.0 ⁇ m are present at 5000 / mm 2 or more.
  • the “equivalent circle diameter” is a diameter of a circle that is assumed to have the same area by paying attention to the size of residual austenite particles and oxide particles observed on the observation surface of the optical microscope.
  • the weld metal of the present invention as other elements, (a) Cr: 2.0% or less (not including 0%), V: 0.60% or less (not including 0%), Nb: 0 .1% or more selected from the group consisting of 15% or less (excluding 0%) and Cu: 1.0% or less (excluding 0%), (b) Al: 0.020% or less (0% And / or Zr: 0.10% or less (not including 0%), (c) B: 0.0050% or less (not including 0%), etc. Depending on the type, the properties of the weld metal are further improved.
  • the number density of the retained austenite particles and the total volume fraction are appropriately controlled together with the chemical component composition, so that a weld metal with excellent resistance to hydrogen embrittlement can be realized.
  • the weld metal has excellent low-temperature toughness by defining the contents of Si and Ni more strictly and satisfying a predetermined relational expression defined by the contents of Mn, Ni, Mo, Ti and O. Can be realized.
  • the present inventors examined from various angles about the means for improving the resistance to hydrogen embrittlement in HT780 class high strength weld metal formed by gas shielded arc welding using flux-cored wire. As a result, it has been found that the formation of residual austenite particles acting as diffusible hydrogen trap sites at a predetermined density improves the resistance to hydrogen embrittlement resistance, thereby completing the present invention.
  • the weld metal component is controlled within a predetermined range, the residual austenite particles existing in the weld metal are 2500 particles / mm 2 or more, and the total volume fraction of residual austenite particles (ratio to the entire structure) is 4.0%. It has been found that the hydrogen embrittlement resistance is improved in the HT780 class weld metal by the above control.
  • the residual austenite particles present in the weld metal are 2500 particles / mm 2 or more, and the total volume fraction of the residual austenite particles is 4.0% or more, whereby the hydrogen trap effect. This reduced the hydrogen embrittlement susceptibility.
  • the number of retained austenite particles is preferably 3000 / mm 2 or more (more preferably 3300 / mm 2 or more), and the total volume fraction of retained austenite particles is 4.5% or more. Preferred (more preferably 4.8% or more).
  • ⁇ value [Mn] + [Ni] + (2 ⁇ [Mo]) + (16 ⁇ [Ti]) ⁇ (12 ⁇ [O]) (1)
  • [Mn], [Ni], [Mo], [Ti] and [O] indicate the contents (mass%) of Mn, Ni, Mo, Ti and O, respectively.
  • Mn, Ni, Mo and Ti constituting the ⁇ value of the above formula (1) have a function of suppressing the formation of grain boundary ferrite by being present in a solid solution state.
  • Mn and Ti comprise an oxide, the amount which exists in a solid solution state will increase by reducing O. From these viewpoints, it was found that the coefficient of each element was experimentally obtained and the ⁇ value was set to 3.2 or more, whereby the formation of grain boundary ferrite was suppressed and the low temperature toughness was improved.
  • C is an element indispensable for ensuring the strength of the weld metal, and in order to exert such an effect, it is necessary to contain 0.02% or more. Preferably it is 0.04% or more, More preferably, it is 0.06% or more. However, if the C content exceeds 0.12%, the strength increases excessively and the hydrogen embrittlement susceptibility increases (hydrogen embrittlement susceptibility deteriorates). In addition, the upper limit with preferable C content is 0.10%, More preferably, it is 0.08% or less.
  • Si 0.10 to 2.0%
  • Si exists in a solid solution state, thereby delaying carbide formation and stabilizing retained austenite. If the Si content is less than 0.10%, retained austenite cannot be secured.
  • the content is preferably 0.25% or more, more preferably 0.28% or more.
  • the Si content is excessive, the sensitivity to hydrogen embrittlement due to an excessive increase in strength increases, so it is necessary to suppress it to 2.0% or less. It is preferably 1.5% or less, and more preferably 0.5% or less.
  • the Si content is preferably 0.5% or less (more preferably 0.4% or less). That is, when the Si content exceeds 0.5%, hard island martensite is formed, and this becomes a starting point of fracture, so that the low temperature toughness tends to deteriorate.
  • Mn is an element necessary for ensuring the strength of the weld metal, and in order to exert such an effect, it is necessary to contain 0.90% or more. Preferably it is 1.2% or more, More preferably, it is 1.5% or more. However, if the content exceeds 2.5%, the hydrogen embrittlement susceptibility increases due to an excessive increase in strength. Preferably it is 2.2% or less, More preferably, it is 2.0% or less.
  • Ni is an element necessary for ensuring the strength of the weld metal, and in order to exert such effects, it is necessary to contain 0.20% or more. Preferably it is 0.5% or more, More preferably, it is 1.0% or more. However, if it exceeds 3.5%, it causes excessive hydrogen embrittlement susceptibility due to an excessive increase in strength. Preferably it is 3.0% or less, More preferably, it is 2.8% or less. In particular, in order to improve the low temperature toughness of the weld metal, the Ni content is 1.0% or more and 2.0% or less (a more preferable lower limit is 1.1%, and a further preferable upper limit is 1.8%). It is preferable.
  • Ni improves the Charpy impact absorption energy at a low temperature by lowering the brittle fracture surface transition temperature.
  • it is preferable to contain 1.0% or more. However, if the content exceeds 2.0%, the amount of martensite generated increases and the strength increases, thereby reducing Charpy impact absorption energy.
  • Mo 0.05 to 1.5%
  • Mo is an element necessary for improving the strength of the weld metal, and in order to exert such effects, it is necessary to contain 0.05% or more.
  • it is 0.10% or more, more preferably 0.2% or more.
  • the content exceeds 1.5%, the hydrogen embrittlement susceptibility increases due to an excessive increase in strength.
  • it is 1.0% or less, More preferably, it is 0.50% or less.
  • Ti 0.040 to 0.150%
  • Ti is an element that contributes to high-density dispersion of retained austenite particles by forming an oxide serving as a starting point of intragranular transformation and refining the structure. In order to exhibit such an effect, it is necessary to contain 0.040% or more. Preferably it is 0.050% or more, More preferably, it is 0.055% or more. However, if the content exceeds 0.150%, the hydrogen embrittlement susceptibility increases due to an excessive increase in strength. Preferably it is 0.12% or less, More preferably, it is 0.08% or less.
  • N 0.015% or less (excluding 0%)
  • N is an element inevitably mixed in, and is effective in improving the strength of the weld metal. However, if excessively contained, it causes a high hydrogen embrittlement susceptibility due to an excessive increase in strength. .
  • the N content needs to be 0.015% or less. Preferably it is 0.010% or less, More preferably, it is 0.006% or less. In addition, it is difficult to make N into 0% industrially.
  • O is an element that contributes to high-density dispersion of retained austenite particles by forming an oxide that serves as a starting point of intragranular transformation and by refining the structure. In order to exhibit such an effect, it is necessary to contain 0.030% or more. Preferably it is 0.035% or more, More preferably, it is 0.040% or more. However, when it is contained excessively exceeding 0.10%, Si oxide is formed, and the amount of retained austenite cannot be ensured due to a decrease in solute Si. Preferably it is 0.080% or less, More preferably, it is 0.060% or less.
  • the contained elements specified in the present invention are as described above, and the balance is iron and inevitable impurities, and the elements (for example, P and S) brought in depending on the situation of raw materials, materials, manufacturing equipment, etc. as the inevitable impurities. Etc.) can be allowed to be mixed.
  • impurities segregate at the grain boundaries to lower the grain boundary strength and promote low temperature cracking. Therefore, P: 0.02% or less (excluding 0%), S: 0.025% or less (0 % Is not included).
  • Cr 2.0% or less (not including 0%), V: 0.60% or less (not including 0%), Nb: 0.15% or less (not including 0%), and Cu: 1.
  • One or more selected from the group consisting of 0% or less (excluding 0%)] Cr, V, Nb, and Cu are elements necessary for improving the strength of the weld metal. However, if excessively contained, it causes an increase in hydrogen embrittlement sensitivity due to an excessive increase in strength.
  • Cr is 2.0% or less (more preferably 1.5% or less, more preferably 1.0% or less)
  • V is 0.60% or less (more preferably 0.50% or less, further preferably 0.40% or less)
  • Nb 0.15% or less more preferably 0.10% or less, more preferably 0.08% or less
  • Cu 1.0% or less (more preferably 0.5% or less). % Or less, more preferably 0.2% or less).
  • the preferable minimum for exhibiting the said effect is 0.05% or more in Cr, 0.02% or more in V, 0.01% or more in Nb, or 0.05% or more in Cu.
  • Al and Zr are both strong deoxidizing elements and have the effect of promoting the increase in retained austenite due to the increase in solid solution Si.
  • Al and Zr are both strong deoxidizing elements and have the effect of promoting the increase in retained austenite due to the increase in solid solution Si.
  • the intragranular transformation at the oxide origin is reduced and the structure becomes coarse. It causes high hydrogen embrittlement susceptibility. Therefore, it is preferable to suppress the content of Al to 0.020% or less (more preferably 0.018% or less) and Zr to 0.10% or less (more preferably 0.06% or less).
  • the preferable minimum for exhibiting the said effect is 0.010% or more of both Al or Zr.
  • B is an element that improves the strength by suppressing the formation of ferrite from the prior austenite grain boundaries. However, if excessively contained, the strength is excessively increased and the hydrogen embrittlement susceptibility is increased. For these reasons, B is preferably suppressed to 0.0050% or less (more preferably 0.0030% or less). In addition, the preferable minimum for exhibiting the said effect is 0.0010% or more.
  • the wire component and the welding conditions are not particularly limited, but in order to realize the prescribed mode, A preferred range exists.
  • a preferable wire component satisfies, for example, all of the following requirements. That is, for the total wire mass that combines the outer shell made of steel and the flux, (A) Total Si present in the form of metals, oxides, etc. is 0.35-2.5% (B) Si present in a form other than oxide is 0.25% or more. (C) Si present as oxide is 0.25% or less (D) 2.5 to 4.5% of total Ti present in the form of metals, oxides, etc.
  • the ratio [(Mn + Ti) / Si] of the total amount of Si and the amount of (Mn + Ti) existing in the form satisfies the relationship of the following formula (4).
  • the other components need not be particularly limited, but needless to say, they must be adjusted so as to satisfy the prescribed weld metal component range. (Mn + Ti) / Si> 10.0 (4)
  • the above-mentioned requirements [(a) to (i)] are a control range for securing a solid solution Si amount effective for increasing the retained austenite amount. That is, as Si addition form, when Si existing in a form other than oxide is less than 0.25%, or when Si existing as oxide exceeds 0.25%, the total amount of Si is further 0.35. When the ratio is less than 1% [when the requirements (a) to (c) are not satisfied], the necessary amount of dissolved Si cannot be secured.
  • the Si amount (total Si amount) and the Ti amount be large. However, if the amount exceeds 2.5% and 4.5%, respectively, the concentration in the weld metal Will exceed the specified upper limit.
  • the above requirement (i) is for ensuring the number density of retained austenite particles. That is, in bainite, which is a main structure of the weld metal, retained austenite is generated between bainite laths. Therefore, in order to increase the number density of retained austenite particles, it is necessary to refine the base bainite structure.
  • a Ti—Mn oxide is formed, and the bainite structure is refined by intragranular transformation starting from this oxide. Further, when the ratio is more than 10.0, the oxide is dispersed at a high density, and further refinement of the structure is achieved, leading to improvement in resistance to hydrogen embrittlement resistance.
  • the welding conditions for forming the weld metal it is preferable to use a mixed gas comprising a heat input of 2.5 kJ / mm or less, 20% (volume%) CO 2 as the shielding gas, and the balance of Ar. .
  • a mixed gas comprising a heat input of 2.5 kJ / mm or less, 20% (volume%) CO 2 as the shielding gas, and the balance of Ar.
  • the composition of the shielding gas is intended to control the oxide form to achieve the refinement of the structure.
  • the flux-cored wire is used for welding, but the flux filling rate of the wire used is usually about 10 to 20%.
  • Example 1 Using a flux-cored wire (welding material) having the chemical composition shown in Tables 1 and 2 below with a wire diameter of 1.2 mm and a flux filling ratio of 13.5%, a weld metal was prepared according to the following procedures, and various performances ( Tensile strength, hydrogen embrittlement sensitivity) were evaluated. In Tables 1 and 2, the column indicated by “-” indicates no addition (not contained).
  • a round bar specimen having a diameter of 5 mm was collected from the final pass of the produced weld metal (the collection position is shown in FIG. 2: corresponding to the original part), and a thermal cycle simulating a reheating cycle was applied.
  • a thermal cycle (relationship between time and temperature) simulating the reheat cycle at this time is shown in FIG. Moreover, it shows in following Tables 3 and 4 with the welding material using the chemical component composition of each produced weld metal, and heat input conditions. In Tables 3 and 4, the column indicated by “ ⁇ ” indicates the amount of impurities (less than the impurity level).
  • test piece for measuring hydrogen storage amount From the heat-treated test piece, a test piece for tensile test and a test piece for measuring hydrogen storage amount (test piece for measuring hydrogen storage amount) were collected.
  • the shape of the tensile test piece is shown in FIG. 4, and the shape of the hydrogen storage amount measurement test piece is shown in FIG. Using these test pieces, the hydrogen embrittlement sensitivity was evaluated by the following method.
  • Aqueous solution (0.5 mol / L or 2.5 mol / L H 2 SO 4 ) + (1 g / L-KSCN), (30 g / L-NaCl) + (1 g / L-KSCN)
  • Current density 0.1 A / dm 2 , 1.0 A / dm 2 , 5.0 A / dm 2
  • Charge time 24 hours
  • the amount of diffusible hydrogen is determined by using a temperature-programmed desorption analyzer (manufactured by Nidec Anelva) with a built-in quadrupole mass spectrometer, did.
  • Plate thickness 20mm V-shaped grooved SM490A steel plate, weld metal produced under the following welding conditions (welding materials shown in Tables 1 and 2), compliant with JIS-Z2202 Tensile test specimens were collected, subjected to a tensile test, and those having a tensile strength exceeding 780 MPa were regarded as acceptable. (Welding conditions) Shielding gas: 20% by volume CO 2 -80% by volume Ar mixed gas Current-Voltage-Welding speed: 270A-29V-4.5mm / sec Heat input: 1.74kJ / mm Preheating-pass temperature: 105-150 ° C Lamination method: 8 layers, 17 passes
  • the number density of oxide particles containing 20% by mass or more of Ti and having an equivalent circle diameter of 0.15 to 1.0 ⁇ m the number density of residual austenite particles, and the total volume fraction of residual austenite particles, It measured by the following method.
  • the analysis value of Ti (% by mass) is included in the oxide particles by standardizing the analysis value (% by mass) of Si, S, Ti, Mn, Al, Zr, and Mg.
  • No. 30 to 54 are examples that do not satisfy any of the requirements defined in the present invention, and at least one of the properties of tensile strength and hydrogen embrittlement resistance is deteriorated.
  • No. No. 30 is an example in which the heat input conditions during welding are not appropriate, the total volume fraction of residual austenite particles is low, and the hydrogen embrittlement susceptibility is high (the hydrogen embrittlement susceptibility is deteriorated). ).
  • No. No. 31 is an example in which the Si content of the weld metal is excessive. The tensile strength is excessively increased and the hydrogen embrittlement sensitivity is increased.
  • No. No. 32 has a low total volume fraction of residual austenite particles (insufficient Si content in the welding material) and high hydrogen embrittlement susceptibility.
  • No. No. 33 is an example in which the Ti content of the weld metal is insufficient, the number density of residual austenite particles is low, and the hydrogen embrittlement sensitivity is high.
  • No. No. 34 is an example in which the Ti content of the weld metal is excessive. The tensile strength is excessively increased and the hydrogen embrittlement sensitivity is increased.
  • No. 35 is an example in which the Mn content of the weld metal is insufficient, the tensile strength is low, and the total volume fraction of residual austenite particles is low (the Al content in the welding material is insufficient), Hydrogen embrittlement sensitivity is high.
  • No. 36 is an example in which the Ni content of the weld metal is insufficient, the tensile strength is low, and the total volume fraction of residual austenite particles is low (the Zr content in the welding material is insufficient), Hydrogen embrittlement sensitivity is high.
  • No. No. 37 has a low total volume fraction of residual austenite particles (insufficient Mg content in the welding material) and high hydrogen embrittlement sensitivity.
  • No. No. 38 has a low total volume fraction of residual austenite particles (insufficient metal Si content in the welding material) and high hydrogen embrittlement sensitivity.
  • No. In No. 39 the total volume fraction of residual austenite particles is low (the amount of SiO 2 in the welding material is excessive), and the hydrogen embrittlement sensitivity is high.
  • No. 40 the total volume fraction of residual austenite particles is low (the A value of the welding material is insufficient), and the hydrogen embrittlement sensitivity is high.
  • No. No. 41 is an example in which the C content of the weld metal is insufficient, the tensile strength is low, the number density and total volume fraction of residual austenite particles are low, and the hydrogen embrittlement susceptibility is high.
  • No. No. 42 is an example in which the C content of the weld metal is excessive. The tensile strength is excessively increased and the hydrogen embrittlement sensitivity is increased.
  • No. 43 is an example in which the Si content (total Si content) of the weld metal is insufficient (Mn content is also excessive), the tensile strength increases excessively, and the number density of residual austenite particles And the total volume fraction is low, and hydrogen embrittlement sensitivity is high.
  • No. No. 44 is an example in which the Ni content of the weld metal is excessive, and the tensile strength is excessively increased and the hydrogen embrittlement sensitivity is increased.
  • No. 45 is an example in which the V content of the weld metal is excessive, the tensile strength is excessively increased, and the hydrogen embrittlement sensitivity is increased.
  • No. No. 46 is an example in which the Nb content of the weld metal is excessive, the tensile strength is excessively increased, and the hydrogen embrittlement sensitivity is increased.
  • No. No. 47 is an example in which the contents of N, O and Zr in the weld metal are excessive, and the tensile strength is excessively increased and the hydrogen embrittlement sensitivity is increased.
  • No. 48 is an example in which the Mo content of the weld metal is insufficient, and the tensile strength is low.
  • No. No. 49 is an example in which the Mo content of the weld metal is excessive, and the tensile strength is excessively increased and the hydrogen embrittlement sensitivity is increased.
  • No. 50 is an example in which the O content of the weld metal is insufficient (Al content is also increased), the number density of residual austenite particles is low, and the hydrogen embrittlement susceptibility is high.
  • No. No. 51 is an example in which the Ti content of the weld metal is excessive. The tensile strength is excessively increased and the hydrogen embrittlement sensitivity is increased.
  • No. No. 52 is an example in which the Cr content of the weld metal is excessive, the tensile strength is excessively increased, and the hydrogen embrittlement sensitivity is increased.
  • No. 53 is an example in which the Cu content of the weld metal is excessive, the tensile strength is excessively increased, and the hydrogen embrittlement sensitivity is increased.
  • No. No. 54 is an example in which the B content of the weld metal is excessive. The tensile strength is excessively increased and the hydrogen embrittlement sensitivity is increased.
  • Example 2 Wire diameter: 1.2 mm, flux filling ratio: 13.5%, and flux-cored wires (welding materials) having the chemical composition shown in Table 7 below were used (Nos. 2, 4, 15, 16, 21, 24 are tables) 1) and a weld metal was prepared in the same procedure as in Example 1 (heat input condition was A), and various performances (tensile strength, hydrogen embrittlement sensitivity) were evaluated. In Table 7, the column indicated by “-” indicates no addition (not contained).
  • a round bar test piece was collected in the same manner as in Example 1 (the collection position corresponds to the above-mentioned Fig. 2: original part), and a thermal cycle simulating a reheat cycle was given (Fig. 3). Moreover, it shows in following Table 8 with the welding material using the chemical component composition of each produced weld metal, and heat input conditions. In Table 8, the column indicated by “ ⁇ ” indicates the amount of impurities (less than the impurity level).
  • the produced weld metal was measured for hydrogen embrittlement susceptibility, tensile strength, residual austenite number density and volume fraction, and oxide particle number density in the same manner as in Example 1. Toughness was measured.
  • No. 55 has a Ni content outside the preferred range (1.0 to 2.0%).
  • No. 56 has a Ni content outside the preferred range and an ⁇ value of less than 3.2.
  • No. 57 has a Si content and a Ni content outside the preferred ranges.
  • No. 60 has a Si content outside the preferable range (0.10 to 0.5%), and the low-temperature toughness is deteriorated in all cases.
  • No. In 58 and 59 the ⁇ value defined by the formula (1) is less than 3.2, and the low temperature toughness is deteriorated.
  • No. Nos. 61-69 have high strength and excellent resistance to hydrogen embrittlement as well as Si content and Ni content because the number density and total volume fraction of residual austenite particles are appropriately controlled together with the chemical composition.
  • the amount is within a preferable range, and the ⁇ value defined by the formula (1) satisfies 3.2 or more, which indicates that good low temperature toughness is achieved.
  • the weld metal of the present invention is used in various welded structures and can be applied to offshore structures.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Nonmetallic Welding Materials (AREA)
  • Arc Welding In General (AREA)

Abstract

 本発明は、フラックス入りワイヤを用い、ガスシールドアーク溶接によって形成される溶接金属であって、所定の化学成分組成を有し、残留オーステナイト粒子が2500個/mm以上存在すると共に、残留オーステナイト粒子の合計体積分率が4.0%以上である。そのため、高強度であっても、耐水素脆化感受性に優れ、低温割れも生じない。

Description

耐水素脆化感受性に優れた溶接金属
 本発明は、溶接構造物に使用される溶接金属において、水素脆化に対する感受性を低減した溶接金属に関するものである。
 高張力鋼を溶接する際には、溶接金属部の低温割れ防止の観点から、予熱/パス間温度を厳密に管理する必要があり、施工効率低下の原因となっている。近年、溶接構造物に使用される鋼材は、ますます高強度化しており、溶接金属においても高強度化への要求が高まっている(例えばHT780:ハイテン780MPa級)。
 このような高強度化は、耐低温割れ性を低下させる傾向があり、耐低温割れ性を改善することが必要となる。特に、フラックス入りワイヤを用いたガスシールドアーク溶接では、優れた溶接作業性を有するため、この溶接法によって形成される溶接金属において、耐低温割れ性を確保する技術が求められている。
 上記のような低温割れは、拡散性水素が粒界に偏析し、粒界強度が低下する(以下、これを「水素脆化」と呼ぶ)ことが原因であると推察されており、耐低温割れ性の改善に対しては、拡散性水素をいかに低減するかが重要なポイントとなる。
 こうしたことから、溶接金属の耐低温割れ性を向上させるためには、溶接金属における水素脆化に対する感受性を低くすることが必要となり、こうした観点から、様々な技術が提案されている。
 例えば、特許文献1では、水素トラップ能力の高いMo炭化物(Moを含む炭化物)を溶接金属内に分散させることによって、低温割れの防止を図る技術が開示されている。しかしながらこの技術では、Mo炭化物を分散させるために、鋼材を突き合わせた後、内面側からサブマージアーク溶接するという特殊な溶接手法を採用する必要があり、鋼材の一般溶接には適用できない。
 また特許文献2には、溶接施工時の冷却時間を管理することで、低温割れを防止する技術が提案されている。この技術では、成分に応じた厳格な施工管理が必要となり、作業負荷が高いという問題がある。
 特許文献3には、拡散性水素をトラップする残留オーステナイト分率を溶接金属中で1%以上とすることで低温割れを防止する技術が提案されている。しかしながら、この技術は、鋼管における両面1パスシーム溶接を前提としており、鋼材の溶接一般に適用できない。
 特許文献4には、拡散性水素量を低減すると共に、強度と化学成分組成を適切に制御することによって、耐低温割れ性を改善する技術が提案されている。しかしながら、この技術においても、満足すべき強度レベルが成分の影響を受けるため、実際の施工に際しては適用箇所が限られる。
 上記のようなこれまで提案されている技術は、いずれも耐低温割れ性改善を目的としたものであるが、実際の溶接施工においては、種々の要因で溶接金属中の水素量が増加する可能性があるため、より本質的な方向として、耐水素脆化感受性を改善することが必要である。
 また、近年、海洋構造物に用いられる溶接金属においても、HT780級の適用が拡大している。これらの溶接金属では、寒冷地での使用に耐えるため、耐水素脆化感受性、強度は勿論のこと、低温靭性においても高い値が要求されることになる。
日本国特開2005-40816号公報 日本国特開2003-33876号公報 日本国特開2002-115032号公報 日本国特開平11-147196号公報
 本発明は上記事情に鑑みてなされたものであって、その目的は、高強度であっても、耐水素脆化感受性に優れたものとし、低温割れの生じないようにした溶接金属、必要によって低温靭性にも優れた溶接金属を提供することにある。
 上記課題を解決することのできた本発明に係る溶接金属とは、フラックス入りワイヤを用い、ガスシールドアーク溶接によって形成される溶接金属であって、
 C:0.02~0.12%(「質量%」の意味。化学成分組成について、以下同じ)、Si:0.10~2.0%、Mn:0.90~2.5%、Ni:0.20~3.5%、Mo:0.05~1.5%、Ti:0.040~0.150%、N:0.015%以下(0%を含まない)およびO:0.030~0.10%を夫々含有し、残部が鉄および不可避的不純物からなり、
 残留オーステナイト粒子が2500個/mm以上存在すると共に、残留オーステナイト粒子の合計体積分率が4.0%以上である点に要旨を有するものである。尚、個数密度の測定に際し対象となる残留オーステナイト粒子の大きさは、測定限界以上(円相当直径で0.15μmを超えるもの)のものである。
 本発明の溶接金属においては、Si:0.10~0.5%およびNi:1.0~2.0%を夫々満足すると共に、下記(1)式で規定されるα値が3.2以上であるという要件を具備させることも有用であり、これによって低温靭性にも優れた(具体的には、-40℃での衝撃吸収エネルギーvEー40が85Jを超える)溶接金属が実現できる。
 α値=[Mn]+[Ni]+(2×[Mo])+(16×[Ti])-(12×[O])…(1)
 但し、[Mn]、[Ni]、[Mo]、[Ti]および[O]は、夫々Mn、Ni、Mo、TiおよびOの含有量(質量%)を示す。 
 また、本発明の溶接金属においては、20質量%以上のTiを含有する酸化物粒子で、円相当直径:0.15~1.0μmのものが5000個/mm以上存在するものであることが好ましい。上記「円相当直径」とは、光学顕微鏡の観察面上で認められる残留オーステナイト粒子や酸化物粒子の大きさに着目して、その面積が等しくなるように想定した円の直径である。
 本発明の溶接金属においては、更に他の元素として、(a)Cr:2.0%以下(0%を含まない)、V:0.60%以下(0%を含まない)、Nb:0.15%以下(0%を含まない)およびCu:1.0%以下(0%を含まない)よりなる群から選ばれる1種以上、(b)Al:0.020%以下(0%を含まない)および/またはZr:0.10%以下(0%を含まない)、(c)B:0.0050%以下(0%を含まない)、等を含有させることも好ましく、含有させる元素の種類に応じて溶接金属の特性が更に改善される。
 本発明によれば、化学成分組成と共に、残留オーステナイト粒子の個数密度および合計体積分率を適切に制御するようにしたので、耐水素脆化感受性に優れた溶接金属が実現できる。また、SiおよびNiの含有量をより厳密に規定すると共に、Mn、Ni、Mo、TiおよびOの含有量で規定される所定の関係式を満足することによって、低温靭性にも優れた溶接金属が実現できる。
溶接金属を作製するときの開先形状を示す概略説明図である。 丸棒試験片の採取位置を示す概略説明図である。 再熱サイクルを模擬した熱サイクル(時間と温度の関係)を示すグラフである。 引張り試験を行ったときの試験片の形状を示す説明図である。 水素吸蔵量を測定するときの試験片の形状を示す説明図である。
 本発明者らは、フラックス入りワイヤを用い、ガスシールドアーク溶接によって形成されるHT780クラスの高強度溶接金属において、耐水素脆化感受性を改善する手段について様々な角度から検討した。その結果、拡散性水素のトラップサイトとして作用する残留オーステナイト粒子を所定の密度で形成させることで、耐水素脆化感受性が改善されることを見出し、本発明を完成した。
 即ち、溶接金属成分を所定の範囲に制御すると共に、溶接金属に存在する残留オーステナイト粒子を2500個/mm以上で、残留オーステナイト粒子の合計体積分率(組織全体に対する割合)を4.0%以上に制御することによって、HT780クラスの溶接金属において、耐水素脆化感受性が改善されることが判明したのである。
 耐水素脆化感受性を優れたものとするためには、拡散性水素の低減が有効である。拡散性水素を低減するためには、残留オーステナイトを存在させることが有効であることが従来から知られていたが、これまでの検討では、専らその量のみに着目し、必ずしも最適な分散形態は確定されていなかった。そこで本発明者らは、耐水素脆化感受性を大幅に改善する技術として、残留オーステナイトの量に加えて個数密度の効果について検討した。
 その結果、拡散性水素のトラップサイトとなる残留オーステナイトの量を確保すると共に、マトリクス組織微細化により残留オーステナイト粒子を高密度に分散させることによって、トラップ効果が最大限に発現され、耐水素脆化感受性が大幅に改善された。
 即ち、本発明の溶接金属では、溶接金属中に存在する残留オーステナイト粒子が2500個/mm以上で、且つ残留オーステナイト粒子の合計体積分率が4.0%以上とすることによって、水素トラップ効果により水素脆化感受性を低下できたのである。尚、残留オーステナイト粒子の個数は3000個/mm以上であることが好ましく(より好ましくは、3300個/mm以上)、残留オーステナイト粒子の合計体積分率は4.5%以上であることが好ましい(より好ましくは4.8%以上)。
 また、Si:0.10~0.5%およびNi:1.0~2.0%を夫々満足すると共に、下記(1)式で規定されるα値が3.2以上であるという要件を具備させることによって低温靭性にも優れたものとなることが判明した。
 α値=[Mn]+[Ni]+(2×[Mo])+(16×[Ti])-(12×[O])…(1)
 但し、[Mn]、[Ni]、[Mo]、[Ti]および[O]は、夫々Mn、Ni、Mo、TiおよびOの含有量(質量%)を示す。
 即ち、低温靭性を確保するためには、旧オーステナイト粒界からの粗大な粒界フェライト生成量を低減する必要がある。上記(1)式のα値を構成するMn、Ni、MoおよびTiは、固溶状態で存在することで、粒界フェライト生成を抑制する作用がある。尚、一部のMn、Tiは酸化物を構成するため、Oを低減することで、固溶状態で存在する量が増えることになる。これらの観点から、各元素の係数を実験的に求め、α値を3.2以上とすることによって、粒界フェライト生成が抑制され、低温靭性改善につながることを見出した。
 次に、本発明の溶接金属における化学成分組成について説明する。本発明の溶接金属において、その化学成分組成を適切に制御することも重要な要件であるが、その範囲設定理由は以下の通りである。
[C:0.02~0.12%] 
 Cは、溶接金属の強度を確保するために欠くことのできない元素であり、こうした効果を発揮させるには、0.02%以上含有させる必要がある。好ましくは0.04%以上であり、より好ましくは0.06%以上である。しかしながら、C含有量が0.12%を超えると、強度が過大に上昇して水素脆化感受性が高くなる(耐水素脆化感受性が劣化する)。尚、C含有量の好ましい上限は、0.10%であり、より好ましくは0.08%以下である。
[Si:0.10~2.0%]
 Siは、固溶状態で存在することで炭化物形成を遅らせ、残留オーステナイトを安定化する作用を有する。Si含有量が0.10%未満であると、残留オーステナイトが確保できない。好ましくは0.25%以上、より好ましくは0.28%以上含有させるのがよい。しかしながら、Si含有量が過剰になると、強度の過大な上昇による水素脆化感受性が高くなるので、2.0%以下に抑える必要がある。好ましくは1.5%以下であり、より好ましくは0.5%以下に抑えるのが良い。特に、溶接金属の低温靭性を良好にするためには、Si含有量は0.5%以下(更に好ましくは0.4%以下)とすることが好ましい。即ち、Si含有量が0.5%を超えると、硬質な島状マルテンサイトが形成され、これが破壊の起点となることで、低温靭性が劣化しやすくなる。
[Mn:0.90~2.5%]
 Mnは、溶接金属の強度を確保する上で必要な元素であり、こうした効果を発揮させるには、0.90%以上含有させる必要がある。好ましくは1.2%以上、より好ましくは1.5%以上である。しかしながら、2.5%を超えて過剰に含有させると、強度の過大な上昇による水素脆化感受性が高くなる原因となる。好ましくは2.2%以下であり、より好ましくは2.0%以下である。 
[Ni:0.20~3.5%] 
 Niは、溶接金属の強度を確保する上で必要な元素であり、こうした効果を発揮させるには、0.20%以上含有させる必要がある。好ましくは0.5%以上、より好ましくは1.0%以上である。しかしながら、3.5%を超えて過剰に含有させると、強度の過大な上昇による水素脆化感受性が高くなる原因となる。好ましくは3.0%以下であり、より好ましくは2.8%以下である。特に、溶接金属の低温靭性を良好にするためには、Ni含有量は1.0%以上2.0%以下(更に好ましい下限は1.1%、更に好ましい上限は1.8%)とすることが好ましい。Niは、脆性破面遷移温度を低温化させることで、低温でのシャルピー衝撃吸収エネルギーを向上させる。こうした効果を発揮させるには、1.0%以上含有させることが好ましい。しかしながら、2.0%を超えて含有させると、マルテンサイト生成量が増え、強度が上昇することで、シャルピー衝撃吸収エネルギーが低下する。 
[Mo:0.05~1.5%]
 Moは、溶接金属の強度を向上する上で必要な元素であり、こうした効果を発揮させるには、0.05%以上含有させる必要がある。好ましくは0.10%以上、より好ましくは0.2%以上である。しかしながら、1.5%を超えて過剰に含有させると、強度の過大な上昇による水素脆化感受性が高くなる原因となる。好ましくは1.0%以下であり、より好ましくは0.50%以下である。
[Ti:0.040~0.150%]
 Tiは、粒内変態の起点となる酸化物を形成し、組織を微細化することで残留オーステナイト粒子の高密度分散に寄与する元素である。こうした効果を発揮させるには、0.040%以上含有させる必要がある。好ましくは0.050%以上、より好ましくは0.055%以上である。しかしながら、0.150%を超えて過剰に含有させると、強度の過大な上昇による水素脆化感受性が高くなる原因となる。好ましくは0.12%以下であり、より好ましくは0.08%以下である。
[N:0.015%以下(0%を含まない)] 
 Nは、不可避的に混入してくる元素であり、溶接金属の強度を向上する上で有効であるが、過剰に含有させると、強度の過大な上昇による水素脆化感受性が高くなる原因となる。こうしたことから、N含有量は0.015%以下とする必要がある。好ましくは0.010%以下であり、より好ましくは0.006%以下である。尚、Nは工業的に0%とすることは困難である。
[O:0.030~0.10%] 
 Oは、粒内変態の起点となる酸化物を形成し、組織を微細化することで残留オーステナイト粒子の高密度分散に寄与する元素である。こうした効果を発揮させるには、0.030%以上含有させる必要がある。好ましくは0.035%以上、より好ましくは0.040%以上である。しかしながら、0.10%を超えて過剰に含有させると、Si酸化物が形成されるようになり、固溶Siが減少することで残留オーステナイト量が確保できなくなる。好ましくは0.080%以下であり、より好ましくは0.060%以下である。
 本発明で規定する含有元素は上記の通りであって、残部は鉄および不可避的不純物であり、該不可避的不純物として、原料、資材、製造設備等の状況によって持ち込まれる元素(例えば、PやS等)の混入が許容され得る。但し、一般に不純物は粒界に偏析することで粒界強度を低下させ、低温割れを助長するため、P:0.02%以下(0%を含まない)、S:0.025%以下(0%を含まない)に夫々抑制することが好ましい。
 本発明の溶接金属においては、更に他の元素として、(a)Cr:2.0%以下(0%を含まない)、V:0.60%以下(0%を含まない)、Nb:0.15%以下(0%を含まない)およびCu:1.0%以下(0%を含まない)よりなる群から選ばれる1種以上、(b)Al:0.020%以下(0%を含まない)および/またはZr:0.10%以下(0%を含まない)、(c)B:0.0050%以下(0%を含まない)、等を含有させることが好ましく、含有させる元素の種類に応じて溶接金属の特性が更に改善される。これらの元素を含有させるときの範囲設定理由は下記の通りである。
[Cr:2.0%以下(0%を含まない)、V:0.60%以下(0%を含まない)、Nb:0.15%以下(0%を含まない)およびCu:1.0%以下(0%を含まない)よりなる群から選ばれる1種以上]
 Cr,V,NbおよびCuは、溶接金属の強度を向上する上で必要な元素であるが、過剰に含有させると、強度の過大な上昇により水素脆化感受性が高くなる原因となる。こうしたことから、Crで2.0%以下(より好ましくは1.5%以下、更に好ましくは1.0%以下)、Vで0.60%以下(より好ましくは0.50%以下、更に好ましくは0.40%以下)、Nbで0.15%以下(より好ましくは0.10%以下、更に好ましくは0.08%以下)、またはCuで1.0%以下(より好ましくは0.5%以下、更に好ましくは0.2%以下)に、夫々抑制することが好ましい。尚、上記効果を発揮させるための好ましい下限は、Crで0.05%以上、Vで0.02%以上、Nbで0.01%以上、またはCuで0.05%以上である。 
 [Al:0.020%以下(0%を含まない)および/またはZr:0.10%以下(0%を含まない)
 AlとZrは、いずれも強脱酸元素であり、固溶Si増加による残留オーステナイト増加を促進する作用があるが、過剰に含有させると、酸化物起点の粒内変態を減少させ、組織粗大化による水素脆化感受性が高くなる原因となる。こうしたことから、Alで0.020%以下(より好ましくは0.018%以下)、Zrで0.10%以下(より好ましくは0.06%以下)に、夫々抑制することが好ましい。尚、上記効果を発揮させるための好ましい下限は、AlまたはZrのいずれも0.010%以上である。
[B:0.0050%以下(0%を含まない)]
 Bは、旧オーステナイト粒界からのフェライト生成を抑制することで、強度を向上させる元素であるが、過剰に含有させると、強度を過大に上昇させ、水素脆化感受性が高くなる原因となる。こうしたことから、Bは0.0050%以下(より好ましくは0.0030%以下)に、抑制することが好ましい。尚、上記効果を発揮させるための好ましい下限は、0.0010%以上である。
 本発明の溶接金属は、フラックス入りワイヤを用い、ガスシールドアーク溶接によって形成されるものであれば、特にワイヤ成分、溶接条件を限定するものではないが、規定の様態を実現するためには、好ましい範囲は存在する。
 こうした観点から、好ましいワイヤ成分(溶接材料)は、例えば次の要件の全てを満たすものである。即ち、鋼材よりなる外皮とフラックスとを合わせた全ワイヤ質量に対し、
 (a)金属、酸化物その他の形態で存在する全Siが0.35~2.5% 
 (b)酸化物以外の形態で存在するSiが0.25%以上 
 (c)酸化物として存在するSiが0.25%以下 
 (d)金属、酸化物その他の形態で存在する全Tiが2.5~4.5% 
 (e)金属、酸化物その他の形態で存在する全Alが0.10%以上 
 (f)金属、酸化物その他の形態で存在する全Zrが0.035%以上 
 (g)金属として存在するMgが0.4%以上 
 (h)金属、酸化物その他の形態で存在する全Si,Ti,Al,ZrおよびMgの各量から、下記(2)式に基づいて求められるA値が0.30以上
 A値=Si-[Si/(Ti+2Al+2Zr+3.5Mg)] …(2)
 (i)金属、酸化物その他の形態で存在する全Si量と(Mn+Ti)量の比[(Mn+Ti)/Si]が下記(3)式の関係を満足すること
 (Mn+Ti)/Si>4.0 …(3) 
 20質量%以上のTiを含有する酸化物粒子で、円相当直径:0.15~1.0μmのものを5000個/mm以上分散させるためには、上記に加えて、金属、酸化物その他の形態で存在する全Si量と(Mn+Ti)量の比[(Mn+Ti)/Si]が下記(4)式の関係を満足することが好ましい。尚、その他の成分については、特に制限する必要はないが、規定の溶接金属成分範囲を満足するよう調整する必要があることは勿論である。
 (Mn+Ti)/Si>10.0 …(4)
 上記した要件[(a)~(i)]は、残留オーステナイト量の増加に有効な固溶Si量を確保するための制御範囲である。即ち、Siの添加形態として、酸化物以外の形態で存在するSiが0.25%を下回る場合、或いは酸化物として存在するSiが0.25%を上回る場合、更に全Si量が0.35%を下回る場合[要件(a)~(c)を満足しない場合]は、必要な固溶Si量を確保できない。
 また、上記のようにSiの添加形態が満足されていても、Siに比べて強脱酸の元素であるTi、Al、Zr、Mgが上記の範囲を逸脱すると[要件(d)~(g)を満足しないと]、或はA値が0.30を下回ると[要件(h)を満足しないと]、酸化物Siが増加して固溶Siが減少することになる。
 尚、固溶Si量を確保するという観点からすれば、Si量(全Si量)、Ti量は多い方が好ましいが、夫々2.5%、4.5%を超えると、溶接金属における濃度が規定上限値を超えてしまうことになる。
 上記要件(i)は、残留オーステナイト粒子の個数密度を確保のためのものである。即ち、溶接金属の主体組織であるベイナイトにおいては、残留オーステナイトはベイナイトラス間に生成するため、残留オーステナイト粒子の個数密度を増加させるためには、基地となるベイナイト組織の微細化が必要である。上記成分比[上記(2)式の関係]を満たすことによって、Ti-Mn酸化物が形成され、この酸化物を起点とした粒内変態によって、ベイナイト組織が微細化する。また上記比を10.0超とすることで、上記酸化物が高密度で分散するようになり、いっそうの組織微細化が達成されることで耐水素脆化感受性の改善にもつながる。
 溶接金属を形成するときの溶接条件としては、入熱量を2.5kJ/mm以下とし、シールドガスとして20%(体積%)のCOを含み、残部がArからなる混合ガスを用いることが好ましい。上記入熱量が2.5kJ/mmを上回ると、溶接時の冷却速度が低下し、残留オーステナイトの分解が促進される。また、シールドガスの組成は、組織微細化を達成するための酸化物形態制御を目的としたものである。尚、本発明はフラックス入りワイヤを用いて溶接を行うものであるが、用いるワイヤのフラックスの充填率は通常10~20%程度である。
 以下、本発明を実施例によって更に詳細に説明するが、下記実施例は本発明を限定する性質のものではなく、前・後記の趣旨に適合し得る範囲で適当に変更して実施することも可能であり、それらはいずれも本発明の技術的範囲に含まれる。
[実施例1]
 ワイヤ径:1.2mm、フラックス充填率:13.5%で下記表1、2に示す化学成分組成のフラックス入りワイヤ(溶接材料)を用い、溶接金属を下記の手順で作成し、各種性能(引張強度、水素脆化感受性)を評価した。尚、表1、2中、「-」で示した欄は、無添加(含有せず)であることを示している。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
[溶接金属の作製] 
 SM490A鋼板を、図1に示す開先形状に加工し、下記の溶接条件でガスシールドアーク溶接を実施し、溶接金属を作製した。 
(溶接条件) 
 シールドガス:20体積%CO-80体積%Ar混合ガス 
 電流-電圧-溶接速度:270A-29V-3.0~4.5mm/秒 
 入熱条件:
  (A)1.74kJ/mm(270A-29V-4.5mm/秒) 
  (B)2.37kJ/mm(270A-29V-3.3mm/秒) 
  (C)2.61kJ/mm(270A-29V-3.0mm/秒) 
 予熱-パス間温度:105~150℃ 
 積層法:3層13パス 
 作製した溶接金属の最終パスより、直径:5mmの丸棒試験片を採取し(採取位置を図2に示す:原質部に相当)、再熱サイクルを模擬した熱サイクルを付与した。このときの再熱サイクルを模擬した熱サイクル(時間と温度の関係)を図3に示す。また、作製した各溶接金属の化学成分組成を用いた溶接材料、入熱条件と共に下記表3、4に示す。尚、表3、4中、「<」で示した欄は、不純物量(不純物レベル未満)であることを示している。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 熱処理済みの試験片より、引張り試験用試験片、および水素吸蔵量を測定するための試験片(水素吸蔵量測定用試験片)を採取した。引張り試験片の形状を図4に、水素吸蔵量測定用試験片の形状を図5に、夫々示す。これらの試験片を用い、水素脆化感受性を下記の方法によって評価した。
[水素脆化感受性の評価]
 上記で得られた水素吸蔵量測定用試験片を用い、拡散性水素量=1.5~3.0ppmとなるような水素チャージ条件を選定した。このとき採用したチャージ条件は、下記の通りである。
 水溶液:(0.5mol/Lまたは2.5mol/LのHSO)+(1g/L-KSCN)、(30g/L-NaCl)+(1g/L-KSCN)
 電流密度:0.1A/dm、1.0A/dm、5.0A/dm
 チャージ時間:24時間 
 また、拡散性水素量は、四重極質量分析計を内蔵した昇温脱離分析装置(日電アネルバ製)を用い、昇温速度:12℃/分で300℃までに放出される水素量とした。 
 上記条件下で、引張り試験片に水素チャージを行った後、水素逃散を防ぐための亜鉛めっきを、下記の要領で施した。
 水溶液:(350g/L-ZnSO・7HO)+(20.6g/L-HSO(97%))+(60g/L-NaSO
 浴温:60℃ 
 電流密度:50A/dm 
 めっき時間:3分 
 クロスヘッド速度:5.0×10―3mm/分(歪速度:6.94×10―6/秒)でSSRT(Slow Strain Rate Technique)試験を実施し、非水素チャージ材の破断伸びをE、水素チャージ材の破断伸びをEとしたときに、下記(5)式によって算出される水素脆化感受性指数S(%)が60%未満のものを、耐水素脆化感受性に優れると評価した。
 S=(1-E/E)×100(%)…(5) 
[引張り強度の評価] 
 板厚:20mmのSM490A鋼板に、20°V字開先を施し、下記の溶接条件で作製した溶接金属について(溶接材料については、表1、2に示したもの)、JIS-Z2202に準拠した引張り試験片を採取し、引張り試験を行い、引張り強度にして780MPaを超えるものを合格とした。
(溶接条件) 
 シールドガス:20体積%CO-80体積%Ar混合ガス 
 電流-電圧-溶接速度:270A-29V-4.5mm/秒 
 入熱量:1.74kJ/mm 
 予熱-パス間温度:105~150℃ 
 積層法:8層17パス 
 20質量%以上のTiを含有する酸化物粒子であって、円相当直径:0.15~1.0μmのものの個数密度、残留オーステナイト粒子の個数密度、残留オーステナイト粒子の合計体積分率については、下記の方法で測定した。 
[酸化物粒子の個数密度の測定] 
 SSRT試験用に作製した溶接金属(前記「溶接金属の作製」の欄)の最終パスより、直径:5mmの丸棒試験片を採取し、輪切り断面を鏡面研磨した後、光学顕微鏡にて1000倍の画像を2視野撮影した。画像解析ソフト(「Image-Pro Plus」 Media Cybernetics社製)によって、円相当直径:0.15~1.0μmの酸化物粒子を選定すると共に、撮影した酸化物中央部の組成をSEM-EDS(Energy-dispersive X-ray spectroscopy)にて分析した。検出された元素のうち、Tiの分析値(質量%)をSi,S,Ti,Mn,Al,Zr,Mgの分析値(質量%)の合計で規格化することで、酸化物粒子に含まれるTi濃度(質量%)を算出し、20質量%以上のTiを含有する酸化物粒子であって、円相当直径が0.15~1.0μmのものの個数密度を算出した。
[残留オーステナイト粒子の個数密度の測定]
 酸化物粒子の個数密度を測定したサンプルを、レペラ試薬で腐食させ、光学顕微鏡にて1000倍の画像を2視野撮影した。残留オーステナイトの白い腐食コントラストを、画像解析ソフト(上記と同じ)により解析し、円相当直径にして0.15μmを超える残留オーステナイト粒子の個数密度を算出した。
[残留オーステナイト粒子の合計体積分率の測定]
 上記サンプル表面を電解研磨し、リガク社製の二次元微小部X線回折装置(「RINT-RAPIDII」)にてX線回折測定を実施した。フェライト相の(110)、(200)、(211)、(220)の各格子面のピーク、および残留オーステナイト相の(111)、(200)、(220)、(311)の各格子面のピークについて、各ピークの積分強度比に基づき、残留オーステナイト相の体積分率を算出し、各組み合わせの平均値を求めた。 
 これらの測定結果(水素脆化感受性、引張り強度、残留オーステナイトの個数密度および体積分率、並びに酸化物粒子の個数密度)を、下記表5、6に示す。 
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 これらの結果から、次のように考察できる(尚、下記No.は、表3~6の試験No.を示す)。No.1~29(表3、5)は、本発明で規定する要件を満足する例であり、化学成分組成と共に、残留オーステナイト粒子の個数密度および合計体積分率が適切に制御されているため、高強度で耐水素脆化感受性に優れた溶接金属が得られている。特に、酸化物粒子の個数密度が5000個/mm以上のものでは(No.2~5、7、8、10~14、16~19、21~23、25、27、29)、水素脆化感受性が極めて低い値が得られていることが分かる。
 これに対し、No.30~54は、本発明で規定するいずれかの要件を外れる例であり、引張り強度および耐水素脆化感受性の少なくともいずれかの特性が劣化している。
 No.30は、溶接時の入熱条件が適切でない例であり、残留オーステナイト粒子の合計体積分率が低くなっており、水素脆化感受性が高くなっている(耐水素脆化感受性が劣化している)。No.31は、溶接金属のSi含有量が過剰になっている例であり、引張り強度が過大に上昇して水素脆化感受性が高くなっている。No.32は、残留オーステナイト粒子の合計体積分率が低くなっており(溶接材料中のSi含有量が不足)、水素脆化感受性が高くなっている。
 No.33は、溶接金属のTi含有量が不足している例であり、残留オーステナイト粒子の個数密度が低くなっており、水素脆化感受性が高くなっている。No.34は、溶接金属のTi含有量が過剰になっている例であり、引張り強度が過大に上昇して水素脆化感受性が高くなっている。No.35は、溶接金属のMn含有量が不足している例であり、引張り強度が低くなると共に、残留オーステナイト粒子の合計体積分率が低くなっており(溶接材料中のAl含有量が不足)、水素脆化感受性が高くなっている。
 No.36は、溶接金属のNi含有量が不足している例であり、引張り強度が低くなると共に、残留オーステナイト粒子の合計体積分率が低くなっており(溶接材料中のZr含有量が不足)、水素脆化感受性が高くなっている。No.37は、残留オーステナイト粒子の合計体積分率が低くなっており(溶接材料中のMg含有量が不足)、水素脆化感受性が高くなっている。
 No.38は、残留オーステナイト粒子の合計体積分率が低くなっており(溶接材料中の金属Si含有量が不足)、水素脆化感受性が高くなっている。No.39は、残留オーステナイト粒子の合計体積分率が低くなっており(溶接材料中のSiO量が過剰)、水素脆化感受性が高くなっている。
 No.40は、残留オーステナイト粒子の合計体積分率が低くなっており(溶接材料のA値が不足)、水素脆化感受性が高くなっている。No.41は、溶接金属のC含有量が不足している例であり、引張り強度が低くなると共に、残留オーステナイト粒子の個数密度および合計体積分率が低くなっており、水素脆化感受性が高くなっている。No.42は、溶接金属のC含有量が過剰になっている例であり、引張り強度が過大に上昇して水素脆化感受性が高くなっている。
 No.43は、溶接金属のSi含有量(全Si含有量)が不足している例であり(Mn含有量も過剰になっている)、引張り強度が過大に上昇すると共に、残留オーステナイト粒子の個数密度および合計体積分率が低くなっており、水素脆化感受性が高くなっている。No.44は、溶接金属のNi含有量が過剰になっている例であり、引張り強度が過大に上昇して水素脆化感受性が高くなっている。
 No.45は、溶接金属のV含有量が過剰になっている例であり、引張り強度が過大に上昇して水素脆化感受性が高くなっている。No.46は、溶接金属のNb含有量が過剰になっている例であり、引張り強度が過大に上昇して水素脆化感受性が高くなっている。No.47は、溶接金属のN、OおよびZrの含有量が過剰になっている例であり、引張り強度が過大に上昇して水素脆化感受性が高くなっている。
 No.48は、溶接金属のMo含有量が不足している例であり、引張り強度が低くなっている。No.49は、溶接金属のMo含有量が過剰になっている例であり、引張り強度が過大に上昇して水素脆化感受性が高くなっている。
 No.50は、溶接金属のO含有量が不足している例であり(Al含有量も多くなっている)、残留オーステナイト粒子の個数密度が低くなっており、水素脆化感受性が高くなっている。No.51は、溶接金属のTi含有量が過剰になっている例であり、引張り強度が過大に上昇して水素脆化感受性が高くなっている。
 No.52は、溶接金属のCr含有量が過剰になっている例であり、引張り強度が過大に上昇して水素脆化感受性が高くなっている。No.53は、溶接金属のCu含有量が過剰になっている例であり、引張り強度が過大に上昇して水素脆化感受性が高くなっている。No.54は、溶接金属のB含有量が過剰になっている例であり、引張り強度が過大に上昇して水素脆化感受性が高くなっている。
[実施例2]
 ワイヤ径:1.2mm、フラックス充填率:13.5%で下記表7に示す化学成分組成のフラックス入りワイヤ(溶接材料)を用い(No.2、4、15、16、21、24は表1に示したものと同じ)、溶接金属を実施例1と同様の手順で作製し(入熱条件はA)、各種性能(引張り強度、水素脆化感受性)を評価した。尚、表7中、「-」で示した欄は、無添加(含有せず)であることを示している。
Figure JPOXMLDOC01-appb-T000007
 作製した溶接金属の最終パスより、実施例1と同様に丸棒試験片を採取し(採取位置は前記図2:原質部に相当)、再熱サイクルを模擬した熱サイクルを付与した(図3)。また、作製した各溶接金属の化学成分組成を用いた溶接材料、入熱条件と共に下記表8に示す。尚、表8中、「<」で示した欄は、不純物量(不純物レベル未満)であることを示している。
Figure JPOXMLDOC01-appb-T000008
 作製した溶接金属について、実施例1と同様にして、水素脆化感受性、引張り強度、残留オーステナイトの個数密度および体積分率、並びに酸化物粒子の個数密度を測定すると共に、下記の方法によって、低温靭性を測定した。 
[低温靭性の測定] 
 引張り強度測定用に作製した溶接金属の板厚中央部より、溶接線方向に垂直にシャルピー衝撃試験片(JIS Z 3111 4号試験Vノッチ試験片)を採取し、JIS Z 2242の要領で、-40℃での衝撃吸収エネルギーvEー40を測定した。このとき3回の測定の平均値が85Jを超えるものを低温靭性に優れると評価した。 
 これらの測定結果(水素脆化感受性、引張り強度、残留オーステナイトの個数密度および体積分率、並びに酸化物粒子の個数密度、低温靭性)を、下記表9に示す。 
Figure JPOXMLDOC01-appb-T000009
 この結果から、次のように考察できる(尚、下記No.は、表8、9の試験No.を示す)。No.55は、Ni含有量が好ましい範囲(1.0~2.0%)を外れており、No.56は、Ni含有量が好ましい範囲を外れると共にα値が3.2未満であり、No.57は、Si含有量およびNi含有量が好ましい範囲を外れており、No.60は、Si含有量が好ましい範囲(0.10~0.5%)を外れており、いずれも低温靭性が劣化している。また、No.58、59は、(1)式で規定されるα値が3.2未満であり、低温靭性が劣化している。 
 これに対し、No.61~69のものは、化学成分組成と共に、残留オーステナイト粒子の個数密度および合計体積分率が適切に制御されているため、高強度で耐水素脆化感受性に優れると共に、Si含有量およびNi含有量が好ましい範囲内であり、且つ(1)式で規定されるα値が3.2以上を満足しており、良好な低温靭性が達成されていることが分かる。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2011年2月2日出願の日本特許出願(特願2011-021153)及び2011年8月25日出願の日本特許出願(特願2011-184117)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明の溶接金属は、各種溶接構造物に使用され、海洋構造物への応用も可能である。

Claims (6)

  1.  フラックス入りワイヤを用い、ガスシールドアーク溶接によって形成される溶接金属であって、
     C:0.02~0.12%(「質量%」の意味。化学成分組成について、以下同じ)、Si:0.10~2.0%、Mn:0.90~2.5%、Ni:0.20~3.5%、Mo:0.05~1.5%、Ti:0.040~0.150%、N:0.015%以下(0%を含まない)およびO:0.030~0.10%を夫々含有し、残部が鉄および不可避的不純物からなり、
     残留オーステナイト粒子が2500個/mm以上存在すると共に、残留オーステナイト粒子の合計体積分率が4.0%以上であることを特徴とする耐水素脆化感受性に優れた溶接金属。
  2.  Si:0.10~0.5%およびNi:1.0~2.0%を夫々満足すると共に、下記(1)式で規定されるα値が3.2以上である請求項1に記載の溶接金属。
     α値=[Mn]+[Ni]+(2×[Mo])+(16×[Ti])-(12×[O])…(1)
     但し、[Mn]、[Ni]、[Mo]、[Ti]および[O]は、夫々Mn、Ni、Mo、TiおよびOの含有量(質量%)を示す。
  3.  20質量%以上のTiを含有する酸化物粒子で、円相当直径:0.15~1.0μmのものが5000個/mm以上存在するものである請求項1または2に記載の溶接金属。
  4.  更に、Cr:2.0%以下(0%を含まない)、V:0.60%以下(0%を含まない)、Nb:0.15%以下(0%を含まない)およびCu:1.0%以下(0%を含まない)よりなる群から選ばれる1種以上を含有するものである請求項1~3のいずれかに記載の溶接金属。
  5.  更に、Al:0.020%以下(0%を含まない)および/またはZr:0.10%以下(0%を含まない)を含有するものである請求項1~4のいずれかに記載の溶接金属。
  6.  更に、B:0.0050%以下(0%を含まない)を含有するものである請求項1~5のいずれかに記載の溶接金属。
PCT/JP2012/052305 2011-02-02 2012-02-01 耐水素脆化感受性に優れた溶接金属 WO2012105617A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
RU2013140454/02A RU2535417C1 (ru) 2011-02-02 2012-02-01 Металл сварного шва с высокой устойчивостью к водородному охрупчиванию
US13/982,761 US9718150B2 (en) 2011-02-02 2012-02-01 Weld metal excellent in hydrogen embrittlement resistance
KR1020137020478A KR101484873B1 (ko) 2011-02-02 2012-02-01 내수소 취화 감수성이 우수한 용접 금속
CA2822966A CA2822966C (en) 2011-02-02 2012-02-01 Weld metal excellent in hydrogen embrittlement resistance
EP12741500.8A EP2671668A4 (en) 2011-02-02 2012-02-01 WELDING METAL WITH EXCELLENT RESISTANCE TO HYDROGEN INJURY
CN201280007329.XA CN103338894B (zh) 2011-02-02 2012-02-01 耐氢脆化敏感性优异的焊接金属
SG2013050513A SG191777A1 (en) 2011-02-02 2012-02-01 Weld metal excellent in hydrogen embrittlement resistance

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011021153 2011-02-02
JP2011-021153 2011-02-02
JP2011-184117 2011-08-25
JP2011184117A JP5607002B2 (ja) 2011-02-02 2011-08-25 耐水素脆化感受性に優れた溶接金属

Publications (1)

Publication Number Publication Date
WO2012105617A1 true WO2012105617A1 (ja) 2012-08-09

Family

ID=46602823

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/052305 WO2012105617A1 (ja) 2011-02-02 2012-02-01 耐水素脆化感受性に優れた溶接金属

Country Status (10)

Country Link
US (1) US9718150B2 (ja)
EP (1) EP2671668A4 (ja)
JP (1) JP5607002B2 (ja)
KR (1) KR101484873B1 (ja)
CN (1) CN103338894B (ja)
CA (1) CA2822966C (ja)
MY (1) MY158424A (ja)
RU (1) RU2535417C1 (ja)
SG (1) SG191777A1 (ja)
WO (1) WO2012105617A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013129284A1 (ja) * 2012-02-27 2013-09-06 株式会社神戸製鋼所 耐水素脆化感受性に優れた溶接金属
WO2014109402A1 (ja) * 2013-01-11 2014-07-17 株式会社神戸製鋼所 耐水素脆化感受性に優れた溶接金属及びサブマージアーク溶接用ソリッドワイヤ
CN105026100A (zh) * 2013-03-08 2015-11-04 株式会社神户制钢所 焊接金属及具备它的焊接结构体
US20150368767A1 (en) * 2013-03-07 2015-12-24 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Weld metal and welded structure
DE112013006287B4 (de) 2012-12-27 2022-01-27 Posco Höchstfeste Fülldraht-Lichtbogenschweissverbindung mit exzellenter Schlagzähigkeit, und Schweissdraht zu ihrer Herstellung
JP7564428B2 (ja) 2020-09-02 2024-10-09 日本製鉄株式会社 溶接金属及び溶接継手

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5685116B2 (ja) * 2011-03-11 2015-03-18 株式会社神戸製鋼所 耐焼戻し脆化特性に優れた溶接金属
JP5606985B2 (ja) * 2011-04-08 2014-10-15 株式会社神戸製鋼所 耐水素脆化感受性に優れた溶接金属
JP5906201B2 (ja) * 2013-01-11 2016-04-20 株式会社神戸製鋼所 耐水素脆化感受性に優れた溶接金属
CN103451570B (zh) * 2013-08-20 2016-06-22 宝鸡石油钢管有限责任公司 一种适用于低温环境的油气输送用螺旋埋弧焊管及其制造方法
TWM472853U (zh) * 2013-09-16 2014-02-21 Kinko Optical Co Ltd 五片式廣角鏡頭
WO2015068261A1 (ja) 2013-11-08 2015-05-14 新日鐵住金株式会社 溶接継手の製造方法
WO2016080488A1 (ja) 2014-11-19 2016-05-26 新日鐵住金株式会社 レーザー溶接継手、自動車部品、レーザー溶接継手の製造方法および自動車部品の製造方法
CN104588913A (zh) * 2014-11-21 2015-05-06 宝鸡石油钢管有限责任公司 一种适用于x70海洋油气输送钢埋弧焊接用焊丝
KR101657807B1 (ko) * 2014-12-22 2016-09-20 주식회사 포스코 확산성수소량 저감특성이 우수한 용접 금속부 및 그 제조 방법
KR101657806B1 (ko) * 2014-12-22 2016-09-20 주식회사 포스코 확산성수소량 저감특성이 우수한 용접 금속부 및 그 제조 방법
JP6476058B2 (ja) * 2015-04-28 2019-02-27 株式会社神戸製鋼所 ガスシールドアーク溶接用フラックス入りワイヤ及び溶接方法
JP2017001094A (ja) * 2015-06-05 2017-01-05 株式会社神戸製鋼所 溶接金属及び溶接構造体
CN107813071A (zh) * 2016-09-12 2018-03-20 海宁瑞奥金属科技有限公司 一种高强度大壁厚低温管线管件用埋弧焊丝
JP7138512B2 (ja) * 2017-08-21 2022-09-16 Ntn株式会社 耐水素性評価試験方法
CN110788521A (zh) * 2019-11-21 2020-02-14 南京引力工业焊接技术研究院有限公司 一种x80管线钢焊接yl60-g无镀铜焊丝
CN111220437B (zh) * 2020-01-20 2021-08-13 西安交通大学 一种焊接氢气孔缺陷试板的制作方法
KR20220124766A (ko) * 2020-02-13 2022-09-14 닛폰세이테츠 가부시키가이샤 접합 부품 및 그 제조 방법
CN118028701B (zh) * 2024-04-11 2024-06-11 江西理工大学 抗氢脆奥氏体不锈钢及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11147196A (ja) 1997-11-11 1999-06-02 Kawasaki Steel Corp 高張力鋼材の被覆アーク溶接方法
JP2000061687A (ja) * 1998-08-19 2000-02-29 Kobe Steel Ltd 高靭性溶接金属
JP2002115032A (ja) 2000-10-11 2002-04-19 Nippon Steel Corp 耐低温割れ性に優れたシーム溶接部を有する超高強度鋼管とその製造方法
JP2003033876A (ja) 2001-07-16 2003-02-04 Sumitomo Metal Ind Ltd 耐低温割れ性に優れた高強度溶接金属部とその形成方法
JP2004025304A (ja) * 2002-03-26 2004-01-29 Jfe Steel Kk 鋼構造物用溶接継手及び溶接材料
JP2005040816A (ja) 2003-07-25 2005-02-17 Nippon Steel Corp 溶接金属の低温割れ性に優れた超高強度溶接継手及び超高強度溶接鋼管並びにそれらの製造方法
JP2008000808A (ja) * 2006-06-26 2008-01-10 Kobe Steel Ltd 低温靭性、耐低温割れ性、および全姿勢溶接時のビード形状が良好な高強度溶接金属
JP2011005531A (ja) * 2009-06-26 2011-01-13 Nippon Steel Corp フラックス入り高張力鋼用溶接ワイヤ及びその製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2063468C1 (ru) * 1994-03-02 1996-07-10 Холдинг-Компания "Интермет" Сталь для сварочной проволоки
GC0000233A (en) * 2000-08-07 2006-03-29 Exxonmobil Upstream Res Co Weld metals with superior low temperature toughness for joining high strength, low alloy steels
FR2865152B1 (fr) * 2004-01-21 2007-02-02 Air Liquide Procede de soudage hybride arc-laser des aciers ferritiques
KR100957940B1 (ko) 2007-12-13 2010-05-13 주식회사 포스코 대입열 충격인성이 우수한 용접이음부를 포함하는용접구조용강
KR100910493B1 (ko) * 2007-12-26 2009-07-31 주식회사 포스코 저온 ctod특성이 우수한 플럭스 코어드 아크용접금속부
JP2010115701A (ja) * 2008-11-14 2010-05-27 Kobe Steel Ltd 低温靭性に優れた高強度溶接金属
JP5314473B2 (ja) * 2009-03-26 2013-10-16 株式会社神戸製鋼所 溶接まま及び応力除去焼鈍後の強度、靭性に優れた溶接金属並びにその溶接金属によって接合された溶接構造物

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11147196A (ja) 1997-11-11 1999-06-02 Kawasaki Steel Corp 高張力鋼材の被覆アーク溶接方法
JP2000061687A (ja) * 1998-08-19 2000-02-29 Kobe Steel Ltd 高靭性溶接金属
JP2002115032A (ja) 2000-10-11 2002-04-19 Nippon Steel Corp 耐低温割れ性に優れたシーム溶接部を有する超高強度鋼管とその製造方法
JP2003033876A (ja) 2001-07-16 2003-02-04 Sumitomo Metal Ind Ltd 耐低温割れ性に優れた高強度溶接金属部とその形成方法
JP2004025304A (ja) * 2002-03-26 2004-01-29 Jfe Steel Kk 鋼構造物用溶接継手及び溶接材料
JP2005040816A (ja) 2003-07-25 2005-02-17 Nippon Steel Corp 溶接金属の低温割れ性に優れた超高強度溶接継手及び超高強度溶接鋼管並びにそれらの製造方法
JP2008000808A (ja) * 2006-06-26 2008-01-10 Kobe Steel Ltd 低温靭性、耐低温割れ性、および全姿勢溶接時のビード形状が良好な高強度溶接金属
JP2011005531A (ja) * 2009-06-26 2011-01-13 Nippon Steel Corp フラックス入り高張力鋼用溶接ワイヤ及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2671668A4 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2821175A4 (en) * 2012-02-27 2016-01-20 Kobe Steel Ltd WELDING METAL WITH EXCELLENT RESISTANCE TO HYDROGEN INJURY
KR20140114893A (ko) * 2012-02-27 2014-09-29 가부시키가이샤 고베 세이코쇼 내수소 취화 감수성이 우수한 용접 금속
WO2013129284A1 (ja) * 2012-02-27 2013-09-06 株式会社神戸製鋼所 耐水素脆化感受性に優れた溶接金属
US9956650B2 (en) 2012-02-27 2018-05-01 Kobe Steel, Ltd. Weld metal having excellent resistance to hydrogen embrittlement
KR101629127B1 (ko) 2012-02-27 2016-06-09 가부시키가이샤 고베 세이코쇼 내수소 취화 감수성이 우수한 용접 금속
DE112013006287B4 (de) 2012-12-27 2022-01-27 Posco Höchstfeste Fülldraht-Lichtbogenschweissverbindung mit exzellenter Schlagzähigkeit, und Schweissdraht zu ihrer Herstellung
CN104955608A (zh) * 2013-01-11 2015-09-30 株式会社神户制钢所 耐氢脆化敏感性优异的焊接金属和埋弧焊用实芯焊丝
EP2944417A4 (en) * 2013-01-11 2016-08-24 Kobe Steel Ltd WELDED METAL WITH EXCELLENT RESISTANCE TO HYDROGEN PRESSURE AND FULL WIRE FOR UNDERPULSE WELDING
RU2618036C2 (ru) * 2013-01-11 2017-05-02 Кабусики Кайся Кобе Сейко Се (Кобе Стил, Лтд.) Металл сварного шва с повышенной устойчивостью к водородному охрупчиванию и проволока сплошного сечения для дуговой сварки под флюсом
CN104955608B (zh) * 2013-01-11 2018-04-27 株式会社神户制钢所 耐氢脆化敏感性优异的焊接金属和埋弧焊用实芯焊丝
WO2014109402A1 (ja) * 2013-01-11 2014-07-17 株式会社神戸製鋼所 耐水素脆化感受性に優れた溶接金属及びサブマージアーク溶接用ソリッドワイヤ
US20150368767A1 (en) * 2013-03-07 2015-12-24 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Weld metal and welded structure
CN105026100A (zh) * 2013-03-08 2015-11-04 株式会社神户制钢所 焊接金属及具备它的焊接结构体
JP7564428B2 (ja) 2020-09-02 2024-10-09 日本製鉄株式会社 溶接金属及び溶接継手

Also Published As

Publication number Publication date
KR20130100014A (ko) 2013-09-06
EP2671668A4 (en) 2016-07-27
CN103338894B (zh) 2016-08-10
JP2012176434A (ja) 2012-09-13
CN103338894A (zh) 2013-10-02
CA2822966A1 (en) 2012-08-09
EP2671668A1 (en) 2013-12-11
MY158424A (en) 2016-10-14
CA2822966C (en) 2016-01-26
US20130315777A1 (en) 2013-11-28
US9718150B2 (en) 2017-08-01
SG191777A1 (en) 2013-08-30
JP5607002B2 (ja) 2014-10-15
KR101484873B1 (ko) 2015-01-20
RU2535417C1 (ru) 2014-12-10

Similar Documents

Publication Publication Date Title
JP5607002B2 (ja) 耐水素脆化感受性に優れた溶接金属
KR101629127B1 (ko) 내수소 취화 감수성이 우수한 용접 금속
JP5606985B2 (ja) 耐水素脆化感受性に優れた溶接金属
WO2014109402A1 (ja) 耐水素脆化感受性に優れた溶接金属及びサブマージアーク溶接用ソリッドワイヤ
WO2012108517A1 (ja) クリープ特性に優れた溶接金属
KR101697845B1 (ko) 용접 열 영향부의 인성이 강화된 강재
KR101060789B1 (ko) 용접 열 영향부 및 모재의 저온 인성이 우수한 저항복비 고장력 강판 및 그 제조 방법
JP5953648B2 (ja) 溶接金属部の靭性に優れた鋼材のレーザ溶接継手及び溶接金属部の靭性に優れた鋼材のレーザ溶接継手の製造方法
WO2018047881A1 (ja) ガスシールドアーク溶接用フラックス入りワイヤ及び溶接金属
WO2018047880A1 (ja) ガスシールドアーク溶接用フラックス入りワイヤ及び溶接金属
JP5906201B2 (ja) 耐水素脆化感受性に優れた溶接金属
CN111055042A (zh) 一种疲劳性能优异的大热输入焊接接头
JP5597401B2 (ja) 高強度高靭性溶接金属

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12741500

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2822966

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 13982761

Country of ref document: US

Ref document number: 2012741500

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137020478

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2013140454

Country of ref document: RU

Kind code of ref document: A