WO2012102554A2 - 빠른 흡착속도를 가지는 산소 선택성 흡착제 및 이의 제조방법 - Google Patents

빠른 흡착속도를 가지는 산소 선택성 흡착제 및 이의 제조방법 Download PDF

Info

Publication number
WO2012102554A2
WO2012102554A2 PCT/KR2012/000610 KR2012000610W WO2012102554A2 WO 2012102554 A2 WO2012102554 A2 WO 2012102554A2 KR 2012000610 W KR2012000610 W KR 2012000610W WO 2012102554 A2 WO2012102554 A2 WO 2012102554A2
Authority
WO
WIPO (PCT)
Prior art keywords
oxygen
bamg
particles
selective adsorbent
mgc0
Prior art date
Application number
PCT/KR2012/000610
Other languages
English (en)
French (fr)
Other versions
WO2012102554A3 (ko
Inventor
박종호
이광복
김종남
범희태
박종기
고창현
한상섭
조순행
Original Assignee
한국에너지기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국에너지기술연구원 filed Critical 한국에너지기술연구원
Priority to US13/980,094 priority Critical patent/US9192911B2/en
Priority to EP12739507.7A priority patent/EP2669003B1/en
Publication of WO2012102554A2 publication Critical patent/WO2012102554A2/ko
Publication of WO2012102554A3 publication Critical patent/WO2012102554A3/ko

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • B01J20/041Oxides or hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • B01J20/043Carbonates or bicarbonates, e.g. limestone, dolomite, aragonite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3078Thermal treatment, e.g. calcining or pyrolizing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3291Characterised by the shape of the carrier, the coating or the obtained coated product
    • B01J20/3293Coatings on a core, the core being particle or fiber shaped, e.g. encapsulated particles, coated fibers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/02Preparation of oxygen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/02Oxides or hydroxides
    • C01F11/04Oxides or hydroxides by thermal decomposition
    • C01F11/06Oxides or hydroxides by thermal decomposition of carbonates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/18Carbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/40Alkaline earth metal or magnesium compounds
    • B01D2251/402Alkaline earth metal or magnesium compounds of magnesium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/40Alkaline earth metal or magnesium compounds
    • B01D2251/408Alkaline earth metal or magnesium compounds of barium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/60Inorganic bases or salts
    • B01D2251/602Oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/60Inorganic bases or salts
    • B01D2251/606Carbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/112Metals or metal compounds not provided for in B01D2253/104 or B01D2253/106
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/10Single element gases other than halogens
    • B01D2257/104Oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/06Polluted air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/42Materials comprising a mixture of inorganic materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/88Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by thermal analysis data, e.g. TGA, DTA, DSC
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM

Definitions

  • the present invention relates to an oxygen selective adsorbent capable of adsorbing oxygen from air at a high adsorption rate and producing pure oxygen, and more specifically, to a method of manufacturing the same.
  • An oxygen-selective adsorbent prepared by high temperature firing of BaMg (C0 3 ) 2 particles or particles having MgC0 3 or Mg (OH) 2 attached to the outside of BaMg (C0 3 ) 2 and a method for producing the same.
  • Barium oxide converts to barium peroxide by reacting with oxygen and undergoes oxidation reaction shown in the following formula (1).
  • oxygen is adsorbed and oxygen is released through reduction reaction in the atmosphere without oxygen. Due to its characteristics, it was also used in the oxygen production process in the early 20th century.
  • barium peroxide tends to lose oxygen adsorption capacity as the cycle progresses due to lack of thermal stability at high temperatures. More specifically, barium peroxide is a thermally unstable substance, which can cause particle sintering at high temperatures. As a result, the particle size increases and the oxygen adsorption capacity is gradually lost as the process proceeds. It is necessary to prevent this phenomenon in order to prepare an oxygen-selective adsorbent which can maintain the adsorption capacity. It is necessary to create a structure that can stably protect the barium component (barium oxide) that selectively adsorbs oxygen because it easily loses its reactivity with oxygen.
  • barium component barium oxide
  • U.S. Patent No. 4,092,264 discloses impregnating barium oxide with zirconia to increase the utilization of barium and to produce oxygen adsorbent with improved stability.
  • Method of impregnating barium oxide disclosed in U.S. Patent No. 4,092,264 First, the porous zirconia is fired at high temperature to remove impurities, the zirconia and barium peroxide are mixed with each other, and the obtained mixture is heated to impregnate barium peroxide in zirconia.
  • impregnation of barium peroxide with zirconia increases thermal stability, and the heat generated from the oxidation reaction with oxygen can be effectively stored during operation of the oxygen production process, and this heat can be used during reduction, resulting in higher process efficiency and less than 20% of barium. Impregnation of zirconia has been shown to be the most stable and to increase the utilization of barium. .
  • Magnesium salts can be used to induce evaporation of water after mixing well, to form a precipitate, and to undergo a high temperature firing process to capture barium oxide in the skeleton of the magnesium oxide.
  • this method has a problem that barium hydroxide reacts with moisture to form barium hydroxide during the firing process, and barium hydroxide is low in stability and high in reactivity, and thus is not readily available, and has low oxygen adsorption capacity after firing.
  • the purpose of the present invention is to provide oxygen in the air faster than conventional oxygen-selective adsorbents.
  • the present invention provides an oxygen selective adsorbent which exhibits high thermal stability and excellent oxygen adsorption capacity while adsorbing at a speed, and a method of manufacturing the same.
  • the present inventors have conducted extensive studies on oxygen-selective adsorbents and found that BaMg (CO 3) 2 particles or particles containing MgC0 3 or Mg (OH) 2 attached to BaMg (C0 3 ) 2 outside the high temperature firing method.
  • BaMg (C0 3 ) 2 BaC0 3 and MgC0 3 are converted to barium oxide and magnesium oxide, respectively, to form nanoparticles of barium oxide and magnesium oxide, thereby increasing oxygen adsorption rate.
  • the present invention selectively selects oxygen in the air.
  • a method for producing an oxygen selective adsorbent to adsorb BaMg (C0 3 ) 2 particles or
  • BaMg (C0 3 ) 2 particles or particles having MgC0 3 or Mg (OH) 2 attached to the outside of BaMg (C0 3 ) 2 are prepared.
  • the BaMg (C0 3) 2 is BaC0 3 and MgC0 3 archaism common compounds (solid solution) as is called discovery and norsethite Among the natural minerals.
  • BaC0 3 and MgC0 method for sintering prepared by mixing at least 500 ° C for 3 particles, instead of M g Cl 2 in the method for synthesis of BaC0 3 on MgCl 2 and NaHC0 3 accommodating the receiving phase synthesis method of M g C0 3 .3H 2 0 Is prepared using Mg 2+ as a member, and C (V-) is added to water containing Ba 2+ and Mg 2+ .
  • the BaMg (C0 3 ) 2 particles can be prepared by dispersing a mixture of a barium-containing compound and a carbonate in distilled water and then adding a magnesium carbonate precursor. Can be manufactured.
  • BalV [g (C0 3 ) ⁇ outside M g C0 3 or
  • Mg (OH) 2 7 -attached particles are obtained by dispersing a mixture of barium-containing compound and carbonate in distilled water, adding magnesium carbonate precursor to obtain the prepared particles, filtering and washing them, and dispersing it again in distilled water. It can be prepared by adding magnesium carbonate precursor, sonicating it, and adding ammonia water to it, and by other methods.
  • the barium-containing compound may be BaC0 3 or BaCl 2 , but is not limited thereto.
  • the carbonate mixed with the barium-containing compound is
  • a carbonate containing the CCV- source such as Na 2 C0 3 can be used without limitation.
  • the magnesium carbonate precursor is Mg (N0 3) 2 .6H 2 0 3 .3H 2 0 days or MgC0, but is not necessarily limited thereto.
  • MgC0 3 or Mg (OH) ⁇ attached particles are calcined at high temperature.
  • Particles with Mg (OH) 2 can be produced by firing at temperatures between 700 and 800 ° C under hydrogen atmosphere or by firing at temperatures between 900 and 1200 ° C under oxygen atmosphere.
  • BaMg (C0 3) 2 particles or BaMg (C0 3) 2 When firing the particles of the MgC0 3 or Mg (OH) 2 attached to an unexpected portion, MgC0 present in the BaMg (C0 3) 2 3 Is easily oxidized at 500 ° C and converted to magnesium oxide, but BaC0 3 is converted to barium oxide in an oxygen atmosphere above 900 ° C or in a hydrogen atmosphere below 800 ° C.
  • the present invention also relates to an oxygen selective adsorbent prepared according to the above-mentioned manufacturing method.
  • the present invention can provide an oxygen selective adsorbent exhibiting high thermal stability and excellent oxygen adsorption capacity while adsorbing oxygen in the air at high speed, and a method of manufacturing the same.
  • Example 1 is an electron micrograph taken of the oxygen selective adsorbent prepared in Example 1 of the present invention.
  • Example 2 is an electron micrograph taken of the oxygen selective adsorbent prepared in Example 2 of the present invention.
  • Example 3 is an XRD pattern taken of an oxygen selective adsorbent prepared in Example 1 of the present invention.
  • Example 4 is an XRD pattern taken of an oxygen selective adsorbent prepared in Example 2 of the present invention.
  • FIG. 5 is a graph showing the results of oxygen adsorption and desorption on the oxygen selective adsorbent prepared in Example 1 of the present invention.
  • the solution (6 ⁇ ⁇ « 3 ⁇ 4-10 ⁇ %) and 20 cc of methanol were evenly dispersed in a mixed solution and a small amount of distilled water was slowly added. The solution was then gelled by the addition of water. The gel was dried at 40 ° C. for 3 hours, methane was removed at 80 ° C., and calcined at 900 ° C. to obtain a final oxygen adsorbent.
  • FIG. 1 and 2 are SEM photographs taken of the oxygen selective adsorbents prepared in Examples 1 and 2, respectively.
  • BaMg (C0 3 ) 2 particles were manufactured in the shape of an angled square particle.
  • the Mg (OH) 2 in the form of 8 & ⁇ 0 3 ) It can be seen that the particles attached in the form surrounding the two were produced.
  • the BaMg (C0 3 ) 2 particles prepared in Examples 1 and 2 and the particles having MMg (OH) 2 attached to the outside of 831 ⁇ (0) 3 ) 2 were observed to be about 1 to 5 microns. .
  • Example 2-West White Spot Analysis 3 and 4 show the results of X-ray diffraction analysis of the oxygen-selective adsorbents prepared in Examples 1 and 2, respectively.
  • FIG. 3 shows BaMg (C0 3 ) 2 particles prepared in Example 1.
  • FIG. 500 ° C, 700 o C logo on firing and then thereto for X-ray diffraction analysis results are shown together. Referring to Figure 3, 21 ° C, 22 ° C, BaMg (C0 3) , etc. 29.5 ° C of the second decision A characteristic peak was observed. When the crystal was calcined at 500 ° C.
  • FIG. 5 shows the adsorption and desorption characteristics of oxygen using a thermal gavimetric analysis (TGA) using an oxygen selective adsorbent prepared in Example 1.
  • TGA thermal gavimetric analysis
  • Example 1 The particles obtained in Example 1 were placed in a TGA sampler and then placed in an oxygen atmosphere.
  • FIG. 6 shows the results of comparing the adsorption rate of the oxygen selective adsorbents obtained in Examples 1 and 2 with the adsorption and desorption rates of the oxygen adsorbents obtained in Comparative Example 1.
  • the Y-axis shows the ratio of adsorption amount / saturation adsorption.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Thermal Sciences (AREA)
  • Geology (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

본 발명은 공기 중의 산소를 선택적으로 흡착하는 산소 선택성 흡착제의 제조방법으로서, BaMg(CO3)2입자 또는 BaMg(CO3)2의 외부에 MgCO3 또는 Mg(OH)2가 부착된 입자를 제조하는 단계 및 상기 입자를 고온 소성하는 단계를 포함하는 것을 특징으로 하는 산소 선택성 흡착제의 제조방법 및 이에 따라 제조된 산소 선택성 흡착제를 제공한다.본 발명에 따른 산소 선택성 흡착제는 종래의 산소 선택성 흡착제보다 공기 중의 산소를 빠른 속도로 흡착시키면서도 높은 열적 안정성 및 우수한 산소 흡착능을 나타낸다.

Description

명세서
명의명칭:빠른흡착속도를가지는산소선택성흡착제및이의 제조방법
기술분야
본발명은공기로부터산소를빠른흡착속도로흡착시켜고순도산소를생산할 수있는산소선택성흡착제및이의제조방법에관한것으로,보다상세하게는
BaMg(C03)2입자또는 BaMg(C03)2의외부에 MgC03또는 Mg(OH)2가부착된 입자를고온소성하여제조된산소선택성흡착제및이의제조방법에관한 것이다.
배경기술
산화바륨은산소와반웅하여하기화학식 1에나타난산화반응을거치면서 과산화바륨으로전환이되고이과정중에서산소를흡착하고산소가없는 분위기에서는환원반웅을통하여산소를배출하는물질로서잘알려져 있으며, 산화바륨의이러한특성으로인해 20세기초에는산소를제조하는공정에 사용되기도하였다.
[화학식 1]
Figure imgf000002_0001
[5] 하지만과산화바륨은높은온도에서열적안정성이없어사이클이진행되면서 산소흡착능력을소실하는경향이 있다.보다구체적으로과산화바륨은 열적으로상당히불안정한물질로서고온에서 입자간의소결현상이발생할수 있으며,이로인해입자의크기가커지고공정이진행됨에따라산소흡착능이 점점소실된다.이런현상을막아주어야만흡착능을유지할수있는산소선택성 흡착제의제조가가능하다.또한,과산화바륨휸반웅성이우수하여다른무기질 또는금속성분과쉽게반웅하여산소와의결합특성을잃어버리게되므로 산소를선택적으로흡착하는바륨성분 (산화바륨)을안정적으로보호할수있는 구조를만들어주는것이필요하다.
[6] 이러한문제를해결하기위하여다양한방법이시도되었는데,미국특허
제 3,773,680호및미국특허제 3,903,010호에서는산화바륨을돌로마이트에 고정화하여바륨의이용률을높이고반웅성을높일수있다고개시하고있다. 상기미국특허에 있어산소선택성흡착제의제조는단순히산 바륨과
.돌로마이트고체를서로흔합하여고압에서펠렛형태로성형하는방법을 사용하였다. [7] 미국특허제 4,092,264호에서는지르코니아에산화바륨을함침함으로써바륨의 이용률을높이고,안정성이향상된산소흡착제를제조할수있다고개시하고 있다.미국특허제 4,092,264호에서개시하고있는산화바륨을함침하는방법은 다음과같다.먼저,다공성의지르코니아를고온에서소성하여불순물들을 제거하고상기지르코니아와과산화바륨을서로흔합하고수득된흔합물을 가열하여과산화바륨을지르코니아에함침한다.상기특허에따르면,상술한 방법에따라지르코니아에과산화바륨을함침하면열적안정성이높아지며, 산소생산공정운전시산소와의산화반웅에서발생하는열을효과적으로 저장하였다가환원시에이열을이용할수있으므로공정의효율이높아지며, 20%이하로바륨을지르코니아에함침하는것이가장안정성이높고바륨의 이용률도높일수있다고개시하고있다.
[8] 상술한특허를보면,주로건조한상태에서과산화바륨과제 3의기질을
흔합하는방법또는함침하는방법을사용하였다.그러나,과산화바륨과제 3의 기질올흔합하는방법을사용하는경우불균일한보호막을형성함으로써 산화바륨의이용률이높지않고,과산화바륨을제 ·3의기질에함침하는방법을 사용하는경우에는기질로작용하는물질을과량사용하여야하기때문에산소 흡착능이높은소재의개발이불가능하다.
[9] 다른방법으로수용액상에서산화바륨과산화마그네슘의전구체 (수용성
마그네슴염)를이용하여잘흔합한후물의증발을유도하여침전을형성하고 고온소성과정을거쳐산화바륨을산화마그네슴의골격에포집할수있다. 하지만,이방법은소성과정중산화바륨이수분과반웅하여수산화바륨을 형성하고이수산화바륨은안정성이낮고반웅성인높아소성이용이하지 않으며소성후에도산소의흡착능이낮은문제점이있다.
[10]
발명의상세한설명
기술적과제
[11] 본발명의목적은종래의산소선택성흡착제보다공기중의산소를빠른
속도로흡착시키면서도높은열적안정성및우수한산소흡착능을나타내는 산소선택성흡착제및이의제조방법을제공하는데있다.
과제해결수단
[12] 본발명자들은산소선택성흡착제에대해예의연구를거듭한결과, BaMg(CO 3)2입자또는 BaMg(C03)2의외부에 MgC03또는 Mg(OH)2가부착된입자를고온 소성하는경우,상기 BaMg(C03)2중의 BaC03와 MgC03가각각산화바륨, 산화마그네슴으로전환되면서나노입자크기의산화바륨및산화마그네슘이 형성되면서산소흡착속도가빨라진다는사실을알게되어본발명을
완성하기에이르렀다. "
[13] 상기목적을달성하기위하여 ,본발명은공기중의산소를선택적으로 흡착하는산소선택성흡착제의제조방법으로서 , BaMg(C03)2입자또는
83^ (0)3)2의외부에 MgC03또는 Mg(OH)^l"부착된입자를제조하는단계및 상기입자를고온소성하는단계를포함하는것을특징으로하는산소선택성 흡착제의제조방법을제공한다ᅳ
[14]
[15] 이하본발명의산소선택성흡착제의제조방법을상세히설명한다.
[16] 우선, BaMg(C03)2입자또는 BaMg(C03)2의외부에 MgC03또는 Mg(OH)2가 부착된입자를제조한다.
[17] 상기 BaMg(C03)2는 BaC03와 MgC03의고체흔합물 (solid solution)로서자연 광물중에서도발견되며 norsethite라고불리고있다.이물질의합성하는 방법으로는다양한방법이존재하는데고온에서 BaC03와MgC03입자를섞어서 500°C이상에서소성하여제조하는방법, BaC03를 MgCl2와 NaHC03수용상에서 합성하는방법,상기수용상합성하는방법에서 MgCl2대신 MgC03.3H20를 Mg2+ 의원으로사용하여제조하는방법, Ba2+, Mg2+가존재하는수용상에 C(V-를 추가하여제조하는방법등이알려져 있다.
[18] 본발명의일실시형태에있어서,상기 BaMg(C03)2입자는바륨함유화합물과 탄산염의흔합물을증류수에분산한후탄산마그네슘전구체를첨가함으로써 제조할수있으며,이외다른방법에의해제조될수있다.
[19] 본발명의일실시형태에있어서,상기 BalV[g(C03)^외부에 MgC03또는
Mg(OH)27|-부착된입자는바륨함유화합물과탄산염의흔합물을증류수에 분산한후탄산마그네슘전구체를첨가하여제조된입자를수득한후,이를여과 및세척하여다시증류수에분산시키고탄산마그네슘전구체를첨가하여 초음파처리하고,이에암모니아수를첨가하여제조될수있으며,이외다른 방법에의해제조될수있다.
[20] 83 ^033)2의외부에 MgC03또는 Mg(OH)2가부착된입자에서 MgC03또는 - Mg(OH)2는 BaMg(C03)2대비 1~10몰비율로상기 BaMg(C03)2의외부에
부착되는것이바람직하다.
[21] 상술한 BaMg(C03)2의외부에 MgC03또는 Mg(OH)2가부착된입자를고온
소성하여산소선택성흡착제를제조하는경우열적안정성이우수한산소 선택성흡착제를제조할수있다. '
[22] 본발명의일실시형태에있어서,상기바륨함유화합물은 BaC03또는 BaCl2일 수있으나,이에제한되지않는다.
[23] 본발명의일실시형태에있어서,상기바륨함유화합물과혼합되는탄산염은
Na2C03등과같이 CCV-소스가포함된탄산염을제한없이사용할수있다.
[24] 본발명의일실시형태에있어서,상기탄산마그네슘전구체는 Mg(N03)2.6H20 또는 MgC03.3H20일수있으나,반드시이에제한되는것은아니다.
[25] 다음으로,상기단계에서제조된 BaMg(C03)2입자또는 BaMg(C03)2의외부에
MgC03또는 Mg(OH)^ 부착된입자를고온소성한다. [26] 본발명의일실시형태에있어서,상기 BaMg(C03)2의외부에 MgC03또는
Mg(OH)2가부착된입자는수소분위기하에서 700~800 °C온도에서소성되거나, 산소분위기하에서 900~1200oC온도에서소성되어제조될수있다.
[27] 이와같이 BaMg(C03)2입자또는 BaMg(C03)2의외부에 MgC03또는 Mg(OH)2 가부착된입자를소성하는경우,상기 BaMg(C03)2중에존재하는 MgC03는 500°C이하에서쉽게산화되어산화마그네슘으로전환이되지만, BaC03는 900°C 이상의산소분위기또는 800°C이하의수소분위기에서산화바륨으로전환이 된다.
[28] 또한,본발명은상술한제조방법에따라제조된산소선택성흡착제를
제공한다.
발명의효과
[29] 본발명은공기중의산소를빠른속도로흡착시키면서도높은열적안정성및 우수한산소흡착능을나타내는산소선택성흡착제및이의제조방법을제공할 수있다ᅳ
도면의간단한설명
[30] 도 1^본발명의실시예 1에서제조한산소선택성흡착제에대해촬영한전자 현미경사진이다.
[31] 도 2는본발명의실시예 2에서제조한산소선택성흡착제에대해촬영한전자 현미경사진이다.
[32] 도 3은본발명의실시예 1에서제조한산소선택성흡착제에대해촬영한 XRD 패턴이다ᅳ
[33] 도 4는본발명의실시예 2에서제조한산소선택성흡착제에대해촬영한 XRD 패턴이다.
[34] 도 5는본발명의실시예 1에서제조한산소선택성흡착제에대해산소흡착및 탈착을수행한결과를나타낸그래프이다.
[35] 도 6은본발명의실시예 1과실시예 2에서제조한산소선택성흡착제와
비교예 1에서제조된산소흡착제의흡착속도를비교한그래프이다.
발명의실시를위한형태
[36] 이하,본발명의이해를돕기위하여바람직한실시예를제시하나,하기
실시예는본발명을예시하는것일뿐본발명의범주및기술사상범위내에서 다양한변경및수정이가능함은당업자에게있어사명백한것이며,이러한변형 및수정이첨부된특허청구범위에속하는것도당연한것이다.
[37]
[38] <실시예 >
[39]
[40] 실시예 1
[41] BaC038g과 Na2C038g의흔합물을 200cc의증류수에분산한후,이분산용액에 마그네슘 나이트레 이트 (Mg(N03)2.6H20, 20g)를 증류수 lOOcc에 녹인 용액을 천천히 첨가하는 방법으로 제조하였다 (Ba/Mg 몰비 =0.5). 이 때 BaC03와 NaC03 를 녹인 용액은 90°C로 유지하였다. 그 후 얻어지는 BaMg(C03)2 입자들을 여 과 및 수세 과정을 거 쳐 수거하였고 이에 대해 전자 현미 경 사진을 촬영하여 도 1에 나타내었고, XRD 패턴을 측정하여 도 3에 나타내었다. 상기 수득된 입자들에 대해 전기로에서 산소 분위기 하에서 900°C 온도에서 10시간 동안 소성하여 본 발명에 따른 산소 선택성 흡착제를 제조하였다.
[42]
[43] 실시 예 2
[44] BaC038g과 Na2C03 4g의 혼합물을 200cc의 증류수에 분산한 후 이 분산용액에 마그네슴 나이트레 이트 (Mg(N03)2.6H20, 10g)를 증류수 lOOcc에 녹인 용액을 천천히 첨가하는 방법으로 제조하였다 (Ba/Mg 몰비 =1). 이 때 BaC03와 Na2C03를 녹인 용액은 90°C로 유지하였다. 그 후 얻어지는 입자들을 여과 및 수세 과정을 거 쳐 수득하였다. 이 런 과정을 거 쳐 얻어 진 입자 5g을 증류수 (100 ml)에 분산한 후 마그네슘 나이트레이트 10g을 상기 용액에 녹이고 초음파 처 리하였다. 상기 초음파 처 리 된 용액에 암모니 아수를 천천히 첨가하여 Mg(OH)2가 형성 되 게 하여 BaMg(C03)2에 대해 피 막화하였고, 이에 대해 전자 현미 경 사진을 촬영하여 도 2에 나타내었고, XRD 패턴을 측정 하여 도 4에 나타내었다. 상기 수득된 입자들에 대해 전기로에서 산소 분위기 하에서 900 °C 은도에서 10시간 동안 소성하여 본 발명에 따른 산소 선택성 흡착제를 제조하였다.
[45]
[46] 비교예 1
[47] 바륨전구체인 과산화바륨 일정 량을 30cc의 마그네슘 메톡사이드
용액 (6\^«¾-10^%)과 메탄올 20cc를 흔합한 용액에 고르게 분산한 다음 소량의 증류수를 천천히 첨가하였다. 이후 물을 첨가하여 상기 용액을 젤화시 켰다. 이 젤을 40oC에서 3시간 건조하고 80°C에서 메탄을을 제거 한 다음 900oC에서 소성을 하여 최종 산소 흡착제를 수득하였다.
[48]
[49] 시 험 예 1 - 저자현미 경 사?ᅵ 관참
[5이 도 1 및 도 2는 각각 실시 예 1 및 실시 예 2에서 제조된 산소 선택성 흡착제에 대해 촬영 한 SEM 사진이다. 도 1을 참조하면 실시 예 1에서는 각진 사각형 의 입자 형 태로 BaMg(C03)2 입자가 제조된 것을 알 수 있고,도 2를 참조하면, 편상의 Mg(OH)2가 8& ^^03)2를 둘러싸고 있는 형 태로 부착된 입자가 제조된 것을 알 수 있다. 상기 실시 예 1 및 실시 예 2에서 제조된 BaMg(C03)2 입자 및 831\ (0)3)2의 외부에 MMg(OH)2가 부착된 입자의 크기는 1~5 마이크론 정도로 관찰되 었다.
[51]
[52] 시 예 2 - 서 희 점분석 [53] 도 3및도 4는각각실시예 1및실시예 2에서제조된산소선택성흡착제의 X선회절분석결과를나타내었다.도 3에는실시예 1에서제조된 BaMg(C03)2 입자를 500°C, 700oC로고온소성한후이에대한 X선회절분석결과도함께 나타내었다.도 3을참조하면, 21°C, 22°C, 29.5°C등에서 BaMg(C03)2결정의특성 피크 (peak)가관찰되었다.이결정을 500°C, 700°C로소성하면 BaMg(C03)2 결정의피크는사라지고 BaC03피크가형성되는것이관찰되었다.도 4에는 실시예 2에서제조된흡착제의 XRD피크를나타내었는데,이로부터실시예 2에서도 BaMg(C03)2결정이형성된것을관찰할수있다.
[54]
[55] 시험예 3 -산소선택성홉착제의장기홉탈착특성심험
[56] 도 5에는실시예 1에서제조된산소선택성흡착제를이용하여 TGA (thermal gavimetric analysis)를이용하여산소의흡착및탈착특성을관찰한것이다.
실시예 1에서얻어진입자를 TGA샘플로더에올린후산소분위기에서
500°C까지승온한후 3시간유지하였다.이과정중에는 BaMg(C03)2증의 MgC03 가 MgO로전환되면서무게가감소하며 BaC03는결정내에존재하게된다.다시 제조된샘홀의온도를 900°C까지승온하면 BaC03가 BaO로전환된다.이샘플을 산소분위기에서 600°C로온도를내리면산소가흡착이되어무게의증가가 나타나게되고포화흡착이이루어진후헬륨분위기로전환하면산소는 탈착되게된다.도 5에서산소주입-헬륨주입을반복하면서산소의흡착및 탈착을측정한결과를나타내었는데상당히안정적으로산소의흡착량이 유지되는것을알수있다.본시험예에서측정된산소의흡착량은 1.9
mmol/g이었다.
[57]
[58] 시 예4-산소선택성홉착제의흡착탈착속도
[59] 도 6에는실시예 1및실시예 2에서얻어진산소선택성흡착제의흡착속도를 비교예 1에서얻어진산소흡착제의흡착및탈착속도와비교하여그결과를 나타내었다.도 6에서 X축은시간을나타내었고 Y축은흡착량 /포화흡착량의 비율올나타내었다.포화흡착량의 0.8까지흡착되는시간을비교해보면실시예 1과실시예 2는약 2분만에포화흡착량의 80%까지흡착이되는것으로
관찰되었다.하지만,비교예 1에서얻어진흡착제는 8분정도가소요되는것으로 나타났다.이로부터본발명에서얻어진흡착제가더빠른흡착속도를보이는 것을알수있다.

Claims

청구범위
공기 중의 산소를 선택적으로 흡착하는 산소 선택성 흡착제의 제조방법으로서 ,
BaMg(C03)2 입자 또는 BaMg(C03)2의 외부에 MgC03 또는 Mg(OH)2 가 부착된 입자를 제조하는 단계 및 상기 입자를 고온 소성하는 단계를 포함하는 것을 특징으로 하는 산소 선택성 흡착제의 제조방법 .
제 1항에 있어서,
상기 BaMg(C03)2의 외부에 MgC03 또는 Mg(OH)2가 부착된 입자에서 MgC03 또는 Mg(OH)2는 BaMg(C03)2 대비 1~10 몰비율로 상기 8^£ 03)2의 외부에 부착되 는 것을 특징으로 하는 산소 선택성 흡착제의 제조방법 .
제 1항에 있어서 ,
상기 BaMg(C03)2 압자는 바륨함유 화합물과 탄산염 의 흔합물을 증류수에 분산한 후 탄산마그네슘 전구체를 첨가하여 제조되는 것을 특징으로 하는 산소 선택성 흡착제의 제조방법 .
제 1항에 있어서 ,
상기 BaMg(C03)2의 외부에 MgC03 또는 Mg(OH)2가 부착된 입자는 바륨함유 화합물과 탄산염의 흔합물을 증류수에 분산한 후 탄산마그네슘 전구체를 첨가하여 제조된 입자를 수득한 후, 이를 여과 및 세척하여 다시 증류수에 분산시 키 고 탄산마그네슘 전구체를 첨가하여 초음파 처 리하고, 이에 암모니아수를 첨가하여 제조되는 것을 특징으로 하는 산소 선택성 흡착제의 제조방법 . 제 3항 또는 제 4항에 있어서 ,
상기 바륨함유 화합물은 BaC03또는 BaCl2인 것을 특징으로 하는 산소 선택성 흡착제의 제조방법 .
제 3항 또는 제 4항에 있어서,
상기 탄산염은 Na2CCV 것을 특징으로 하는 산소 선택성 흡착제의 제조방법 .
제 3항 또는 제 4항에 있어서,
상기 탄산마그네슘 전구체는 Mg(N03)2.6H20 또는 MgC03.3H20인 것을 특징으로 하는 산소 선택성 흡착제의 제조방법 .
제 1항에 있어서,
상기 BaMg(C03)2 입자 또는 BaMg(C03)2의 외부에 MgC03 또는 Mg(OH)2가 부착된 압자를 고온 소성하는 단계는 산소 분위 기 하에서 900~1200 °C 온도에서 수행되는 것을 특징으로 하는 산소 선택성 흡착제의 제조방법 . 제 1항에 있어서 ,
상기 BaMg(C03)2 입자 또는 BaMg(C03)2의 외부에 MgC03 또는 Mg(OH)27l- 부착된 입자를 고온 소성하는 단계는 수소 분위 기 하에서 700~800 °C 온도에서 수행되는 것을 특징으로 하는 산소 선택성 흡착제의 제조방법 .
산화바륨의 외부에 산화마그네슘이 형성 된 산소 선택성 흡착제로서,
상기 산소 선택성 흡착제는 BaMg(C03)2 입자 또는 BaMg(C03)2의 외부에 MgC03 또는 Mg(OH)2가 부착된 입자를 고온 소성하여 형성 된 것임을 특징으로 하는 산소 선택성 흡착제 .
제 10항에 있어서 ,
상기 BaMg(C03)2의 외부에 MgC03 또는 Mg(OH)2가 부착된 입자에서 MgC03 또는 Mg(OH)2는 BaMg(C03)2 대비 1~10 몰비율로 상기 831^ 03)2의 외부에 형성 되는 것을 특징으로 하는 산소 선택성 흡착제 .
PCT/KR2012/000610 2011-01-26 2012-01-26 빠른 흡착속도를 가지는 산소 선택성 흡착제 및 이의 제조방법 WO2012102554A2 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/980,094 US9192911B2 (en) 2011-01-26 2012-01-26 Oxygen-selective adsorbent having fast adsorption rate and preparation method thereof
EP12739507.7A EP2669003B1 (en) 2011-01-26 2012-01-26 Preparation method of an oxygen-selective adsorbent having fast adsorption rate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020110007915A KR101189593B1 (ko) 2011-01-26 2011-01-26 빠른 흡착속도를 가지는 산소 선택성 흡착제 및 이의 제조방법
KR10-2011-0007915 2011-01-26

Publications (2)

Publication Number Publication Date
WO2012102554A2 true WO2012102554A2 (ko) 2012-08-02
WO2012102554A3 WO2012102554A3 (ko) 2012-09-20

Family

ID=46581288

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/000610 WO2012102554A2 (ko) 2011-01-26 2012-01-26 빠른 흡착속도를 가지는 산소 선택성 흡착제 및 이의 제조방법

Country Status (4)

Country Link
US (1) US9192911B2 (ko)
EP (1) EP2669003B1 (ko)
KR (1) KR101189593B1 (ko)
WO (1) WO2012102554A2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2818239A3 (en) * 2013-06-28 2015-01-21 Korea Institute of Energy Research Oxygen selective adsorbent for easy desorption and preparation method thereof

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7810743B2 (en) 2006-01-23 2010-10-12 Kimberly-Clark Worldwide, Inc. Ultrasonic liquid delivery device
US9283188B2 (en) * 2006-09-08 2016-03-15 Kimberly-Clark Worldwide, Inc. Delivery systems for delivering functional compounds to substrates and processes of using the same
US11167260B2 (en) 2013-06-28 2021-11-09 Korea Institute Of Energy Research Oxygen selective adsorbent for easy desorption and preparation method thereof
KR101554496B1 (ko) * 2013-06-28 2015-09-22 한국에너지기술연구원 산소 선택성 흡착제 및 이의 제조방법
KR101470594B1 (ko) * 2013-11-22 2014-12-10 (주)제이원텍 유기발광소자 봉지공정의 인라인 질소정화시스템용 촉매 조성물의 제조방법
KR101589559B1 (ko) * 2014-09-17 2016-01-29 한국에너지기술연구원 고압 수소 소성을 이용한 산화물계 산소 선택성 흡착제 제조방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3773680A (en) 1972-04-07 1973-11-20 Cons Natural Gas Svc Acceptor compositions and method for oxygen enrichment processes
US3903010A (en) 1972-08-03 1975-09-02 Cons Natural Gas Svc Preparation of oxygen acceptor compositions and oxygen production process
US4092264A (en) 1976-12-27 1978-05-30 The Bendix Corporation Barium oxide coated zirconia particle for use in an oxygen extractor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3324654A (en) * 1966-09-29 1967-06-13 Arthur M Squires Method and apparatus for producing oxygen and power
US5135548A (en) * 1991-05-08 1992-08-04 Air Products And Chemicals, Inc. Oxygen selective desiccants
JP3041662B2 (ja) 1993-06-21 2000-05-15 三徳金属工業株式会社 酸素吸収・放出能を有する複合酸化物、その製造法、及びその使用方法
US5536302A (en) * 1994-03-23 1996-07-16 Air Products And Chemicals, Inc. Adsorbent for removal of trace oxygen from inert gases
JPH1085589A (ja) * 1996-09-18 1998-04-07 Tosoh Corp 空気分離用吸着剤、及びそれを用いた酸素ガス製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3773680A (en) 1972-04-07 1973-11-20 Cons Natural Gas Svc Acceptor compositions and method for oxygen enrichment processes
US3903010A (en) 1972-08-03 1975-09-02 Cons Natural Gas Svc Preparation of oxygen acceptor compositions and oxygen production process
US4092264A (en) 1976-12-27 1978-05-30 The Bendix Corporation Barium oxide coated zirconia particle for use in an oxygen extractor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2669003A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2818239A3 (en) * 2013-06-28 2015-01-21 Korea Institute of Energy Research Oxygen selective adsorbent for easy desorption and preparation method thereof

Also Published As

Publication number Publication date
EP2669003B1 (en) 2019-01-23
EP2669003A4 (en) 2017-12-20
US20130299737A1 (en) 2013-11-14
US9192911B2 (en) 2015-11-24
KR20120099316A (ko) 2012-09-10
EP2669003A2 (en) 2013-12-04
WO2012102554A3 (ko) 2012-09-20
KR101189593B1 (ko) 2012-10-12

Similar Documents

Publication Publication Date Title
WO2012102554A2 (ko) 빠른 흡착속도를 가지는 산소 선택성 흡착제 및 이의 제조방법
AU746767B2 (en) Carbon dioxide adsorbents containing magnesium oxide suitable for use at high temperatures
KR101770701B1 (ko) 티탄산 바륨을 포함한 이산화탄소 흡착제, 이를 포함한 이산화탄소 포집 모듈, 및 이를 이용한 이산화탄소 분리 방법
Yan et al. CO 2 capture by a novel CaO/MgO sorbent fabricated from industrial waste and dolomite under calcium looping conditions
CN103962087A (zh) 一种表面包覆改性的纳米氧化钙基co2吸附剂及其制备方法
Chang et al. Synthesis, Characterization, and CO2 Adsorptive Behavior of Mesoporous AlOOH‐Supported Layered Hydroxides
KR101146173B1 (ko) 높은 열적 안정성과 산소 흡착능을 가지는 산소 선택성 흡착제 및 이의 제조 방법
Karami et al. Study of Al2O3 addition to synthetic Ca‐based sorbents for CO2 sorption capacity and stability in cyclic operations
CN110424070A (zh) 一种多孔氧化铝纳米纤维及其制备方法
Yanase et al. CO2 capture and release of Na0. 7MnO2. 05 under water vapor at 25–150° C
RU2659256C1 (ru) Способ получения высокотемпературных адсорбентов CO2
KR20150124273A (ko) 알칼리금속 복염을 포함하는 이산화탄소 흡착제 및 그 제조 방법
WO2022182296A1 (en) Anion-doped metal oxide
KR101702123B1 (ko) 졸-겔을 통한 이산화탄소 포집용 흡착제의 제조방법
KR20150094071A (ko) 미량 산소를 제거하기 위한 세라믹 흡착제
US11167260B2 (en) Oxygen selective adsorbent for easy desorption and preparation method thereof
KR101589559B1 (ko) 고압 수소 소성을 이용한 산화물계 산소 선택성 흡착제 제조방법
EP2818239B1 (en) Oxygen selective adsorbent for easy desorption and preparation method thereof
CN117181183B (zh) 一种低成本氧化钙尖晶石二氧化碳捕集材料的制备方法
KR101671180B1 (ko) 중온 산소 선택성 흡착제 및 이의 제조방법
KR101554496B1 (ko) 산소 선택성 흡착제 및 이의 제조방법
Luisetto et al. Auto–Combustion CaO–CaZrO3 Mixed for Oxides Prepared by Capture: The Effect of High CaO Content Temperature on Cycle CO2 Stability
KR20150000635A (ko) 기체상 이산화탄소에 대한 선택적 건식 포집체의 제조방법
Luisetto et al. metals TTT

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12739507

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 13980094

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012739507

Country of ref document: EP