WO2012102350A1 - 表面プラズモンセンサ、及び屈折率の測定方法 - Google Patents

表面プラズモンセンサ、及び屈折率の測定方法 Download PDF

Info

Publication number
WO2012102350A1
WO2012102350A1 PCT/JP2012/051707 JP2012051707W WO2012102350A1 WO 2012102350 A1 WO2012102350 A1 WO 2012102350A1 JP 2012051707 W JP2012051707 W JP 2012051707W WO 2012102350 A1 WO2012102350 A1 WO 2012102350A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
surface plasmon
refractive index
plasmon sensor
incident
Prior art date
Application number
PCT/JP2012/051707
Other languages
English (en)
French (fr)
Inventor
松田豊稔
小田川裕之
Original Assignee
独立行政法人国立高等専門学校機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人国立高等専門学校機構 filed Critical 独立行政法人国立高等専門学校機構
Priority to EP12739985.5A priority Critical patent/EP2669658B1/en
Priority to JP2012554845A priority patent/JP5900970B2/ja
Priority to US13/981,727 priority patent/US8976360B2/en
Publication of WO2012102350A1 publication Critical patent/WO2012102350A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • G01N21/4133Refractometers, e.g. differential
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/21Polarisation-affecting properties
    • G01N21/211Ellipsometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/552Attenuated total reflection
    • G01N21/553Attenuated total reflection and using surface plasmons
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/008Surface plasmon devices

Definitions

  • the present invention relates to a surface plasmon sensor and a refractive index measurement method using the surface plasmon sensor.
  • a surface plasmon sensor is known as a sensor for optically measuring the refractive index of a liquid or the like.
  • the incident angle characteristics (absorption curve) of the reflectance ⁇ when the incident light of wavelength ⁇ is irradiated on the metal surface, the reflectance ⁇ decreases rapidly at a specific incident angle (hereinafter referred to as the absorption angle ⁇ sp ).
  • This phenomenon is called plasmon resonance absorption and is caused by electromagnetic wave coupling between incident light and surface plasmons existing on the metal surface.
  • the reflected light is reflected. Strength decreases.
  • the surface plasmon sensor is a sensor that measures the refractive index of a sample such as a liquid using plasmon resonance absorption.
  • Some surface plasmon sensors have a prism disposed on a metal surface, and others have a periodic structure in which grooves are cut at equal intervals on a metal surface as disclosed in Patent Document 1, for example.
  • the surface plasmon sensor, pre refractive index n s is to previously obtain the absorption angle theta sp known reference material, the difference ⁇ between the absorption angle theta sp absorption angle theta 'sp and the reference material sample measured refractive index n
  • the absorption angle ⁇ sp is an angle at which the reflectance ⁇ decreases rapidly. Therefore, the minimum point must be detected to measure the absorption angle ⁇ sp , and the measurement is complicated. there were.
  • the present invention has been made in view of the above points, and provides a surface plasmon sensor capable of easily measuring a refractive index and a method for measuring a refractive index.
  • a surface plasmon sensor includes a reflector having a metal layer having a periodic structure, a sample disposed thereon, a light source that irradiates the reflector with incident light, and the reflector.
  • a light receiving unit that receives the reflected light reflected, and a measurement unit that measures the refractive index of the sample based on phase difference information of two types of waves having different polarization directions included in the reflected light that is transmitted through and reflected by the sample. It is characterized by providing.
  • the refractive index measurement method is a refractive index measurement method using a surface plasmon sensor that measures the refractive index of a sample disposed on a reflector having a metal layer having a periodic structure.
  • the step of irradiating the reflecting plate with incident light, the step of receiving the reflected light reflected by the reflecting plate with a light receiving unit, and the two types of waves having different polarization directions included in the reflected light received by the light receiving unit Measuring the refractive index of the sample based on phase information.
  • the refractive index can be easily measured.
  • FIG. 1 is a schematic diagram of a surface plasmon sensor according to a first embodiment of the present invention.
  • 1 is a schematic diagram of a surface plasmon sensor according to a first embodiment of the present invention.
  • variation of the ellipticity of the reflected light which concerns on 1st Embodiment of this invention The figure which shows the phase of the reflected light which concerns on 1st Embodiment of this invention.
  • Schematic of the surface plasmon sensor which concerns on 2nd Embodiment of this invention Schematic of the surface plasmon sensor which concerns on 3rd Embodiment of this invention.
  • variation of the ellipticity which concerns on 3rd Embodiment of this invention The figure which shows the azimuth angle characteristic of the ellipticity which concerns on 3rd Embodiment of this invention. Schematic of the surface plasmon sensor which concerns on 4th Embodiment of this invention. The figure explaining the measuring method of the fluctuation
  • strength characteristic which concerns on 8th Embodiment of this invention The figure explaining the measuring method of the received light intensity which concerns on 8th Embodiment of this invention.
  • FIG. 1 is a diagram showing an outline of a surface plasmon sensor 1 according to the present embodiment.
  • a surface plasmon sensor 1 in FIG. 1 includes a reflecting plate 11 having a metal layer 10 having a periodic structure, a light source 12 that irradiates incident light on the reflecting plate 11, and a light receiving unit 13 that receives reflected light reflected by the reflecting plate. And a measuring unit 14 that measures the refractive index n of the sample placed on the reflecting plate 11 from the fluctuation of the ellipticity of the reflected light.
  • the reflecting plate 11 includes a substrate 15 such as silicon and a metal layer 10 such as aluminum laminated on the substrate 15.
  • FIG. 2 is a diagram illustrating an example of the metal layer 10.
  • irregularities are periodically formed at intervals d that are about the wavelength of light.
  • the metal layer 10 has a periodic structure with a period d.
  • a direction in which the uneven shape is repeatedly formed is referred to as a periodic direction.
  • the periodic structure is formed on the surface of the metal layer 10 that is not in contact with the substrate 15, and the irregular shape is periodically formed in one direction (the x direction in FIG. 2A).
  • the formed periodic structure is called a one-dimensional periodic structure.
  • the periodic direction is the x direction.
  • a periodic structure is formed on the surface of the metal layer 10 that is not in contact with the substrate 15 and is periodically uneven in two directions (x and y directions in FIG. 2B).
  • the periodic structure in which the shape is formed is called a two-dimensional periodic structure.
  • the periodic directions are the x direction and the y direction.
  • the periodic structure in which the periodic structure is formed on both the surface in contact with the surface 15 and the surface facing the surface 15 and the concavo-convex shape is periodically formed in one direction is a one-dimensional thin film. It is called a periodic structure. In this case, the periodic direction is the x direction.
  • the substrate of the metal layer 10 is used.
  • the periodic structure is formed on both the surface in contact with the surface 15 and the surface opposite to the surface, and the periodic structure in which irregularities are periodically formed in two directions (x and y directions in FIG. 2D). This is called a dimensional thin film periodic structure.
  • the periodic directions are the x direction and the y direction.
  • the periodic structure is formed on both surfaces of the metal layer 10, but the periodic structure may be formed only on one surface facing the substrate 15.
  • a plurality of periodic structures can be formed on the surface of the metal layer 10 depending on the direction in which the uneven shape is repeatedly formed.
  • the metal layer 10 of the present embodiment may have any of the above-described periodic structures, but here, it will be described as having a one-dimensional periodic structure with the x direction as the periodic direction.
  • the reflecting plate 11 is referred to as a periodic direction (x direction) of the metal layer 10 and a surface S1 on which incident light emitted from the light source 12 is incident (hereinafter referred to as an incident surface S1. Details will be described later. ) And are arranged obliquely so as not to be orthogonal to each other. In this way, the arrangement of the reflecting plate 11 so that the incident surface S1 and the periodic direction are not orthogonal is called a conical mount. An angle formed by the incident surface S1 and the periodic direction is referred to as an azimuth angle ⁇ .
  • the reflector 11 of the present embodiment is arranged so that ⁇ ⁇ 0 ° and 90 °.
  • the wave number vectors of incident light and zero-order diffracted light (hereinafter referred to as reflected light) exist in the incident plane.
  • a sample 16 to be measured for the refractive index n a sample 16 to be measured for the refractive index n, a reference material to be a reference for measuring the refractive index n of the sample 16, and the like are arranged.
  • the light source 12 is composed of a light receiving element such as a semiconductor laser or a light emitting diode. Incident light having p waves is emitted from the light source 12.
  • the light source 12 irradiates incident light while changing the angle ⁇ (hereinafter referred to as incident angle ⁇ ; see FIG. 3) for irradiating incident light.
  • the light source 12 includes a driving device (not shown) necessary for changing the incident angle ⁇ .
  • the incident angle may be optically changed by using, for example, a laser diode array.
  • the light receiving unit 13 is configured by, for example, a photodiode.
  • the light receiving unit 13 receives reflected light having p waves and s waves.
  • the light receiving unit 13 includes a driving device for receiving reflected light in conjunction with fluctuations in the incident angle ⁇ of incident light.
  • the light receiving unit 13 may also optically change the reflection angle of the reflected light from the light receiving unit 13 by using a photodiode array.
  • the measuring unit 14 measures the ellipticity of the reflected light received by the light receiving unit 13 and measures the variation of the ellipticity.
  • the measurement unit 14 measures an incident angle ⁇ 0 (hereinafter referred to as an absorption angle ⁇ 0 ) at which the ellipticity is zero from the measured variation in ellipticity.
  • the refractive index n of the sample 16 is measured.
  • the reflected light received by the light receiving unit 13 will be described with reference to FIG.
  • the reflected light is divided into a p-wave component parallel to the incident surface S1 and a vertical s-wave component.
  • the electric field vector of the light appears to rotate in an elliptical shape as shown in FIG. 4B according to the phase difference ⁇ between the p wave and the s wave.
  • the angle formed by the long axis of the ellipse formed by the electric field vector of the light with respect to the x direction is referred to as an ellipse tilt angle ⁇ .
  • phase difference ⁇ between the p wave and the s wave is smaller than zero, that is, when the s wave is delayed as compared with the p wave, the light turns left in an elliptical shape as viewed from the traveling direction, as shown in FIG. ing. This is called left elliptical polarization. At this time, the ellipticity tan ⁇ is smaller than zero.
  • phase difference ⁇ between the p wave and the s wave is zero, that is, the phases of the p wave and the s wave are the same, the light vibrates linearly as seen from the traveling direction, as shown in FIG. This is called linearly polarized light.
  • the ellipticity tan ⁇ at this time is zero.
  • phase difference ⁇ between the p wave and the s wave is greater than zero, that is, when the s wave is ahead of the p wave, as shown in FIG. It is turning. This is called right elliptical polarization. At this time, the ellipticity tan ⁇ is larger than zero.
  • the ellipticity tan ⁇ of the reflected light depends on the phase of the p wave and the s wave. Therefore, the phase relationship between the p wave and the s wave can be known by measuring the ellipticity tan ⁇ of the reflected light with the measuring unit 14.
  • the ellipticity of the sample 16 a method for measuring the fluctuation of the ellipticity of the reflected light (hereinafter referred to as the ellipticity of the sample 16) when the sample 16 is arranged on the reflecting plate 11 will be described with reference to FIG.
  • the variation of the ellipticity of the sample 16 when the incident angle ⁇ of the incident light is changed is measured.
  • a sample 16 is placed on the reflecting plate 11 (S101), and incident light having an incident angle ⁇ and a wavelength ⁇ is irradiated from the light source 12 (S102).
  • the light source 12 emits p-wave incident light.
  • the light receiving unit 13 receives light (reflected light) of incident light reflected by the reflecting plate 11 via the sample 16 (S103).
  • the measurement unit 14 measures the ellipticity of the reflected light from the reflected light (S104).
  • the light source 12 changes the incident angle ⁇ of the incident light to be irradiated to ⁇ + ⁇ (S105).
  • the process returns to step S102.
  • the ellipticity tan ⁇ is measured in the entire range of the incident angle ⁇ to be measured (Yes in S106)
  • the measurement of the ellipticity variation of the sample 16 is finished.
  • FIG. 8 shows a simulation result of the variation of the ellipticity tan ⁇ at each incident angle ⁇ measured by the measurement unit 14.
  • FIG. 8 is a diagram showing a tan ⁇ - ⁇ characteristic curve of air, which is the sample 16, measured according to the ellipticity variation measurement flowchart of FIG.
  • a holographic aluminum lattice is used as the reflecting plate 11.
  • the wavelength ⁇ 670 nm
  • the incident angle ⁇ is in the range of 3 ° ⁇ ⁇ 15 °. It was changed with.
  • the tan ⁇ - ⁇ characteristic curve changes from positive to negative before and after the absorption angle ⁇ 0 where the ellipticity tan ⁇ becomes zero.
  • FIG. 9 shows the phases ⁇ p and ⁇ s and the phase difference ⁇ at each incident angle ⁇ measured by the measurement unit 14.
  • the simulation results are shown.
  • air is used as the sample 16 and a holographic aluminum lattice is used as the reflecting plate 11.
  • the incident angle ⁇ is 10 ° ⁇ ⁇ 15 °. Varyed in range.
  • the graph indicated by the solid line in FIG. 9 indicates the change in the phase ⁇ p of the p wave, and the graph indicated by the dashed line indicates the phase ⁇ s of the s wave.
  • phase ⁇ p of the p-wave of the reflected light varies abruptly when the incident angle ⁇ ranges from 13 ° to 14 °, and the phase ⁇ s of the s-wave varies smoothly.
  • the phase [delta] incident angle phase difference [delta] is zero angle of incidence p and s-wave phase [delta] s intersects ⁇ is the p-wave and s-wave ⁇ of p-wave in FIG. 9, ellipticity tan ⁇ is zero
  • the absorption angle ⁇ 0 is as follows.
  • the phase difference ⁇ of the reflected light changes from positive to negative or from negative to positive before and after the absorption angle ⁇ 0 .
  • the ellipticity tan ⁇ of the reflected light changes from positive to negative or from negative to positive before and after the absorption angle ⁇ 0 . Therefore, by measuring tan ⁇ , the absorption angle ⁇ 0 at which the phase difference ⁇ becomes zero can be measured.
  • FIG. 10 is a diagram illustrating a simulation result of the reflectance ⁇ measured by the measurement unit 14.
  • a graph indicated by a broken line indicates the reflectance ⁇ p of the p wave
  • a graph indicated by a dashed line indicates the reflectance ⁇ s of the s wave.
  • the graph shown by the solid line shows the reflectance ⁇ of the reflected light combining the reflectances ⁇ s and ⁇ p of the p wave and the s wave.
  • the reflectance of the reflected light ⁇ is the smallest angle of incidence is absorbed angle theta sp.
  • a surface plasmon sensor that measures the refractive index n using the reflectance ⁇ of reflected light measures the fluctuation of the reflectance ⁇ of the p wave while varying the incident angle, and detects the minimum point to detect the absorption angle ⁇ . Measure sp .
  • the variation of the ellipticity tan ⁇ is measured instead of the variation of the reflectance ⁇ , and the absorption angle ⁇ 0 is measured by detecting the zero point at which the ellipticity tan ⁇ becomes zero. .
  • the absorption angle ⁇ 0 of the ellipticity tan ⁇ and the absorption angle ⁇ sp of the reflectance ⁇ are not necessarily the same value, but are very close to each other. Therefore, in the surface plasmon sensor 1 according to the present embodiment, the reflectance ⁇
  • the refractive index n of the sample 16 is measured using the absorption angle ⁇ 0 of the ellipticity tan ⁇ instead of the absorption angle ⁇ sp of .
  • FIG. 11 shows the incident angle characteristics of the ellipticity tan ⁇ of the reflected light of the sample 16 having the refractive indexes n of “1.0002”, “1.0003”, and “1.0004”, respectively, and the incident angle characteristics of the reflectance ⁇ .
  • FIG. 11 and FIG. 12 both show simulation results. 11 and 12, the incident angle characteristics near the absorption angles ⁇ 0 and ⁇ sp are enlarged.
  • the solid lines in FIGS. 11 and 12 indicate the incident angle characteristics of the refractive index “1.0002”, the dashed line “1.0003”, and the broken line “1.0004”.
  • the incident angle characteristic of each refractive index n is substantially linear. Since the ellipticity tan ⁇ is an incident angle at which the ellipticity tan ⁇ becomes zero, the absorption angle ⁇ 0 of the ellipticity tan ⁇ can be measured by detecting the zero point of each incident angle characteristic. Zero point detection can be easily and accurately measured.
  • the incident angle characteristic of each refractive index n is non-linear drawing a downwardly convex gentle curve.
  • Absorption angle theta sp reflectance ⁇ since the reflectance ⁇ is the angle of incidence which minimizes the absorption angle theta sp reflectance ⁇ be performed minimal point detection of the incident angle characteristics can be measured.
  • the difference between the refractive indexes n is small and the Q value of the incident angle characteristic is small, it seems that the minimum points overlap as shown in FIG. 12, and it is difficult to measure the absorption angle ⁇ sp with high accuracy. .
  • the incident angle characteristic of the ellipticity tan ⁇ is substantially linear in the vicinity of the absorption angle ⁇ 0 , even if the difference between the refractive indexes n is small, the difference can be detected as the difference in the absorption angle ⁇ 0 .
  • the surface plasmon sensor 1 of the present embodiment the reference material refractive index n s is known and disposed on the reflective plate 11 first as a sample 16, the variation of the ellipticity tan ⁇ of the reflected light in accordance with the procedure shown in FIG. 7 Measure the absorption angle ⁇ 0 .
  • a sample 16 whose refractive index n is to be measured is placed on the reflector 11, and the absorption angle ⁇ ′ 0 at which the ellipticity tan ⁇ becomes zero is measured according to the same procedure as that for the reference material.
  • the absorption angle ⁇ 0 of the reference material is measured.
  • the measurement may be omitted.
  • the measuring unit 14 may acquire the incident angle ⁇ from the light source 12 every time the ellipticity tan ⁇ of the reflected light is measured, and acquire the incident angle ⁇ when the ellipticity tan ⁇ becomes zero from the light source 12. May be.
  • the measurement unit 14 may obtain the incident angle when the ellipticity tan ⁇ is measured from the range of the incident angle ⁇ and the change in the incident angle ( ⁇ in step S105).
  • the measurement unit 14 may control the light source 12 to execute the above-described method of measuring the refractive index n, or a control unit (not shown) may be provided and each unit may be controlled by the control unit.
  • the surface plasmon sensor 1 measures the refractive index n of the sample 16 from the fluctuation of the ellipticity tan ⁇ , specifically the absorption angle ⁇ 0 where the ellipticity tan ⁇ becomes zero.
  • Entrance angularity of ellipticity tan ⁇ since a substantially linear near the absorption angle theta 0, because the absorption angle theta 0 ellipticity tan ⁇ becomes zero can be measured by performing a zero-point detection, complex, such as a minimum point detection Detection becomes unnecessary, and the absorption angle ⁇ 0 can be measured easily and with high accuracy. For this reason, the refractive index n can be measured even with a substance having a small difference in the refractive index n such as gas.
  • FIG. 13 is a diagram showing an outline of the surface plasmon sensor 2.
  • the metal layer 20 of the reflector 21 has the one-dimensional thin film periodic structure shown in FIG. 2C and the incident light is incident from the substrate 25 side. Different from the surface plasmon sensor 1 of FIG.
  • the reflection plate 21 includes a substrate 25 that transmits light, such as a silicon substrate, and a metal layer 20 having a one-dimensional thin film periodic structure.
  • the reflector 21 is laminated in the order of the substrate 25 and the metal layer 20 from the side closer to the light source 12, and the sample 16 is disposed on the surface of the metal layer 20 facing the substrate 25.
  • the metal layer 20 of this embodiment has a periodic structure on both surfaces, you may make it have a periodic structure only in the surface where the sample 16 is arrange
  • the refractive index n of the sample 16 is the same as in the first embodiment. Can be measured.
  • FIG. 14 is a diagram showing an outline of the surface plasmon sensor 3.
  • the surface plasmon sensor 3 according to the present embodiment is the same as the surface plasmon sensor 1 of FIG. 1 in that the incident angle ⁇ and the wavelength ⁇ are constant and the variation of the ellipticity tan ⁇ is measured while varying the azimuth angle ⁇ of the reflector 31. Different.
  • the reflection plate 31 has a driving device (not shown) and rotates so that the azimuth angle ⁇ varies.
  • the measuring unit 34 measures the variation in ellipticity of the reflected light received by the light receiving unit 13.
  • the measuring unit 34 measures an azimuth angle ⁇ 0 at which the measured ellipticity is zero (hereinafter referred to as an absorption azimuth angle ⁇ 0 ).
  • Steps up to step S104 are the same as those in FIG.
  • the reflector 31 changes the azimuth angle ⁇ to ⁇ + ⁇ (S305). If the ellipticity tan ⁇ has not been measured at all azimuth angles ⁇ for measuring the variation of the ellipticity (no in S306), the process returns to step S102. On the other hand, when the ellipticity tan ⁇ is measured at all azimuth angles ⁇ (Yes in S306), the measurement of the sample 16 is finished.
  • the refractive indexes n are “1.0003” and “1.00039”, respectively.
  • the solid line represents the azimuth angle characteristic with the refractive index “1.0001”, the broken line “1.0003”, and the alternate long and short dash line “1.00039”.
  • the azimuth characteristics of each refractive index n are substantially linear. Therefore, the absorption azimuth angle ⁇ 0 at which the ellipticity tan ⁇ becomes zero can be easily and accurately measured even if the azimuth angle characteristic is used as in the incident angle characteristic of the first embodiment.
  • the reference material refractive index n s is known and disposed on the reflective plate 31, the ellipticity tan ⁇ when changing the azimuth angle according to the procedure shown in FIG. 15 The fluctuation is measured, and the absorption azimuth angle ⁇ 0 at which the ellipticity tan ⁇ becomes zero is measured.
  • the sample 16 whose refractive index n is to be measured is placed on the reflector 31 and the absorption azimuth angle ⁇ ′ 0 at which the ellipticity tan ⁇ becomes zero is measured according to the same procedure as that for the reference material.
  • the absorption azimuth angle ⁇ 0 of the reference material is measured.
  • the refractive index n s and the absorption azimuth angle ⁇ 0 of the reference material are known, the measurement may be omitted.
  • the measuring unit 34 may acquire the azimuth angle ⁇ of the reflecting plate 31 from the reflecting plate 31 every time the ellipticity tan ⁇ of the reflected light is measured, and reflects the azimuth angle ⁇ when the ellipticity tan ⁇ becomes zero. You may make it acquire from the board 31.
  • the measurement unit 34 may obtain the azimuth angle ⁇ when the ellipticity tan ⁇ is measured from the range of the azimuth angle ⁇ and the change in the azimuth angle ⁇ ( ⁇ in step S305).
  • the measurement unit 34 may control the reflecting plate 31 to execute the above-described method of measuring the refractive index n, or a control unit (not shown) may be provided and each unit may be controlled by the control unit. Good.
  • the ellipticity varies when the azimuth angle ⁇ is varied even if the incident angle ⁇ is constant, so that the refraction of the sample 16 does not occur without varying the incident angle ⁇ .
  • the rate n can be measured easily and with high accuracy.
  • FIG. 17 is a diagram showing an outline of the surface plasmon sensor 4.
  • the surface plasmon sensor 4 according to this embodiment is different from the surface plasmon sensor 1 of FIG. 1 in that the incident angle ⁇ and the azimuth angle ⁇ are constant and the variation of the ellipticity tan ⁇ is measured while varying the wavelength ⁇ of the incident light. .
  • the light source 42 is composed of, for example, a semiconductor laser.
  • the semiconductor laser can change the wavelength of incident light by receiving a control signal from a control unit (not shown).
  • the light source 42 may include the control unit.
  • the light source 42 irradiates incident light while changing the wavelength ⁇ of the incident light.
  • the measuring unit 44 measures the variation in ellipticity of the reflected light received by the light receiving unit 13.
  • the measuring unit 44 measures a wavelength ⁇ 0 (hereinafter referred to as an absorption wavelength ⁇ 0 ) at which the measured ellipticity is zero.
  • ⁇ n the refractive index difference between the sample 16 and the reference material. Since the other structure is the same as that of the surface plasmon sensor 1 shown in FIG. 1, description is abbreviate
  • Steps up to step S104 are the same as those in FIG.
  • the light source 42 changes the irradiating wavelength ⁇ to ⁇ + ⁇ (S405). If the ellipticity tan ⁇ has not been measured at all wavelengths for measuring the variation in ellipticity (no in S406), the process returns to step S102. On the other hand, when the ellipticity tan ⁇ is measured at all wavelengths (Yes in S406), the measurement of the sample 16 is finished.
  • FIG. 19 shows the wavelength characteristics of the ellipticity tan ⁇ of the reflected light in the sample 16 whose refractive index n is “1.0003”, “1.00039”, and “1.0001”, respectively.
  • the broken line indicates the wavelength characteristic of the refractive index “1.0001”, the solid line indicates “1.0003”, and the dashed line indicates “1.00039”.
  • the wavelength characteristic of each refractive index n is substantially linear. Therefore, the absorption wavelength ⁇ 0 at which the ellipticity tan ⁇ becomes zero can be easily and accurately measured even when the wavelength characteristic is used in the same manner as the incident angle characteristic of the first embodiment.
  • the reference material refractive index n s is known and disposed on the reflective plate 11, variations in the ellipticity tan ⁇ when changing the wavelength in accordance with the procedure shown in FIG. 18 And the absorption wavelength ⁇ 0 at which the ellipticity tan ⁇ becomes zero is measured.
  • a sample 16 whose refractive index n is to be measured is placed on the reflector 11, and the absorption wavelength ⁇ ′ 0 at which the ellipticity tan ⁇ becomes zero is measured according to the same procedure as that for the reference material.
  • the absorption wavelength ⁇ 0 of the reference material is measured.
  • the measurement may be omitted if the refractive index n s and the absorption wavelength ⁇ 0 of the reference material are known.
  • the measuring unit 44 may acquire the wavelength ⁇ of the incident light from the light source 42 every time the ellipticity tan ⁇ of the reflected light is measured, and acquire the wavelength ⁇ when the ellipticity tan ⁇ becomes zero from the light source 42. You may do it.
  • the measurement unit 44 may obtain the wavelength ⁇ when the ellipticity tan ⁇ is measured from the range of the wavelength ⁇ and the change in the wavelength ⁇ ( ⁇ in step S405).
  • the measurement unit 44 may control the light source 42 to execute the above-described method of measuring the refractive index n.
  • a control unit (not shown) may be provided and each unit may be controlled by the control unit. .
  • the ellipticity varies when the wavelength ⁇ is varied even when the incident angle ⁇ is constant. Therefore, the refractive index of the sample 16 is not varied without varying the incident angle ⁇ . n can be measured easily and with high accuracy. Since it is not necessary to change the incident angle ⁇ , the light source 42 does not require a driving device, and the surface plasmon sensor 4 can be downsized.
  • the surface plasmon sensor 5 according to the fifth embodiment will be described with reference to FIG.
  • the surface plasmon sensor 5 according to the present embodiment includes a control unit 57 that controls the wavelength ⁇ of incident light emitted from the light source 52 based on the ellipticity tan ⁇ measured by the measurement unit 54.
  • the light source 52 controls a semiconductor laser (not shown) based on a control signal input from the control unit 57 and irradiates incident light having a wavelength ⁇ .
  • the measuring unit 54 measures the ellipticity tan ⁇ from the reflected light received by the light receiving unit 13.
  • the measuring unit 54 outputs the ellipticity tan ⁇ to the control unit 57.
  • the control unit 57 generates a control signal based on the ellipticity tan ⁇ input from the measurement unit 54 so that the light source 52 emits incident light having a wavelength ⁇ at which the ellipticity tan ⁇ becomes zero.
  • the control unit 57 outputs a control signal to the light source 52.
  • the information input from the measurement unit 54 to the control unit 57 may be information that allows the control unit 57 to identify whether or not the ellipticity tan ⁇ is zero, even if it is not the ellipticity tan ⁇ itself. For example, information such as the phase difference ⁇ between the p wave and the s wave and which phase is advanced may be input from the measurement unit 54 to the control unit 57.
  • Steps up to step S104 are the same as those in FIG.
  • the measuring unit 54 measures the ellipticity tan ⁇ (step S104), and outputs the measured ellipticity tan ⁇ to the control unit 57. If the ellipticity tan ⁇ is not zero (no in step S506), the control unit 57 changes the wavelength ⁇ and generates a control signal so as to be ⁇ + ⁇ (step S507). When the control unit 57 passes the control signal to the light source 52, the control unit 57 returns to Step S102. On the other hand, if the ellipticity is zero (yes in step S506), the ellipticity variation measurement is terminated.
  • the ellipticity tan ⁇ when the wavelength characteristic of the ellipticity tan ⁇ near the absorption wavelength ⁇ 0 is substantially linear with a positive slope, when the wavelength ⁇ is changed in step S507, the ellipticity tan ⁇ is The wavelength ⁇ may be shortened when positive, and may be increased when negative. Note that the wavelength characteristic of the ellipticity tan ⁇ may be substantially linear with a negative slope near the absorption wavelength ⁇ 0 . In this case, the wavelength ⁇ may be shortened when the ellipticity tan ⁇ is negative, and may be changed so as to be longer when the ellipticity tan ⁇ is positive.
  • the reference material refractive index n s is known and disposed on the reflective plate 11, variations in the ellipticity tan ⁇ when changing the wavelength in accordance with the procedure shown in FIG. 21 And the absorption wavelength ⁇ 0 at which the ellipticity tan ⁇ becomes zero is measured.
  • a sample 16 whose refractive index n is to be measured is placed on the reflector 11, and the absorption wavelength ⁇ ′ 0 at which the ellipticity tan ⁇ becomes zero is measured according to the same procedure as that for the reference material.
  • the refractive index n of the sample 16 is measured from the absorption wavelengths ⁇ 0 and ⁇ ′ 0 as in the fourth embodiment.
  • the measurement of the refractive index n may be performed by the measurement unit 54 as in the fourth embodiment, or may be performed by the control unit 57.
  • the control unit 57 may be configured to have the function of the measurement unit 54, and the measurement unit 54 may be omitted.
  • the measurement unit 54 feeds back the ellipticity tan ⁇ so that the wavelength ⁇ of the light source 52 can be changed according to the measured ellipticity tan ⁇ . Become. Thereby, the absorption wavelength ⁇ 0 can be measured in a short time, and the refractive index measurement time of the sample 16 can be shortened.
  • the wavelength ⁇ of the light source 52 is changed according to the measured ellipticity tan ⁇ , but the incident angle ⁇ may be changed instead of the wavelength ⁇ to measure the absorption angle ⁇ 0 , The angle ⁇ may be changed and the absorption azimuth angle ⁇ 0 may be measured.
  • the control unit 57 controls the reflector 11 instead of the light source 52.
  • the surface plasmon sensor 6 according to the sixth embodiment will be described with reference to FIG.
  • the surface plasmon sensor 6 according to the present embodiment is different from the surface plasmon sensor 5 according to the fourth embodiment in the method of measuring the refractive index n in the measurement unit 64. Since the other configuration is the same, the description thereof is omitted.
  • the absorption wavelength ⁇ 0 of the reference material is measured. Since this is measured in the same manner as in the fifth embodiment, description thereof is omitted.
  • the sample 16 whose refractive index n is to be measured is placed on the reflecting plate 11, and incident light whose wavelength ⁇ is the absorption wavelength ⁇ 0 of the reference material is irradiated from the light source 52.
  • the measuring unit 64 measures the ellipticity tan ⁇ of the reflected light received by the light receiving unit 13.
  • the refractive index of the sample 16 placed on the reflection plate 11 changes from n s to n s + [Delta] n
  • the incident angle characteristic of the ellipticity tan ⁇ also theta + to ⁇ changes.
  • the change ⁇ in the absorption angle theta 0 ellipticity tan ⁇ becomes zero, but may be measured change ⁇ n in refractive index n s, constant wavelength lambda 0 and the incident by measuring the change in ellipticity tan ⁇ at the corners theta 0 (arrow in FIG. 23)
  • the change ⁇ n in refractive index n s may be measured.
  • the ellipticity Tankai of Sample 16 Tankai a linear portion of the incident angle characteristics of ellipticity Tankai - intended to be from Tankai + range.
  • the measurement unit 64 measures the wavelength ⁇ 0 at which the ellipticity tan ⁇ of the reference material becomes zero at a constant incident angle ⁇ , and the ellipticity tan ⁇ of the sample 16 at the incident angle ⁇ and wavelength ⁇ 0. Measure.
  • the measuring unit 64 measures the change ⁇ n in the refractive index n of the sample 16 from the measured ellipticity tan ⁇ of the sample 16.
  • the wavelength ⁇ 0 where the ellipticity tan ⁇ of the reference material is zero is measured by changing the wavelength ⁇ with the incident angle constant, but the reference angle can be changed by changing the incident angle ⁇ while keeping the wavelength constant.
  • the ellipticity tan ⁇ of the sample 16 may be measured at an incident angle ⁇ 0 and a wavelength ⁇ at which the ellipticity tan ⁇ of the substance becomes zero. Further, even when the wavelength ⁇ and the incident angle ⁇ are constant and the azimuth angle ⁇ is changed, the ellipticity tan ⁇ of the sample 16 is measured at the incident angle ⁇ and azimuth angle ⁇ 0 where the ellipticity tan ⁇ of the reference material becomes zero. Good.
  • the refractive index n of the sample 16 is measured by using the change in the linear part of the incident angle characteristic of the ellipticity tan ⁇ accompanying the refractive index change of the sample 16.
  • the ellipticity of the sample 16 can be measured only once. Thereby, measurement time can be shortened significantly.
  • the refractive index n can be measured with higher accuracy even if the difference in the refractive index n is small, such as gas.
  • the surface plasmon sensor 7 according to the seventh embodiment will be described with reference to FIG.
  • the surface plasmon sensor 7 according to the present embodiment is different from the surface plasmon sensor 1 in that the measurement sensitivity of the refractive index n is improved by adjusting the reflecting plate 71. Since the other configuration is the same, description thereof is omitted.
  • FIG. 25 shows the incident angle characteristics of the ellipticity tan ⁇ when the azimuth angle ⁇ of the reflecting plate 71 and the shape of the grating grooves (here, the groove depth H) are changed.
  • FIG. 25 is a diagram illustrating a simulation result when air is used as the sample 16. The method for measuring the variation of the ellipticity tan ⁇ is the same as in FIG.
  • the inclination of the ellipticity tan ⁇ near the absorption angle ⁇ 0 is changed by changing the azimuth angle ⁇ of the reflecting plate 71 and the groove shape (here, the groove depth H).
  • the absorption angle ⁇ 0 can be obtained with higher accuracy when the inclination of the ellipticity tan ⁇ is larger. Therefore, in the surface plasmon sensor 7 according to the present embodiment, the inclination of the ellipticity tan ⁇ around the absorption angle ⁇ 0 is adjusted by adjusting the azimuth angle ⁇ of the reflecting plate 71 and the groove shape (for example, the groove depth H). The variation of the ellipticity tan ⁇ is measured so as to be the largest.
  • the adjustment method of the reflecting plate 71 while changing the shape of the azimuthal angle ⁇ and the groove of the reflector 71 to measure the incident angle characteristics of the ellipticity Tankai, the inclination of the ellipticity Tankai near the absorption angle theta 0 is largest
  • the azimuth angle ⁇ of the reflector 71 and the groove shape may be determined.
  • the ellipticity tan ⁇ approaches ⁇ 1
  • the inclination of the ellipticity tan ⁇ before and after the absorption angle ⁇ 0 increases. Therefore, while changing the groove shape and the azimuth angle ⁇ , the phase difference ⁇ and the reflectance of the p wave and the s wave of the reflected light are measured, and the inclination of the ellipticity tan ⁇ around the absorption angle ⁇ 0 is the largest.
  • the azimuth angle ⁇ of 71 and the shape of the groove may be determined. It is sufficient to adjust the reflection plate 71 once before measuring the refractive index n.
  • the surface plasmon sensor 7 can increase the inclination of the ellipticity tan ⁇ near the absorption angle ⁇ 0 by adjusting the reflecting plate 71 before measuring the refractive index n. .
  • the absorption angle ⁇ 0 can be measured with high accuracy, and the measurement sensitivity of the refractive index n can be improved.
  • the reflection plate of the surface plasmon sensor 1 is adjusted, but the measurement sensitivity of the refractive index n can be improved by adjusting the reflection plates of the surface plasmon sensors 2 and 4 to 6 in the same manner. Good. Further, the inclination of the ellipticity tan ⁇ near the absorption angle theta 0 and adjust the shape of the groove of the reflector of the surface plasmon sensor 3 is increased, it may be to improve the measurement sensitivity of the absorption angle theta 0.
  • FIG. 26 is a diagram showing an outline of the surface plasmon sensor 8.
  • the surface plasmon sensor 8 according to the present embodiment is different from the surface plasmon sensor according to each of the embodiments described above in that the refractive index is measured based on the phase information that is the basis of the above-described ellipticity tan ⁇ calculation.
  • the p-wave phase ⁇ p and the s-wave phase ⁇ s of the reflected light change from positive to negative or from negative to positive before and after the absorption angle ⁇ 0.
  • the phase difference ⁇ of the reflected light also changes from positive to negative or from negative to positive before and after the absorption angle ⁇ 0 .
  • the phase difference ⁇ by measuring the ellipticity tan ⁇ had to identify the angle of incidence is zero absorption angle theta 0.
  • the eighth embodiment by using a polarizing plate, a value corresponding to the phase difference ⁇ between the p wave and the s wave of the reflected light is measured, and the incident angle (absorption angle ⁇ ) at which the phase difference ⁇ becomes zero. 0 ) can be measured.
  • the absorption angle ⁇ 0 can be specified without measuring the ellipticity tan ⁇ , and thus the refractive index n can be specified. That is, a device such as a polarimeter for measuring the ellipticity tan ⁇ becomes unnecessary.
  • the surface plasmon sensor 8 includes a splitter 87, polarizing plates 88a and 88b, and two light receiving portions 83a and 83b.
  • the other configuration is the same as that of the surface plasmon sensor 1 shown in FIG.
  • the splitter 87 is disposed on the path of the reflected light reflected by the reflecting plate 11, divides the light beam of the reflected light into two, makes one light beam enter the light receiving unit 83a, and makes the other light beam receive the light receiving unit 83b. To enter.
  • the polarizing plate 88a is disposed on the path of one light beam divided by the splitter 87, and selectively passes a component polarized in a specific direction in the light beam.
  • the polarizing plate 88b is disposed on the path of the other light beam divided by the splitter 87, and selectively passes a component polarized in a specific direction in the light beam.
  • the light receiving units 83a and 83b receive the reflected light polarized in a specific direction, respectively.
  • the direction of the transmission axis of the polarizing plate 88a and the polarizing plate 88b is adjusted so as to pass components polarized in different directions.
  • the polarizing plate 88a is adjusted so as to selectively pass light polarized in the same direction as the inclination angle ⁇ of the ellipse of the reflected light
  • the polarizing plate 88b is Adjustment is made so that light polarized in the direction orthogonal to the inclination angle ⁇ of the ellipse of the reflected light is selectively transmitted. In this way, the increase and decrease of the phase difference ⁇ of the reflected light can be measured by allowing each polarizing plate to selectively pass light having an elliptical inclination angle of 90 °.
  • At least one of the polarizing plates 88a and 88b is adjusted so that a part of the light polarized in the direction orthogonal to the direction of the inclination angle ⁇ of the ellipse of the reflected light can pass.
  • at least one of the light receiving units measures the increasing / decreasing tendency of the phase difference ⁇ of the reflected light, and the measuring unit 84 can measure the absorption angle ⁇ 0 at which the phase difference ⁇ becomes zero.
  • the measuring unit 84 measures the intensity fluctuation of the reflected light received by the light receiving units 83a and 83b via the polarizing plates 88a and 88b. And the measurement part 84 can measure absorption angle (theta) 0 based on the intensity
  • FIG. 27 is a diagram showing the relationship between the incident angle ⁇ and the inclination angle ⁇ of the ellipse. This figure shows the result of simulating the variation of the inclination angle ⁇ of the ellipse at each incident angle ⁇ .
  • a holographic aluminum lattice is used as the reflecting plate 11.
  • the wavelength ⁇ 670 nm
  • the incident angle ⁇ is in the range of 3 ° ⁇ ⁇ 15 °. It was changed with.
  • the inclination angle ⁇ of the ellipse has a peak centered on the absorption angle ⁇ 0 .
  • the incident angle theta 1, theta 2 is offset from the absorption angle theta 0, but within a few ° from the absorption angle theta 0.
  • FIG. 28 is a diagram showing a simulation result showing the received light intensity measured by the measurement unit 84 with the inclination angle ⁇ of the ellipse of incident light being 30 °.
  • a holographic aluminum lattice is used as the reflecting plate 11.
  • the wavelength ⁇ 670 nm
  • the incident angle ⁇ is in the range of 3 ° ⁇ ⁇ 15 °. It was changed with.
  • the light receiving intensity Ea of the light receiving portion 83a is indicated by a one-dot chain line
  • the light receiving intensity Eb of the light receiving portion 83b is indicated by a two-dot chain line
  • a difference Ea-Eb of the light receiving intensity is indicated by a dotted line.
  • the received light intensities Ea and Eb and the difference Ea ⁇ Eb change linearly within a predetermined range with the incident angle ⁇ 1 as the center. Therefore, by measuring or simulating a linear change in this predetermined range with a reference sample, and using the measurement result or simulation result as calibration data, the fluctuation of the incident angle ⁇ 1 accompanying the fluctuation of the refractive index n is measured. can do.
  • FIG. 29 is a flowchart showing a procedure for measuring the refractive index n according to this embodiment.
  • the fluctuation of the intensity of reflected light from the sample 16 (hereinafter referred to as reflected light intensity I) when the sample 16 is arranged on the reflector 11 is measured.
  • the sample 16 is placed on the reflecting plate 11 (S201), and incident light having an incident angle ⁇ and a wavelength ⁇ is irradiated from the light source 12 (S202).
  • the light source 12 emits p-wave incident light.
  • the incident angle ⁇ of the incident light is an angle within a predetermined range with the above-described incident angle ⁇ 1 as a center.
  • the light receivers 83a and 83b receive the reflected light of the incident light reflected by the reflecting plate 11 through the sample 16 (S203).
  • FIG. 30 is a diagram illustrating a simulation result indicating the received light intensity measured by the measurement unit 84 with the inclination angle ⁇ of the ellipse of incident light set to 70 °.
  • a holographic aluminum lattice is used as the reflecting plate 11.
  • the incident angle ⁇ is in the range of 3 ° ⁇ ⁇ 15 °. It was changed with.
  • the received light intensity Ea of the light receiving unit 83a is indicated by a one-dot chain line
  • the received light intensity Eb of the light receiving unit 83b is indicated by a two-dot chain line
  • the difference Ea-Eb of the received light intensity is indicated by a dotted line.
  • the received light intensities Ea and Eb and the difference Ea ⁇ Eb change linearly within a predetermined range with the incident angle ⁇ 2 as the center, so that the incident angle can be obtained by using calibration data in the predetermined range. Variations in ⁇ 2 can be measured.
  • the surface plasmon sensor 8 can measure the refractive index n using a value corresponding to the phase difference ⁇ obtained using the polarizing plate. That is, since it is not necessary to measure the ellipticity tan ⁇ , the refractive index n can be measured without using an expensive and complicated device for measuring the ellipticity tan ⁇ such as a polarimeter.
  • FIG. 31 is a diagram showing an outline of the surface plasmon sensor 9.
  • the surface plasmon sensor 9 according to the present embodiment is different from the surface plasmon sensor 8 according to the eighth embodiment described above in that it does not include a splitter but includes one polarizing plate and one light receiving unit.
  • the surface plasmon sensor 9 includes a polarizing plate 98 and a light receiving portion 93.
  • the polarizing plate 98 is disposed on the path of the reflected light, and selectively transmits a component polarized in a specific direction in the reflected light. Thus, the polarizing plate 98 receives the reflected light polarized in a specific direction.
  • the measuring unit 94 can measure the intensity fluctuation of the reflected light received by the light receiving unit 93 via the polarizing plate 98. And the measurement part 94 can measure an incident angle (absorption angle (theta) 0 ) based on the intensity
  • Other configurations are the same as those of the surface plasmon sensor 8 shown in FIG.
  • the method for measuring the refractive index n is the same as the method for measuring the refractive index based on the received light intensities Ea and Eb in the eighth embodiment, and the description thereof will be omitted.
  • the surface plasmon sensor 9 can measure the refractive index n by obtaining a value corresponding to the phase difference ⁇ using a pair of polarizing plates and a light receiving unit.
  • the reflectors of the surface plasmon sensors 3 to 9 according to the third to ninth embodiments may be configured so that incident light is incident from the substrate 25 side as in the second embodiment.
  • the refractive index n can also be measured using ⁇ 0 , the absorption azimuth angle ⁇ 0 , and the absorption wavelength ⁇ 0 .

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Optics & Photonics (AREA)
  • Biophysics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

屈折率を測定する表面プラズモンセンサにおいて、吸収曲線に依存せず屈折率を高精度かつ容易に測定する。 表面プラズモンセンサは、周期構造を有する金属層を備え、試料が配置された反射板と、前記反射板に入射光を照射する光源と、前記反射板で反射した反射光を受光する受光部と、周期構造面からの反射光に含まれる偏光方向の異なる2種類の波の位相情報に基づいて前記試料の屈折率を測定する計測部と、を備えることを特徴とする。

Description

表面プラズモンセンサ、及び屈折率の測定方法
 本発明は、表面プラズモンセンサ、及び該表面プラズモンセンサを用いた屈折率の測定方法に関する。
 液体等の屈折率を光学的に測定するセンサとして表面プラズモンセンサが知られている。金属表面に波長λの入射光を照射したときの反射率ρの入射角特性(吸収曲線)を測定すると、特定の入射角(以下、吸収角θspと呼ぶ)で反射率ρが急激に減少する。この現象は、プラズモン共鳴吸収と呼ばれ、入射光と金属表面に存在する表面プラズモンとの電磁波結合によって生じる現象であり、入射光の電力が金属表面に捕捉(共鳴吸収)された結果、反射光強度が減少する。
 表面プラズモンセンサは、プラズモン共鳴吸収を利用して液体等の試料の屈折率を測定するセンサである。表面プラズモンセンサには、金属表面にプリズムを配置したものや、例えば特許文献1に開示されるように金属表面に等間隔に溝を刻んだ周期構造を有するものがある。
特開2008-216055号公報
 表面プラズモンセンサでは、予め屈折率nが既知の基準物質の吸収角θspを求めておき、屈折率nを測定した試料の吸収角θ’spと基準物質の吸収角θspとの差Δθsp(=θsp-θ’sp)から試料の屈折率n(=n+Δn)を求める。
 上述したように吸収角θspは、反射率ρが急激に減少する角度であるため、吸収角θspを測定するには最小点検出を行わなければならず、測定が複雑であるという問題があった。
 本発明は、上述の点を鑑みてなされたものであり、容易に屈折率を測定できる表面プラズモンセンサ、及び屈折率の測定方法を提供する。
 上記課題を解決するため、本発明に係る表面プラズモンセンサは、周期構造を有する金属層を備え、試料が配置された反射板と、前記反射板に入射光を照射する光源と、前記反射板で反射した反射光を受光する受光部と、前記試料を透過して反射した反射光に含まれる偏光方向の異なる2種類の波の位相差情報に基づいて前記試料の屈折率を測定する計測部と、を備えることを特徴とする。
 また、本発明に係る屈折率の測定方法は、周期構造を有する金属層を備える反射板に配置された試料の屈折率を測定する表面プラズモンセンサを用いた屈折率の測定方法であって、光源から前記反射板に入射光を照射するステップと、前記反射板で反射した反射光を受光部で受光するステップと、前記受光部で受光した反射光に含まれる偏光方向の異なる2種類の波の位相情報に基づいて前記試料の屈折率を測定するステップと、を備えることを特徴とする。
 本発明によれば、容易に屈折率を測定することができる。
本発明の第1実施形態に係る表面プラズモンセンサの概略図。 本発明の第1実施形態に係る金属層を示す図。 本発明の第1実施形態に係る表面プラズモンセンサの概略図。 本発明の第1実施形態に係る反射光を説明する図。 本発明の第1実施形態に係る反射光を説明する図。 本発明の第1実施形態に係る反射板を示す図。 本発明の第1実施形態に係る楕円率の変動の測定方法を説明する図。 本発明の第1実施形態に係る反射光の楕円率の変動を示す図。 本発明の第1実施形態に係る反射光の位相を示す図。 本発明の第1実施形態に係る反射光の反射率を示す図。 本発明の第1実施形態に係る楕円率の入射角特性を示す図。 本発明の第1実施形態に係る反射率の入射角特性を示す図。 本発明の第2実施形態に係る表面プラズモンセンサの概略図。 本発明の第3実施形態に係る表面プラズモンセンサの概略図。 本発明の第3実施形態に係る楕円率の変動の測定方法を説明する図。 本発明の第3実施形態に係る楕円率の方位角特性を示す図。 本発明の第4実施形態に係る表面プラズモンセンサの概略図。 本発明の第4実施形態に係る楕円率の変動の測定方法を説明する図。 本発明の第4実施形態に係る楕円率の波長特性を示す図。 本発明の第5実施形態に係る表面プラズモンセンサの概略図。 本発明の第5実施形態に係る楕円率の変動の測定方法を説明する図。 本発明の第6実施形態に係る表面プラズモンセンサの概略図。 本発明の第6実施形態に係る楕円率の入射角特性を示す図。 本発明の第7実施形態に係る表面プラズモンセンサの概略図。 本発明の第7実施形態に係る楕円率の入射角特性を示す図。 本発明の第8実施形態に係る表面プラズモンセンサの概略図。 本発明の第8実施形態に係る入射角-楕円の傾き角特性を示す図。 本発明の第8実施形態に係る受光強度特性を示す図。 本発明の第8実施形態に係る受光強度の測定方法を説明する図。 本発明の第8実施形態に係る受光強度特性を示す図。 本発明の第9実施形態に係る表面プラズモンセンサの概略図。
(第1実施形態)
 本発明の第1実施形態に係る表面プラズモンセンサ1を説明する。図1は、本実施形態に係る表面プラズモンセンサ1の概略を示す図である。
 図1の表面プラズモンセンサ1は、周期構造を有する金属層10を備える反射板11と、反射板11上に入射光を照射する光源12と、反射板で反射した反射光を受光する受光部13と、反射光の楕円率の変動から反射板11上に配置された試料の屈折率nを測定する計測部14と、を備える。
 各部の詳細を説明する。
 反射板11は、例えばシリコン等の基板15と、基板15上に積層された例えばアルミニウム等の金属層10と、を有する。
 図2は、金属層10の一例を示す図である。金属層10の基板と対向する面には、光の波長程度の間隔dで、凹凸形状が周期的に形成されている。金属層10は、周期dの周期構造を有する。この凹凸形状が繰り返し形成される方向を周期方向と称する。
 図2(a)に示すように、金属層10の基板15と接していない面に周期構造が形成されており、かつ一方向(図2(a)ではx方向)に周期的に凹凸形状が形成された周期構造を一次元周期構造と呼ぶ。この場合、周期方向は、x方向となる。
 図2(b)に示すように、金属層10の基板15と接していない面に周期構造が形成されており、かつ二方向(図2(b)ではx、y方向)に周期的に凹凸形状が形成された周期構造を二次元周期構造と呼ぶ。この場合、周期方向は、x方向及びy方向となる。
 図2(c)に示すように、金属層10が、図2(a)、(b)より薄い、例えば数nm~数十nmの金属薄膜で形成されている場合に、金属層10の基板15と接する面及びこれに対向する面の両面に周期構造が形成されており、かつ一方向(図2(c)ではx方向)に周期的に凹凸形状が形成された周期構造を一次元薄膜周期構造と呼ぶ。この場合、周期方向は、x方向となる。
 図2(d)に示すように、金属層10が、図2(a)、(b)より薄い、例えば数nm~数十nmの金属薄膜で形成されている場合に、金属層10の基板15と接する面及びこれに対向する面の両面に周期構造が形成されており、かつ二方向(図2(d)ではx、y方向)に周期的に凹凸形状が形成された周期構造を二次元薄膜周期構造と呼ぶ。この場合、周期方向は、x方向及びy方向となる。
 なお、図2(c)、(d)では、金属層10の両面に周期構造を形成しているが、基板15と対向する片面のみに周期構造を形成してもよい。
 このように、凹凸形状が繰り返し形成される方向によって、金属層10の表面には複数の周期構造が形成され得る。本実施形態の金属層10は、上述したどの周期構造を有していてもよいが、ここではx方向を周期方向とする一次元周期構造を有するものとして説明する。
 図3に示すように、反射板11は、金属層10の周期方向(x方向)と、光源12から出射される入射光が入射する面S1(以下、入射面S1と呼ぶ。詳細は後述。)と、が直交しないように斜めに配置される。このように、入射面S1と周期方向とが直交しないような反射板11の配置をコニカルマウントと呼ぶ。入射面S1と周期方向とのなす角を方位角φと呼ぶ。本実施形態の反射板11は、φ≠0°,90°となるように配置される。入射光と0次回折光(以下、反射光と呼ぶ)の波数ベクトルは、入射面内に存在する。
 図1に戻る。
 反射板11の上には屈折率nの測定対象となる試料16や、試料16の屈折率n測定の基準となる基準物質等が配置される。
 光源12は、例えば半導体レーザや発光ダイオードなどの受光素子で構成される。光源12からはp波を有する入射光が照射される。光源12は、入射光を照射する角度θ(以下、入射角θと呼ぶ。図3を参照。)を変化させながら入射光を照射する。光源12には、入射角θを変動させるために必要な駆動装置(図示せず)を含む。なお、図示しない駆動装置以外にも、例えばレーザダイオードアレイを用いるなどして光学的に入射角度を変化させてもよい。
 受光部13は、例えばフォトダイオードなどで構成される。受光部13は、p波及びs波を有する反射光を受光する。受光部13は、入射光の入射角θの変動に連動して反射光を受光するための駆動装置を含む。なお、受光部13もフォトダイオードアレイを用いるなどして光学的に受光部13の反射光の反射角を変えるようにしてもよい。
 計測部14は、受光部13が受光した反射光の楕円率を測定し、楕円率の変動を測定する。計測部14は、測定した楕円率の変動から、楕円率がゼロとなる入射角θ(以下、吸収角θと称する。)を測定する。計測部14は、反射板11に基準物質が配置された場合の吸収角θと、試料16が配置された場合の吸収角θ’との差Δθ(=θ’-θ)から試料16の屈折率nを測定する。
 次に、試料16の屈折率nを測定する方法を説明する。
 図4を用いて、受光部13が受光する反射光について説明する。図4(a)に示すように、反射光には入射面S1に対して平行なp波成分と、垂直なs波成分とに分けられる。光を進行方向から見るとp波とs波との位相差δに応じて、光の電界ベクトルは、図4(b)のように楕円状に旋回しているように見える。このとき長軸の長さをa、短軸の長さをbとすると楕円率tanχは、tanχ=b/aで求められる。また、光の電界ベクトルが成す楕円の長軸がx方向に対して成す角を楕円の傾き角ψと呼ぶことにする。
 p波とs波との位相差δがゼロより小さい、即ちp波に比べs波が遅れている場合、図5(a)に示すように、光は進行方向から見て楕円状に左旋回している。これを左楕円偏光と呼ぶ。このときの楕円率tanχはゼロより小さくなる。
 p波とs波との位相差δがゼロ、即ちp波及びs波の位相が同じ場合、図5(b)に示すように、光は進行方向から見て直線状に振動している。これを直線偏光と呼ぶ。このときの楕円率tanχはゼロとなる。
 p波とs波との位相差δがゼロより大きい、即ちp波に比べs波が進んでいる場合、図5(c)に示すように、光は進行方向から見て楕円状に右旋回している。これを右楕円偏光と呼ぶ。このときの楕円率tanχはゼロより大きくなる。
 このように反射光の楕円率tanχは、p波及びs波の位相に依存している。従って計測部14で反射光の楕円率tanχを測定することでp波及びs波の位相関係を知ることができる。
 図6に示すように、反射板11をコニカルマウントとした場合、p波の入射光を反射板11に入射すると、p波及びs波の反射光が得られる。
 次に、図7を用いて反射板11上に試料16を配置した場合の反射光の楕円率(以下、試料16の楕円率と呼ぶ)の変動を測定する方法について説明する。本実施形態では、入射光の入射角θを変更した場合の試料16の楕円率の変動を計測する。
 反射板11上に試料16を配置し(S101)、入射角θ、波長λの入射光を光源12から照射する(S102)。光源12は、p波の入射光を照射する。
 受光部13は、入射光が試料16を介して反射板11で反射した光(反射光)を受光する(S103)。
 計測部14は、反射光から反射光の楕円率を測定する(S104)。
 光源12は照射する入射光の入射角θを変更し、θ+Δθとする(S105)。
 楕円率を測定したい範囲の入射角θ全てで楕円率tanχを測定していない場合(S106のno)は、ステップS102に戻る。一方、測定したい入射角θの範囲全てで楕円率tanχを測定した場合(S106のyes)は、試料16の楕円率変動測定を終了する。
 図8に、計測部14が測定した各入射角θにおける楕円率tanχの変動のシミュレーション結果を示す。図8は、図7の楕円率変動測定のフローチャートに従って測定した試料16である空気のtanχ-θ特性曲線を示す図である。ここでは、反射板11としてホログラフィックアルミ格子を用いている。格子の溝の深さをH=72nm、格子の周期dをd=556nm、方位角φをφ=30°、波長λをλ=670nmとし、入射角θを3°<θ<15°の範囲で変化させた。 
 図8に示すように、tanχ-θ特性曲線は、楕円率tanχがゼロとなる吸収角θの前後で正から負へと変化する。
 次に、図9に、計測部14が測定した各入射角θにおける位相δ、δ及び位相差δ
のシミュレーション結果を示す。ここでは、試料16として空気を用い、反射板11としてホログラフィックアルミ格子を用いている。格子の溝の深さをH=72nm、格子の周期dを、d=556nm、方位角φをφ=30°、波長λをλ=670nmとし、入射角
θを10°<θ<15°の範囲で変化させた。
 図9の実線で示すグラフがp波の位相δの変化を示しており、一点破線で示すグラフがs波の位相δを示している。破線で示すグラフは、p波とs波との位相差δ=δ-δを示している。
 反射光のp波の位相δは、入射角θが13°から14°の範囲で急激に変動し、s波の位相δは滑らかに変動している。図9のp波の位相δとs波の位相δとが交差する入射角θがp波とs波との位相差δがゼロとなる入射角θであり、楕円率tanχがゼロとなる吸収角θである。反射光の位相差δは、吸収角θの前後で正から負、又は負から正へと変化する。つまり、反射光の楕円率tanχは、吸収角θの前後で正から負、又は負から正へと変化する。従って、tanχを測定することで位相差δがゼロとなる吸収角θを測定することができる。
 図10は、計測部14が測定した反射率ρのシミュレーション結果を示す図である。破線で示すグラフがp波の反射率ρを示しており、一点破線で示すグラフがs波の反射率
ρを示している。実線で示すグラフは、p波及びs波の反射率ρ、ρを合わせた反射光の反射率ρを示している。
 図10に示すように、反射光の反射率ρが最も小さくなる入射角が吸収角θspとなる。一般に反射光の反射率ρを用いて屈折率nの測定を行う表面プラズモンセンサは、入射角を変動させながらp波の反射率ρの変動を測定し、最小点検出を行うことで吸収角θspを測定する。一方、本実施形態に係る表面プラズモンセンサ1では、反射率ρの変動ではなく楕円率tanχの変動を測定し、楕円率tanχがゼロになるゼロ点検出を行うことで吸収角θを測定する。楕円率tanχの吸収角θと反射率ρの吸収角θspは、必ずしも同じ値となるわけではないが、非常に近い値となるため本実施形態に係る表面プラズモンセンサ1では、反射率ρの吸収角θspではなく楕円率tanχの吸収角θを用いて試料16の屈折率nを測定する。
 次に、図11、図12を用いて本実施形態に係る表面プラズモンセンサ1が高精度に屈折率nを測定できる点について説明する。屈折率nがそれぞれ「1.0002」、「1.0003」、「1.0004」である試料16の反射光の楕円率tanχの入射角特性を図11に、反射率ρの入射角特性を図12に示す。図11、図12ともにシミュレーション結果を示す図である。なお、図11、図12ともに吸収角θ、θsp付近の入射角特性を拡大して示している。図11、図12の実線が屈折率「1.0002」、一点破線が
「1.0003」、破線が「1.0004」の入射角特性を示している。
 図11では、各屈折率nの入射角特性が略線形となっている。楕円率tanχがゼロになる入射角であるため、楕円率tanχの吸収角θは、各入射角特性のゼロ点検出を行うことで測定できる。ゼロ点検出は容易にかつ高精度に測定できる。図11の各屈折率nにおける吸収角θは、屈折率「1.0002」で吸収角θ=11.349°、屈折率「1.0003」で吸収角θ=11.342°、屈折率「1.0004」で吸収角θ=11.334°となる。
 一方、図12では、各屈折率nの入射角特性が下に凸の緩やかなカーブを描く非線形となっている。反射率ρの吸収角θspは、反射率ρが最小となる入射角であるため、各入射角特性の最小点検出を行えば反射率ρの吸収角θspは測定できる。しかしながら各屈折率nの差が小さく、かつ入射角特性のQ値が小さい場合、図12に示すように最小点が重なっているようにみえ、吸収角θspを高精度に測定することが難しい。
 上述したように楕円率tanχの入射角特性は吸収角θ付近で略線形となるため、各屈折率nの差が小さくても、その差を吸収角θの差として検出できる。
 そこで、本実施形態の表面プラズモンセンサ1では、まず試料16として屈折率nが既知である基準物質を反射板11上に配置し、図7に示す手順に従って反射光の楕円率tanχの変動を測定し、吸収角θを測定する。
 次に、反射板11に屈折率nを測定したい試料16を配置し、基準物質と同様の手順に従って楕円率tanχがゼロとなる吸収角θ’を測定する。
 測定した吸収角の差Δθ(=θ’-θ)から基準物質の屈折率nと、試料16の屈折率nの差Δn(=n-n)を測定する。
 なお、上述した測定方法では、基準物質の吸収角θを測定しているが、基準物質の屈折率n及び吸収角θが既知の場合は測定を省略してもよい。
 計測部14は、入射角θを反射光の楕円率tanχを測定する毎に光源12から取得してもよく、楕円率tanχがゼロになった時の入射角θを光源12から取得するようにしてもよい。あるいは、計測部14は、入射角θの範囲と入射角の変化分(ステップS105のΔθ)から楕円率tanχを測定した時の入射角を求めるようにしてもよい。このように、計測部14が光源12を制御し上述した屈折率nの測定方法を実行するようにしてもよく、図示しない制御部を設け、制御部によって各部を制御するようにしてもよい。
 以上のように、本実施形態に係る表面プラズモンセンサ1は、楕円率tanχの変動、具体的には楕円率tanχがゼロとなる吸収角θから試料16の屈折率nを測定する。楕円率tanχの入射角特性は、吸収角θ付近で略線形となるため、楕円率tanχがゼロとなる吸収角θはゼロ点検出を行えば測定できるため、最小点検出のような複雑な検出が不要となり、吸収角θを容易かつ高精度に測定することができる。そのため、例えば気体のように屈折率nの差が微小な物質でも屈折率nを測定することができる。
(第2実施形態)
 本発明の第2実施形態に係る表面プラズモンセンサ2を説明する。図13は表面プラズモンセンサ2の概略を示す図である。本実施形態に係る表面プラズモンセンサ2は反射板21の金属層20が図2(c)に示す一次元薄膜周期構造を有している点及び基板25側から入射光を入射している点で図1の表面プラズモンセンサ1と異なる。
 反射板21は、シリコン基板のように光を透過する基板25と、一次元薄膜周期構造を有する金属層20とを有する。反射板21は、光源12に近い方から基板25、金属層20との順に積層されており、金属層20の基板25と対向する面上に試料16が配置される。
 これ以外の構成及び屈折率の測定方法は、第1実施形態に係る表面プラズモンセンサ1と同じであるため説明を省略する。なお、本実施形態の金属層20は、両面に周期構造を有しているが、試料16が配置される面のみに周期構造を有するようにしてもよい。
 以上のように、本実施形態に係る表面プラズモンセンサ2は、光源12と反射板21との間に試料16を配置できない場合であっても、第1実施形態と同様に試料16の屈折率nを測定することができる。
(第3実施形態)
 本発明の第3実施形態に係る表面プラズモンセンサ3を説明する。図14は、表面プラズモンセンサ3の概略を示す図である。本実施形態に係る表面プラズモンセンサ3は、入射角θ及び波長λを一定とし、反射板31の方位角φを変動させながら楕円率tanχの変動を測定する点で図1の表面プラズモンセンサ1と異なる。
 反射板31は、図示しない駆動装置を有しており、方位角φが変動するよう回転する。
 計測部34は、受光部13が受光した反射光の楕円率の変動を測定する。計測部34は、測定した楕円率がゼロとなる方位角φ(以下、吸収方位角φと称する。)を測定する。計測部34は、反射板11上に基準物質が配置された場合の吸収方位角φと、試料16が配置された場合の吸収方位角φ’との差Δφ(=φ’-φ)から試料16と基準物質との屈折率の差Δnを測定する。
 そのほかの構成は図1に示す表面プラズモンセンサ1と同様であるため説明を省略する。
 図15を用いて反射板31の方位角φを変化させる場合の反射光の楕円率tanχの変動を測定する方法を説明する。ステップS104までは図7と同じであるため説明を省略する。
 反射光から楕円率tanχを測定すると、反射板31は方位角φを変更し、φ+Δφとする(S305)。楕円率の変動を測定する全ての方位角φで楕円率tanχを測定していない場合(S306のno)は、ステップS102に戻る。一方、全ての方位角φで楕円率tanχを測定した場合(S306のyes)は、試料16の測定を終了する。
 図16を用いて本実施形態に係る表面プラズモンセンサ3が屈折率nを測定できる点について説明する。図16に、屈折率nがそれぞれ「1.0003」、「1.00039」
、「1.0001」である試料16における反射光の楕円率tanχの方位角特性を示す。実線が屈折率「1.0001」、破線が「1.0003」、一点鎖線が「1.00039」の方位角特性を示している。なお、図16では、入射角θをθ=11.3°とし、波長
λをλ=670nmとした場合の空気の楕円率tanχの変動を計測したシミュレーション結果を示している。
 図16では、各屈折率nの方位角特性が略線形となっている。そのため、第1実施形態の入射角特性と同様に方位角特性を用いても楕円率tanχがゼロとなる吸収方位角φを容易にかつ高精度に測定することができる。
 本実施形態に係る表面プラズモンセンサ3では、まず、屈折率nが既知である基準物質を反射板31上に配置し、図15に示す手順に従い方位角を変化させた場合の楕円率tanχの変動を測定し、楕円率tanχがゼロとなる吸収方位角φを測定する。
 次に、反射板31に屈折率nを測定したい試料16を配置し、基準物質と同様の手順に従って楕円率tanχがゼロとなる吸収方位角φ’を測定する。
 測定した吸収方位角の差Δφ(=φ’-φ)から基準物質の屈折率nと、試料16の屈折率nの差Δn(=n-n)を測定する。
 なお、上述した測定方法では、基準物質の吸収方位角φを測定しているが、基準物質の屈折率n及び吸収方位角φが既知の場合は測定を省略してもよい。
 計測部34は、反射板31の方位角φを、反射光の楕円率tanχを測定する毎に反射板31から取得してもよく、楕円率tanχがゼロになった時の方位角φを反射板31から取得するようにしてもよい。あるいは、計測部34は、方位角φの範囲と方位角φの変化分(ステップS305のΔφ)から楕円率tanχを測定した時の方位角φを求めるようにしてもよい。このように、計測部34が反射板31を制御し上述した屈折率nの測定方法を実行するようにしてもよく、図示しない制御部を設け、該制御部によって各部を制御するようにしてもよい。
 以上のように、本実施形態に係る表面プラズモンセンサ3によると、入射角θを一定としても方位角φを変動させると楕円率が変動するため、入射角θを変動させずに試料16の屈折率nを容易にかつ高精度に測定することができる。
(第4実施形態)
 本発明の第4実施形態に係る表面プラズモンセンサ4を説明する。図17は、表面プラズモンセンサ4の概略を示す図である。本実施形態に係る表面プラズモンセンサ4は、入射角θ及び方位角φを一定とし、入射光の波長λを変動させながら楕円率tanχの変動を測定する点で図1の表面プラズモンセンサ1と異なる。
 光源42は、例えば半導体レーザで構成される。半導体レーザは、図示しない制御部から制御信号が入力されることで、入射光の波長を変更することが可能である。光源42が該制御部を備える構成としてもよい。光源42は、入射光の波長λを変化させながら入射光を照射する。
 計測部44は、受光部13が受光した反射光の楕円率の変動を測定する。計測部44は、測定した楕円率がゼロとなる波長λ(以下、吸収波長λと称する。)を測定する。計測部44は、反射板11上に基準物質が配置された場合の吸収波長λと、試料16が配置された場合の吸収波長λ’との差Δλ(=λ’-λ)から試料16と基準物質との屈折率の差Δnを測定する。
 そのほかの構成は図1に示す表面プラズモンセンサ1と同様であるため説明を省略する。
 図18を用いて入射光の波長λを変化させる場合の反射光の楕円率tanχの変動を測定する方法を説明する。ステップS104までは図7と同じであるため説明を省略する。
 反射光から楕円率tanχを測定すると、光源42は照射する波長λを変更し、λ+Δλとする(S405)。楕円率の変動を測定する全ての波長で楕円率tanχを測定していない場合(S406のno)は、ステップS102に戻る。一方、全ての波長で楕円率tanχを測定した場合(S406のyes)は、試料16の測定を終了する。
 図19を用いて本実施形態に係る表面プラズモンセンサ4が屈折率nを測定できる点について説明する。図19に、屈折率nがそれぞれ「1.0003」、「1.00039」、「1.0001」である試料16における反射光の楕円率tanχの波長特性を示す。破線が屈折率「1.0001」、実線が「1.0003」、一点破線が「1.00039」の波長特性を示している。図19では、入射角θをθ=11.193°とし、方位角φをφ=5°とした場合の空気の楕円率tanχの変動を計測したシミュレーション結果を示している。
 図19では、各屈折率nの波長特性が略線形となっている。そのため、第1実施形態の入射角特性と同様に波長特性を用いても楕円率tanχがゼロとなる吸収波長λを容易にかつ高精度に測定することができる。
 本実施形態に係る表面プラズモンセンサ4では、まず、屈折率nが既知である基準物質を反射板11上に配置し、図18に示す手順に従い波長を変化させた場合の楕円率tanχの変動を測定し、楕円率tanχがゼロとなる吸収波長λを測定する。
 次に、反射板11に屈折率nを測定したい試料16を配置し、基準物質と同様の手順に従って楕円率tanχがゼロとなる吸収波長λ’を測定する。
 測定した吸収波長の差Δλ(=λ’-λ)から基準物質の屈折率nと、試料16の屈折率nの差Δn(=n-n)を測定する。
 なお、上述した測定方法では、基準物質の吸収波長λを測定しているが、基準物質の屈折率n及び吸収波長λが既知の場合は測定を省略してもよい。
 計測部44は、入射光の波長λを、反射光の楕円率tanχを測定する毎に光源42から取得してもよく、楕円率tanχがゼロになった時の波長λを光源42から取得するようにしてもよい。あるいは、計測部44は、波長λの範囲と波長λの変化分(ステップS405のΔλ)から楕円率tanχを測定した時の波長λを求めるようにしてもよい。このように、計測部44が光源42を制御し上述した屈折率nの測定方法を実行するようにしてもよく、図示しない制御部を設け、該制御部によって各部を制御するようにしてもよい。
 以上のように、本実施形態に係る表面プラズモンセンサ4によると、入射角θを一定としても波長λを変動させると楕円率が変動するため、入射角θを変動させずに試料16の屈折率nを容易にかつ高精度に測定することができる。入射角θを変動させる必要がないため、光源42に駆動装置が不要となり、表面プラズモンセンサ4を小型化することができる。
(第5実施形態)
 図20を用いて第5実施形態に係る表面プラズモンセンサ5を説明する。本実施形態に係る表面プラズモンセンサ5は、計測部54が計測する楕円率tanχに基づいて光源52が照射する入射光の波長λを制御する制御部57を備える。
 光源52は、制御部57から入力される制御信号に基づき、半導体レーザ(図示せず)を制御し、波長λの入射光を照射する。計測部54は、受光部13が受光した反射光から楕円率tanχを測定する。計測部54は、楕円率tanχを制御部57に出力する。
 制御部57は、計測部54から入力された楕円率tanχに基づき、光源52から楕円率tanχがゼロとなる波長λの入射光が照射されるように制御信号を生成する。制御部57は、制御信号を光源52に出力する。なお計測部54から制御部57に入力される情報は、楕円率tanχそのものでなくとも、制御部57が楕円率tanχがゼロか否かを識別することができる情報であればよい。計測部54から制御部57に対しては、例えばp波とs波との位相差δやどちらの位相が進んでいるのかといった情報を入力してもよい。
 図21を用いて本実施形態における楕円率tanχの変動を測定する方法を説明する。ステップS104までは図7と同じであるため説明を省略する。
 計測部54は、楕円率tanχを測定(ステップS104)し、制御部57に測定した楕円率tanχを出力する。
 制御部57は、楕円率tanχがゼロでない場合(ステップS506のno)、波長λを変更しλ+Δλとなるよう制御信号を生成する(ステップS507)。制御部57は、制御信号を光源52に渡すとステップS102に戻る。一方、楕円率がゼロの場合(ステップS506のyes)、楕円率変動測定を終了する。
 図19に示すように、吸収波長λ付近の楕円率tanχの波長特性が、正の傾きを持つ略線形となっている場合に、ステップS507で波長λを変更するときは、楕円率tanχが正の場合は波長λを短くするように、負の場合は長くするように変更してもよい。なお、楕円率tanχの波長特性は、吸収波長λ付近で負の傾きを持つ略線形となる場合もある。この場合は、楕円率tanχが負の場合は波長λを短くするように、正の場合は長くするように変更すればよい。
 このように楕円率tanχに応じて波長λを変更することで楕円率変動測定の繰り返しステップ数を短くすることができる。
 本実施形態に係る表面プラズモンセンサ5では、まず、屈折率nが既知である基準物質を反射板11上に配置し、図21に示す手順に従い波長を変化させた場合の楕円率tanχの変動を測定し、楕円率tanχがゼロとなる吸収波長λを測定する。
 次に、反射板11に屈折率nを測定したい試料16を配置し、基準物質と同様の手順に従って楕円率tanχがゼロとなる吸収波長λ’を測定する。吸収波長λ、λ’から第4実施形態と同様に試料16の屈折率nを測定する。
 なお、屈折率nの測定は、第4実施形態と同様に計測部54が行ってもよく、また制御部57が行ってもよい。制御部57が計測部54の機能を備えるように構成し、計測部54を省略してもよい。
 以上のように、第5実施形態に係る表面プラズモンセンサ5によれば、計測部54が楕円率tanχをフィードバックすることにより、測定した楕円率tanχに応じて光源52の波長λを変更できるようになる。これにより、吸収波長λの測定を短時間で行うことができるようになり、試料16の屈折率測定時間を短縮することができる。
 なお、ここでは測定した楕円率tanχに応じて光源52の波長λを変更しているが、波長λの代わりに入射角θを変更し、吸収角θを測定するようにしてもよく、方位角φを変更し、吸収方位角φを測定するようにしてもよい。なお、方位角φを変更する場合、制御部57は、光源52ではなく反射板11を制御する。
(第6実施形態)
 図22を用いて第6実施形態に係る表面プラズモンセンサ6を説明する。
 本実施形態に係る表面プラズモンセンサ6は、計測部64での屈折率nの測定方法が第4実施形態に係る表面プラズモンセンサ5と異なる。それ以外の構成は同じであるため説明は省略する。
 まず、基準物質の吸収波長λを測定する。これは第5実施形態と同様に測定するので説明を省略する。次に、屈折率nを測定したい試料16を反射板11上に配置し、光源52から波長λが基準物質の吸収波長λである入射光を照射する。計測部64は、受光部13が受光した反射光の楕円率tanχを測定する。
 図23に示すように、反射板11上に配置した試料16の屈折率がnからn+Δnに変化すると、楕円率tanχの入射角特性もθ+Δθ変化する。第1実施形態のように、楕円率tanχがゼロになる吸収角θの変化Δθを測定することで、屈折率nの変化Δnを計測してもよいが、一定の波長λ及び入射角θにおける楕円率tanχの変化(図23中の矢印)を測定することで、屈折率nの変化Δnを計測してもよい。ただし、試料16の楕円率tanχは、楕円率tanχの入射角特性の直線部分であるtanΧからtanΧの範囲にあるものとする。
 そこで、本実施形態では、計測部64は、一定の入射角θで基準物質の楕円率tanχがゼロとなる波長λを測定し、該入射角θ及び波長λで試料16の楕円率tanΧを測定する。計測部64は、測定した試料16の楕円率tanΧから試料16の屈折率nの変化Δnを測定する。
 なお、ここでは入射角を一定とし、波長λを変化させることで基準物質の楕円率tanχがゼロとなる波長λを測定したが、波長を一定とし、入射角θを変化させることで、基準物質の楕円率tanχがゼロとなる入射角θ及び波長λで試料16の楕円率tanχを測定してもよい。また、波長λ、入射角θを一定とし、方位角φを変化させることで基準物質の楕円率tanχがゼロとなる入射角θ及び方位角φで試料16の楕円率tanχを測定してもよい。
 以上のように、本実施形態に係る表面プラズモンセンサ6では、試料16の屈折率変化に伴う楕円率tanχの入射角特性の直線部分の変化を利用して試料16の屈折率nを測定するため、試料16の楕円率測定回数が1回で済む。これにより、計測時間を大幅に短縮することができる。また、図23に示すように、楕円率tanχの入射角特性は楕円率tanχがゼロとなる付近で急峻となるため、屈折率のわずかな差が楕円率tanχの大きな変化となって現れやすい。従って、例えば気体のような屈折率nの差が小さい物質であってもより高精度に屈折率nを測定することができる。
 また、屈折率nを測定したい試料16の楕円率tanχの測定回数が1回で済むため、実験の再現性が良くなり、試料気体の違いによりtanχの値が変わるため、さらに高精度に屈折率nを測定することができる。
(第7実施形態)
 図24を用いて第7実施形態に係る表面プラズモンセンサ7を説明する。
 本実施形態に係る表面プラズモンセンサ7は、反射板71を調整することで屈折率nの測定感度を向上させている点で表面プラズモンセンサ1と異なる。それ以外の構成は同じであるため説明を省略する。
 図25に、反射板71の方位角φ及び格子の溝の形状(ここでは、溝の深さH)を変化させた場合の楕円率tanχの入射角特性を示す。図25は、試料16として空気を用いた場合のシミュレーション結果を示す図である。楕円率tanχの変動を測定する方法は、図7と同じである。
 図25に示すように、反射板71の方位角φ及び溝の形状(ここでは溝の深さH)を変化させることで、吸収角θ付近の楕円率tanχの傾きが変化していることがわかる。吸収角θは楕円率tanχの傾きが大きい方が高精度に求まる。そこで、本実施形態に係る表面プラズモンセンサ7では、反射板71の方位角φ及び溝の形状(例えば溝の深さH)を調整することで、吸収角θ付近の楕円率tanχの傾きが最も大きくなるようにして楕円率tanχの変動を測定する。
 反射板71の調整方法としては、反射板71の方位角φ及び溝の形状を変化させながら楕円率tanχの入射角特性を測定し、吸収角θ付近の楕円率tanχの傾きが最も大きくなる反射板71の方位角φ及び溝の形状を決定してもよい。
 また、吸収角θの前後で反射光のp波とs波の位相差δを±90°,反射率を同じ(ρ=ρ)になるように溝の形状と方位角φを選べば、楕円率tanχが±1に近づき、楕円率tanχの吸収角θの前後の傾きが大きくなる。従って、溝の形状と方位角φを変化させながら、反射光のp波とs波の位相差δや反射率を測定し、吸収角θ付近の楕円率tanχの傾きが最も大きくなる反射板71の方位角φ及び溝の形状を決定してもよい。なお、反射板71の調整は、屈折率nを測定する前に1度行えば十分である。
 以上のように、本実施形態に係る表面プラズモンセンサ7は、屈折率nを測定する前に反射板71を調整することで、吸収角θ付近の楕円率tanχの傾きを大きくすることができる。これにより、吸収角θを高精度に測定することができ、屈折率nの測定感度を向上させることができる。
 ここでは、表面プラズモンセンサ1の反射板を調整するようにしているが、表面プラズモンセンサ2、4~6の反射板を同様に調整することで屈折率nの測定感度を向上させるようにしてもよい。また、表面プラズモンセンサ3の反射板の溝の形状を調整し吸収角θ付近の楕円率tanχの傾きを大きくし、吸収角θの測定感度を向上させるようにしてもよい。
(第8実施形態): 
 本発明の第8実施形態に係る表面プラズモンセンサ8を説明する。図26は、表面プラズモンセンサ8の概略を示す図である。本実施形態に係る表面プラズモンセンサ8は、上述した楕円率tanχ算出の元となる位相情報に基づいて屈折率を測定する点で上述した各実施形態に係る表面プラズモンセンサと異なる。
 上述した図9を参照して説明したように、反射光のp波の位相δ及びs波の位相δは、吸収角θの前後で正から負、又は負から正へと変化し、反射光の位相差δも、吸収角θの前後で正から負、又は負から正へと変化する。上述した例では、この特性を利用して吸収角θを測定するにあたり、楕円率tanχを測定することで位相差δがゼロとなる入射角を吸収角θに特定していた。
 これに対し、本第8実施形態では、偏光板を用いることで反射光のp波とs波の位相差δに相当する値を測定し、位相差δがゼロとなる入射角(吸収角θ)を測定することができる。これにより、楕円率tanχの測定を行わずに吸収角θを特定し、ひいては屈折率nを特定することができる。すなわち、楕円率tanχを測定するポラリメータ等の機器が不要となる。
 図26において、表面プラズモンセンサ8は、スプリッタ87と、偏光板88a,88bと、2つの受光部83a,83bを備えている。なお、その他の構成は図1に示す表面プラズモンセンサ1と同様であるため説明を省略する。
 スプリッタ87は、反射板11が反射する反射光の経路上に配置されており、反射光の光束を2つに分割し、一方の光束を受光部83aへ入射させ、他方の光束を受光部83bへ入射させる。
 偏光板88aは、スプリッタ87にて分割された一方の光束の経路上に配置されており、この光束の中の特定方向に偏光した成分を選択的に通過させる。偏光板88bは、スプリッタ87にて分割された他方の光束の経路上に配置されており、この光束の中の特定方向に偏光した成分を選択的に通過させる。これにより、受光部83a,83bは、特定方向に偏光した反射光をそれぞれ受光する。
 偏光板88aと偏光板88bは、異なる方向に偏光した成分を通過させるように透過軸の方向を調整されている。例えば、後述の図28や図30に示す例では、偏光板88aは、反射光の楕円の傾き角ψと同じ向きに偏光した光を選択的に通過させるように調整し、偏光板88bは、反射光の楕円の傾き角ψと直交する向きに偏光した光を選択的に通過させるように調整する。このように、楕円の傾き角が90°異なる光を各偏光板が選択的に通過することで、反射光の位相差δの増減を測定することができる。
 換言すると、偏光板88a,88bの少なくとも一方が、反射光の楕円の傾き角ψの向きと直交する方向に偏光した光の一部を通過可能に調整されていればよい。これにより、少なくとも一方の受光部が反射光の位相差δの増減傾向を測定することとなり、計測部84は、位相差δが0になる吸収角θを測定することができる。
 計測部84は、偏光板88a,88bを介して受光部83a,83bが受光した反射光の強度変動を測定する。そして、計測部84は、反射光の強度変動に基づいて吸収角θを測定することができる。
 ここで、本実施形態における吸収角θの測定方法について説明する。
 図27は、入射角θと楕円の傾き角ψの関係を示す図である。同図には、各入射角θにおける楕円の傾き角ψの変動をシミュレーションした結果を示してある。ここでは、反射板11としてホログラフィックアルミ格子を用いている。格子の溝の深さをH=72nm、格子の周期dをd=556nm、方位角φをφ=30°、波長λをλ=670nmとし、入射角θを3°<θ<15°の範囲で変化させた。同図に示すように、楕円の傾き角ψは吸収角θを中心とするピークを有している。
 同図において、θは楕円の傾き角ψ=30°における入射角を表し、θは楕円の傾き角ψ=70°における入射角を表す。入射角θ,θは吸収角θからずれているが、吸収角θから数°の範囲内にある。
 図28は、入射光の楕円の傾き角ψを30°として計測部84が測定した受光強度を示すシミュレーション結果を示す図である。ここでは、反射板11としてホログラフィックアルミ格子を用いている。格子の溝の深さをH=72nm、格子の周期dをd=556nm、方位角φをφ=30°、波長λをλ=670nmとし、入射角θを3°<θ<15°の範囲で変化させた。同図において、受光部83aの受光強度Eaを一点鎖線で示し、受光部83bの受光強度Ebを二点鎖線で示し、受光強度の差分Ea-Ebを点線で示してある。
 受光強度Ea,Ebや差分Ea-Ebは、入射角θを略中心とする所定範囲において線形的に変化している。そこで、この所定範囲における線形的な変化を基準試料にて測定、又はシミュレーションし、その測定結果又はシミュレーション結果を校正データとして用いることにより、屈折率nの変動に伴う入射角θの変動を測定することができる。
 図29は、本実施形態に係る屈折率nの測定手順を示すフローチャートである。同図に示す測定方法においては、反射板11上に試料16を配置した場合の試料16からの反射光の強度(以下、反射光強度Iと呼ぶ。)の変動を測定する。
 まず、反射板11上に試料16を配置し(S201)、入射角θ、波長λの入射光を光源12から照射する(S202)。ここでは、光源12は、p波の入射光を照射する。この入射光の入射角θは、上述した入射角θを略中心とする所定範囲内の角度である。
 受光部83a,83bは、入射光が試料16を介して反射板11にて反射された反射光を受光する(S203)。
 計測部84は、反射光から反射光強度Iを測定する(S204)。
 このようにして測定された反射光強度Iに基づいて、計測部84は、上述した校正データを参照しつつ反射光強度Iの校正データからの変動量ΔIを特定する。そして、計測部84は、変動量ΔIに基づいて基準物質の屈折率nと試料16の屈折率の差Δn(=n-n)を測定する。
 なお、入射光の楕円の傾き角ψは30°に限るものではなく、楕円の傾き角ψの取り得る角度の範囲内であれば様々に設定することができる。例えば、図30は、入射光の楕円の傾き角ψを70°として計測部84が測定した受光強度を示すシミュレーション結果を示す図である。ここでは、反射板11としてホログラフィックアルミ格子を用いている。格子の溝の深さをH=72nm、格子の周期dをd=556nm、方位角φをφ=30°、波長λをλ=670nmとし、入射角θを3°<θ<15°の範囲で変化させた。
 図30において、受光部83aの受光強度Eaを一点鎖線で示し、受光部83bの受光強度Ebを二点鎖線で示し、受光強度の差分Ea-Ebを点線で示してある。同図においても、受光強度Ea,Ebや差分Ea-Ebは、入射角θを略中心とする所定範囲において線形的に変化しているため、この所定範囲の校正データを用いることにより入射角θの変動を測定することができる。
 以上のように、第8実施形態に係る表面プラズモンセンサ8は、偏光板を用いて得られる位相差δに相当する値を用いて屈折率nを測定することができる。すなわち、楕円率tanχの測定が不要であるため、ポラリメータ等のように楕円率tanχを測定する高価且つ複雑な機器を用いること無く、屈折率nを測定することができる。
(第9実施形態) 
 本発明の第9実施形態に係る表面プラズモンセンサ9を説明する。図31は、表面プラズモンセンサ9の概略を示す図である。本実施形態に係る表面プラズモンセンサ9は、スプリッタを備えず、偏光板と受光部を1つずつ備える点で、上述した第8実施形態に係る表面プラズモンセンサ8と異なる。
 図31において、表面プラズモンセンサ9は、偏光板98と受光部93を備える。偏光板98は、反射光の経路上に配置されており、この反射光の中の特定方向に偏光した成分を選択的に通過させる。偏光板98は、これにより、受光部93は、特定方向に偏光した反射光を受光する。
 計測部94は、偏光板98を介して受光部93が受光した反射光の強度変動を測定することができる。そして、計測部94は、反射光の強度変動に基づいて入射角(吸収角θ)を測定することができる。そのほかの構成は図26に示す表面プラズモンセンサ8と同様であるため説明を省略する。また、屈折率nの測定方法も、第8実施形態における受光強度Ea,Ebに基づく屈折率の測定方法と同様であるため、説明を省略する。
 以上のように、第9実施形態に係る表面プラズモンセンサ9は、1組の偏光板と受光部を用いて位相差δに相当する値を取得して屈折率nを測定することができる。
 なお、第3~第9実施形態に係る表面プラズモンセンサ3~9の反射板を、第2実施形態と同様に基板25側から入射光が入射されるように構成するようにしてもよい。
 また、第1~第7実施形態において、楕円率tanχの代わりに第8,9実施形態のように偏光板を用いて反射光の位相差δに相当する値を測定することにより測定した吸収角θや吸収方位角φ、吸収波長λを用いて屈折率nを測定することもできる。
 最後に、上述した各実施形態の説明は本発明の一例であり、本発明は上述の実施の形態に限定されることはない。このため、上述した各実施の形態以外であっても、本発明に係る技術的思想を逸脱しない範囲であれば、設計等に応じて種々の変更が可能であることは勿論である。
11,21,31,71…反射板、12,42,52…光源、13,83a,83b…受光部、14,34,44,54,64,84,94…計測部、57…制御部、87…スプリッタ、偏光板…88a,88b

Claims (14)

  1.  周期構造を有する金属層を備え、試料が配置された反射板と、
     前記反射板に入射光を照射する光源と、
     前記反射板で反射した反射光を受光する受光部と、
     前記試料を透過して反射した反射光に含まれる偏光方向の異なる2種類の波の位相差情報に基づいて前記試料の屈折率を測定する計測部と、を備えることを特徴とする表面プラズモンセンサ。
  2.  前記反射光に含まれる偏光方向の異なる2種類の波は、前記反射光に含まれるs波とp波であることを特徴とする請求項1に記載の表面プラズモンセンサ。
  3.  前記位相差情報は、前記反射光の楕円率の変動であることを特徴とする請求項1又は請求項2に記載の表面プラズモンセンサ。
  4.  前記光源は、前記反射板に照射する入射角を変化させながら前記入射光を照射し、
     前記計測部は、前記2種類の波の位相差がゼロになる前記入射角に基づいて前記試料の屈折率を測定することを特徴とする請求項1乃至請求項3のいずれか1項に記載の表面プラズモンセンサ。
  5.  前記反射板は、前記入射光の入射面が前記周期構造の周期方向に対する方位角を変化させながら前記入射光を反射し、
     前記計測部は、前記2種類の波の位相差がゼロになる前記方位角に基づいて前記試料の屈折率を測定することを特徴とする請求項1乃至請求項3のいずれか1項に記載の表面プラズモンセンサ。
  6.  前記光源は、前記入射光の波長を変化させながら前記入射光を照射し、
     前記計測部は、前記2種類の波の位相差がゼロになる前記波長に基づいて前記試料の屈折率を測定することを特徴とする請求項1乃至請求項3のいずれか1項に記載の表面プラズモンセンサ。
  7.  前記計測部が測定した前記2種類の波の位相差がゼロになるように前記周期構造の周期方向に対する方位角を変更するように前記反射板を制御する制御部をさらに備えることを特徴とする請求項1乃至請求項3のいずれか1項又は請求項5に記載の表面プラズモンセンサ。
  8.  前記計測部が測定した前記2種類の波の位相差がゼロになるように前記入射角を変更するよう前記光源を制御する制御部をさらに備えることを特徴とする請求項1乃至請求項4のいずれか1項に記載の表面プラズモンセンサ。
  9.  前記計測部が測定した前記2種類の波の位相差がゼロになるように前記波長を変更するよう前記光源を制御する制御部をさらに備えることを特徴とする請求項1乃至請求項3のいずれか1項又は請求項6に記載の表面プラズモンセンサ。
  10.  前記光源は、屈折率測定の基準となる基準物質を反射板に配置したときの反射光に含まれる前記2種類の波の位相差がゼロとなる入射角及び波長を有する前記入射光を前記試料に照射し、
     前記計測部は、前記反射光から得た位相情報に基づき前記試料の屈折率を測定することを特徴とする請求項1乃至請求項9のいずれか1項に記載の表面プラズモンセンサ。
  11.  前記2種類の波の位相差がゼロとなる前後の前記楕円率の変動量が大きくなるように前記反射板の方位角及び格子の溝の深さを調整することを特徴とする請求項1乃至請求項10のいずれか1項に記載の表面プラズモンセンサ。
  12.  入射面に対して前記反射光の平行な成分及び垂直な成分の位相差を略直角、前記反射光の反射率が前記平行な成分と前記垂直な成分とで略等しくなるように、前記反射板の方位角及び溝の形状を調整することを特徴とする請求項1乃至請求項11のいずれか1項に記載の表面プラズモンセンサ。
  13.  前記光源は、前記反射板の前記金属層が設けられた面と対向する面から入射されるように前記入射光を照射し、
     前記金属層は薄膜周期構造を有することを特徴とする請求項1乃至請求項12のいずれか1項に記載の表面プラズモンセンサ。
  14.  周期構造を有する金属層を備える反射板に配置された試料の屈折率を測定する表面プラズモンセンサを用いた屈折率の測定方法であって、
     光源から前記反射板に入射光を照射するステップと、
     前記試料を透過して前記反射板で反射した反射光を受光部で受光するステップと、
     前記受光部で受光した反射光に含まれる偏光方向の異なる2種類の波の位相差情報に基づいて前記試料の屈折率を測定するステップと、を備えることを特徴とする屈折率の測定方法。
PCT/JP2012/051707 2011-01-26 2012-01-26 表面プラズモンセンサ、及び屈折率の測定方法 WO2012102350A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP12739985.5A EP2669658B1 (en) 2011-01-26 2012-01-26 Surface plasmon sensor and refractive index measurement method
JP2012554845A JP5900970B2 (ja) 2011-01-26 2012-01-26 表面プラズモンセンサ、及び屈折率の測定方法
US13/981,727 US8976360B2 (en) 2011-01-26 2012-01-26 Surface plasmon sensor and method of measuring refractive index

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-014067 2011-01-26
JP2011014067 2011-01-26

Publications (1)

Publication Number Publication Date
WO2012102350A1 true WO2012102350A1 (ja) 2012-08-02

Family

ID=46580913

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/051707 WO2012102350A1 (ja) 2011-01-26 2012-01-26 表面プラズモンセンサ、及び屈折率の測定方法

Country Status (4)

Country Link
US (1) US8976360B2 (ja)
EP (1) EP2669658B1 (ja)
JP (1) JP5900970B2 (ja)
WO (1) WO2012102350A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104807758B (zh) * 2015-05-08 2017-05-10 陕西科技大学 一种在线测量高温熔体和液体折射率的装置与方法
RU2629928C2 (ru) * 2016-02-09 2017-09-04 Федеральное государственное автономное образовательное учреждение высшего образования "Новосибирский национальный исследовательский государственный университет" (Новосибирский государственный университет, НГУ) Способ определения показателя преломления монохроматической поверхностной электромагнитной волны инфракрасного диапазона
US9749044B1 (en) * 2016-04-05 2017-08-29 Facebook, Inc. Luminescent detector for free-space optical communication
KR102446412B1 (ko) 2016-04-19 2022-09-22 삼성전자주식회사 비모델식 굴절율 측정 방법 및 장치
CN115616792A (zh) * 2022-11-29 2023-01-17 天津凯普林激光科技有限公司 一种光束整形方法、光束整形装置及紫外激光器

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008292425A (ja) * 2007-05-28 2008-12-04 Ricoh Co Ltd バイオセンサ
JP2009210495A (ja) * 2008-03-06 2009-09-17 Tohoku Univ 円二色性を持つ媒体測定表面プラズモン共鳴センサー、円二色性測定法及び測定装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3594064A (en) * 1969-06-25 1971-07-20 Du Pont Enhanced magneto-optic mirror apparatus
US5867239A (en) * 1997-10-17 1999-02-02 Minnesota Mining And Manufacturing Company Wide angle optical retarder
JP2000122062A (ja) * 1998-10-13 2000-04-28 Sony Corp 光学素子とその製造方法、及び光学装置とその製造方法
US6236033B1 (en) * 1998-12-09 2001-05-22 Nec Research Institute, Inc. Enhanced optical transmission apparatus utilizing metal films having apertures and periodic surface topography
ES2261009B1 (es) * 2004-06-11 2007-11-16 Consejo Superior De Investigaciones Cientificas. Dispositivo y metodo para detectar cambios en el indice de refraccion de un medio dielectrico.
TWI429896B (zh) * 2006-07-27 2014-03-11 Rudolph Technologies Inc 橢圓偏光測定儀器及監控製程之方法
JP5397577B2 (ja) 2007-03-05 2014-01-22 オムロン株式会社 表面プラズモン共鳴センサ及び当該センサ用チップ
GB0721482D0 (en) * 2007-11-01 2007-12-12 Univ Exeter Plasmon resonance based sensor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008292425A (ja) * 2007-05-28 2008-12-04 Ricoh Co Ltd バイオセンサ
JP2009210495A (ja) * 2008-03-06 2009-09-17 Tohoku Univ 円二色性を持つ媒体測定表面プラズモン共鳴センサー、円二色性測定法及び測定装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BAI B: "Artificial optical activity in chiral resonant nanogratings", PROCEEDINGS OF SPIE, vol. 7393, 25 November 2009 (2009-11-25), pages 73930K-1 - 73930K-11, XP055128840 *
TAIKEI SUYAMA ET AL.: "Excitation of surface plasmons on metal grating and its application for refractive index measurement", THE INSTITUTE OF ELECTRICAL ENGINEERS OF JAPAN KENKYUKAI SHIRYO, 29 January 2007 (2007-01-29), pages 61 - 66, XP008172154 *
TAIKEI SUYAMA ET AL.: "Surface Plasmon Resonance-absorption on a Metal Grating placed in Conical Mounting", THE PAPERS OF TECHNICAL MEETING ON ELECTROMAGNETIC THEORY, IEE JAPAN, 21 January 2005 (2005-01-21), pages 29 - 34, XP008172330 *

Also Published As

Publication number Publication date
JPWO2012102350A1 (ja) 2014-06-30
EP2669658A1 (en) 2013-12-04
JP5900970B2 (ja) 2016-04-06
EP2669658A4 (en) 2018-03-07
US20140029006A1 (en) 2014-01-30
EP2669658B1 (en) 2019-06-26
US8976360B2 (en) 2015-03-10

Similar Documents

Publication Publication Date Title
JP5900970B2 (ja) 表面プラズモンセンサ、及び屈折率の測定方法
JP5704480B2 (ja) 表面プラズモン共鳴効果に基づく動的検出デバイス
JP2009533696A5 (ja)
JP2009300108A (ja) テラヘルツ分光装置
US6483584B1 (en) Device for measuring the complex refractive index and thin film thickness of a sample
WO2008039212A2 (en) Optical sensing based on surface plasmon resonances in nanostructures
US6885454B2 (en) Measuring apparatus
CN107764776B (zh) 多波长可调式表面等离子体共振成像装置及其应用
JPH03209136A (ja) 光ビームのコリメーション状態および角度を検出するための装置および焦点位置を検出するための方法
JP2014517505A5 (ja)
CN104792739A (zh) 一种spr成像传感器及其调节方法和spr成像传感芯片
WO2005029050A1 (ja) 偏光解析装置および偏光解析方法
US20090251707A1 (en) Method and Apparatus for Phase Sensitive Surface Plasmon Resonance
US20060092424A1 (en) Swept-angle SPR measurement system
JP4732569B2 (ja) コーティングの光学的な層厚さを連続的に決定するための方法
EP0856840A1 (en) Birefringence measuring apparatus for optical disc substrate
JP7521993B2 (ja) 光学測定装置および光学測定方法
TW201305530A (zh) 小角度及小位移之量測方法及其裝置
KR100911626B1 (ko) 바이오 센서 측정 장치
JP2004245674A (ja) 放射温度測定装置
CN220751236U (zh) 测量装置
JP2011106920A (ja) 回転・傾斜計測装置および方法
US6654123B2 (en) Sensor utilizing attenuated total reflection
JP2010091716A (ja) 光弾性変調器およびそれを備えた光弾性測定装置
JP3390355B2 (ja) 表面プラズモンセンサー

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12739985

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2012554845

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012739985

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13981727

Country of ref document: US